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Empirical likelihood enables a nonparametric, likelihood-driven style of inference without restrictive
assumptions routinely made in parametric models. We develop a framework for applying empirical like-
lihood to the analysis of experimental designs, addressing issues that arise from blocking and multiple
hypothesis testing. In addition to popular designs such as balanced incomplete block designs, our ap-
proach allows for highly unbalanced, incomplete block designs. We derive an asymptotic multivariate
chi-square distribution for a set of empirical likelihood test statistics and propose two single-step multi-
ple testing procedures: asymptotic Monte Carlo and nonparametric bootstrap. Both procedures asymp-
totically control the generalized family-wise error rate and efficiently construct simultaneous confidence
intervals for comparisons of interest without explicitly considering the underlying covariance structure.
A simulation study demonstrates that the performance of the procedures is robust to violations of stan-
dard assumptions of linear mixed models. We also present an application to experiments on a pesticide.
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1. Introduction

In designed experiments, questions of particular interest frequently involve differences in means
of a set of treatments and multiple comparisons. Classical parametric tools for analysis, such
as the F -test, Tukey test, or Ryan/Einot–Gabriel/Welsch test, provide efficient ways for testing
hypotheses and constructing simultaneous confidence intervals (SCIs) but rely on restrictive
assumptions on underlying distributions, variances, and sample sizes. Issues of misspecification
and robustness of inference arise when these assumptions are not met. In randomized block
designs, rank-based, distribution-free multiple comparison procedures have been suggested,
going back to Friedman (1937) and Nemenyi (1963). Mansouri and Shaw (2004) developed a
Tukey-type nonparametric pairwise comparison procedure for balanced incomplete block designs.
More recently, Eisinga, Heskes, Pelzer, and Te Grotenhuis (2017) proposed an exact test for
simultaneous pairwise comparison of Friedman rank sums with a method to quickly calculate the
exact p-values and associated statistics. Rank-based approaches, however, have limitations in that
they do not fully utilize the available data and have a well-known cycling inconsistency issue
(Lehmann and D’Abrera 1975; Fey and Clarke 2012).

Empirical likelihood (Owen 1988) can be helpful as a nonparametric alternative in such
situations. With suitably defined estimating functions, empirical likelihood enables nonparametric,
likelihood-driven inferences without distributional specifications. It is well established that various
forms of empirical likelihood ratio functions admit a nonparametric version of Wilks’ theorem
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under mild conditions, providing a basis for an asymptotic test based on a chi-square null
distribution; see, e.g. Qin and Lawless (1994) and Owen (2001). In addition, the empirical
distribution of the data determines the shape and orientation of confidence regions. The coverage
accuracy of the confidence regions can further be improved by bootstrap or Bartlett-correction
(DiCiccio, Hall, and Romano 1991). In the context of the analysis of designed experiments,
empirical likelihood has been studied for inference on the median using ranking data by Liu, Yuan,
Lin, and Zhang (2012) and Alvo (2015). Inference on the mean is also available by formulating an
appropriate estimating function. Designs without a blocking factor, for example, can be analyzed
as an analysis of variance problem (Owen 1991). Popular block designs such as randomized
complete block designs or balanced incomplete block designs can also be reconfigured as a
multivariate mean problem.

The existing literature has mainly focused on establishing limit theorems for a single empirical
likelihood (ratio) statistic with a single hypothesis. Wang and Yang (2018) applied F -distribution
calibrated empirical likelihood statistics to multiple hypothesis tests, assuming independence
between tests. However, these results cannot be directly extended to various dependence scenarios,
including the problem of multiple comparisons. Although individual p-values from empirical
likelihood tests can be substituted into many existing multiple testing procedures, constructing
SCIs for the comparisons based on empirical likelihood has not yet been investigated. This article
addresses the challenges of the multiplicity of comparisons by introducing an asymptotic frame-
work for general block designs that leads to manageable inference. In particular, each confidence
interval has a variable length that accommodates the underlying covariance structure without
explicit studentization, and the SCIs achieve the target coverage probability asymptotically. We
also propose empirical likelihood-based multiple testing procedures that rest on this framework.
These procedures are generally applicable to other models and estimating functions.

The article is organized as follows. Section 2 introduces some preliminary concepts and
conditions used in the rest of the article. Section 3 develops an asymptotic theory for a set of
empirical likelihood test statistics. We propose two multiple testing procedures in Section 4
and evaluate the performances of the procedures in Section 5 through a simulation study. An
application to pesticide concentration experiments is discussed in Section Section 6. We conclude
with a discussion of directions for future research in Section 7. The proofs of the theoretical
results are provided in Appendix.

2. Preliminaries

2.1. General block designs

A block design is an ordered pair (T ,B) where T is a set of p points that we call treatments, and
B is a collection of n nonempty subsets of T called blocks. We consider general block designs
where each block size is bi, with 1 ≤ bi ≤ p, for i = 1, . . . , n. Treatment k is contained in rk
blocks and each pair of distinct treatments k and l is contained in λkl blocks, for k, l = 1, . . . , p.
Then we have the following set of equations:

n∑
i=1

bi =

p∑
k=1

rk and
∑
l 6=k

λkl =
∑
i∈Bk

(bi − 1) for each k,

where Bk ⊆ {1, . . . , n} denotes the index set of the blocks containing treatment k. Let Cn denote
the associated n× p binary incidence matrix with the (i, k) component given by cik = 1(i ∈ Bk),
where 1(·) is the indicator function of its argument. The ith row sum is then bi and the kth column
sum is rk.
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The n blocks are regarded as random samples from an unknown population. Specifically, we as-
sume independent and identically distributed (i.i.d.) p-dimensional random variables X1, . . . , Xn

defined on a probability space (Ω,F , P ) with mean E(X1) = θ0 ∈ int(θ) and positive definite
covariance matrix Var(X1) = Σ, where Θ ⊆ Rp denotes the parameter space. The parameter
of interest is θ0, the treatment effects. According to the design and Cn, we only observe those
Xik from Xi = (Xi1, . . . , Xip) for which cik = 1. Since Cn is always available, we do not
make a notational distinction between the underlying random variable Xi and its observable
components. It will be clear from the context what we are referring to. In order to work with
empirical likelihood, we require that n−1C>n Cn → D as n→∞ for some matrixD with positive
diagonal entries.

2.2. Empirical likelihood for block designs

We introduce the general setup for empirical likelihood within the block design framework. The
available data are denoted by Xn = {X1, . . . , Xn}. Inference for θ0 is based on a p-dimensional
estimating function g(Xi, θ), where g(Xi, θ) equals Xi − θ with the unobserved components set
to 0. More explicitly, we write

g(Xi, θ) ≡ g(Xi, θ; ci) = (Xi − θ) ◦ ci, (1)

where ci is the ith row of Cn and ◦ is the Hadamard product. The (profile) empirical likelihood
ratio function, evaluated at θ, is defined as

max
wi

{
n∏
i=1

nwi : wi > 0,

n∑
i=1

wi = 1, and
n∑
i=1

wig(Xi, θ) = 0

}
.

A unique solution exists if the zero vector is contained in Convn(θ), where Convn(θ) denotes the
interior of the convex hull of {g(Xi, θ) : i = 1, . . . , n}. The Lagrange multipliers λ ≡ λ(θ) of
the dual optimization problem solve

1

n

n∑
i=1

g(Xi, θ)

1 + λ>g(Xi, θ)
= 0.

We denote minus twice the log empirical likelihood ratio function by

ln(θ) = 2

n∑
i=1

log
(

1 + λ>g(Xi, θ)
)
.

