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ABSTRACT Gene expression is inherently noisy due to small numbers of proteins and nucleic acids inside a cell. Likewise,
cell division is stochastic, particularly when tracking at the level of a single cell. The two can be coupled when gene expres-
sion affects the rate of cell division. Single-cell time-lapse experiments can measure both fluctuations by simultaneously
recording protein levels inside a cell and its stochastic division. These information-rich noisy trajectory data sets can be
harnessed to learn about the underlying molecular and cellular details that are often not known a priori. A critical
question is: How can we infer a model given data where fluctuations at two levels—gene expression and cell division—
are intricately convoluted? We show the principle of maximum caliber (MaxCal)—integrated within a Bayesian frame-
work—can be used to infer several cellular and molecular details (division rates, protein production, and degradation rates)
from these coupled stochastic trajectories (CSTs). We demonstrate this proof of concept using synthetic data generated
from a known model. An additional challenge in data analysis is that trajectories are often not in protein numbers, but in
noisy fluorescence that depends on protein number in a probabilistic manner. We again show that MaxCal can infer impor-
tant molecular and cellular rates even when data are in fluorescence, another example of CST with three confounding fac-
tors—gene expression noise, cell division noise, and fluorescence distortion—all coupled. Our approach will provide
guidance to build models in synthetic biology experiments as well as general biological systems where examples of
CSTs are abundant.

SIGNIFICANCE Gene expression and cell division dynamics are both stochastic and are experimentally measurable.
Analyzing fluctuating time series data of gene expression alone has proven to be a useful avenue to infer underlying
details—not available otherwise—of gene networks. The principle of maximum caliber (MaxCal), similar to maximum
entropy (MaxEnt) principle but applied to trajectories, has been particularly successful for this purpose. In this work, we
further extend MaxCal formalism to infer quantitative models from stochastic trajectories where gene expression and cell
division noise are coupled. Using synthetic data we show that MaxCal models can predict underlying details of gene
network and protein-dependent division rates from these coupled stochastic trajectories. We also show MaxCal’s
applicability even when data are in fluorescence and not in protein number, typical in experiments. Success of MaxCal may
further motivate collection and analysis of fluctuating time series data to build quantitative models in other branches of
biophysics where fluctuations at different levels are coupled.

INTRODUCTION time evolution of multiple cells with gene expression in-
side individual cells recorded at different time points
(18). However, gene expression dynamics is stochastic
due to the small number of molecules inside a cell

(19—27). The ability to follow a single cell also affords

Synthetic biologists are building new circuits to manipu-
late cell behavior and ultimately reprogram organismal
phenotypes for practical applications (1—17). With the

advent of single-cell technologies it is possible to monitor
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recording of stochastic cellular division events when a
mother cell gives rise to two daughter cells. Consequently,
experimentally recorded time trajectories encode both the
gene expression and cell division noise simultaneously.
Sometimes the two stochastic processes, operating at
different levels, can even be coupled. Consider a specific
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protein whose stochastic expression level dictates fitness
such as cellular division rate. In a synthetic system studied
by Balazsi and coworkers, cell division has been shown to
be slower when a particular protein—conferring antibiotic
resistance—is expressed in high number (28) in the
absence of any stress. Similar decrease or nonmonotonic
dependence of cell division rate on the levels of various
proteins has been observed in natural genetic systems as
well (29—31). When cells are exposed to drugs or other
environmental stress, protective protein levels can
enhance the division rate (28,32). In such a scenario, fluc-
tuations in protein level and cell division dynamics are
coupled and the combined stochastic trajectories can
have intriguing topology (see Fig. 1).

Besides the type of coupling mentioned above, there is
also a natural coupling between gene expression and cell di-
vision. Cells that duplicate faster grow faster in size before
dividing. The growth in size dilutes protein content, effec-
tively reducing protein concentration. Thus, cell division
and protein abundance are necessarily coupled, either by
protein dilution or by direct effect of protein level on
fitness/growth rate.

