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Program traces are a widely used representation for explaining the dynamic behavior of programs. They help
to make sense of computations and also support the location and elimination of bugs. Unfortunately, program
traces can grow quite big very quickly, even for small programs, which compromises their usefulness.

In this paper we present a visual notation for program traces that supports their concise representation. We
explain the design decisions of the notation and compare it in detail with several alternatives. An important

part of the trace representation is its flexibility and adaptability, which allows users to transform traces by
applying filters that capture common abstractions for trace representations.

We also present an evaluation of the trace notation and filters on a set of standard examples. The results
show that our representation can reduce the overall size of traces by at least 79%, which suggests that our
notation is an effective improvement over the use of plain traces in the explanation of dynamic program

behavior.

1. Introduction

Program understanding is intimately tied to the understanding of
the dynamic behavior of programs, and program traces that keep track
of the computation performed by a program on particular inputs play
an important role in providing programmers with such an understand-
ing. One important use of program traces is in the context of debugging,
where they are used to understand unexpected program behavior.
In addition, program traces are also used in educational settings to
illustrate the working of programs to novice programmers.

The use of program traces is complicated by the fact that they tend
to become large quickly, even for rather small programs. Large traces
make it difficult and time-consuming to isolate those parts of a trace
that are relevant for the task at hand: finding a bug or understanding a
particular part of a program [1,2]. An important question is therefore
how to provide effective access to those parts of program traces that
are helpful to a user while at the same time ignoring those other
parts that are unimportant. One approach is to support users of traces
(programmers, educators, learners) with a tool for the creation and
navigation of targeted, succinct program traces.

To this end, we have investigated existing tracing approaches and,
in particular, the trace representations they employ. Based on this
analysis we have designed a new representation as a basis for such a
tool that offers a number of innovations. In this paper we explain the
design of our representation and discuss its features in relation to other
approaches.

A preliminary version of this paper has appeared in the 2021
VL/HCC conference [3]. This revised and expanded version contains
a number of changes and additions. Specifically, we have:

developed and added a new representation of quasi-linear traces
(Section 5),

added an analysis of the extent of applicability of quasi-linear
traces,

added more details about the trace semantics (in particular,
Sections 3.4 and 4.2),

expanded the discussion of related work, and

added a discussion of several areas of future research (Section 9).

Finally, we have supplied additional examples, explanations, and dis-
cussions throughout the paper.

A key component of our approach is the idea of applying a set
of modular filters to automatically created complete traces. By using
different sets of filters users can quickly customize traces to their needs.
As we will show, the set of predefined filters supports a wide variety
of customizations and is sufficient for many use cases. Still, new filters
can be added as needed, since the filters are defined based on a trace
query language (which is defined in [4]). The definition of new filters
using the query language is meant to be done by experts, whereas the
use of filters does not require any understanding of the query language.

The basis for the investigation of traces is a small functional lan-
guage, which is essentially an extension of the untyped lambda calculus
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by numbers and algebraic data types. As an example, consider the
following definition of the factorial function.

fact = \x ->casex of {0->1; y ->x * fact (x-1)}

The concrete syntax of our language is actually a small subset of the
functional programming language Haskell [5].

An important decision in the design of any trace notation is how to
represent and keep track of branching and recursion/iteration. Specif-
ically, one can try to retain the hierarchical structure of computation
in trees or flatten trees into linear sequences. Before we present our
approach, we discuss a widely known form of linear traces in Section 2,
which will help us identify a number of crucial design questions that
affect any trace notation. For example, to cope with the size of traces
one needs some notion of partial trace and a way to hide (and unhide)
(groups of) steps of a trace. Another problem that affects the size of
individual steps is the handling of variable bindings. A simple substi-
tution strategy can lead to too much redundancy that can impact the
readability of traces significantly.

In Section 3 we present the basis for our trace representation.
Some of the design decisions are a direct result of the issues we have
identified for linear traces in Section 2. While the tree-based notation
containing evaluation judgments may seem more verbose, we will show
that improved opportunities for filtering and focusing ultimately result
in a more flexible, scalable, and adaptable trace notation. A particularly
useful feature of our notation is the ability to flexibly choose whether
to show names or their values, depending on the context, which con-
tributes significantly to the conciseness of traces. This possibility is
the result of a so-called call-by-named-value semantics, a new variant of
call-by-value semantics that we have defined.

A key insight of our work on trace notation is that the construction
of succinct traces requires a set of expressive filters that offer fine-
grained control over the information presented in traces. We will
discuss various forms of trace filters and their (sometimes subtle)
interaction with the trace structure in Section 4.

Out trace notation is inherently hierarchical and thus leads to a
tree representation (which can be optimized in some cases to a DAG
representation). However, in many cases we can create a linear or
almost linear trace representation from our traces. We discuss the
design of these so-called quasi-linear traces in Section 5.

After we have presented our trace model, we provide a systematic
comparison of the different trace models and illustrate their strengths
and weaknesses in Section 6. We then present an artifact-based evalua-
tion of our approach in Section 7. We discuss related work in Section 8
and present our plans for future work in Section 9. Finally, we present
conclusions in Section 10.

2. Linear traces

Linear traces are often used in introductory functional program-
ming textbooks as explanations for how particular function definitions
work [6,7]. The simplicity of linear traces is very appealing, and they
generally are quite effective in demonstrating computation, especially
for small examples, as the sequential ordering of expressions makes
them easy to follow. As an example, consider the linear trace for the
computation of fact 6, which can take the following form.

fact 6

=case 6 0of {0 ->1; y->6x*fact (6-1)}

=6 * fact 5

=6 * (case 50f {0->1; y->5x%fact (5-1)})
=6 * (5 * fact 4)

=6* (5*x (4% (3% (2% (1x*

(case 0 of {0 ->1; y —> 0 * fact (0-1)}))))))
=6*x (5*x (4% (3*x(2x(1*x1)))))
=720
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We have omitted a number of intermediate steps from the complete
trace, since they don’t contribute anything new to an understanding of
how the computation unfolds. Obviously, these include the sequence of
steps replaced by the ellipsis, but the trace also elides details about the
substitution of arguments for parameters, comparisons of values, and
basic arithmetic computations.

This observation suggests the need for filtering automatically pro-
duced traces, which raises several questions regarding how to define
and apply such filters. One approach is to always apply a specific
set of simplifications implicitly. A problem with this approach is its
inflexibility and that it may do too much in some situations and too
little in others. Another approach is to offer an interactive GUI for
selecting ranges and applying simple hide and unhide operations. Yet
another approach is to programmatically specify filters and the target
ranges on which they operate using some form of query language.

In a linear trace, an interactive approach might be as simple as
selecting a range of lines. However, even this seemingly simple op-
eration could turn out to be quite cumbersome when this range is
large. Moreover, the need to select multiple disconnected ranges makes
the approach even less attractive. Finally, when traces are generated
repeatedly for different inputs, the need to repeat filtering operations
by hand might be prohibitive. Therefore, a query approach to applying
trace transformations seems to be more effective and preferable over
a simple GUI interface, which reveals an important weakness of linear
representations, namely, the difficulty to specify the scope and effect
of trace transformations.