In the case of g(Xi, θ) = Xi − θ, Owen (1990) showed that ln(θ0) converges in distribution
to χ2

p, a chi-square distribution with p degrees of freedom. Similar results also hold for other
forms of estimating functions (Qin and Lawless 1994), and it can be shown that ln(θ0)→ χ2

p in
distribution for our general block designs under some regularity conditions. A confidence region
for θ0 can then be constructed as {θ : ln(θ) ≤ χ2

p,α}, where χ2
p,α is the (1− α)th quantile of a

χ2
p distribution.
For the case of a subset of the parameter vector, let θ = (θ1, θ2) for a q-dimensional parameter

θ1 with q ≤ p, and consider testing a hypothesis H : θ1 = θ∗1. Under additional assumptions,
a relevant test statistic ln(θ∗1, θ̂2) → χ2

q in distribution, where θ̂2 minimizes ln(θ∗1, θ2) with
respect to θ2 (Qin and Lawless 1994, Corollary 5). More generally, for a q-dimensional constraint
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h(θ) = 0, Qin and Lawless (1995) showed that if h(θ0) = 0 then ln(θ̂) → χ2
q in distribution,

where θ̂ denotes the minimizer of the problem. Adimari and Guolo (2010) extended hypothesis
testing with empirical likelihood to show that the chi-square calibration holds for an even broader
class of estimating functions. We can apply these results to general block designs and perform
some important tests, including the test of no treatment effect or the interaction between treatments
and the blocking variable. The applicability, however, is still restricted to a single hypothesis test.

2.3. Multiple testing

Consider simultaneously testing m null hypotheses Hj , j = 1, . . . ,m. We assume that each
Hj corresponds to a nonempty subset of θ through a smooth qj-dimensional function hj such
that Hj = {θ ∈ Θ : hj(θ) = 0}. We have θ0 ∈ Hj under Hj (when Hj is true). The complete
null hypothesis H0 = ∩jHj is also assumed to be nonempty. Then we denote a multiple testing
procedure by φ = {φj : j = 1, . . . ,m}, where φj maps the dataXn into {0, 1}, andHj is rejected
if and only if φj = 1. We restrict our attention to procedures that provide a common cutoff value
cα at a nominal level α ∈ (0, 1). Given a vector of m test statistics Tn = (Tn1, . . . , Tnm), we
reject Hj if Tnj > cα. The total number of false rejections is Vm =

∑
j∈I0 1(φj = 1), where

I0 = {j : θ0 ∈ Hj} is the index set of true null hypotheses.
Of various Type I error rates for multiple testing, the most common choice in designed

experiments is family-wise error rate (FWER). When the number of hypotheses is large, one
can consider the generalized family-wise error rate (gFWER) as a less stringent alternative,
which is defined as the probability of v or more false rejections for some v ≤ m. A discussion
of procedures for gFWER control can be found in Lehmann and Romano (2005). Formally, a
procedure φ is said to control gFWER (strongly) at level α if

gFWERθ(φ) = Pθ(Vm ≥ v) ≤ α for all θ ∈ Θ.

When v = 1, this reduces to FWER control. We say that φ controls gFWER asymptotically if
lim supn→∞ gFWERθ(φ) ≤ α for all θ ∈ Θ. This article addresses single-step procedures for
gFWER control with consideration of the joint distribution of the empirical likelihood statistics.

3. Asymptotics for multiple testing

3.1. Multivariate chi-square calibration

In order to address the multiplicity of our problem and formalize asymptotic multiple testing
procedures based on empirical likelihood statistics, we first need a multivariate generalization of
chi-square calibration, a multivariate chi-square distribution. The class of multivariate distributions
with marginal chi-square distributions is much too broad to be useful in practice, and there is no
universal definition of a multivariate chi-square distribution.

In what follows, we adopt a particular type of multivariate chi-square distribution introduced in
Dickhaus (2014).

Definition 1 (Dickhaus (2014)) For a vector of positive integers q = (q1, . . . , qm), let Zj =
(Zj1, . . . , Zjqj ) ∼ N(0, Iqj ), j = 1, . . . ,m. Assume that (Z1, . . . , Zm) has a multivariate normal
distribution with

∑m
j=1 qj ×

∑m
j=1 qj correlation matrix

R = {ρ (Zj1,l1 , Zj2,l2) : j1, j2 = 1, . . . ,m; l1 = 1, . . . , qj1 ; l2 = 1, . . . , qj2} .
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Let T = (T1, . . . , Tm), with Tj = Z>j Zj ∼ χ2
qj . Then T has a multivariate (central) chi-

square distribution (of generalized Wishart-type) with parameters m, q, and R. We write T ∼
χ2(m, q,R).

This distribution naturally arises as a joint limiting distribution of many Wald-type statistics and
allows for varying degrees of freedom in each marginal. A comprehensive overview of different
types of multivariate chi-square distributions and their applications can be found in Dickhaus and
Royen (2015).

We now establish a multivariate extension that covers general block designs as a special case.
To this end, we do not require i.i.d. observations Xi and we allow the p-dimensional estimating
function g(Xi, θ) to take forms different from (1). Let θ be a parameter of interest (not necessarily
the mean parameter) and define

G(θ) = E {g(Xi, θ)} , Gn(θ) =
1

n

n∑
i=1

g(Xi, θ), and Sn(θ) =
1

n

n∑
i=1

g(Xi, θ)g(Xi, θ)
>,

with the property that G(θ0) = 0. Here and throughout, we use | · | to denote the Euclidean norm
for vectors. For matrices, ‖ · ‖ and ∂θ(·) denote the Frobenius norm and the Jacobian matrix,
respectively. All limits are taken as n→∞. We assume the following regularity conditions:

Condition 1 P {0 ∈ Convn (θ0)} → 1.

Condition 2 g(Xi, θ) andG(θ) are continuously differentiable in a neighborhoodN of θ0 almost
surely, and supθ∈N ‖∂θGn(θ)− ∂θG(θ)‖ → 0 in probability with nonsingular ∂θG(θ0).

Condition 3 There exists a matrix function V (θ) with positive definite V (θ0) such that
supθ∈N ‖Sn(θ)− V (θ)‖ → 0 in probability and sup|θ−θ0|≤bn ‖V (θ)− V (θ0)‖ → 0, for any
sequence of positive real numbers bn → 0.

Condition 4 anGn(θ0)→ U in distribution for a sequence of positive real numbers an →∞,
where U ∼ N(0, V (θ0)).

Condition 5 max1≤i≤n |g(Xi, θ0)| = oP (an) and max1≤i≤n ‖∂θg(Xi, θ0)‖ = OP (an).

Condition 6 The function Hj defining the null hypothesis Hj is continuously differentiable on
N with Jacobian matrix Jj = ∂θhj(θ0) of full rank qj ≤ p, j = 1, . . . ,m.

Condition 1 is the basic existence condition for empirical likelihood in the asymptotic setting.
Since the computation of ln(θ) involves the quadratic forms Gn and Sn, Conditions 2 and 3 are
required for ln(θ), as a smooth function of θ, to be evaluated in a neighborhood of θ0. Condition 4
implies that, asymptotically, the quadratic forms have marginal and joint multivariate chi-square
distributions. Condition 5 demands that the remainder terms be negligible. Condition 6 completes
the statement of the constrained empirical likelihood problems for multiple testing and holds for
most practical applications that we consider.

For j = 1, . . . ,m, we define the empirical likelihood statistic associated with hypothesis Hj as

Tnj =
a2n
n

inf
θ∈Hj∩Kn

ln(θ), (2)

where Kn = {θ : |θ − θ0| ≤ K/an} denotes a sequence of closed balls around θ0 for a given
K > 0. The m-dimensional test statistic is denoted by Tn = (Tn1, . . . , Tnm). For notational con-

5



venience, let V = V (θ0),W = ∂θG(θ0)
−1, andM = WVW>. Then, define T = (T1, . . . , Tm),

where Tj = U>AjU with Aj = (JjW )>(JjMJj
>)−1(JjW ).

THEOREM 3.1 Under H0 and Conditions 1–6,

Tn → T ∼ χ2(m, q,R)

in distribution for some sequence Kn. Here, q = (q1, . . . , qm) and R is the correlation matrix of
(Z1, . . . , Zm), with Zj = (JjMJj

>)−1/2JjWU .