Details of genetic networks give rise to the specific fea-
tures of noisy trajectories. Conversely, noisy trajectories
can hold valuable clues about underlying details of a bio-
logical network. This realization has led to detailed
studies of stochastic trajectories (33—39) to determine un-
derlying parameters of biological systems that are not
known otherwise. Inferring meaningful parameters and/
or observables from complex stochastic trajectories is a
common problem in other areas of biology as well
(40—42). We now ask: Does the idea of inference from
noisy time series data work even when we have fluctu-
ating trajectories where protein number and cell division
are coupled (similar to Fig. 1)? Can we faithfully infer de-
tails of the gene network as well as cellular division and
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FIGURE 1
cell. Each cell (circle) has its own stochastic gene expression, e.g., switch-
ing between high and low states. Cell division is also stochastic, leading to
coupled stochastic trajectories (CSTs). To see this figure in color, go online.

Example of cell tree lineage starting from a single mother
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its dependence on the protein number from these stochas-
tic trajectories? In this paper we address this specific
problem of “coupled stochastic trajectories” (CSTs) at
different scales using the principle of maximum caliber
(MaxCal).

MaxCal is similar in principle to maximum entropy
(MaxEnt) but applied to trajectories (43—45). MaxCal
maximizes the path entropy subject to constraints and
yields trajectory probabilities. Different sets of constraints
define different classes of models. MaxCal can build min-
imal models starting with a few basic constraints, an attrac-
tive feature when many details of the underlying networks
are not known a priori. For example, a gene network with
feedback can involve many underlying molecular actors
(such as RNA, protein-RNA complex, protein-protein com-
plex) that are not directly seen in experiments and have
unknown interactions. Traditional modeling approaches
typically assume the existence of many of these unseen ac-
tors and draw reaction networks between them to capture
feedback. Stochastic models are then built with these net-
works with rates of the reactions as parameters (46,47).
Corresponding chemical master equations (48) can be
solved using a finite state projection method (49,50). This
is a bottom-up approach. Another commonly used
approach relies on mass-action type formalisms embedded
in a chemical master equation where ad hoc nonlinear
functional forms are assumed for reaction rates
(45,51-53)). The nonlinear functional forms emulate feed-
back without invoking intermediate species. MaxCal, in
contrast, is a top-down approach that avoids assuming ad
hoc species or functional forms. It uses only basic system
information in the form of constraints. Subsequently, path
entropy is maximized subject to the specific set of con-
straints (model) to predict trajectory probabilities. These
trajectory probabilities are used to compute the likelihood
of a model given trajectory data. Thus, MaxCal is particu-
larly well suited for inferring a model and relevant
parameters from the noisy trajectory data of gene circuits
(39,45,54-56). MaxCal also offers a more efficient infer-
ence tool compared to traditional bottom-up models (57).
This is due to its ability to build minimal models—without
invoking auxiliary species/molecular actors—reducing
both the state space and numbers of parameters (see (57)
for details).

However, MaxCal-based inference has not been applied
to CSTs, where different stochastic processes at different
levels—such as genetic and cellular—give rise to trajec-
tories that are interwoven with each other. In this paper
we apply MaxCal to these higher-dimensional problems
with intricate trajectory topology (similar to Fig. 1). We
generate synthetic noisy time series data coupling gene
expression and cellular division using a known model (pro-
tein production, degradation rates, cell division rates, etc.).
We then integrate MaxCal within Bayesian formalism to
select appropriate models and extract key information
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from those data. These details are described below in the
materials and methods. The parameters of the known
model serve as benchmarks and compare well against
MaxCal’s inferred parameters, indicating MaxCal’s ability
to detect molecular and cellular details from a CST.
MaxCal can also predict several distributional quantities.
Finally, we demonstrate MaxCal’s ability to infer even
when data are presented in noisy fluorescence and not in
protein number, typical in experiments. These findings—
detailed in the results and discussion—show MaxCal’s
promise to bridge scales describing stochastic processes
at different levels and analyze CSTs that are frequent in
biology.

MATERIALS AND METHODS

Generating synthetic data coupling gene
expression and cell division

We consider a synthetic circuit in which a gene auto-activates and behaves
in a switch-like manner, toggling between the high (H) and low (L) protein
number states. Cell division is dependent on the protein state; for example,
it is slow when protein number is in the H state and fast when in the L state.
Auto-activation in biological circuits is well studied (53,58-64). We
adopt the scheme proposed by Kepler and Elston (46) to model the gene
network as