Another feature of linear traces that is simultaneously a strength
and a potential weakness is the way variable bindings are handled.
Formally, when a function is applied to an argument, as in fact 6, a
binding between the function parameter and the argument is created
(in this case x = 6). Then each reference to the parameter in the
function body is replaced by the bound value. Linear traces typically
don’t show any bindings between function parameters and arguments
and instead directly substitute arguments for all parameter references.
The advantage of this approach is that no environments (that is, lists
or stacks of bindings) need to be maintained at all, which helps keep
traces small and manageable. However, this approach turns into a
disadvantage in situations where many parameter references have to be
substituted by an argument that takes up a large amount of space. The
following example illustrates this case. Consider the function map1to6,
which maps an argument function to the list of numbers from 1 to 6.

maplto6 =\f -> [f 1,f 2,f 3,f 4,f 5,f 6]

When we apply maplto6 to a function with a large body, this
function definition will be copied 6 times.

maplto6 (\x->some-big-expression)

= [(\x->some-big-expression) 1,
(\x->some-big-expression) 2,
(\x->some-big-expression) 3, ...]

This makes traces hard to read. In situations like these, keeping a
name in the trace together with the binding information that shows
the large expression only once is a more economic and preferable
representation.

A related problem is the inability to factor out, and represent only
once, subtraces for common subexpressions. Consider, for example, the
trace for fact 6 + fact 5. An unfiltered linear trace would contain
the trace for fact 5 twice, which would not have any additional
explanatory value and would only decrease readability. In filtering
this trace, one might trust the reader and omit the steps associated
with computing fact 5 a second time; however, this does not make
it entirely clear that prior lines contain the newly omitted information.
We thus conclude that it would be preferable to share the subtrace for
a common subexpression such as fact 5 in all cases.

The factorial trace also illustrates that the linear presentation gen-
erally has to produce many parentheses to express the order in which
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subexpressions have to be evaluated. This lexical overhead can be
quite annoying and make the reading of traces more tedious. The need
for bracketing is an intrinsic problem for any linear representation
that a tree representation doesn’t have, since grouping is expressed
implicitly through the structure of the subtrees. Of course, a tree
representation has its own disadvantages, including the need for good
layout algorithms as well as generally requiring more space.

Finally, we point out a more subtle, but quite important, disadvan-
tage of linear traces: The fact that each trace step consists of a complete
expression makes it difficult to systematically isolate (and highlight
or hide) the evaluation of subexpressions. Here a tree representation
is generally more modular, in particular when it contains not just
expressions but evaluation judgments. This aspect will become clear
after we have explained how the factorial trace looks in our visual
representation, which we will do in the next section.

3. Non-linear traces from proof trees

We can obtain a structurally different alternative to a linear trace
when we expose the hierarchical tree structure of expressions and show
the evaluation of each subexpression. Such a tree of subexpressions and
their results looks essentially like a proof tree obtained through the
application of an operational semantics [8]. This idea is not new and
was already presented in [9], albeit in a different context and with a
different goal.

3.1. Operational semantics via inference rules

In operational semantics the evaluation of expressions is defined
through a set of inference rules that have the following form.

P,...P, = C

The meaning of such an inference rule is that the statement C
(which is called the conclusion of the rule) follows if all the statements
Py, ..., P, (called premises) are true. Inference rules are typically pre-
sented in a visual form with all premises on top of a horizontal line
and the conclusion beneath it, like so:

P .. P
C

In so-called big-step operational semantics, the premises and conclusions

have the form p: e | v, which says that expression e evaluates to the

value v in the context of an environment of variable bindings p.

The operational semantics for our language is a variation of call-
by-value semantics [8]. The main difference to standard call-by-value
is that our semantics rules maintain and sometimes use names for
functions and otherwise eliminate variable environment and replace
them by binding nodes. We will explain these details in Section 3.4.

Let’s give a few brief examples for operational semantics rules.
The rule for evaluating constants ¢ has the form p: ¢ ¢; it has only
a conclusion and no premises and says that each constant always
evaluates to itself (regardless of the environment). Such rules without
premises are also called axioms.

The rule for evaluating expressions e; op e, that involve a built-in
binary operation op requires the evaluation of both argument expres-
sions to values v, and v, and yields as a result the value v obtained
from applying op.

piegdu pieydu, VI OpUy =V

piejopey v
The rule for evaluating the application of expression e, to another
expression e, requires that e, evaluate to a function value (a lambda
abstraction \x->¢’) and that e, evaluate to a value v’. The result of the
application is then obtained by evaluating the defining expression of
the function (¢’) in the environment p that is extended by the binding
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of the function parameter x to the result of the argument expression

v

p e d \x—>e preg v px=v:eJv

pieedv

3.2. Constructing proof trees with inference rules

With such rules we can build a tree for the evaluation of an
expression e as follows. First, we find a rule whose conclusion matches
e, which produces bindings for the metavariables used in the rule. For
example, to evaluate fact 6 we have to use the rule for application,
which binds e, to fact and e, to 6. The environment p is bound to the
current set of definitions, which must contain a definition for fact.
With these bindings we then instantiate all premises of the rule. In
the example, we obtain the premise instances p: fact { \x->¢’ and
p: 64 v,. (No metavariable in the third premise is instantiated yet.)

We then continue to find rules with matching conclusions for each
premise. In the example, a rule for looking up variable bindings will
locate the definition of fact in p and create corresponding bindings
for x and ¢/, and the application of the constant axiom binds v, to 6.
Both of these rules create leaves in the tree. With these new bindings
we can now find a rule for evaluating the third premise to evaluate
the function body of fact in the environment in which the parameter
x is bound to 6. This process continues recursively and ends with the
application of axioms creating leaves. The complete evaluation tree for
fact 6 is too big to be of practical use and needs to be trimmed down
further as discussed in Section 4.

To continue the discussion of the tree representation, we therefore
consider for now a simpler example: the tree representing the evalua-
tion of the expression 3*(4+1). This tree can be obtained by applying
the rule for binary operations twice and the axiom for constants three

times.
p:3%(4+1) J 15

N

p:343 p:4+1|5 3*x5 =15
p:4l4 p:1y1 4+1 =5

The root of the tree contains the judgment with the expression
to be evaluated and its result; its children contain the judgments
for the evaluation of the subexpressions. An important feature of the
hierarchical tree structure is that it allows the viewer to decide which
of the subexpressions (if any) to follow, and in which order. This also
means that a user interface for exploring such trees can hide subtrees
independently of one another, which is the modularity property men-
tioned in Section 2. Certainly, this feature could also be considered a
drawback, since it requires the user to decide which subtree to focus
on next.

Compared to the following linear trace for evaluating the expression
3% (4+1), the tree requires more space and seems overly complex.

3% (4+1)
= 3%5
=15

Maybe the tree representation isn’t such a good idea after all? The
tree representation is larger because it mentions details that are omitted
in the linear representation, such as the evaluation of constants and the
variable environment.

3.3. Simplifying proof trees to traces
At this point we encounter an important difference between our

trace notation and generic proof trees. First, we eschew environments
from judgments and replace variable lookups where necessary through
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so-called binding nodes; second, we provide a number of filters to
eliminate, automatically or on request, judgments from the tree that
are deemed unnecessary by the user.

After removing environments and filtering out all constant evalu-
ation judgments, the tree trace for the arithmetic example becomes
already much simpler. It looks as follows.

