Input Shaped Control of a Gantry Crane with Inertial Payload

Adrian Stein! and Tarunraj Singh?

Abstract— The focus of this work is on the development of
a model for a gantry crane transporting a non point-mass
payload such as pipes, where besides the payload swinging,
includes the twisting motion also, which can be hazardous if
not adequately controlled. Euler-Lagrange equations of motion
are derived which permit accounting for payloads whose center
of mass does not coincide with the hoisting cable attachment.
Work-Energy principle is used to ensure that a collocated
Proportional-Derivative (PD)-controller is stabilizing and an
input shaper is used to shape the reference profile to permit
minimal residual vibration of the payload.

Index Terms— Input Shaper, Gantry Crane, Vibration Con-
trol.

I. INTRODUCTION

Dynamic system modeling of cranes has gained increased
research interest in recent years with the rise of automa-
tion. Transporting heavy payloads has always been chal-
lenging, mainly because the payload might undergo large
displacements such as swinging or twisting during moving
operations. Even with the most experienced crane operators,
there are always safety concerns for the crew and the
possibility of property damage. There has been a growing
interest in the automation of cranes over the past few
decades. With companies losing money based on damaged
property, inability to operate due to weather conditions, and
unskilled crane operators, automation for this process is
highly desirable. Fig. 1 shows the outcome of a maneuver
by an inexperienced crane operator, creating a potentially
catastrophic situation for the operation crew. Zhang et al. [14]

Fig. 1: Twisting payload on a vessel (source:) https://
www . youtube.com/watch?v=DxMG__CD5Qs).

state that 8%—16% of all construction fatalities are caused by
hoisting-injury accidents. Kim et al. [11] listed 22 out of 40
tower crane accidents in Korea from 2015 to October 2020
were caused by “operation and management” while Raviv et

al. [3] categorised 51 accidents and 161 near misses, where
“operator error” was ranked 4th with a 13% contribution.

A common choice of controllers for point-to-point maneu-
vers is a Proportional-Derivative (PD) controller [8]. In order
to minimize the oscillations, an open loop approach (input
shaping) can be chosen and the main advantage is oscillation
suppression without introducing additional sensors to the
system. Smith [10] presented the precursor to this method
in 1957, after he observed fly fishermen and subsequently
developed Input Shaper has been used on various gantry
crane models [16]. Compared to open loop control, Sun et
al. [6] proposed a super-twisting-based anti-swing control for
double pendulum cranes, which is designed to function in a
closed loop. Chen et al. [13] also took the bending of the
beam into account and how the midspan deflection influences
the swinging angle. Giacomelli et al. [18] compared input
shaping for double pendulum overhead cranes with input-
output inversion control.

The problem with nearly all mathematical models for
cranes is that they ignore the inertial properties of the pay-
load [2] [8] [9] [12] [7] [4]. Modelling inertial properties can
change the swinging and twisting behavior of the payload.
Peng et al. [1] provided a tower crane model where an inertial
payload is considered and showed that the twisting motion
is initiated by the change in the swinging angles. However,
the author isn’t aware of any literature which develops gantry
crane models with an inertial payload. The additional novelty
of this paper is a sensitivity analysis of the swinging and
twisting angles with respect to

« uncertain rope length during a moving operation for a
hoisted payload
« uncertain center of mass of the payload

when using an input shaped PD-controller for the hoist.

Section II presents a systematic approach to developing
a model for the gantry crane with an inertial payload and
includes details of the PD controller used in conjunction
with an Input Shaper. Section III presents results of the
numerical experiments of point-to-point motion control of
the gantry crane. The sensitivity of the proposed method to
uncertainties in payload’s center of mass and rope length are
also presented. The paper ends with a concluding section.

II. METHODOLOGY

The task of transporting pipelines can be divided into three
maneuvers: lifting, moving and lowering. This applies to both
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the unloading and loading on a rig or ship. Fig. 2 shows
the desired maneuver of the gantry crane with the payload
where (a) illustrates lifting, (b) moving and (c) lowering the
payload. Only the moving maneuvers (b) causes twisting of
the payload, unless the twist angle is initially not quiescent.

Fig. 2: (a) Lifting the payload. (b) Moving the payload. (c)
Lowering the payload.