Remark 1 For the general block designs introduced in Section 2.1, it can be shown that
ln is convex in θ so we can find a solution θ̂c of the optimization problem in (2) such
that θ̂c − θ0 = OP (a−1n ). Thus, the closed ball constraint is not binding asymptotically,
i.e. a2nn

−1 infθ∈Hj
ln(θ) = a2nn

−1 infθ:Hj∩Kn
ln(θ) + oP (1). In other cases with general es-

timating functions, identification of θ0 may require additional conditions, such as compactness of
θ, or θ0 being the unique zero of G(θ) (see, e.g. Yuan and Jennrich 1998; Jacod and Sørensen
2018).

Remark 2 Tn satisfies the so-called subset pivotality condition (Westfall and Young 1993)
asymptotically in the sense that, for any subset S ⊆ {1, . . . ,m} the joint limiting distribution of
{Tnj : j ∈ S} remains the same under ∩j∈SHj and H0.

3.2. Illustration of the theory for general block designs

We give an illustration of the preceding theory by verifying Conditions 1–5 of Theorem 3.1 for
general block designs. Condition 1 holds by applying the Glivenko–Cantelli argument over the
half-spaces of Owen (2001, p. 219). Condition 2 is checked by noting that both g(Xi, θ) and G(θ)
are continuously differentiable with ∂θGn(θ) = −n−1diag(r1, . . . , rp) and ∂θG(θ) = −diag(D),
where diag(·) denotes the diagonal matrix of its argument (either a vector or a matrix). The result
follows since we have assumed that n−1C>n Cn → D. For Condition 3, observe that

‖Sn (θ)−V (θ) ‖ ≤
‖Sn (θ)− Sn (θ0)− (θ − θ0) (θ − θ0)> ◦D‖+ ‖Sn (θ0)− Vn‖+ ‖V − Vn‖ ,

where

Sn(θ)−Sn(θ0)− (θ − θ0)(θ − θ0)> ◦D =
1

n

n∑
i=1

(Xi − θ0)(θ0 − θ)> ◦ cic>i

+
1

n

n∑
i=1

(θ0 − θ)(Xi − θ0)> ◦ cic>i + (θ − θ0)(θ − θ0)> ◦
(

1

n
C>n Cn −D

)
and

‖Sn (θ0)− Vn‖2 =

p∑
k=1

p∑
l=1

∣∣∣∣∣ 1n ∑
i∈Bk∩Bl

(Xik − θ0k) (Xil − θ0l)−
σklλkl
n

∣∣∣∣∣
2

,
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with the (k, l) component of Σ denoted by σkl. Then, we have

Sn(θ)− Sn(θ0)− (θ − θ0)(θ − θ0)> ◦D → 0 and Sn(θ0)− Vn → 0

almost surely uniformly in θ ∈ N by the (uniform) law of large numbers, which verifies the first
requirement of Condition 3 such that supθ∈N |Sn(θ)− V (θ)| → 0 in probability. For the second
requirement,

sup
|θ−θ0|≤bn

‖V (θ)− V ‖ = sup
|θ−θ0|≤bn

‖ (θ − θ0) (θ − θ0)> ◦D‖ ≤ p2b2n → 0,

establishing Condition 3. For Condition 4, we take an =
√
n and choose any ε > 0. Let

Vn =
1

n

n∑
i=1

Var {g(Xi, θ0)} = E {Sn(θ0)} = Σ ◦ 1

n
C>n Cn.

We have Vn → V = Σ ◦D where V is positive definite, and

1

n

n∑
i=1

E
{
|g(Xi, θ0)|2 1

(
|g (Xi, θ0)| ≥ ε

√
n
)}

≤ 1

n

n∑
i=1

E
{
|Xi − θ0|2 1

(
|Xi − θ0| ≥ ε

√
n
)}
→ 0.

It follows from the Lindeberg–Feller central limit theorem that anGn(θ0) → N(0, V ) in
distribution, and Condition 4 holds with V (θ) = V + (θ − θ0)(θ − θ0)> ◦D. Next, a Borel–
Cantelli argument (Owen 2001, Lemma 11.2) shows that max1≤i≤n |Xi − θ0| = oP (an). Since
max1≤i≤n ‖∂θg(Xi, θ0)‖ ≤

√
p, we have max1≤i≤n ‖∂θg(Xi, θ0)‖ = o(an) almost surely and

Condition 5 is checked.

4. Empirical likelihood-based multiple testing

4.1. Asymptotic Monte Carlo

This section extends the multivariate empirical likelihood theory developed in Section 3 to specific
multiple testing procedures for general block designs. We propose two procedures for calibration
of the common cutoff value, where the finite-sample null distribution of Tn is approximated
by employing appropriate schemes. Both procedures determine cutoffs that provide asymptotic
gFWER control (see Remark 2).

As a multivariate analog of chi-square calibration, one may consider relying on multivariate
chi-square quantiles of T as a cutoff. In practice, however, the covariance matrix V of U and thus
the correlation matrix R of T is rarely known, making it impossible to compute the multivariate
quantiles directly. As an alternative, the asymptotic Monte Carlo (AMC) procedure relies on the
stochastic representation in Theorem 3.1 to produce a simulation-based approximation to the
distribution of T up to any desired precision.

Suppose that we have a consistent estimator θ̂ of θ0. It can be shown from Condition 3
that Sn(θ̂) → V in probability; see Hjort, McKeague, and van Keilegom (2009, Remark 2.2).
Then, the AMC procedure consists of replacing V with Sn(θ̂) and simulating samples from the
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Data: Xn
Result: cutoff cα and adjusted p-values p̃1, . . . , p̃m

1. Compute Tn, Sn(θ̂), and Â1, . . . , Âm

2. Monte Carlo simulation for approximation
for b = 1, . . . , B do

Simulate U (b)
n ∼ N(0, Sn(θ̂))

Q̂
(b)
n(v) ← the vth largest component of

(
U

(b)
n

>
Â1U

(b)
n , . . . , U

(b)
n

>
ÂmU

(b)
n

)
3. cα ← (1− α)th quantile of

{
Q̂

(1)
n(v), . . . , Q̂

(B)
n(v)

}
4. Adjusted p-values and multiple testing

for j = 1, . . . ,m do

p̃j ←
1

B

B∑
b=1

1
(
Q̂

(b)
n(v) ≥ Tnj

)

if Tnj > cα or p̃j < α then reject Hj

Algorithm 1: AMC

approximate distribution N(0, Sn(θ̂)). Let Âj = (JjW )>{(JjW )Sn(θ̂)(JjW )>}−1(JjW ) and
consider random variables Un ∼ N(0, Sn(θ̂)) and T̂n = (U>n Â1Un, . . . , U

>
n ÂmUn), defined

conditionally on the observed data Xn. With Pn denoting the conditional distribution of T̂n, the
following theorem ensures that the distance between Pn and the distribution of Tn converges to
zero in probability.

THEOREM 4.1 Under H0 and Conditions 1–6,

sup
x∈Rm

+

∣∣∣Pn(T̂n ≤ x | Xn)− P (Tn ≤ x)
∣∣∣→ 0

in probability.

Theorem 4.1 guarantees the asymptotic validity of the AMC procedure described in Algorithm 1.
For v = 1, the procedure reduces to controlling the asymptotic FWER and the cutoff cAMC

α is
computed from the maximum statistics {Q̂(1)

n(m), . . . , Q̂
(B)
n(m)}. When the Hjs are contrasts of

the form
∑p

k=1 ukθk with known constants u1, . . . , up, asymptotic 100(1− α)% SCIs for the
Hjs can be {r ∈ R : infhj(θ)=r ln(θ) ≤ cAMC

α }. The test procedure and the SCIs are compatible,
i.e. whenever Hj is rejected, the corresponding interval does not include the null value and vice
versa.

Remark 3 Rather than generating draws from an approximate multivariate chi-square distribution,
low-dimensional multiplicity-adjusted quantiles can be computed numerically if the underlying
correlation matrix fulfills certain structural properties (Stange, Loginova, and Dickhaus 2016).
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4.2. Nonparametric bootstrap

It has been widely noted that the error rates of tests based on the asymptotic chi-square calibration
tend to be higher than the nominal levels, especially in small sample or high-dimensional
problems; see, e.g. Qin and Lawless (1994) and Tsao (2004). This issue persists in our setting
with multiple empirical likelihood statistics. Moreover, considering the incomplete nature of block
designs, convergence to a multivariate chi-square distribution may be slow. As an alternative,
Owen (1988) proposed a bootstrap calibration for the mean. Resampling from the original data
Xn yields bootstrap replicatesX (b)

n , b = 1, . . . , B. For eachX (b)
n , the empirical likelihood statistic

l
(b)
n (X) is computed at the sample mean X of Xn. The cutoff is obtained as the sample (1− α)th

quantile of {l(1)n (X), . . . , l
(B)
n (X)}.