3*%(4+1) 15

/N

4+1y5 3x5=15

4+1 =5

Note that the tree trace notation suggests the reading of each node
as a statement justified by the statements of its children. For example,
the root node reads: “3*(4+1) evaluates to 15 because 4+1 evaluates to
5 and because 3*5 is 15”.

If we also forgo the presentation of arithmetic facts (like the linear
notation does), we obtain an even simpler tree with a complexity

similar to the linear trace.
3%x(4+1) § 15

4+1y5

This example is of course not very exciting; we have used it to
illustrate the basic design that underlies our tree trace notation. In
Section 4 we show how to construct concise tree traces through the
judicious use of trace filters. But before we can do that, we describe a
further simplification of traces that is achieved through a customization
of the underlying operational call-by-value semantics.

3.4. Call-by-named-value semantics

The semantics we have sketched differs in a subtle but important
way from the usual approach. Consider the following program in our
language.

(letx=1in\n->n+x) 5

The above snippet creates an unnamed function that is applied to
the value 3 and increments it by 1. The body of the function refers to
the variable x, but the variable itself is no longer in scope at the time
the function is applied. Nevertheless, the program is completely valid.
A standard semantics approach evaluates such a function to a so-called
closure, which is a pair consisting of the function definition (here: \n-
>n+x) and the bindings of any non-local variables that are visible at
the point of definition (here the single binding x = 1). This is to ensure
static scoping: When the function is applied, the saved binding for the
non-local variable is temporarily restored to prevent any capture and
shadowing of the variable binding.

The problem with the closure representation of a function is that it
goes against our attempts of reducing the amount of extraneous infor-
mation presented within a trace: Just when we remove environments
from our judgments, we put them right back through closures!

Our solution is to immediately substitute the referenced variables
in a closure’s body for their values. In the above example, the let
expression simply evaluates to \n->n+1. By itself, this solution doesn’t
get us very far, since it re-introduces one of the issues we’ve identified
with linear traces, namely the repeated substitution of large values,
which quickly bloats the resulting expressions and worsens cognitive
load.

To address this problem, we introduce named values into our se-
mantics. When a value is retrieved from a variable, the name of that
variable is attached to the value. This can happen multiple times, and a
value can therefore accumulate multiple names. When creating a trace,
named function values are replaced by their name (or the first of their
names, if there are many). In this way, we are able to avoid repeated
occurrences of function bodies in our traces. This simple strategy can
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be improved upon in various ways, and Section 9 considers some of
them. The Call-by-Named-Value semantics are formalized in [4].

To see the effect of Call-by-Named-Value semantics on generated
traces, consider first the following trace for the evaluation of the shown
example that is produced by the standard Call-By-Value semantics . The
need to repeatedly show the environments {x = 1} and {x = 1,n =5}
as well as the closure value ({x = 1}, \n->n+x)) makes the presentation
dense and complicates the reading (see Box I).

In contrast, the trace generated by our Call-by-Named-Value se-
mantics doesn’t have any environments and doesn’t need to show any
closures and thus looks much leaner. On the other hand, we do get two
additional nodes showing the bindings (and their origins) of x and n.
(Here we also show for illustration of named values the names attached
to the values 1 and 5; in any actual trace either the name or the value
is shown, see Box II.)

4. Trace filtering

The complete trace for the fact 6 example consists of 80 nodes and
22 levels, which is a lot of information to slog through. However, as the
example in Section 2 illustrates, the essence of the computation can be
captured in a much smaller trace by omitting details and some repeated
structures. Specifically, one might expect a trace to show each part of
a definition at least once, maybe twice for generic parts to illustrate
how they operate in different circumstances and to highlight patterns,
but generally not more than that. One might also want to filter out
some of the more clerical arithmetic computations (for example, for
decrementing a counter) and the lookup of variable bindings. We call
such a tailored trace a trace view.

In Fig. 1 we show a trace view that meets these expectations.! The
trace view is similar to the linear trace presented in Section 2 and is
obtained from a complete trace in several steps through the application
of filters.

The modularity of these filters as well as the flexibility in defining
them makes our trace representation highly adaptable to different
situations and needs. In the following we use the example trace to
illustrate the definition and use of trace filters and the principles that
underlie our trace filtering approach.

4.1. Binding nodes

We start by discussing a widely applicable trace simplification, also
used in this example: the hiding and propagating of variable lookups.
As can be seen in Fig. 1, the trace does not contain environments even
though bindings of variables are created and used repeatedly. In an
expanded version of the trace, the top part would actually look as

follows.
fact 6 720

case x of 0 -> 1; y -> x*fact (x-1) {720

_— | T

AlX=6 6~y x*fact (x-1) {720

We observe that the node evaluating the case expression is shown
in its unsubstituted form with x instead of 6 and x-1 instead of 5
and that it now has three children. The first child is a binding node
that explains that x was bound to 6 in the root node (which has been
assigned the label A). The second node shows a simplified version of
pattern matching judgments, which says that 6 matches y (that is, the
second case applies) to justify the selection of the third premise. In
general, pattern matching judgments produce bindings, but they need
not be shown when they are not used (as is the case here). The third

! The LaTeX code for the trace views in this paper was generated by
our prototype implementation, with occasional manual adjustment of the
horizontal positioning to fit the page layout.
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@: (let x=1 in \n->x+n) 56
/ \
@:let x=1 in \n->x+n{ ({x=1},\n->x+n) \Q: 505 {x=1,n=5}:x+n{5
\
@214}14}:\n—>x+nl}({X=1},\n—>x+n) {x=1,n=5}:}h{=1,n\=5}:nl}5 541 =6
Box L.
(let x=1 in \n->x+n) 5| 6*
\
let x=1 in \n->x+n @1’* \51;5 1*+n | 6
\
101 \n—>x+>l} \n->1*+n 11 / nl\}S“ 1+5=6
| |
B:x=1 A:n=5
Box II.

fact 6] 720

|
case 6 of 0 -> 1; y -> 6xfact 5| 720
|
6xfact 5] 720

/ ~__

fact 5| 120 6%120 = 720
5xfact 4| 120
e S~
fact 4 24 5%24 = 120
fact 01

\
case 0 of 0 -> 1; y -> Oxfact (0-1) |1

Fig. 1. Trace view for fact 6 with many details hidden. Ellipses indicate elided
paths with potentially off-branching subtrees.

child contains, as in Fig. 1, the recursive application of fact, but again
using x and x-1 instead of the substituted values.

Binding nodes are an important innovation of our trace model.
Motivated by the need for small traces, they keep the sharing prop-
erty of bindings offered by environments without having to repeat
environments in every judgment.

4.2. Origin shift

Binding nodes interact in a subtle way with filters, since they show
information about the origin of the bindings. This origin information
may change in some cases, which requires a careful definition of filter
semantics.

Consider the trace in Fig. 2. The judgment x+1 | 2 in node r that
results from the evaluation of both let expressions is shared. One of
its premises is a binding node, which has its origin in nodes B and c. We
usually only show the origin of the binding for the context of the node,
in this case B. However, when we transitively hide all the nodes in the
subtrace starting at g, we still have to show node r as a premise for node
c. But now the origin of the binding x = 1 is node ¢, which should be
indicated in the binding node. Our trace semantics and visualization
does exactly this.