A. Assumptions

In this paper, the payloads were assumed to be pipelines
which are required for offshore oil extraction. An inertial
payload was chosen compared to a point mass approach. A
hook attached to a rope connects the hoist with the payload.
From there, two ropes connect the payload ends with the
hook, each of them having the same length and always under
tension. Therefore, the ropes can be substituted by a single
rope connecting the hoist with the geometrical center of
the payload which is always perpendicular to the payload.
Furthermore, torsional stiffness for the substituted rope is
introduced, while the hook and the rope are assumed to be
massless. The crane payload system can be represented as a
spherical pendulum and is defined by two swinging angles
(0 & €) and one twisting angle (#). No obstacles are assumed
to hinder the payload’s movement and no disturbances are
considered. The setup is presented in Fig. 3. The values for
the gantry crane model are m. = 10000 kg, m, = 500 kg,
7o =05m, r;, =035 m, !, =5mand ¢; =1 Nm/rad,
where m¢, myp, 7o, Ti, lp, ¢ are, respectively, the crane
mass (including the hoist), payload mass, outer & inner
radius of the payload, length of the payload and the torsional
stiffness of the rope. The gravitational constant is set to
g = 9.81m/s%. The initial conditions for the simulation are
Tinit = 0 M, Yinie = 0 m, lrjnie = 9.4 m, dgpie = 0°,
€init — 90° and Hfmz’t =0°.

Fig. 3: Gantry crane model with an inertial payload at the
initial position (t = 0s).

B. Transformation Equations

As a convention, the “right-hand rule” for each reference
frame is adopted.

@l 1o 0 by
do| = [0 cos(8) —sin(8)]| |bo (1)
as | |0 sin(d)  cos(0) by
by | [ cos(e) 0 sin(e) d |
hl= o 1 o ||d 2)
bs | —sin(e) 0 cos(e)| |ds
il 10 0 fi
doy| = |0 cos(@) —sin(8)| | fo 3)
ds |0 sin(f)  cos(0) f

Eq. (1), (2) and (3) represent the transformation equations
with respect to the swinging angles § and € and the twist-
ing angle 6. Fig. 4 illustrates the transformation equations
applied on the gantry crane model.
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Fig. 4: Transformation of the reference frames 4C%, BCP
and PCF.



C. Kinematics

For the default case, the payload’s center of mass (CoM)
is in the middle of the payload, so the payload’s mass
is assumed to be uniformly distributed. The vector, which
points at the CoM can be described as

Ivpo =2 +yés + Lofi...
= xé1 + yea + ldy = xé) + Yea...
At (cos(e)l;l — Sin(E)gg) = z€] + yés...
.+ 1 cos(e)é; — I sin(e) (—sin(d)és + cos(d)es)  (4)

; d
dt —("'rpo) )

where Eq. (5) describes the velocity. Motors move the hoist
in €; and € direction, while the displacement in €7 is
denoted with x and in €5 with y. A winch controls the rope
length [,.. These variables are the only ones being controlled,
making the system underactuated.

—)I vVpo =

D. Moment of Inertia Matrices

The angular velocities can be written as follows:

[fwP], =[], =[], =dd=0b (6
[BwD]B:[BwD]D:€bg:éd; (7
[Pwf], = [Pf] =0 di =06 fi ®)

The inertia matrix for the payload is

L, 0 O
[Ip,Co]W]F = 0 11,2 0 ©)]
0 0 I

where Il o is representing the moment of inertia about the
f1 and fg axes, and I3 for the fg axis with respect to the
CoM. The moment of inertias can be calculated as

m
ILQZ 12;0 (3(’1" +7’ )+l§)

‘g;’(rg +77)
which is the equation of a hollow cylinder [15]. Any offset
of the CoM needs to be modelled with the parallel axis
theorem. Kasdin and Paley [17] defined the rotational part
of the kinetic energy as

(10)
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E. Energy

In order to apply the Lagrangian approach, the kinetic and
potential energy of the system needs to be calculated. Using

the notation of [17], the kinetic and potential energy can be
written as

m m
To = 70||IVQ,OII2 + 7p|‘IVp,O||2 +

1 T
g [ e oconrlp [T, (1)
1
Uo = megh +myg (h —1,) + §ct02 (15)

In order to perform operations like lifting and lowering the
payload onto a vessel, the zero potential energy level is
modelled with some constant height i (here h = 20 m),
which needs to be greater than max(l,.).