In our setting, let X̃n be the null-transformed data with H0 imposed on the observed data
Xn (see (4) below as an example). Then we denote the (nonparametric) bootstrap samples by
X̃ ∗n = {X̃∗1 , . . . , X̃∗n}, where X̃∗i , i = 1, . . . , n, are i.i.d. observations from X̃n. Conditional
on X̃ ∗n , we denote the bootstrap empirical likelihood statistic by l∗n(θ) and the test statistics
by T ∗n = (T ∗n1, . . . , T

∗
nm), where T ∗nj = a2nn

−1 infθ∈Hj
l∗n(θ). We establish another consistency

result that provides the weak convergence of T ∗n in probability to T . As is customary, we denote
the bootstrap distribution conditional on the data by P ∗n .

THEOREM 4.2 Under H0 and Conditions 1–6, if E(|Xi|4) <∞,

sup
x∈Rm

+

|P ∗n (T ∗n ≤ x | Xn)− P (Tn ≤ x)| → 0

in probability.

Theorem 4.2 ensures that the conditional distribution of T ∗n approximates the multivariate
chi-square distribution of T . Adding the continuity of T implies that the procedures for gFWER
control can be asymptotically calibrated by the bootstrap replicates of T ∗n , namely T (1)

n , . . . , T
(B)
n .

In Algorithm 2 we describe the nonparametric bootstrap (NB) procedure. It differs from the
AMC procedure only in the cutoff cNB

α and the resulting adjusted p-values. Our experience with
the procedure shows that the NB procedure is better tuned to the distribution from which the data
arise and that cNB

α is typically larger than cAMC
α .

Remark 4 Other bootstrap schemes can be considered as well. The block bootstrap, for instance,
may be adapted to produce bootstrap replicates that better preserve the original design structure.
This can be of great importance when n is small and the convex hull constraint is of concern.
In this regard, it is worth examining the applicability of alternative formulations of empirical
likelihood that are free from the constraint (see, e.g. Chen, Variyath, and Abraham 2008; Tsao
and Wu 2013).

5. Simulation study

In this section, we carry out a simulation study on a balanced incomplete block design for all
pairwise comparisons of treatment effects. The design has five treatments with n blocks, and each
block consists of a pair of treatments that appear in 0.1n blocks. We have a (5, n, 0.4n, 2, 0.1n)-
design for short. Finite sample performances of the AMC and the NB procedures are evaluated
for controlling FWER and constructing SCIs. We simulate data from the following standard linear
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Data: Xn and X̃n
Result: cutoff cα and adjusted p-values p̃1, . . . , p̃m

1. Compute Tn
2. Bootstrapping for approximation

for b = 1, . . . , B do
Simulate X̃ (b)

n from X̃n and compute T (b)
n

T
(b)
n(v) ← the vth largest component of T (b)

n

3. cα ← (1− α)th quantile of
{
T
(1)
n(v), . . . , T

(B)
n(v)

}
4. Adjusted p-values and multiple testing

for j = 1, . . . ,m do

p̃j ←
1

B

B∑
b=1

1
(
T
(b)
n(v) ≥ Tnj

)

if Tnj > cα or p̃j < α then reject Hj

Algorithm 2: NB

mixed effect model:

Xik = θk + βi + εik for i ∈ Bk and k = 1, . . . , 5, (3)

where both βi and εik are i.i.d. random variables for block effects and errors, respectively. The
null hypothesis for treatment pair (k, l) is Hkl : θk − θl = 0 for k, l = 1, . . . , 5 with k < l. We
denote the pairwise differences between treatment effects by δj for j = 1, . . . , 10, with the
corresponding hypothesis Hj and test statistic Tnj .

For comparison, we consider the single-step procedure proposed by Hothorn, Bretz, and
Westfall (2008) as a benchmark. This procedure (henceforth HBW) is based on an asymptotic
multivariate normal distribution for the point estimates and a consistent plug-in estimate of the
associated covariance matrix. We apply HBW to restricted maximum likelihood estimates of δj ,
assuming the additive form and compound symmetry that are present in the model. We refer to
Hothorn et al. (2008) for technical details.

We fix the level α at 0.05 throughout the simulations. The βi and εik are simulated from three
different pairs of scenarios:

S1-1. βi ∼ N(0, 1) and εik ∼ N(0, 1);

S1-2. βi ∼ N(0, 0.1), εik ∼ N(0, 1) for k = 1, 2, 3, 4, and εi5 ∼ N(0, 9);

S2-1. βi ∼ Gamma(2, 1) and εik ∼ t(6);

S2-2. βi ∼ Gamma(10, 0.1), εik ∼ t(6) for k = 1, 2, 3, 4, and εi5 ∼ U(−5, 5);

S3-1. βi ∼ U(−0.5, 0.5) and εik ∼ U(−0.5, 0.5);

S3-2. βi ∼ U(−0.1, 0.1), εik ∼ U(−0.5, 0.5) for k = 1, 2, 3, 4, and εi5 ∼ t(3).

where Gamma(2, 1) denotes a Gamma distribution with shape parameter 2 and scale parameter 1.
Each pair of scenarios has a distinct distributional specification. In each pair, the first scenario is
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of the form (3). The second scenario, however, has negligible block effects and larger variance
for the fifth treatment, breaking some assumptions of the model. In each scenario, we consider
three different numbers of blocks n ∈ {50, 100, 200} and three different values of θ to vary the
number of true null hypotheses. Given specific values of n and θ, simulation results for the AMC
procedure are obtained as follows. For S = 10,000 simulation runs indexed by s:

Step 1 Simulate data from the given scenario and compute Tn(s).

Step 2 With B = 10,000, apply the AMC procedure in Algorithm 1 to obtain cAMC
α (s), and

compute the SCI IAMC
j (s) and its length |IAMC

j (s)| for each j.

The empirical FWER, average length (AL), and coverage probability (CP) of the SCIs are
calculated as

FWER =
1

S

S∑
s=1

1
(
max {Tnj(s) : j ∈ I0} > cAMC

α (s)
)

;

AL =
1

S

S∑
s=1

 1

10

10∑
j=1

∣∣∣IAMC
j (s)

∣∣∣
 ;

CP =
1

S

S∑
s=1

1
(
δj ∈ IAMC

j (s) for all j
)
.

The results for the NB procedure are obtained similarly. Step (i) is modified to set up bootstrap
sampling that respects H0. Before drawing the bootstrap replicates, pass from Xik to

X̃ik = Xik −Xk, (4)

where Xk = r−1k
∑

i∈Bk
Xik is the maximum empirical likelihood estimate for θk. Applying

Algorithm 2 in Step (ii), we obtain the same Tn but the cutoff cNB
α is different from cAMC

α , which
produces different SCIs, FWER, AL, and CP. All simulations are performed in R (Team 2023).
We implement AMC and NB with the melt package (Kim 2022). For HBW, we fit (3) via the lme4
package (Bates, Mächler, Bolker, and Walker 2015) and then pass the result to the multcomp
package (Hothorn et al. 2008).