4.3. Global filters

To hide a set of nodes from a trace, we need a flexible way of
expressing which nodes to hide. To this end, we have defined a concept
of selectors, which are combinations of syntactic patterns that use
wildcard symbols. The selector that matches all variable lookups, for
any variable and value, is , but we can also use more specific
patterns such as x = < to hide only bindings for the variable x.?

We can use such patterns directly or via assigned names in opera-
tions for hiding and propagating. While hiding simply removes all the
nodes that match the pattern from the trace, propagating also uses the
pattern (when possible) as a rewrite rule. In the case of variable lookups
this means to replace variables within their scope by their values. We
have hidden and propagated all variable bindings in the trace in Fig. 1,
and we have also hidden all pattern matching evaluations.

Another class of uninteresting steps that are often hidden from
traces are reflexive judgments, which include specifically axioms for
evaluating constants, as well as simple arithmetic operations, especially
increments and decrements by 1. These filters eliminate judgments such
as 11 and 6-14 5 from the trace, as was done in Fig. 1. Applied
filters can always be selectively deactivated to temporarily show the
hidden information. Repeated hiding and unhiding also can help users
to understand the effect of filters “by example”.

4.4. Selective filters

Note that the trace in Fig. 1 illustrates that we can also hide only
a specific subset of nodes that match a pattern. One example is case

2 The node label is not part of the syntax for bindings and thus not part of
the pattern.



D. Bajaj, M. Erwig and D. Fedorin

Journal of Computer Languages 75 (2023) 101199

(let x = 1 in x+1+1) + (let x = 1 in x+1) |5

[

let x = 1 in x+1+1 ] 3®

x+1+1 ) 3F

SN

x+1 2" 241 =23

let x = 1 in x+1])2°

| T

3+2 =5

F

Fig. 2. Trace for (let x =1 in x+1+1) + (let x =1 in x+1).

expressions of which we show only the first and last occurrence to
illustrate the two different situations (base case and recursive case)
covered. The other example is hiding most of the intermediate recursive
calls of fact. Specifically, we have filters that allow the hiding of all
but the first k recursive calls and/or the last recursive call. We will
discuss the set of available filters in Section 7.

While omitting leaves or whole subtrees does not affect the rest
of a tree, the omission of intermediate parts from a tree requires
some notation to connect the parts that are separated by the cut.
We use ellipses “:--” to indicate places where paths (with potential
off-branching subtrees) have been omitted.

4.5. From trees to DAGs

To exploit the fact that any specific expression has to be evaluated
only once, we have extended the tree notation to DAGs. This idea is
not new: In their paper on ProorToor, Dunchev et al. [10] mention the
need to avoid the overlapping edges that are associated with their DAG-
based proofs. The workaround they choose is to copy shared subgraphs
to every place where they are referenced.

However, repeated copies of the same subtrace should be avoided,
since they only add costs without any benefit. Specifically, a trace
with a repeated copy of the same sub-trace makes the explanation
bigger without adding any new information. A trace with repeated
copies simply takes longer to read and process than one without the
repetition;. Moreover, repeated subtraces cause an additional serious
problem for the tree/DAG representation because the increase the
width of traces, which makes browsing cumbersome and causes ad-
ditional processing costs. Explicitly performing sharing between such
subtraces and displaying them only once can automatically simplify
traces in cases when the same expression is evaluated multiple times.

As an example, consider the evaluation of the expression fact 6
+ fact 7. The expression fact 6 has to be evaluated a second time
in the first recursive step of evaluating fact 7. Instead of recreating
the whole subtrace, our tool will produce a reference to the root node
(labeled with B) of the already existing subtrace, see Fig. 3.

4.6. Trace view prototypes

We have already mentioned that we have implemented a proto-
type for producing and filtering trace views. This software tool is not
intended for end users. Rather, the main purpose of this tool is to
allow us to investigate properties of traces and trace filters. It was
also instrumental in developing the trace notation itself and the query
language that is used to define all filters.

The trace exploration prototype is implemented in Haskell and pro-
vides a command-line interface as part of the Haskell GHCi interpreter.
The tool offers commands to compile and run programs to produce
original complete traces and apply (and unapply) filters to traces.
Traces and filtered traces produce output in the DOT format [11],

fact 6 + fact 7| 5760

— T

fact 7] 5040 720+5040 = 5760

AN

case 7 of 0 -> 1; y -> 7*fact 6| 5040

|

7xfact 6|} 5040

N

7720 = 5040

fact 6] 720°

Fig. 3. Trace view for fact 6 + fact 7. DAGs, represented by using node
references, are used to avoid the repetition of subtraces.

which is then rendered by a DOT viewer. More specifically, our tool
allows one to (un)apply individual filters, but it can also load scripts
containing groups of filter definitions. In addition, the tool also allows
the step-by-step customization of traces by targeting individual nodes
(and ellipses) with filters. The tool can export traces in LaTeX, and all
the trace figures in this paper have been generated by the tool (some
have been adjusted manually afterwards).

Our prototype implements the tracing for a small functional lan-
guage (for details, see [4]), and the generated traces are specific for this
language because traces contain judgments of the operational semantics
for that language. An adaptation of the approach to other functional
languages is not difficult, but applying the approach to imperative or
object-oriented languages is more involved, since it would require the
definition of an operational semantics for such languages. Moreover,
the query language that is used for defining the filters needs to be
adapted also to recognize and act on the corresponding node types (for
details of the query language, again see [4]).

In addition the command-line tool, a web-based GUI for working
with program traces, called Tracr, has been developed recently [12].
Tracr is a single-page web application, which consists of a frontend
(written in Elm [13], which compiles to JavaScript) and a backend
server for running programs (to create traces) and applying filters (for
manipulating traces). A screenshot of the main interface is given in
Fig. 4, showing a slightly more filtered version of the example from
Fig. 1.

The trace for the current program is shown in the main window,
and the list of applied filters together with interaction elements for
adding, removing, and configuring filters is presented in the form of a
stack at the bottom right. The top of the window contains a menu with
options for loading, saving, and deleting programs and traces. The tool
also allows users to share a particular state of exploration with others
through the generation of a URL. This allows others to see the same
program and filters by navigating to that link.

This tracing tool can be accessed using any web browser [14].
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Fig. 4. Tracr user interface.

5. Quasi-linear traces

As discussed in Section 2, linear traces suffer from several disadvan-
tages. Still, they can also be quite useful, in particular when they are
not too long and repetitive. Thus the question arises whether we can
create some form of linear traces from our tree representation, at least
in some cases.

The trace notation presented in this paper generally diverges from
the linear traces shown in the introduction rather quickly. This is due
to the structure of the operational semantics whose rules often have
several premises, which leads to a fan-out of proof trees. However, we
can observe that a large number of tree traces take on an almost linear
shape after filter operations have been applied. Again, the trace in Fig. 1
serves as an example.

Though its representation is clearly a tree, we can observe that at
any branch, the second child (written on the right) doesn’t itself have
any children and can be viewed as a kind of “remark” or “footnote”
justifying its parent. From such traces we can generate a linear trace
with annotations, or quasi-linear trace, by gathering all statements of
the major spine of the trace while annotating, when needed, some of
the statements with a footnote symbol which points to a corresponding
side note in an accompanying second column. This idea is illustrated
in Fig. 5. Note how the second child for the statement in the third
line is pointed to by the footnote symbol, and how the corresponding
statement appears in the next line together with the “primary” child
that was selected for the main linear sequence.