r 1
adat A ADO; A+AbéA2
d

f *
a_’_Azhéa*; a*ia*_’_A (1)
P

d
Cy > Cou + Copyi-

The gene o produces protein A at a basal rate g. The protein A de-
grades at a rate of r, and dimerizes to A, with forward and backward
rates of f; and by, respectively. The dimer can bind and unbind the pro-
moter site a at a rate of f, and b, respectively. The dimer-bound state is
an activated state o*, producing protein A at an enhanced rate g* (greater
than g), modeling the positive feedback. Finally, cell division is modeled
by the stochastic reaction where mother cell C,, divides in two daughter
cells (Cay, Cauy1) with rate dy. Upon division, mother cells on average
distribute half of their proteins to each of their daughter cells following
a binomial distribution. The division rate depends on this protein number
N,, capturing the coupling between gene expression and cell division.
This dependence d4(N4) is assumed to be sigmoidal, with slow division
rate dy = 1 x 107%s~! (~24 h) at high protein numbers (N4 > 25), and
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fast division rate d; = 3 x 107%s~! at low protein numbers (N4 <25).
Specifically, we assume the following functional form to simulate pro-
tein number-dependent cell division

dy — d,

=t L+exp (B(25 — Na))

da(Na) @

The sharp-sigmoidal dependence is realized by setting 8 = 1. The spe-
cific choice of N = 25 as the threshold for the sigmoidal rate dependence is
motivated by the equilibrium protein number distribution that has two well-
separated peaks for N > 25 and N < 25. This distribution arises from the spe-
cific choice of gene network parameters used in this article (see caption of
Table 1). Different thresholds can be chosen when using different parame-
ters. We also generated a smoother sigmoidal with more gradual depen-
dence on protein number using 6 = 0.1. We considered the function
above with 8 = 1 and 8 = 0.1 as two representative examples among
many other possibilities (28-30).

MaxCal model

MaxCal maximizes path entropy or caliber subject to constraints en-
forced by Lagrange multipliers (43,45,54,65-71). For the gene circuit
we impose three minimal constraints: 1) protein synthesis, 2) protein
degradation, and 3) auto-activation/positive feedback. We do this by
introducing averages of several variables over a time interval, Az. We
use a production state variable ¢, to describe the number of proteins
synthesized within the time frame, with a maximum allowed value of
M. Thus, we have 0 </, <M. Next, the degradation state variable
L4 is defined as the number of proteins that remain at the end of the
time frame, satisfying 0 < ¢4 < N4, where N, is the number of proteins
at the beginning of the time step. The constraint of positive feedback is
modeled by coupling ¢, and ¢4 and imposing the constraint by the cor-
responding Lagrange multiplier K4. This is the first order of coupling
between the two variables (see (39) for more). The production and
degradation constraints are imposed by Lagrange multipliers 4, and
ha, respectively. Next, cell division is modeled by introducing another
state variable ¢, = 0, 1, with ¢, = 1 describing division. Finally, the
coupling between cell division and protein number is modeled by con-
straining the average of /.¢4. These last two constraints are introduced
by Lagrange multipliers 4. and K4, respectively. Additional second-or-
der coupling between /. and ¢, is ignored since cell division is not ex-
pected to directly depend on protein synthesis. Ignoring this term also
keeps the model minimal and lowers computational cost. However, the
formalism is general enough to add such constraints as needed. The
model can also be generalized by coupling variables at different time
points if the underlying dynamics has memory. The probability of a
path in the time interval At is thus described by Py, 4, ., With corre-
sponding path entropy — Py, ¢, ¢ log Py . These five basic con-
straints combined with the path entropy yield the caliber as
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and the corresponding caliber-maximized path probabilities are

1 Na
Piooie. = O
Ly
M Nao 1 [Ny
=3 >
b =06 =046 =0\Y4

The state variables ¢, £4, and /. directly relate to protein synthesis and
degradation rates g,g¢*, and r in the auto-activation circuit as well as division
rates in the low and high states as in Eq. 2. Specifically, these relations are

. <‘€C>NA =Np ., . <£('>NA =Ny, - <‘€a>NA =N,
dL - Ta dH - 8 = ’
t At At )
N7 N VR (R
At NyAt

where N and Ny are the number of A proteins found in the low and the high
state, respectively. The basal production rate (g) is extracted from the
average of ¢, when protein number is low (N, ), whereas the activated pro-
duction rate (g*) is extracted from ¢, when protein number is high (Ny)
(also see (39) for these definitions used to model only the gene circuit).
The degradation rate (r) is the fractional decrease in protein number, related
to average {4; here we use only the high state (NVy) because it contains the
most information on degradation. Similarly, for sharp-sigmoidal depen-
dence of division on protein number, the low and high state division rates
(dy, dy) are extracted from the average of /. in the low and high states,
respectively, due to abundance of data in these states.