Tables 1–3 summarize the simulation results. In all scenarios and procedures, the FWER is
largest for all n when H0 holds and decreases as the number of false hypotheses increases since
there are fewer opportunities to reject the true null hypotheses. By construction, AL and CP
are not related to θ. The intervals are shorter when the model generates less variation in the
data. FWER and CP approach their respective targets, 0.05 and 0.95, under H0 as n increases.
For AMC, FWER and CP are quite far from the targets when n = 50 and are also sensitive to
the distribution of the data. As can be seen from Table 2, the FWER and CP tend to be worse
when the distribution is highly skewed and has a thick tail. The estimates computed with only
20 observations per treatment can be inaccurate in the presence of skewness and outliers. On
the other hand, NB provides FWER and CP close to target even when n = 50. NB outperforms
AMC in FWER and CP but has larger AL in all scenarios. This finding is consistent with our
experience that cAMC

α < cNB
α holds in most cases and in keeping with the slow convergence of

Wald-type statistics to chi-square distributions (see, e.g. Pauly, Brunner, and Konietschke 2015).
The performances of AMC and NB are similar when n = 200 or when the data range is restricted
(Table 3). Interestingly, NB is more conservative when n = 50 than when n = 100 or n = 200.
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Table 1. Simulation results under scenario S1.

AMC NB HBW
n (θ1, θ2) FWER AL CP (%) FWER AL CP (%) FWER AL CP (%)

S1-1

50
(0, 0) 0.077 2.284 92.4 0.043 2.498 95.7 0.065 1.973 93.5
(1, 0) 0.057 2.283 91.4 0.034 2.496 94.7 0.044 1.974 93.3
(2, 1) 0.030 2.282 91.8 0.018 2.491 95.0 0.026 1.970 93.4

100
(0, 0) 0.061 1.628 93.9 0.051 1.674 94.9 0.058 1.401 94.2
(1, 0) 0.036 1.629 94.3 0.030 1.674 95.4 0.036 1.403 94.6
(2, 1) 0.021 1.628 93.8 0.017 1.673 94.9 0.020 1.401 94.3

200
(0, 0) 0.053 1.148 94.7 0.049 1.160 95.1 0.054 0.993 94.6
(1, 0) 0.037 1.149 94.3 0.033 1.161 94.9 0.035 0.994 94.5
(2, 1) 0.017 1.149 95.3 0.017 1.158 95.4 0.018 0.994 94.9

S1-2

50
(0, 0) 0.078 2.574 92.2 0.041 2.859 95.9 0.101 2.783 89.9
(1, 0) 0.058 2.569 91.7 0.028 2.854 96.0 0.097 2.775 89.1
(2, 1) 0.031 2.572 91.7 0.018 2.829 94.8 0.078 2.778 89.5

100
(0, 0) 0.061 1.845 94.0 0.052 1.905 94.8 0.101 1.979 89.9
(1, 0) 0.041 1.846 93.7 0.033 1.906 94.8 0.092 1.979 89.7
(2, 1) 0.021 1.847 93.9 0.017 1.897 94.5 0.075 1.980 89.7

200
(0, 0) 0.053 1.305 94.7 0.051 1.320 95.0 0.094 1.405 90.6
(1, 0) 0.036 1.304 94.4 0.035 1.320 94.8 0.084 1.404 90.7
(2, 1) 0.020 1.305 94.4 0.019 1.307 94.5 0.071 1.405 90.4

θ3, θ4, and θ5 are set to zero. The largest standard error of the results is 0.003 when n = 50.

Table 2. Simulation results under scenario S2.

AMC NB HBW
n (θ1, θ2) FWER AL CP (%) FWER AL CP (%) FWER AL CP (%)

S2-1

50
(0, 0) 0.091 3.032 90.1 0.047 3.435 95.2 0.064 2.444 93.6
(1, 0) 0.064 3.035 90.2 0.031 3.439 95.1 0.044 2.445 93.3
(2, 1) 0.032 3.029 90.9 0.015 3.431 95.1 0.023 2.439 93.6

100
(0, 0) 0.072 2.167 92.8 0.053 2.270 94.7 0.057 1.739 94.3
(1, 0) 0.041 2.168 93.4 0.031 2.271 95.1 0.036 1.741 94.3
(2, 1) 0.023 2.171 93.2 0.017 2.275 95.1 0.021 1.742 94.6

200
(0, 0) 0.056 1.524 94.5 0.049 1.552 95.1 0.053 1.234 94.7
(1, 0) 0.039 1.526 94.0 0.035 1.553 94.7 0.035 1.234 94.7
(2, 1) 0.020 1.526 94.2 0.018 1.554 94.7 0.019 1.236 94.4

S2-2

50
(0, 0) 0.092 2.761 90.8 0.047 3.091 95.3 0.093 2.917 90.7
(1, 0) 0.055 2.765 91.2 0.027 3.097 95.6 0.082 2.922 90.4
(2, 1) 0.029 2.765 90.7 0.014 3.079 94.8 0.069 2.923 90.3

100
(0, 0) 0.066 1.992 93.4 0.051 2.074 94.9 0.089 2.077 91.1
(1, 0) 0.040 1.991 93.7 0.031 2.072 95.1 0.078 2.075 91.1
(2, 1) 0.022 1.993 93.5 0.017 2.072 94.8 0.064 2.077 90.9

200
(0, 0) 0.056 1.412 94.4 0.050 1.435 95.1 0.086 1.472 91.5
(1, 0) 0.036 1.414 94.6 0.032 1.438 95.2 0.072 1.474 91.9
(2, 1) 0.019 1.415 94.4 0.017 1.432 94.8 0.059 1.474 91.6

θ3, θ4, and θ5 are set to zero. The largest standard error of the results is 0.003 when n = 50.

This is partly due to the higher chance that a bootstrap sample may not satisfy the convex hull
constraint, contributing to the large cutoff of NB (see Remark 4).

The HBW procedure, contrary to the empirical likelihood-based procedures, depends heavily
on the assumptions in (3). HBW performs well in scenarios where the compound symmetry
assumption is met (S1-1, S2-1, and S3-1). FWER and CP are robust across different distributions
for the block effects and the errors. Except for n = 200, HBW outperforms AMC and comes
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Table 3. Simulation results under scenario S3.

AMC NB HBW
n (θ1, θ2) FWER AL CP (%) FWER AL CP (%) FWER AL CP (%)

S3-1

50
(0, 0) 0.078 0.652 92.3 0.046 0.699 95.4 0.070 0.571 93.1

(1/8, 0) 0.054 0.652 92.2 0.034 0.699 94.9 0.046 0.571 93.3
(1/4, 1/8) 0.029 0.651 92.2 0.018 0.699 94.9 0.024 0.571 93.3

100
(0, 0) 0.060 0.465 94.0 0.051 0.474 94.9 0.058 0.405 94.2

(1/8, 0) 0.039 0.465 93.8 0.035 0.474 94.4 0.041 0.405 93.7
(1/4, 1/8) 0.021 0.465 94.2 0.019 0.475 95.0 0.021 0.406 94.4

200
(0, 0) 0.053 0.329 94.8 0.050 0.332 95.0 0.055 0.287 94.5

(1/8, 0) 0.034 0.329 94.9 0.032 0.332 95.1 0.033 0.287 94.9
(1/4, 1/8) 0.018 0.329 94.9 0.017 0.332 95.3 0.017 0.287 94.6

S3-2

50
(0, 0) 0.108 1.062 90.9 0.033 1.536 96.6 0.117 1.277 88.3

(1/8, 0) 0.079 1.077 91.1 0.024 1.567 96.6 0.109 1.304 88.3
(1/4, 1/8) 0.056 1.071 91.2 0.015 1.547 96.7 0.097 1.292 88.5

100
(0, 0) 0.070 0.807 93.3 0.045 0.886 95.6 0.105 0.940 89.5

(1/8, 0) 0.049 0.803 93.2 0.032 0.877 95.3 0.096 0.934 89.7
(1/4, 1/8) 0.032 0.809 93.2 0.022 0.886 95.1 0.087 0.943 89.7

200
(0, 0) 0.061 0.580 93.9 0.051 0.603 94.9 0.106 0.673 89.4

(1/8, 0) 0.041 0.583 94.0 0.035 0.608 94.9 0.101 0.678 89.3
(1/4, 1/8) 0.025 0.583 94.2 0.020 0.607 95.3 0.092 0.678 89.3

θ3, θ4, and θ5 are set to zero. The largest standard error of the results is 0.007 when n = 50.

close to NB with considerably shorter AL. In scenarios where compound symmetry is violated
(S1-2, S2-2, and S3-2), however, HBW shows a substantial performance deterioration. The AL of
HBW is larger than those of AMC and NB when n is 100 or 200. FWER and CP are far from
their target values, and the rate at which they improve is much slower. Figure 1 further shows
the impact of the violation on AL and CP by gradually decreasing the degrees of freedom for
the distribution of εi5 in S3-2 when n = 200 and θ = (0, 0, 0, 0, 0). The AL of AMC and NB is
much larger for the intervals with θ5 than the rest, and only the AL of these intervals increases as
the degrees of freedom decrease to 2 (infinite variance). As a result of this adjustment, the CP of
the individual interval is maintained above 0.95 for AMC and NB. In contrast, all intervals of
HBW have the same length. This implies that the intervals with θ5 are not wide enough as SCIs,
causing the under-coverage shown in Figure 1. For AMC and NB, additional simulation results
for gFWER control are also shown in Table 4.