F Lagrangian
Kasdin and Paley [17] defined the Lagrangian and Euler-

Lagrangian approach as

Lo=1T0-Uo

'd (OLo\ dLo _
dt 8qj 8qj Y

where 7; are the non-conservative applied forces and g; are
the generalized coordinates. Any constant term in the energy
formulation won’t affect the states.

(16)

a7)

G. Control Methods

The scope of the control problem is rapid point-to-point
motion of a payload with the goal of minimizing the residual
energy at the end of the maneuver. This includes the swinging
and twisting motion of the payload. Fig. 5 is a time-lapse
illustration of the input shaped motion control of a gantry
crane highlighting the motion of a simple pendulum when
a point-to-point maneuver is required. The PD-controller

a b

PD-controller

T

Fig. 5: (a) Proportional-Derivative controller, and (b) Input
shaped Proportional-Derivative controller on a simple pen-
dulum for a point-to-point maneuver over time, where the
dashed red pendulum is the desired position and u is the
input.

PD-controller + input shaper

causes large oscillations in the system, while the PD-
controller used in conjunction with an input shaper results in
a response with significantly smaller oscillations. The control
law for the present gantry crane model in this paper is

T = kp (Tref — ) + ka (0 — vy) (18)
Ty = kp (yref 7y)+kd (Ofvy) (19)
71, = 5kp (lrres — Iy) + 0.5kq (0 — vy, (20)



where k, = 1250 and ks = 5000 are the P- and D-gains.
The system is modelled with six degrees of freedom, but only
three are actuated. The main focus of this paper is to show
the benefit of input shaping during the “move” maneuver, so
the controller gains are not tuned. Fig. 6 illustrates the block
diagram and the functionality of an input shaper where the
main goal is to minimize the oscillations of the plant/system.
Due to the high nonlinearity of the system, linearization can

non-robust
r(t) rit)  e(t) u(t) y(t)
Input +
—> H?% PD-controller Plant
shaper B
robust
r(t) r(t) e(t) u(t) y(t)
+
—> EEZE; > iﬁz;Zr —>O—> PD-controller Plant

Fig. 6: Block diagram of an non-robust/robust input shaped
PD-controller (robust: here two cascaded input shapers).

lead to poor results based on the operating point about which
the model is linearized. In this paper, the natural frequency
(wy) is determined with a fast fourier transformation of a
typical response of the crane model to a step input. Later, the
rope length [,. and the CoM (with of fconr) will be changed
in order to complete a sensitivity analysis for a non-robust
versus a robust case.

H. System Identification and Input Shaping

For designing the input shaper it is assumed that
offcomw = 0 m, hence the natural frequency is only
influenced by the rope length I, ;,,00e. Therefore, the “lifted”
part of the operation is of concern. The natural frequency is
determined by applying a reference profile on y as it is shown
in Fig. 7, while x is uncontrolled. For this part, the P- and D-

- - -reference hoist — actual hoist
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Fig. 7: Approach to determine the natural frequency for the
lifted payload.

gain for y are scaled up by the factor of 100. The controller
is acting for 0 —10 s and is then turned off in order to let the
system oscillate. The fast fourier transformation shows that
the dominant frequency of angle ¢ is f = 0.22 Hz, which is
equal to w, = 0.447 rad/s. Singh [5] defined a time-delay
filter as an input shaper as

Gronrob(8) = Ag + Arexp (—sT)
— Ao+ Ajexp (—sT) =0

2L
(22)

where
ex o )
Ay = g (\/@ ~ 0.5079 (23)
1+ exp (\/%)
A =1— Ag = 0.4921 (24)
T—=— "  _—99798s (25)

wo/ 1-— CQ

where Aq is the magnitude of the proportional signal and
T is the delay time. ( is assumed to be 0.01. The complete
input shaper is:

Gronrob(s) = 0.5079 + 0.4921exp (—2.2728s) =0 (26)

and the robust input shaper is selected to place two sets of
zeros at the nominal location of the underdamped poles of
the system resulting in the shaper:

Grov(s) = (Ao + Areap (—sT)). 27)

The two delay input-shaper was selected to account for the
uncertainties in the rope length, inertial payload offset and
the nonlinearity of the dynamic system. Another option to
deal with uncertainties is a minimax filter which has the
following structure [19]:

Gminimaz(8) = Ao + Ayexp (—sTy) + Asexp (—sTy)

(28)
Ay = 2(1 JU: C:S (T))% _ 29)
5 +4cos (“5T) — cos (244T)
A =1-24, (30)
A = Ay (31
== (32)
w
Ty = 2T} (33)

where w = (wy +wr) /2 with wy, = 0.2794 rad/s and
wy = 0.519 rad/s.