From the path probabilities, Eq. 4, we obtain transition probabilities for
each observable change occurring in a single time step (Af). Inspecting a
single-cell labeled p, which is not dividing, the abundance of protein A
changes from i to j according to the joint probability

M i
Pli—j&p—u) =Y
ly=0104=0
1
X > 0(la Aty = ) 0(8e) Prgys, = Vi (6)

6 =0

Note that Py, ¢, ¢, and the normalization factor Q are functions of the initial
protein count, N4 = i. The shorthand matrix notation };; is introduced for
brevity, particularly for the likelihood (see the following section). Also, Eq.
6 is actually independent of the specific cell label p; our notation indicates
that the cell in question is retaining its identity, i.e., not dividing, across
this time step. The cell label is included here, and in the following, for clarity
and to emphasize connection to data (experimental or synthetic).

When a cell p does divide, it results in two daughter cells labeled
2u;2u + 1. The initial protein count i in mother cell 1 can change to j in
daughter labeled 2u and & in daughter labeled 2u + 1. Typical experiments
will have a sampling time and may not be able to detect protein numbers
immediately after cell division. In the time window following cell division,
each daughter cell will stochastically evolve their gene network. This com-
pound transition is broken in three contributions: 1) cell p divides when it
has i proteins, 2) given that a division has taken place, daughter 2u has j
proteins at the end of the time frame where data collection happens, and
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3) similarly, given division, daughter 2u + 1 has k proteins at the same
time frame. We write the probability for this process as

exp (htxgoz + hAgA + KAgzxéA + ht-g(v + KAchéc)

“

eXp (hzxgtx + /’lAéA + KAgagA + hcéc + KAchEC).

Puyi = 2u,j 5 2u+1,k) = P(u,i = 2u;2u+1)
x P(i = jlu — 2u;2u+1)
x P(i = klp — 2u;2u+1)
@)

where the first term on the right hand side is the probability for division of
mother cell p alone and is given by

Py, i = 2u;2u+1) =

by =016y =0

x > oL — 1)

=0

Po o, 0. =X (®)

and remaining terms involve the conditional probability for changing pro-
tein count i to j given that division has taken place, which reads

M i
Pli = jlu—2u;2u+1) = X7
=004 =0

1
X Y (latla —j) (e = 1) Prss =Y )
le=0

With the above shorthand, we may write the r.h.s. of Eq. 7 as X;)});.
The stationary distribution P(N), giving the probability of finding N pro-
teins in a single cell at any time, is a practical quantity and can be used for
comparison with data or for prediction. It can be calculated from the effec-
tive protein transition matrix A, allowing for transitions with and without
division,
Ai = Vi + Xiy]/',-- (10)
Watching a single cell for a long time corresponds to applying A many
times, i.e., raising it to a large power u. Then, P(N) may be interpreted

as the vector resulting from multiplication by an (arbitrary) initial vector
Po(N),

Npax
> (A)yPo(i), (11

i=0

P(N) =

where we introduce a cutoff in maximum protein number, N,,,,. For the
system considered here, we used a value of N,, = 80 throughout,
which captures all protein fluctuations from stochastic simulations we
ran. A more rigorous approach would involve finite state projection pro-
posed by Munsky and Khammash (49) to determine errors with assumed
values of N, as was done in our earlier work (39). For simplicity and
based on our earlier work, we assumed a fixed cutoff here. Note, P(N)
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can also be calculated as the eigenvector of A corresponding to eigen-
value 1.

Parameter estimation via likelihood

Equations above outline a MaxCal model capable of describing a system
of dividing cells, each having independent auto-activation circuits.
Below we describe how to choose a MaxCal model given data, i.e.,
analyzing a CST within a Bayesian inference framework. The first step
is to compute the likelihood of a model given trajectory data similar
to Fig. 1.

Consider an experimental trajectory of a cell division lineage, starting
with one cell, of sufficiently long time 7 in the units of timescale At.
This results in 7 + 1 snapshots of CST data which contain information
on the number of cells in the system and the protein number associated
with each cell. Each snapshot is given a frame label, te [0,7].