In summary, AMC and NB show robust performance without relying on restrictive model
assumptions. Notably, NB successfully approximates the target error rate and CP even with small
sample sizes. The performance gap between AMC and NB is modest for larger n, where the
computational burden of the bootstrap and optimization involved in NB gives the advantage to
AMC.

6. Application to pesticide concentration experiments

We apply the methodology developed in Sections 3 and 4 to analyze the clothianidin concentration
data in Alford and Krupke (2017). Clothianidin, a neonicotinoid pesticide, is a potent agonist
of the nicotinic acetylcholine receptor in insects and is extensively applied in the United States
to maize seeds before planting. Quantifying the amount of clothianidin translocated into plant
tissue, coupled with its potential for environmental accumulation via runoff or leaching, provides
information on the costs and benefits of this delivery method.
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Figure 1. AL and CP of S3-2 with varying degrees of freedom for the distribution of εi5 when
n = 200 and θ = (0, 0, 0, 0, 0). For AMC and NB, separate results are presented for the
comparisons that involve θ5 (+5) and those that do not (−5). AL and CP are computed group-
wise.

Alford and Krupke (2017) investigated clothianidin concentration in three regions (seed, root,
and shoot) of maize plants in the early growing season. Two field experiments were conducted
in 2014 and 2015 with four seed treatments: untreated (Naked), fungicide only (Fungicide),
low rate of 0.25 mg clothianidin/kernel (Low), and high rate of 1.25 mg clothianidin/kernel
(High). In a randomized complete block design with four blocks for each year, the treatments
were applied to four plots in each block. Clothianidin contamination of the untreated plots was
expected due to subsurface flow and proximity between plots. Sampling was carried out at 6,
8, 10, 13, 15, 17, 20, and 34 days post-planting in 2014, and at 5, 7, 9, 12, 14, 16, 19, 47, and
61 days post-planting in 2015. On each sampling day, up to ten plants were randomly sampled
from each plot, and three or five of them were processed for chemical analysis. Some plant
observations were lost before the analysis. Root and shoot regions of the remaining observations
were scored as “complete” (> 80% present) or “incomplete” (< 80% present). In this way, the
experimental design had a hierarchical structure of sampling (year/block/days post-planting/plot)
that is unbalanced and incomplete in several layers. The clothianidin concentration data were
log-transformed to conform more closely to a normal distribution. Alford and Krupke (2017) fit a
linear mixed model to test two contrasts: Naked + Fungicide vs. Low and Naked + Fungicide
vs. High. Jensen, Schaarschmidt, Onofri, and Ritz (2018) used the same data and performed a
variety of post-hoc pairwise comparisons with various linear mixed models.

We subdivide the original blocks into 68 new blocks according to the days post-planting,
considering that plant tissue clothianidin dissipates over time following an exponential decay
pattern (Alford and Krupke 2017, Fig. 2). For illustration, we analyze only the “incomplete” shoot
region observations. This results in 32 blocks. Plot level replicates, if any, are averaged over the
treatments within these blocks, resulting in 102 observations in total. The decay pattern gives
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Table 4. Simulation results for the gFWER control. For the three simulation scenarios, gFWER
of each procedure is computed below for v = 2, 3, 4, 5 with θ = (0, 0, 0, 0, 0).

AMC NB
n v = 2 v = 3 v = 4 v = 5 v = 2 v = 3 v = 4 v = 5

S1-1
50 0.065 0.057 0.052 0.054 0.041 0.039 0.038 0.040
100 0.055 0.054 0.054 0.054 0.048 0.049 0.048 0.046
200 0.056 0.054 0.049 0.053 0.053 0.050 0.046 0.050

S1-2
50 0.067 0.058 0.057 0.058 0.042 0.040 0.042 0.043
100 0.056 0.057 0.056 0.057 0.048 0.051 0.051 0.048
200 0.055 0.051 0.051 0.051 0.051 0.048 0.048 0.048

S2-1
50 0.074 0.064 0.058 0.058 0.044 0.043 0.040 0.041
100 0.065 0.063 0.058 0.056 0.054 0.050 0.050 0.046
200 0.055 0.053 0.050 0.051 0.051 0.049 0.047 0.046

S2-2
50 0.076 0.067 0.062 0.060 0.044 0.045 0.044 0.043
100 0.061 0.055 0.057 0.058 0.051 0.048 0.050 0.050
200 0.055 0.053 0.051 0.049 0.050 0.049 0.049 0.046

S3-1
50 0.067 0.064 0.061 0.056 0.049 0.049 0.047 0.044
100 0.053 0.051 0.051 0.055 0.046 0.047 0.046 0.048
200 0.052 0.047 0.051 0.054 0.049 0.046 0.048 0.050

S3-2
50 0.097 0.091 0.087 0.071 0.039 0.044 0.047 0.046
100 0.070 0.072 0.073 0.063 0.048 0.050 0.051 0.048
200 0.062 0.060 0.061 0.058 0.049 0.046 0.047 0.049

The largest standard error of the results is 0.003 when n = 50.

(a) (b)

Figure 2. Summary of data for each treatment: (a) box plot of log transformed clothianidin
concentration with median (solid line) and mean (dashed line); (b) density plot of clothianidin
concentration.

rise to skewed or multimodal marginal distributions for the treatments with different variances,
as shown in Figure 2. Regardless of the treatments, the clothianidin concentration is close to
zero roughly 20 days post-planting. Furthermore, the pairwise plots in Figure 3 indicate that
no pairs of treatments follow a bivariate normal distribution. Salient features of the data are
heteroscedasticity, non-normality, and a violation of block-treatment additivity.
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Figure 3. Pairwise scatter plots of observations. Each dot represents a pair of observations in a
block; incomplete pairs are discarded in each plot. The overlaid heat maps show densities. Many
dots are located either in the bottom left or upper right corners.

Table 5. Pairwise comparisons between treatments: Naked(N), Fungicide(F), Low(L), and
High(H). The estimates are obtained from empirical likelihood (EL) and the mixed effect model.

Estimate p-value
Comparison EL Mixed model AMC NB HBW
θF − θN 1.053 0.443 0.001 0.008 0.601
θL − θN 1.679 1.615 < 0.001 0.005 < 0.001
θH − θN 3.173 2.883 < 0.001 0.001 < 0.001
θL − θF 0.627 1.172 0.503 0.532 0.006
θH − θF 2.120 2.434 0.001 0.007 < 0.001
θH − θL 1.493 1.268 0.003 0.015 0.002

The p-values are based on 10,000 Monte Carlo samples for AMC and 10,000
bootstrap replicates for NB.

We follow the procedures outlined in Section 5 to perform pairwise comparisons. We obtain
estimates from the empirical likelihood and linear mixed model in (3); then, adjusted p-values and
confidence intervals are constructed using AMC, NB, and HBW. Table 5 reports the estimates and
p-values, where the treatment effects are denoted by θN, θF, θL, and θH. Despite the small number
of blocks (n = 32), AMC and NB reach similar conclusions: the clothianidin concentration does
not differ significantly between the fungicide and low rate treated plants (θL − θF), but significant
differences are observed in all the other comparisons. In Figure 4, the lengths of the SCIs are
similar for the two procedures, with AMC intervals being slightly shorter. The intervals are wider
for those comparisons involving some clothianidin treatment.