III. RESULTS

The operation of the gantry crane with the inertial payload
is divided into three sub-operations, previously presented
in Fig. 2. The following times were chosen for each sub-
operation: lifting: 0 — 10 s, moving: 10 — 40 s and lowering:
40—50 s. Fig. 8 shows the evolution of the states z, y and [,
for the whole operation. Since no integral gain was included
for any of the controllers, a steady-state error applied to
the controlled states. This was most obvious for the state
l.. Fig. 9(a) shows that the PD-controller created large
oscillations in the swinging angles § and e. Furthermore,
a large twist was observed. The input shaped PD-controller
created a response with significantly smaller oscillations. As
an evaluation tool, one could choose the difference between
the maximum and the minimum angle value for each angular
displacement, furthermore denoted as A. Swinging angle §
and ¢ were reduced about 65.9% and 63.2% respectively,
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Fig. 8: Evolution of the the states x, y and [, during the
operation.
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Fig. 9: (a) Evolution of the swinging angles § & ¢ and the
twisting angle 6 during the operation. (b) Input on z, y and
l,- during the operation.

while 6 decreased about 94.9%. Fig. 9(b) shows that the input
shaper reduced the acceleration in x and y at ¢ = 10 s by
splitting the control input into two. The control u;_. showed
small oscillations for the normal PD-controller because it had
to compensate for the displacements caused by the swinging
payload.

A. Non-Robust vs Robust vs Minimax

The input shaper was set up for a rope length
ly. move = D m, but this cannot always be guaranteed. For
instance, if an object needs to be avoided, [, ,0ve could
change and a perturbation needs to incorporated. Further-
more, a non-uniformly distributed mass of the payload could

cause the CoM to be displaced from the geometrical center
of the payload, which is addressed by of fcons (see Fig. 3).
A change in the x and y trajectories due to perturbations in
Iy move and the CoM of the payload is negligible and makes
each configuration comparable. Fig. 10 shows the difference
between the maximum and the minimum angle value of each
angle respectively, when ;. ;o0 and of foons are perturbed.
The robust input shaped PD-controller outperforms the non-
robust design for any considered perturbation. For the angle
€ just a small improvement can be noted but a greater one
was observed in § because the main movement happens in
€5 direction (from 0 m to 12.5 m). For the design point
(Ir,move =5 m and of fcons = 0 m) it resulted in respective
reductions of 0, € and 6 by 77.1%, 76.7% and 98.3%, when
compared to a PD-controller. Fig. 11 shows the improvement
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Fig. 10: Difference between the maximum and minimum
angle value of the swinging angles Ad,,qx & A€pq, and
the twisting angle A#,,,, of a robust design compared to a
non-robust filter when the payload’s center of mass and the
rope length are perturbed.

of using a minimax filter instead of a robust solution on the



difference between the maximum and the minimum angle
value of each angle respectively, when ;. move and of foons
are perturbed. For all three angles it can be seen that the
minimax design is outperforming the robust filter for extreme
perturbation cases e€.g. Iy move = 7 m and of foopr =1 m.
No improvement was observed around the design point
(Irmove = 5 m and of fcops = 0 m), which matches the
nature of a minimax design.
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Fig. 11: Improvement on the difference between the max-
imum and minimum angle value of the swinging angles
Adpmaz & A€pq, and the twisting angle Af,,,, of a
minimax filter compared to a robust filter when the payload’s
center of mass and the rope length are perturbed.

IV. CONCLUSIONS

There are many instances where mistakes by gantry crane
operators have caused large damage to property and endan-
gered operating crews. In this paper, a gantry crane model
with an inertial payload was studied where the payload was
modelled as a pipeline. An application of input shaping to the
PD-controller of the hoist reduced the swinging and twisting
of the payload tremendously compared to a standard PD-
controller. Furthermore, a sensitivity analysis with respect to
the rope length and the payload’s center of mass showed
the advantage of robust input shaping. It can be shown that
for extreme perturbation cases it might be appropriate to
use a minimax filter. An experimental setup is currently

under construction for validating the twist-control of inertial
payloads for point-to-point maneuvers.
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