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Abstract—The focus of this paper is on the development
of velocity constrained time-optimal control profiles for point-
to-point motion of a gantry crane system. Assuming that the
velocity of the trolley of the crane can be commanded, an
optimal control problem is posed to determine the bang-off-
bang control profile to transition the system to the terminal
states with no residual vibrations. Both undamped and un-
derdamped systems are considered and the variation of the
structure of the optimal control profiles as a function of the
final displacement is studied and the collapse and birthing of
switches in the control profile are explained. To account for
uncertainties in model parameters, a robust controller design
is posed and the tradeoff of increase in maneuver time to the
reduction of residual vibrations is illustrated.

Index Terms— Input Shaper, Gantry Crane, Vibration Con-
trol.

I. INTRODUCTION

Control of cranes has been a topic garnering increasing
interest over the past three decades with the growth in the
use of prefiltering approaches to minimize residual vibrations
of systems characterized by underdamped motion. One such
approach is called input shaping which consists of a time-
delay filter which is designed to cancel the underdamped
poles of the system. To account for uncertainties in the es-
timated damping or natural frequencies of the underdamped
poles, multiple zeros of the time-delay filter are located at
the nominal location of the underdamped poles, resulting
in robustness to uncertainties in the modal parameters. The
domain of input shaping has matured and can account for
uncertainties by desensitizing the time-delay filter around the
nominal model [1] or by accounting for the interval domains
of uncertainties [2]. Constraints on jerk [3], deflection [4]
have also been taken into account in the design. Including
time-delay filters inside the feedback loop [5] and distributed
delay input shapers [6] have also been studied which are
novel deployment of input shapers.

Noakes, Petterson, and Werner [7] proposed a switch-
ing control profile to generate oscillation-damped transport
and swing-free stop. Their technique consists of bang-off-
bang acceleration profiles in which the pulses are timed to
minimize the cable sway during the maneuver and results
in a swing-free stop. They experimentally demonstrated the
results of the open-loop control design. Fliess, Levine, and
Rouchon [8] used the concept of differential flatness to
control the traversing and hoisting of an overhead crane.
They proposed tracking a C4 smooth reference profile to
minimize the oscillations of the cable during the maneuver.
Alli and Singh [9] designed passive controllers on a dis-
tributed parameter representation of the crane cable for point-

to-point maneuvers where the integral of the time absolute
error is minimized. There have been numerous publications
related to the use of input shapers [1], [10] for sway control
of cranes [11], [12], [13], [14]. Shah and Hong [15] applied
input shaping for the underwater transport of nuclear power
plant’s fuel.

This paper considers a gantry crane system driven by
stepper motors which permits commanding the position of
the trolley. Imposing velocity limits on the trolley motion,
this paper considers the design of velocity constrained time-
optimal point-to-point control of a crane moving in two
dimensions. Since the pendular motion is almost undamped,
an undamped system model will be first considered and
observations of the structure of switching function is used to
solve a nonlinear function to determine the optimal solution
for any arbitrary maneuver. The solution is then extended to
underdamped systems.

Section II presents the development of velocity constrained
time-optimal control for an undamped gantry crane system
followed by the same development for underdamped systems
in Section III. Sections IV presents a simple approach to
determine the transition in the structure of the control profile,
followed by the development of a problem to desensitize the
controller to model parameter uncertainties in Section V. The
paper concludes with a brief summary of the results of the

paper.

II. UNDAMPED SYSTEM
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Fig. 1: Equivalent Spring Mass system

The gantry crane setup includes a trolley driven by a
stepper motor which permits commanding a position. A
schematic of the crane and an equivalent spring-mass system
is shown in Fig. 1. The spring-mass model can be written



as:

mx + kx —kx; =0 @))
T;i=wv 2)

where v is the velocity of the trolley is considered as the
input and is constrained 0 < v < v,,. Mass normalization
leads to the equation:

&+ wic =wly 3)

where we assume w, = 27 to generate numerical results.
For a rest-to-rest maneuver, we assume that the initial
displacement x(0) = #(0) = x;(0) = 0 and the terminal
position is z(t5) = x;(ty) = xf and &(ty) = 0. Since the
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Fig. 2: Velocity and Displacement Profiles

input velocity is constrained, the time-optimal bang-off-bang
control profile can be parameterized as the output of a time-
delay filter (G.(s))

(s) = Um 1— e 5Tl 4 =5QT=T1) _ —s2T» (4)
s

=G.(s)

subject to a unit step input. Since the system is undamped,
we assume symmetry about the mid-maneuver time reducing
the number of variables needed to parameterize the bang-off-
bang control profile as shown in Fig. 2. As shown by Singh
and Vadali [16], the time-delay filter is required to place
zeros at the location of the poles of the plant. We can see
that

Go(s=0)=1-141-1=0 (5)

which cancels the pole at the origin. To cancel the undamped

poles at s = j w,, we require:

1 — cos (wnT1) + cos (wy, (215 — T1)) ... (6)
e — €08 (Wp2T5) =0
sin (w,T1) — sin (wy, (272 — T1)) + sin (wp2T2) =0 (7)

which reduces to the constraint:
sin (wy, (To — T1)) — sin (w,T2) = 0. (8)
Eq. (8) results in the closed form solution:
T —wn(To —T1) = w,Ts. 9)

To satisfy the terminal rigid body displacement, we require:

ty
zf(2T3) = / vdt = 2110, (10)
0
N T (11)
20,
Using Eq. (9) and (11) leads to:

o, = ~ 4 (12)

Wn 20,

Examining Eq. (9), one can conceive of a situation where
the switch time 7j coincides with the mid-maneuver time
T, resulting in the solution:

Ty=T = —
Wn

13)

Equating Eq. (11) and (13), we arrive at the specific dis-
placement

20,
Jif =

(14

Wn
for which the optimal control profile is a rectangular pulse
of width 27%. Fig. 3 illustrates the transition of the optimal
control profile from a four-switch bang-off-bang to a bang
profile, eventually leading to a six switch bang-off-bang
control profile. To prove optimality, the time optimal control
problem is formulated. The state space model of the system
is:

T =121 = T2 (15a)
i =y = —wlr; + wias (15b)
V=23 =1U (15¢)
0<u<v,. (15d)
which permits the Hamilitonian to be written as
H=14+ X a2+ Ao (—wixl + u}il’:’)) + Azu (16)

which leads to the equations for the costates and optimal
control as:

fo= -z, (17a)
(9551
/'\2:_677":_)\1 (17b)
(9132
VL S (17¢)
81‘3
OH
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Fig. 3: Transition of Optimal Control profile

Since the velocity input is constrained to be positive, the
optimal control profile is parameterized with the Heaviside
function whose argument is the switching function:

A3(t) = —Acos(wnt) — Bsin(wpt) + D (18)

where A, B and D are parameters which need to be solved
for. Due to the symmetry of the control profile, a collapse in
Ty and T would lead to the following constraints A3(77) =
)\3(T1) = )\3(tf — Tl) = )\3(tf — T1> = /\3(0) = 0. This
in conjunction with the requirement that the Hamiltonian
H(0) = 0 results in the following expressions:

—Acos(w,T1) — Bsin(w,T1) + D =0 (19a)
Asin(w,Ty) — Beos(w,T1) =0 (19b)
—Acos(w,T1) + Bsin(w,T1)+ D=0 (19¢)
—Asin(w,T1) — Bcos(w,T1) =0 (194d)
—A+D=0. (19)

Eq. (19a) and Eq. (19¢) can be satisfied simultaneously if
B = 0. Eq. (19b) and Eq. (19d) with B = 0 results in
wy Ty = nm, where n is an integer. This leads to 7} = Z—’T,
which matches the early described observation because when
the switches collapse ¢ty = 275, = 277 = 2"” . Since the
optimal two switch control profile collapses to a rectangular
pulse which implies a ramp displacement profile, one can
conjecture for larger displacements, a four switch control
profile is necessary since the switching function completes
one complete period for the critical displacement z; =
2“”” . Any increase in the commanded displacement requires
a four switch bang-off-bang profile where the switch times
coalesce for a final displacement of z; = 41;"1” resulting in
a rectangular optimal velocity profile. Fig. 4'illustrates the
structure of the time-optimal control profile and the transition
of the switch times and maneuver time as a function of the
terminal displacement of the crane’s trolley. The two vertical

dashed line correspond to the displacements which require
no switches in the optimal control profiles. The filled regions
of the graphs corresponds to the interval of times when the
commanded velocity is the maximum and the white zones
are ones where the commanded velocity is zero. Results
presented assumed a maximum velocity limit of 240 mm/s.
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Fig. 4: Switch and Maneuver Time Variation

III. UNDERDAMPED SYSTEM

Section II dealt with undamped system which permitted a
reduced order parameterization of the optimal control profile
by exploiting the symmetric nature of the control about the
mid-maneuver time. This symmetry is attributed to the fact
that the oscillator motion excited by the input does not damp
out and the symmetric input can by virtue of linearity of the
system generate an out of phase motion of the undamped
modes which cancels the existing oscillations. For a system
with damping, the symmetric nature of the control profile
is lost since the amplitude of the oscillatory mode decays
in time. Consequently, the optimal control profiles needs
to explicitly parameterize every switch in addition to the
maneuver time. For instance for small displacements, the
optimal control is parameterized as:

Um [1 5T 4 o=5T2 e—sTg} ]
s

v(s) = (20)

=Gc(s)

The constraints to identify the optimal values of 77, T5, and
T3 are derived by requiring the zeros of the time-delay filter
to cancel the pole at the origin and the underdamped poles
of the system. This results in the constraints:

Ge(s=0)=1-1+1-1=0 1)

which cancels the pole at the origin. To cancel the under-
damped poles at s = —0 + jwyg = —Cwp, + j wp/1 — 2,



where ¢ = 0.01 we require:

3
14+ (—1)'e™ cos(wnT) = 0 (22)
13—1
> (=1 sin(w, T3) = 0. (23)

i=1

To satisfy the terminal rigid body displacement, we require:

¢

o(Ts) =xf = / ' vdt 24
0

= (T3 — (T3 —Th) + (T3 —T2))  (25)

—>xf:vm(T3+T1—T2). (26)

The nonlinear optimization problem that needs to be solved
is:

min J =13 (27a)
subject to
Um (T3 + T1 — Tg) = l‘f (27b)
3
1+ (1) cos(w,T;) = 0 (27¢)
i=1
3 .
> (=1 sin(wnT3) = 0 (27d)
=1
0< Tl < T2 < T3 (276)

As in the case of the undamped system, the number of
switches necessary to parameterize the optimal control pro-
file changes with the terminal displacement. Fig. 5 illustrates
the variation of the switch times as a function of the
final displacement and the control input over the maneuver
time for specific examples. For terminal displacements of
0 — 700 mm, three zones have been identified, separated by
the vertical dashed lines. Three representative optimal control
profiles are presented corresponding to three displacements
highlighted by the dotted lines and labelled a, b and c. It
is interesting to note that in zone 3 which includes the
dotted line ¢, the number of switches required for the optimal
control profile starts with four switches, transitions to six
switches, and returns to a four switch optimal control profile.

IV. SWITCHING PROFILE TRANSITION

It is clear from Fig. 4 and 5 that the structure of
bang-off-bang control profile changes as a function of the
terminal displacement. In Fig. 4, for small displacements
(zy < 240 mm), the optimal control profile is characterized
by two switches and the switches after collapsing resulting
in a pulse control profile, births a four switch control
profile which then transition to a six switch control profile.
The change in structure of the optimal control profile for
underdamped systems is more involved as all switches do
not collapse for the same value of the terminal displace-
ment. To exactly determine the terminal displacement which
corresponds to the birth or collapse of two or more switches,
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Fig. 5: Switch and Maneuver Time Variation

the constraint is that the switching function and its time
derivative are simultaneously zero at some time instant. For
the underdamped system the switching function A3(t) can be
represented as:

A3 (ter, 2p) = A3 (ter, xp) = 0. (28)

where ., is the switch time where two switches collapse.
ter and x¢ can be determined by solving the two nonlinear
simultaneous equations in two unknowns while satisfying all
the necessary conditions for optimality.

V. ROBUST CONTROL

The challenge of dealing with model parameter uncertain-
ties is ubiquitous and there have been numerous approaches
proposed for the design of robust open-loop controllers
including enforcing robustness around the nominal model
of the system or a minimax problem formulation where the
maximum residual energy is minimized over an interval of
uncertainty. In this work, we determine the sensitivity of the
states of the system with respect to uncertainty in the spring
stiffness and force the sensitivity states at the terminal time
to be zero. The resulting state space model is:

j?l = T2 (293)
To = —wiwl + wixg (29b)
d(bl dQCQ

oot 2 2
dw,  dwy, (23)
di d

B2 gy — w2 T 9w, (29d)
dw,, dwy,

v=dy=u (29¢)
0<u<vy,. (291)



and is subject to the initial and final conditions:

i (0) = 332(0) = l‘g(O) =0 (308.)

dl‘l - dCL‘Q -

2L 0) = 220) = 0 (30b)

xl(tf):x3(tf):xf7 (30c)
d d

za(ty) = %(tf) = %(tf) =0 (30d)

Solving the robust velocity constrained time-optimal control
problem for the undamped system for various terminal
displacements, the variation in the optimal control profile
as a function of the terminal displacement is illustrated
in Fig. 6. Fig. 7 illustrates the variation of the residual
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Fig. 6: Switch and Maneuver Time Variation for Robust
Control

energy at the terminal time for the non-robust and robust
time-optimal controllers over a range of uncertain natural
frequencies for the undamped system. It is clear that the
yellow line which represents the variation of residual energy
of the robust control outperforms the non-robust design
illustrated by the black line. These graphs are generated for
a terminal displacement of 50 mm. Currently, a experimental
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Fig. 7: Switch and Maneuver Time Variation for Robust
Control for z;y = 50 mm

setup is being constructed to test and validate the bang-off-
bang optimal control profiles with an ability to change the
natural frequency of the system to gauge the robustness.
Experimental results will be presented in a future paper.

VI. CONCLUSIONS

This paper presented a optimal control based development
of a velocity limited time-optimal control of a gantry crane
system which is characterized by one vibratory mode. The
variation in the structure of the optimal control profile
is presented for systems where the vibratory modes are
undamped or underdamped. It is noted that as the final
displacement increases, there is a increases in the number
of switches in the optimal control profile with periodic
terminal displacements requiring a pulse control profile with
no switches. The optimal control framework can be easily
extended to account for multiple vibratory modes such as
when the crane is modelled as a double pendulum.
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