With the addition of this side notes column, we have recovered a
linear form of traces which is similar to what we showed in Section 2.
There are, however, several differences between the two traces. First,
each line in our trace represents a sub-computation, rather than the
state of the whole expression as it is being evaluated. Thus, we won’t
encounter ballooning sequences of applications or binary operation
like those we observed in the “textbook” trace for fact 6. Second,
our quasi-linear traces stay in one-to-one correspondence with the
semantics because during the creation of the linear output we still
maintained the structure of the original traces.

As another example consider the quasi-linear trace for the evalua-
tion of the expression filter even [1,2,3,4], shown in Fig. 6, that
illustrates how the notation can handle even traces with many side
notes quite well.

[0 B reteive v|[(Dekete |
Bl = o)
[0 2 binding v |(petete |
[on | RN |[limivec v |(ette ]
fact
0] — N
fact
o . [ =]
=l = =)
fact 6| 720 Side Notes
& case 6 of {0->1;y->6%fact 5} | 720
& 6xfact 5 720"
& fact 5] 120 Tex120 = 720

& fact 01
& case 0 of {0->1; y->0xfact(0-1)} {1

Fig. 5. Quasi-linear trace of fact 6. Each judgment is followed on the next line by a
single judgment that explains or justifies it (indicated by the symbol «). The Side Notes
column show the second, auxiliary judgments for those nodes that have two children
in a trace.

filter even [1,2,3,4]1 | [2,4] Side Notes
LT
& filter even [2,3,4] ] [2,4] Teven 1 | False
L3
& 2:filter even [3,4] ] [2,4] feven 2 |} True

& filter even [3,4] ] [4]

--*

& filter even [4] ] [4] *even 3| False

.8

& 4:filter even [1] [4] Seven 4| True
& filter even [1] []

Fig. 6. Quasi-linear trace for filter even [1,2,3,4]. Side notes can also
appear as a consequence of ellipses having multiple children.

Finally, we can expand the scope of quasi-linear traces by not only
including leaves in side notes, but sequences of judgments, that is
secondary children that are not necessarily leaves but have only a linear
sequence of descendants in the tree. An example is given in Fig. 7 that
shows a trace for a function computing subsets.
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subsets [2,3]1 | Side Notes

[01,031,[21,[2,3]1]

& subsets [3] | [[1,[31]| concat [[1,[31]1 (map (2:)
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(01,031 | [01,031,[21,[2,31]

& map (2:) [[1,0311] [[2],[2,3]]
L
& subsets [1 | [[]] fconcat [[1] (map (3:) [[11) | L[], [31]
< map (3:) [[1|L[3]]

Fig. 7. Quasi-linear trace for subsets [2,3]. In this case, each of the side notes is itself a linear trace (each with one child).

The quasi-linear trace notation seems to be quite widely applica-
ble. Out of the 21 example programs considered in the evaluation in
Section 7, 10 have a quasi-linear trace in the strict sense (where side
notes consist of only leaf auxiliary children) and 14 are quasi-linear
trace in the extended sense (where side notes may consist of linear
sequences of judgments).

6. Classification of trace models

Approaches for program tracing can differ in a variety of ways.
In addition to aspects of the notation, the flexibility of manipulating
traces plays an important role in their effectiveness. To get a better
understanding of the existing approaches, we can organize the design
space along several orthogonal dimensions and classify the approaches
accordingly. The decisions each trace representation has to make are
the following.

« Structure: linear, trees, or DAGs

» Handling of Binding Information: using environments and vari-
able lookups or substitutions

» Control over Trace Simplification: full, limited, or none

+ Scope of Filters: global or individual nodes

» Domain: dynamic program behavior, proofs, or other

We have already discussed the structure and binding information as-
pects in Sections 2 and 3, and the classification of the different ap-
proaches in these regards are shown in Table 1.

Another important question of any trace model is how to control
the size of traces. We can distinguish two aspects that are relevant in
this regard. On the one hand, does the trace creator have any control
over the information to be included in the trace and thus can control
the size of the trace? On the other hand, if a user can exert control to
omit trace information, do decisions apply to single nodes only or more
globally to a range of nodes?

The linear traces found in textbooks are carefully crafted and, by
definition, under full control over what is represented, but decisions
to present or omit steps are made line-by-line. This approach is very
flexible, but doesn’t scale well, and it is not automated. The linear
traces generated in [15] for concurrent program execution are simpli-
fied using a heuristic algorithm that applies 3 different simplification
operations repeatedly on the trace in a particular order. Thus, it does
not provide users with any control over these transformations.

The slicing approaches discussed in [17,18], and [19] give users
some indirect control through the selection of partial input/output.
These user actions affect the trace globally.

The approach presented in [20] represents traces for proof systems
as directed bipartite graphs (denoted as digraphs in Table 1). This
system gives users full control over traces through the collapsing of
related nodes. A GUI lets users select nodes and perform transfor-
mations on these nodes. Thus, users have complete control over the
transformations, but transformations are applied on only individually
selected nodes.

Finally, we also show the domain for which each of the trace
approach is intended in Table 1. This information puts some of the
design decisions into perspective. In particular, traces of proofs and
traces of programs can benefit from some of the same operations, but
the method in which they are generated differs: proof trees are often
constructed interactively by the user during a proof session.

7. Artifact evaluation

To evaluate the effectiveness of our approach we have created trace
views for 21 mostly well-known example programs that we regularly
employ in several computer science classes as teaching material. The
programs are grouped into different sections: functions on numbers
(fact, twice-fact, and collision), lists (reverse*, replicate, sum, filter, merge-
lists, cart-product, subsets, and quicksort), (binary search) trees (*BST
and constants), and programming language analysis and interpretation
(eval*, typecheck, and fold-constants). We have measured the size reduc-
tions that can be achieved and the filters that needed to be employed
to create the trace views. In the following we describe the details of
this experiment.

7.1. Systematic creation of trace views

Among the most well-known results in psychology is Miller’s demon-
stration that humans can only hold a small number of “chunks” in their
short-term memory [21]. Although subsequent research has shown
that the situation is more complicated, the general trend remains: Our
short-term memory is quite limited. Motivated by this insight, our
approach is to reduce (fairly aggressively) the number of nodes in
the trace that do not significantly contribute to the explanation of the
program. Rather than cluttering the reader’s mind with the details of
additions and environment lookups, or the trivial reflexive evaluations
necessitated by the semantics, we focus on the control flow. Of course,
the judgment of what parts actually do “significantly contribute” to
program explanations is dependent on the user and the questions they
have about a program execution. The ability for users to selectively
apply filters in our approach accounts for this fact.

The creation of the traces was guided by a set of rules that we have
established based on observations and our experience with working
with traces. Specifically, over the course of many months spent on an-
alyzing trace notations and developing our prototype we have noticed
a number of patterns in our interaction with traces (with respect to
hiding and propagating information) from which we have derived a
set of rules that have proved repeatedly useful in focusing traces on
the most relevant information. The creation of the trace views has been
guided by these rules.