HBW produces a different conclusion. The violations of the assumptions for HBW lead to
different estimates for treatment effects than under empirical likelihood (except for θF). This leads
to substantially different estimates for comparisons θF − θN and θL − θF. The equal variance
assumption distorts the standard errors for the comparisons. This contributes to the large p-value
for θF − θN produced by HBW.
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Figure 4. Asymptotic 95% simultaneous confidence intervals for pairwise comparisons. The
estimates are given as dots inside the error bars. As a result of the larger cutoff, the NB interval
contains the corresponding AMC interval for all comparisons.

To summarize, empirical likelihood has the advantage of avoiding clearly inappropriate as-
sumptions. For these data, imposing these assumptions and performing a standard analysis leads
to different conclusions.

7. Discussion

Several extensions remain open for future research. We are primarily interested in producing
common cutoffs for pairwise comparisons and SCIs, but the AMC and NB procedures can be
modified to yield common quantiles. Common quantile procedures are appropriate when the
asymptotic multivariate chi-square distribution in Theorem 3.1 has different degrees of freedom
for each marginal. While preserving the gFWER control, improvement in power can be achieved
by adapting to stepwise procedures in both approaches.

As previously mentioned in Section 3.1, it is also possible to study other parameters and
estimating functions in a similar fashion. AMC and NB would need minor adjustment once an
asymptotic multivariate distribution is established, though it can be challenging to specify the
null transformation for NB. Due to nonconvexity, a major challenge would be the computation of
the statistics in (2). See Tang and Wu (2014) for general strategies for computing constrained
empirical likelihood problems.

Finally, another interesting topic concerning multiple testing is the use of high-dimensional
estimating functions with a growing number of parameters. Hjort et al. (2009) and Tang and Leng
(2010) investigated the feasibility of empirical likelihood methods when p, the dimension of the
parameter, is allowed to increase with n. In such high-dimensional settings, however, the typical
objective is often to control other types of error rates, such as the false discovery rate, which is
outside the scope of this article.
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Appendix

Proof of Theorem 3.1. By Condition 3, Sn(θ0) → V in probability and Sn(θ0) has full rank
with high probability for large n. Then, Proposition 1 of Chaudhuri, Mondal, and Yin (2017)
applies and there exists an open ball around θ0 where ln(θ) is defined. Adjusting N if necessary,
it follows from Condition 1 that

P {0 ∈ Convn(θ) for all θ ∈ N} → 1. (5)

Moreover, the implicit function theorem implies that ln(θ) is continuously differentiable on N .
Consider any consistent estimator θ̂ of θ0 such that θ̂ − θ0 = OP (a−1n ). From (5), we assume

that the convex hull constraint is satisfied for θ̂ throughout the proof. Let ĝi = g(Xi, θ̂) and
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Zn = max1≤i≤n |ĝi|. Following standard arguments as in Owen (2001, pp. 219–222), write
λ̂ ≡ λ̂(θ̂) = |λ̂|µ̂ for |µ̂| = 1, where λ̂ solves

1

n

n∑
i=1

ĝi

1 + λ̂>ĝi
= 0. (6)

Substituting 1/(1 + λ̂>ĝi) = 1− λ̂>ĝi/(1 + λ̂>ĝi) into (6), we obtain

0 = µ̂>Gn(θ̂)− |λ̂|µ̂>
(

1

n

n∑
i=1

ĝiĝ
>
i

1 + λ̂>ĝi

)
µ̂.

It follows that |λ̂|µ̂>Sn(θ̂)µ̂ ≤ µ̂>Gn(θ̂)(1 + |λ̂|Zn), and we have

|λ̂|
(
µ̂>Sn(θ̂)µ̂− Znµ̂>Gn(θ̂)

)
≤ µ̂>Gn(θ̂).

From Condition 2, a Taylor expansion of Gn(θ̂) around θ0 yields

Gn(θ̂) = Gn(θ0) + ∂θGn(θ0)(θ̂ − θ0) + oP (a−1n ),

and we see that µ̂>Gn(θ̂) = OP (a−1n ) from Condition 4. Similarly, from Condition 5 we have

Zn ≤ max
1≤i≤n

|g (Xi, θ0)|+
(

max
1≤i≤n

‖∂θg (Xi, θ0)‖
)
|θ̂ − θ0|+ oP (|θ̂ − θ0|) = oP (an).

Since θ̂ → θ0 in probability, there exists a sequence εn → 0 such that P (|θ̂ − θ0| > εn) → 0,
and sup|θ−θ0|≤εn ‖Sn(θ)− Sn(θ0)‖ → 0 in probability from Condition 3. Then for any ε > 0,

P
(
‖Sn(θ̂)− Sn(θ0)‖ > ε

)
≤ P

(
sup

|θ−θ0|≤εn
‖Sn(θ)− Sn(θ0)‖ > ε

)
+ P

(
|θ̂ − θ0| > εn

)
,

and it follows that Sn(θ̂)− Sn(θ0)→ 0 and Sn(θ̂)→ V in probability. We write σmin + oP (1) ≤
µ̂>Sn(θ̂)µ̂ ≤ σmax + oP (1), with 0 < σmin ≤ σmax denoting the smallest and largest eigenvalues
of v. This shows that λ̂ = OP (a−1n ). Iterating the substitution after (6) gives 1/(1 + λ̂>ĝi) =

1− λ̂>ĝi + (λ̂>ĝi)
2/(1 + λ̂>ĝi), leading to 0 = Gn(θ̂)− Sn(θ̂)λ̂+ rn(θ̂), where

|rn(θ̂)| =

∣∣∣∣∣ 1n
n∑
i=1

(λ̂>ĝi)
2ĝi

1 + λ̂>ĝi

∣∣∣∣∣ ≤ max
1≤i≤n

|1 + λ̂>ĝi|−1Zn|λ̂|2‖Sn(θ̂)‖.

With max1≤i≤n |1 + λ̂>ĝi|−1 = OP (1), it follows that rn(θ̂) = oP (a−1n ) and

λ̂ = Sn(θ̂)−1Gn(θ̂) + oP (a−1n ), (7)

where Sn(θ̂) is invertible with probability tending to 1.
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Define the empirical likelihood statistic ln(θ̂) = 2a2nn
−1∑n

i=1 log(1 + λ̂>ĝi) and apply a
Taylor expansion of log(1 + x) to write

ln(θ̂) =
2a2n
n

(
λ̂>

n∑
i=1

ĝi −
1

2
λ̂>

n∑
i=1

ĝiĝ
>
i λ̂+

1

3

n∑
i=1

(λ̂>ĝi)
3

(1 + ηi)3

)

= 2a2nλ̂
>Gn(θ̂)− a2nλ̂>Sn(θ̂)λ̂+

2

3
Rn(θ̂),

where |ηi| < |λ̂>ĝi| for all i and

|Rn(θ̂)| =

∣∣∣∣∣a2nn
n∑
i=1

(λ̂>ĝi)
3

(1 + ηi)3

∣∣∣∣∣ ≤ a2n|λ̂|Zn(1 + |λ̂|Zn)−3|λ̂>Sn(θ̂)λ̂| = oP (1).