We group these rules into two groups. The first group consists of
quasi-universal rules that correspond to standard filters and will always
be applied by default to any created trace. The second group consists
of rules that apply only in some situations. Since we have formalized
these rules through the definition of filters, we can be sure that they
are followed strictly and systematically.
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Table 1
Classification of trace notations.
Approach Form Handling of User Scope Domain
bindings control
[61071 linear substitution full by node execution
[16] linear substitution none global proofs
[15] linear environment none global execution
[10] tree environment limited global proofs
[171[18][19] tree environment limited global execution
[20] digraph substitution full by node proofs
This paper DAG binding full global execution
nodes

To decide which filters to apply in which situation, the trace views
were initially created by one of the researchers and then reviewed
and critiqued by 2-3 other members of the research group, which
sometimes led to a revision of the applied filters and resulting traces.
A threat to the validity of this experiment is of course the potential
bias of the group assessing the filters. Different groups may come
to different results, but we believe that these differences would be
minor and not change the overall picture significantly. Furthermore,
the general principle of our approach remains: users have the flexibility
to customize traces differently, yet succinct traces remain always an
option.

7.2. Filter collections

Next we describe the filters we have used in our experiment. All
filters can be divided into two categories: those that are applied to
all of our example trace views, and those that are only applicable in
some cases. Table 2 shows for which trace views these filters were used.
We also classify filters by scope, that is, while in general each filter is
applied globally, some filters are applied in an intelligent way hiding
or propagating only in some places. One example is the recursion filter,
which hides only intermediate recursive calls. Such filters are identified
by a trailing ° symbol. These filters cannot be defined by a simple
syntactic pattern, but require a more sophisticated query. Finally, some
filters are parameterized by name or value. We report this information
as well and indicate it by a subscript .

In the following we list all filters that we used. Many are simply a
straightforward hiding of a specific syntactic category. For some more
interesting filters we add a brief explanation. We start with filters that
are used in every example.

+ RerLexive hides all of the constant evaluations.

» ParMarcH hides all pattern matching judgments.

« PartiatArp hides all partial function applications and all of their
descendants. Partial function application is identified by pat-
terns of the form f x| \y -> e; however, some additional care
is required to avoid hiding the subtrees corresponding to the
evaluation of the function’s arguments.

* FunDer, hides top-level function declarations. Since the filter is
parameterized, we can instantiate it to hide several different
declarations. The minimal functional language on which our pro-
totype implementation is based requires function definitions to
be given as let expressions. In an implementation that stores
function definitions in separate program files, this filter would not
be needed. Note that we could achieve the same effect with a non-
parameterized filter, but parameterization gives us the flexibility
to hide only some declarations while keeping others (for instance,
definitions of constants).

LiviTREC’, is a parameterized filter that hides all of the intermedi-

ate applications of the function supplied as an argument to this

filter. We use this filter to show the first two and one last function
application of recursive functions.

OuterCase hides all case expressions that have another case
expression as one of their immediate children. For example, the
filter will hide a node containing case e of p -> case e’ of
ds; cs, since it has a child containing case e’ of ds. OuterCasE
will not hide the latter node if e’ and ds don’t contain any case
expressions.

Bivoing hides all binding nodes but is also used to propagate the
values to where they are used in the trace.

In addition to these universal filters, some filters are used only in the
creation of some of the trace views.

+ Cast is used to simply hide all case expressions. It can be used to
keep all control flow decisions out of a trace, which is sometimes
useful. For example, we could filter the remaining case expres-
sions from the trace view shown in Fig. 1 and still get a useful
illustration of the computation.

TriviaL, hides the evaluation of function applications (such as 10
> 0) whose behavior is well understood. Even though one could
argue for placing all TrviaL, filters into the category of always-
applied filters (at least for a single user), there are functions that
we may want to explain separately, but then assume them to be
understood when used elsewhere. One example is the list function
filter, which has its own trace view, but is considered trivial when
used as part of the trace for quicksort.

Finally, we have a number of very specific filters that help with
the customization of trace views. For the set of example programs
these are filters for hiding decrementing a variable (Dkc), addi-
tions (Abp), and simple comparisons (Conp). With Dec, we also
propagate the values.

A summary of the filters is given in Fig. 8.
7.3. Results

Table 2 summarizes the size information for the examples. The first
three columns show the sizes of the original traces 7 and trace views
(T*) as well as the percentage size reduction achieved by the trace
views. The next six columns show the same information for the depths
and widths of the traces. The last column (#F) shows the number of
filters used (in addition to the standard ones that are always applied)
for generating trace views.

We can observe that traces are reduced by at least 79% (up to
98% in the case of collision), and for at least 85% of the programs the
traces have been reduced by 85% or more. For the height of the traces,
the min/max/median reductions are 13%, 77%, and 39%, respectively.
Wider traces cause a significant amount of horizontal scrolling. We
therefore also measured the width of traces (in number of nodes).
The width of the traces was significantly reduced. For 10 out of 21
programs, the width was reduced by at least 92%, where the minimum
reduction in width was 67%.

The median of 1 for column #F reflects the fact that trace views can
be generally generated quite quickly.
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Filters sometimes used

V Hide V Propagate d Hide 3 Propagate
REFLEXIVE Binbing TRIVIALf DEc
ParMarcH CASE
FunDEeF; ApD
PArRTIALAPP Conp
LIMITREC;Z
OuTERCASE

Fig. 8. Complete list of filters together with their applicability (always vs. sometimes) and their effect (hiding only vs. also propagating values).

Table 2

Size of traces (T') and trace views (T*) (#: number of nodes, |: depth, -: width) and space savings (4%) achieved. Column #F shows the number of additional filters needed, and

the last column lists those additional filters.

Program #T #T A% 1T 1T A% T T A% #F Additional filters
Factorial 80 12 85 22 10 55 6 2 67 1 DEc
Twice-fact 70 15 79 13 10 23 9 3 67 1 Dec

Collision 532 13 98 25 8 68 66 3 96 3 Case, Conp, TRIVIAL
Reverse 203 18 91 21 18 14 19 1 95 1 TRIVIAL
Reverse-accum 89 8 91 13 8 39 13 1 92 1 CaSE

Replicate 97 8 92 20 8 60 8 1 88 1 Dec

Sum 148 9 94 34 8 77 8 2 75 0 -

Filter 127 13 90 20 11 45 12 2 83 1 TRIVIAL
Merge-lists 140 12 91 25 12 52 13 1 92 1 Conp
Cart-product 242 13 95 20 9 55 27 2 93 1 TRIVIAL,
Subsets 359 17 95 23 12 39 41 2 95 2 TrviaL;, CASE
Quicksort 900 34 96 38 13 66 77 4 95 1 TRIVIAL ’
Search-BST 71 8 89 10 8 20 16 1 94 2 Case, ConD
Insert-BST 115 14 88 18 14 22 15 1 93 2 Case, ConD
Delete-BST 167 22 87 24 18 25 16 2 88 1 Conp
inorder-BST 70 9 87 11 9 18 15 1 93 0 -

Constants 239 27 89 18 12 33 29 5 83 2 Cask, TRIVIAL -
Eval-expr 158 18 89 17 10 41 23 5 78 0 -

Eval-fun 226 20 91 20 11 45 24 4 83 1 TRIVIAL
typecheck 127 25 80 16 14 13 15 5 67 0 -

Fold-const 133 25 81 13 11 15 20 5 75 2 App, TRIVIAL,

A direct comparison with the size reduction potential of other
approaches is either not possible (approaches in the proof domains
cannot express traces for program executions), or not very useful (the
approaches [17-19] provide only indirect, limited control over trace
size).

8. Related work

In this section we discuss related work on tracing that has appeared
in several different areas. We group the discussion by specific meth-
ods employed or aspects focused on: program slicing, proof trees, trace
structures & operations, user interfaces, specialized semantics, and traces
for explanations.

Program slicing. To address the problem of trace size in the context of
debugging, Perera et al. [17] and Ricciotti et al. [18] have employed
program slicing to generate smaller program traces. Their technique
takes a section of the computation result that is selected by the user
and uses backward slicing [22] to generate a path to the input focusing
on the computations that were responsible for that section. It replaces
all the irrelevant computations by holes, thereby focusing on the steps
that are important for understanding the section of the result that was
surprising to the user in the first place. While this technique generates
a technically correct subtrace, the result can still be large, even for
simple programs. The problem is that much of the information that is
produced through slicing techniques, while technically relevant, might
not contribute to the explanation sought by the user. In any case, we
don’t see our tracing approach in competition to Perera et al. but rather
as a potential orthogonal extension.

10

The program slicing approach works well in the context of debug-
ging when the focus on part of a trace can be guided by questions about
specific parts of a computation’s output. However, when no information
is available to inform the program slicing analysis, traces cannot be
simplified. Moreover, parts of the trace that are not eliminated by
slicing cannot be simplified either.

The goal of Acar et al. [19] is to provide information about how
a particular output was generated from the execution of a program.
Traces can then be fed into a disclosure slicing algorithm, which, given
a partial output of a program, generates information about how this
output was produced. This approach is very similar to backward slicing
presented by Perera et al. [17] and consequently suffers similar limi-
tations. Furthermore, while the disclosure slicing method works very
well for its specific task (the tracking of provenance), it is too rigid for
tracing in general.

Our approach also differs from program and trace slicing in that
transformations applied to traces can be re-used for more than one
input or program. Selectors created for one trace can be immediately
applied to another, without any insight into its input or output. The
default filters in Fig. 8 were determined experimentally, and produce
satisfactory initial results when applied to traces of new programs. This
is different from trace slicing, where the simplified trace is produced
from a concrete, if partial, output example.

Proof trees. Considering proof trees as a basis for explanations has
been suggested by Ferrand et al. [9]. They observe that a proof tree
is a declarative view of the trace of a computation that can be used
to explain programs in the domain of Constraint Logic Programming.
Specifically, a node in the proof tree (or explanation) for a constraint
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logic program is an answer (which can be positive or negative). Thus,
an answer is explained as a consequence of other answers. This declar-
ative view of explanations is then used to explain the solvers for
constraint satisfaction problems.

Our trace notation is also based on proof trees, but is not tied to a
particular programming paradigm. Instead, we adopt the standard vie
from operational semantics that uses a proof tree as a compositional,
formal representation of statements about program evaluation steps.

Trace structures & operations. The relation between proofs and pro-
grams means that there is much related work on representations of
proofs, especially those generated by computers. Proofs that are gener-
ated with the aid of a proof assistant or an automated theorem prover
face the same challenges regarding size and irrelevant information that
we’ve noted in this paper.

For example, Farmer et al. [20] present an interface for exploring
deductive graphs (implemented as directed bipartite graphs) of a simple
proof system called IMPS. These deductive graphs share many similari-
ties with our tree traces. Their approach allows users to collapse related
nodes to reduce the size of the deductive graph. They also maintain a
history of operations applied to the graph, although they don’t provide
means for defining and reusing filters.

Trac et al. [23] present a DAG-based view of the proofs generated
by automated theorem provers. Using heuristics one can create a
“synopsis” of proofs via hiding nodes. These heuristics are computed
to produce an “interestingness” value, and then all nodes below a user-
provided threshold are hidden. Some of the heuristics for removing
nodes are similar to some of our simpler filters. For instance, removing
tautologies corresponds to applying REFLEXIVE.

Jalbert et al. [15] introduce a heuristic algorithm for simplifying
traces of concurrent programs. The goal is to support the identification
of concurrency bugs. Traces in this approach are linear and show
the results of concurrent execution as interleaved operations from the
constituent programs. The trace simplification attempts to minimize the
amount of interleavings between the concurrently executing programs,
thereby attempting to de-obfuscate the location of concurrency bugs.
The approach does not offer other trace simplification features and thus
does not provide users with any control over the presentation of the
trace.

In [4] we have defined a query language for the systematic trans-
formation of (tree-based) program traces. The filters used in this paper
are all defined with that query language. The query language consists
of operations for hiding and propagating information plus a rich set of
so-called selectors, which specify the set of nodes operations should be
applied to.

User interfaces. Dunchev et al. [10] present ProorTooL, a tool for view-
ing proofs. ProorTooL presents proofs in the sequent calculus using
binary trees. The sequents are very similar to our evaluation judgments;
because of this, the tool must deal with very similar issues to those
faced by our own representation. The growing sizes of the assumption
lists (analogous to our environments) led the authors to hide all such
assumptions that are not in use. In addition, the tool gives users the
ability to hide irrelevant portions of a proof, or focus on its specific
subset.

While the hiding of structural rules applies globally, hiding irrel-
evant proof parts has to be done manually, by interacting with the
visualization of the proof tree displayed in ProorTooL’s user interface.
This shares the limitations of tailoring linear traces: for large enough
programs, user-guided manipulation becomes impractical, if not im-
possible. While Dunchev et al. decided against DAG-based views of
explanations (due to a lack of good layout algorithms), we opted to
use references to nodes, thus showing identical parts of a trace only
once.

Bertot et al. [16] developed an approach for displaying explanations
of proofs within theorem provers. In their system, the proof objects
constructed within the logical system were converted into a textual
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representation of the proof. As mentioned earlier, the trees in our
approach are proof objects of the proposition that the expression e
evaluates to a value v in the environment p. Under this interpretation,
some similarities between Bertot et al.’s work and our own arise. For
instance, much like we tag bindings nodes with the application nodes
in which the variable was first introduced, the textual notation used
in Bertot et al.’s system marks uses of assumptions with the locations
where they were first introduced as hypotheses.

Unlike our own work, however, the presented approach more ag-
gressively manipulates the displayed structure of the proof objects in
order to improve readability: while we attempt to preserve the overall
structure of the proof trees, inserting ellipses where nodes and paths are
omitted, Bertot et al. rearrange and restructure their proofs to reduce
the amount of nesting and to provide context as early as possible.
Because this tool focuses on the method of displaying proofs to the user,
it does not provide users with the tools to further adjust what they are
seeing.

Specialized semantics. The Call-By-Named-Value semantics we have de-
veloped is somewhat similar in purpose to the Clairvoyant Call-By-Value
semantics, which was presented by Hackett et al. [24] as an alternative
to the Call-By-Need semantics [25] to make reasoning about programs
easier. The paper explains how the state is not required to be threaded
around through every computation in the new semantics, enabling a
cleaner denotational cost semantics for lazy evaluation.

Call-By-Named-Value semantics was first introduced in [4] and
is used to support the readability of traces by replacing a value by
the name bound to it. This presentation supports the understand-
ing of applications of functions without being overwhelmed by hav-
ing to read and absorb the complete function definition every time
the function is used in the trace. Thus, traces generated by Call-By-
Named-Value semantics are often shorter and simpler than those by
Call-By-Value, which reduces cognitive load and therefore supports
comprehension [26].