From (7), we have ln(θ̂) = a2nGn(θ̂)>V −1Gn(θ̂) + oP (1), and it can also be shown that

a2nGn(θ̂)>V −1Gn(θ̂) = a2n(Hn + θ̂ − θ0)>M−1(Hn + θ̂ − θ0) + oP (1),

where Hn = WGn(θ0). Thus, we can write

ln(θ̂) = Qn(θ̂) + oP (1), (8)

where Qn(θ̂) = a2n(Hn + θ̂ − θ0)>M−1(Hn + θ̂ − θ0) is a quadratic approximation to ln(θ̂).
We now introduce a generic q-dimensional function h(θ) with Jacobian matrix J from Condi-

tion 6. Since (8) holds for any θ̂ such that θ̂ − θ0 = OP (a−1n ), it follows that

inf
θ∈H∩Kn

ln(θ) = min
θ∈H∩Kn

Qn(θ) + oP (1), (9)

where H = {θ ∈ Θ : h(θ) = 0} is the constraint set and Kn = {θ : |θ − θ0| ≤ K/an} denotes
any sequence of closed balls around θ0 for K > 0; see Adimari and Guolo (2010, p. 470). Thus,
we can consider minimizing Qn(θ), instead of ln(θ), under the constraint by constructing

L = Qn (θ) + 2a2nh (θ)> ν,

where ν is a q-dimensional Lagrange multiplier. Differentiating L with respect to θ and ν, we
obtain

θ − θ0 +Hn +MJ>ν = 0 and h(θ) = h(θ0) + J(θ − θ0) + o(|θ − θ0|) = 0. (10)

Since we only consider solutions θ̃ such that θ̃ − θ0 = OP (a−1n ) from Hn and Condition 4, it
follows from (10) that ν = P−1JHn + oP (a−1n ), where P = JMJ>. Consequently, we have
Hn + θ̃ − θ0 = MJ>P−1JHn + oP (a−1n ), and

Qn(θ̃) = a2nGn(θ0)
>AGn(θ0) + oP (1), (11)

where A = (JW )>P−1(JW ). It follows from (9) and (11) that

inf
θ∈H∩Kn

ln(θ) = a2nGn(θ0)
>AGn(θ0) + oP (1)
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for some K > 0 and Kn.
Now consider hypotheses Hj for j = 1, . . . ,m. For each j, there exist Kj > 0 and Kj

n =
{θ : |θ − θ0| ≤ Kj/an} such that inf

θ∈Hj∩K
j

n

ln(θ) = a2nGn(θ0)
>AjGn(θ0) + oP (1). We may

take K = max{K1, . . . ,Km} and define Tnj = infθ∈Hj∩Kn
ln(θ). Then,

Tnj = U>njΣ
−1
j Unj + oP (1) ,

where Unj = anJjWGn(θ0) → Uj ∼ N(0, JjMJ>j ) in distribution with Σj = JjMJ>j .
Applying the Crámer–Wold device, under H0 we have

Tn = (Tn1, . . . , Tnm)→ T ≡ (U>1 Σ−11 U1, . . . , U
>
mΣ−1m Um)

in distribution. Finally, (Σ
−1/2
1 U1, . . . ,Σ

−1/2
m Um) has a multivariate normal distribution with

mean 0 and correlation matrix R, where R is a
∑m

j=1 qj ×
∑m

j=1 qj block matrix whose kth

diagonal matrix is Iqk and (k, l) off-diagonal matrix is Σ
−1/2
k JkMJ>l Σ

−1/2
l . Then, T follows

a multivariate chi-square distribution with parameters m, q = (q1, . . . , qm), and R, i.e. T ∼
χ2(m, q,R). �

Proof of Theorem 4.2. We present the proof of Theorem 4.2 first, followed by the proof of
Theorem 4.1 since it readily follows from Theorem 4.2. We set up some notation and terminology.
Recall that the bounded Lipschitz metric dBL between two probability measures p and Q on Rm
for m ∈ N metrizes weak convergence and is defined by

dBL (P,Q) = sup
f∈BL1

∣∣∣∣∫ fdP −
∫
fdQ

∣∣∣∣ ,
where BL1 denotes the set of functions f : Rm 7→ [−1, 1] such that |f(x)− f(y)| ≤ |x− y| for
all x, y ∈ Rm. As a mapping from the common probability space (Ω,F , P ) into the set of
probability measures on Rm, let P̂n be a sequence of random probability measures such that∫
fdP̂n is measurable for any bounded and Lipschitz continuous function f . Then we say that

P̂n converges weakly to p in probability if∫
fdP̂n →

∫
fdP (12)

in probability for all f ∈ BL1. Also, (12) holds if and only if dBL(P̂n, P )→ 0 in probability.
Moreover, if the distribution function of p is continuous, it is equivalent to dK(P̂n, P )→ 0 in
probability (see, e.g. Bücher and Kojadinovic 2019, Lemma 2.5), where

dK(P,Q) = sup
x∈Rm

|P ({(−∞, x)})−Q({(−∞, x)})|

denotes the Kolmogorov distance between P and Q.
Let X∗i be an independent observation from Xn for i = 1, . . . , n. It can be shown that, for each

j, T ∗nj = nG∗n(X)>A∗jG
∗
n(X) + oP (1), where G∗n(X) = n−1

∑n
i=1 g(X∗i , X) and

A∗j = (JjW
−1)>

(
Jj(W

>S∗n
−1W )−1J>j

)−1
(JjW

−1).
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We first establish a bootstrap central limit theorem for
√
nG∗n(X) as in Singh (1981). Observe

that

E∗
{
g(X∗i , X)

}
=

1

n

n∑
i=1

g(Xi, X) = 0,

and

1

n

n∑
i=1

Var∗
{
g(X∗i , X)

}
=

1

n

n∑
i=1

g(Xi, X)g(Xi, X)> = Sn(X) = Sn(θ0) + o(1)

almost surely. Then Sn(X) → V almost surely by the law of large numbers. Applying the
Lindeberg–Feller central limit theorem, for any ε > 0 we have

1

n

n∑
i=1

E∗
{
|g(X∗i , X)|21

(
|g(X∗i , X)| ≥ ε

√
n
)}

≤ 1

n

n∑
i=1

{
|Xi −X|21

(
|Xi −X| ≥ ε

√
n
)}
→ 0

almost surely. It follows that
√
nG∗n(X) converges weakly to a N(0, V ) distribution almost

surely, i.e.

dK
(
L
(√
nG∗n(X)

∣∣ Xn) , N(0, V )
)
→ 0 (13)

almost surely. Next, and let s∗jk denote the (j, k) component of S∗n. Then E∗(S∗n) = Sn(X) and,
by the law of iterated expectation,

E
(
‖S∗n − Sn(X)‖2

)
≤

p∑
j=1

p∑
k=1

1

n2

n∑
i=1

E
{

(Xij −Xj)
2(Xik −Xk)

2
}
→ 0.

This implies that S∗n → V in probability.
It follows from the continuous mapping theorem and (13) that dK(L∗(T ∗nj),L(Tj)) → 0 in

probability for each j. Then for every fixed λ = (λ1, . . . , λm) ∈ Rm, an application of the
continuous mapping theorem implies that

dK

(
L∗
(
λ>T ∗n

∣∣∣ Xn) , L(λ>T )
)
→ 0 (14)

in probability. From the subsequential property of convergence in probability (Dudley 2002, The-
orem 9.2.1), there exists a subsequence such that (14) holds almost surely along the subsequence.
Then the Crámer–Wold device implies that T ∗n converges weakly to T almost surely along the
subsequence. Another application of the subsequential argument shows that

dK (L (T ∗n | Xn) , L(T ))→ 0

in probability. Finally, Tn → T in distribution underH0 and the result follows from the continuity
of T . �
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Proof of Theorem 4.1. Since Sn(θ̂) → V in probability, we have Âj → Aj in probability for
j = 1, . . . ,m and the continuity of the characteristic function of the normal distribution implies
that

dK (L (Un | Xn) , N(0, V ))→ 0

in probability. For any λ = (λ1, . . . , λm) ∈ Rm, it follows from the continuous mapping theorem
that

dK

L
U>n

 m∑
j=1

λjÂj

Un

∣∣∣∣∣∣ Xn
 , L

U>
 m∑
j=1

λjAj

U

→ 0

in probability. Then the Crámer–Wold device and the subsequential argument applied in (14)
complete the proof. �

24


	1 Introduction
	2 Preliminaries
	2.1 General block designs
	2.2 Empirical likelihood for block designs
	2.3 Multiple testing

	3 Asymptotics for multiple testing
	3.1 Multivariate chi-square calibration
	3.2 Illustration of the theory for general block designs

	4 Empirical likelihood-based multiple testing
	4.1 Asymptotic Monte Carlo
	4.2 Nonparametric bootstrap

	5 Simulation study
	6 Application to pesticide concentration experiments
	7 Discussion