The work of Acar et al. [19] defines programming language seman-
tics augmented with tracing to support provenance tracking. Much like
our own, traces constructed in Acar et al.’s work are not linear, and
closely match the structure of the proof tree generated by the semantics.
The approach differs, however, in that traces are explicitly specified
in the inference rules: in addition to the environment, expression, and
resulting value, the evaluation relation in [19] explicitly states the
corresponding trace. In contrast, our traces are constructed implicitly
from the proof trees generated via the semantics. This is motivated by
the goal of explaining how a particular result was computed, given an
evaluation model specified by the semantics.

Traces for explanations. While program traces are traditionally viewed
as a vehicle for finding and eliminating program bugs, some trace nota-
tions were specifically designed as explanation artifacts. For example,
the notation employed in Chapter 6 of [27] is specifically used for
explaining sorting algorithms. In particular, this notation displays side-
by-side the intermediate lists that are created as a sorting algorithm
executes. Unlike the “textbook” notation in the introduction, this nota-
tion does not display the code used to describe the sorting algorithm.
This makes it more approachable to readers who are not familiar
with computer programming. Taken by itself, the notation in [27] is
manually constructed and specific to each sorting algorithm. However,
we believe it’s possible to apply the approach presented in this paper
to create trace views that closely correspond to the list visualizations
in the book.

The work on Probula [28-30] presents a visual language for expla-
nations in a domain different from proofs and execution. Specifically,
the presented visual language is used to explain probabilistic reasoning.
Rather than considering a particular execution of a program, Probula
presents explanations in the form of connected sequences of probability
distributions, which are generated by a small number of operations.
Whereas the visual language presented in this paper uses branching to
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drop 1 [7,3,91 ] [3,91"

case 1 of .; n -> case [7,3,9] of

.; (x:xs) -> drop (n-1) xs| [3,9]°

Fig. 9. Explanation of the drop function, with irrelevant branches removed.

describe subcomputations, branches in Probula correspond to decisions
made by an agent (for example, whether or not to switch doors in the
Monty Hall Problem.

Furthermore, Probula features a “group” operation, which can be
used to arbitrarily combine related states. This is in contrast to the
grouping in our visual language, where nodes are shared automati-
cally if their computation is equivalent. A similarity between the two
approaches is that both allow for multiple explanations for the same
underlying computation. In Probula’s case this is done through various
transformation laws which may be used to reduce the number of
intermediate probability distributions. In our case, this can be done by
adjusting the set of filters applied to a trace.

The approach pursued in [31-33] is based on explicit representa-
tions of so-called value decompositions to facilitate the generation of
explanations for specific program executions. Value decompositions
are granular representations of values that are aggregated during a
computation. Such representations work only in specific domains that
exhibit a mathematical structure to support value decompositions and
the necessary operations, and they take a different form, depending
on different application areas (for example, dynamic programming
algorithms [32,33] or hierarchical decision making [31]). The traces
created by the approach do not record detailed effects of low-level
program activities but rather capture key aspects in the form of value
components that can be aggregated into a final value. The aggregation
relationship among the value components allows the creation of expla-
nations why computed results are better than ostensible alternatives.
The fact that traces are not directly derived from low-level compu-
tations but have to be explicitly created is similar to the approach
in [19].

9. Future work

We have identified a number of promising avenues for future work.
First, there are more opportunities to make explanation traces more
concise. One such opportunity is dead code elimination, both within ex-
pressions and traces. Suppose, for example, that the following judgment
is part of an explanation trace.

case False of ...; False ->0J0

Notably, the True branch of the case expression has been replaced
by an ellipsis, which is justified because it doesn’t contribute to the
explanation of the current computation. This simplification saves space
and keeps cognitive load low. The strategy of partial code hiding is
actually applicable in many more cases. Even if part of the code is not
dead, it might be “dormant” and thus explanatorily irrelevant in the
current part of the trace. For example, the part of the trace shown in
Fig. 9 displays only those parts of the case expression that are relevant
in the current situation.
Finally, consider the following judgment.

let x = twice fact 2 in sqr 5 25.

While the expression twice fact 2 is technically not dead (it will
be evaluated in Call-By-Named-Value semantics), the result of the
subtrace is not at all used in the computation of sqr 5 and thus doesn’t
contribute to its explanation. While a user could hide the unused traces
manually in the current model, this needs to occur on a case-by-case
basis, and it would be useful to offer automatic filters for these kind of
situations.
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The Call-By-Named-Value semantics offers another opportunity for
improving explanation traces: We can implement more sophisticated
strategies for deciding whether to show a value or its name. In this
paper we have chosen to omit the contents of named function values
in favor of their names to reduce the size of the judgments and improve
the explanation’s clarity. However, doing so is not always the optimal
approach. For example, a user may define the identity function as
follows.

let theIdentity =\x->xin ...

In this case, using the name may be overly verbose and indeed less
clear than simply showing the function value itself. Conversely, some
non-function values can benefit from naming. A user may (excessively)
define the mathematical constant = as:

let pi = 3.1415926535898 in ...

Rather than showing the exact value over and over, the name pi is
sufficient. There are many possible heuristics that can be explored to
improve the display of named values. One such heuristic is hinted at
by the prior examples, and involves comparing the textual length of a
named value with that of its names. This heuristic, though, may overly
favor terse and inexpressive names.

Other, more intelligent methods of displaying named values may
include asking the user of the system to tag important names, and
giving these names precedence even for non-function named values.
Similar heuristics may be applied to which names are chosen to be
displayed. Named values in CBNV semantics can have an arbitrary
number of names; at present, we always display the first of these to
the user. However, a value may acquire a more meaningful name later
on in the evaluation of a program. For example, an element of a list
may acquire the name pivot during the execution of quicksort,
which may be more significant than its previous names. It could then
be beneficial for the quality of the explanation to show the more
expressive name, or even both.

Another avenue for research is the qualities of difficult-to-read
explanations. While studying and generating explanations used as ex-
amples, we noted several qualities shared by what we considered good,
tailored explanations. We believe that some of these qualities can be
measured and therefore allow us to have a convenient metric for expla-
nation quality beyond the count of the nodes or the dimensions of the
DAG. There are many qualities we have identified in these explanations:
traces that are too long or too wide, nodes that contain too much
information, and graph structures that are difficult to comprehend at
a glance. Existing research into cognitive load could be leveraged to
measure the difficulty of (a section of) an explanation such as the
Cognitive Complexity of Computer Programs framework given in Duran
et al. in [34]. A metric for explanation complexity can be the basis for
a cost/benefit of explanation traces.

Finally, it is not clear how well our approach actually works in
practice. For example, it could turn out that users find it difficult to
identify the combination of filters that helps them focus traces on
the information that helps them answer their specific question about
a computation. We need to conduct user studies to find out what
does and what does not work for different kinds of users in different
circumstances.

10. Conclusions

We have presented a new approach for tracing program executions
that is based on the systematic transformation of traces through the
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application of filters. A key component of our approach is the visual
trace representation that is based on DAGs, trades environments for
binding nodes, and systematically employs ellipses. Our evaluation
indicates that we can achieve sophisticated trace manipulations without
exposing users to an underlying query language (on which the filters
are based) and that our approach is quite effective in reducing the size
of traces.
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