Suppose a particular CST trajectory tree (similar to Fig. 1) gives rise
to A unique cell identities observed over all 7 41 snapshots.
Each unique cell’s identifying number, pe€ [1, A, is observed from its
birth frame, denoted 7, € [O, T — 1], until its division event frame,
d, € [0,7 — 1]. Shortly after frame d, begins, cell p loses its identity:
it divides into two new cells with their own identifiers, 2u and 2u+ 1.
These new cells are first observed in the next frame: 7o, = Tou41 =

d, + 1. The likelihood of observing protein numbers of cell p, given
a full trajectory N,, from its birth frame 7, to division frame d,, and
its daughters’ protein numbers Ny, g,+1 and Npuy1g4,+1 at the frame
immediately after division, depends on the set of MaxCal parameters
(l’la, hA, KA7 h('7 KA() via

dy—1
div
E,L = H ,P(:UﬂN;u - ,U'aNu,Hl)
(=1,
dy—1
= | II Yo
=1,

In the above expression, the first set of terms within parentheses ac-
counts for all transitions in protein numbers when the cell has not
divided. Assuming these are independent, we write that contribution as
a product of transitions in protein number for all steps before division.
The last three terms describe cell division alongside transitions in pro-
tein number for the two daughter cells, capturing the coupling between
cell division and protein number observed in data. The conditional prob-
ability ) of protein number change given a cell has divided is written in
Eq. 9. This choice does not impose any specific mechanism of protein
partitioning from the mother to the daughter cell, rather it assumes the
same gene expression circuit operates at the moment of division. How-
ever, if additional information such as partitioning statistics of proteins
from mother to daughter cell is known, it can be used. For example, a
possible partitioning statistics can follow a binomial distribution

given by
i i
= (5)/ (9

where i is the number of proteins in the mother cell, j and i — j are the num-
ber of proteins inherited by the two daughter cells. The last observed gen-
eration of cells have not divided, so their trajectories will give simpler
likelihoods,

P(/"ﬂNpqdﬂ - 2,ufaN2p.Adﬂ+l )
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T-1
[:EO div. _ H ’p('u’N‘” — /J,,NMJH)

t=1,

T-1
= I | yNu.Hl Np..['

t=1,

(14)

The likelihood of observing the whole CST tree with A unique cell labels
is the product of all individual likelihoods,

A
Lesr = [] Lo (15)

p=1

using the division or no division cases, Eqs. 12 or 14, as appropriate for
each cell. Note that the total cell population Cy, at the end of the experi-
ment, will be less than the number of labels, i.e., Cy,, < A, because each label
encapsulates the cell’s generation. For example, if Fig. | up to C,, Ce,C7 is
taken as a full CST tree, the ending population number is C,; = 3 with a
unique cell identity set written as {1,2,3,6,7}, giving A = 5 unique cell
identity labels.

These synthetic CSTs and also real life CSTs have no limit on how
many proteins a single cell can create in a single step transition while
the MaxCal framework presented so far only accounts for a maximum
limit of M created proteins. This discrepancy is known to penalize the
most likely model parameters erroneously (39). This can be avoided by
considering transitions across m subsequent frames as shown in our earlier

2u+1,Noyi1.4,41)
(12)

/ /
Nyvdy yNzu,dw] Nopdy yN2u+],du+l Noprrdy

works (39,55). Hence, we sample the original trajectory in units of mAt.
This new sampling redefines the birth (7,) and death (d,) frames for
each cell (). With this new definition of frames, the modified likelihood
can be written as

dy—1 m_ Npax
div. m n— 1
‘Cp,,m - H yN}L.T«#l Ny Z (y >./.N}Ldp,
t=1y n=1j=0
m—n-y m—n-
X Xj (y N )Nzﬂydﬁl J (y Y )N2u+1u}4+1 i

(16)

The first term in Eq. 16 describes protein number transitions without di-
vision, as in Eq. 12 but across m steps of the original sampling time (A?).
The second term, in square brackets, captures protein number transitions
alongside division, allowing for division to happen at any particular frame
within the last m-frame interval. )’ is given by Eq. 9 without assuming any
additional mechanism of protein partitioning from mother to daughter cells.
However, a specific form of partitioning proteins from mother to daughter
cells can be used if a mechanism is known such as binomial splitting given
by Eq. 13.
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In similarity to Eq. 14, we write the likelihood for the last generation of
cells (those that do not divide) in steps of m frames as

no div
‘Cum = H N,“+1 Nyt |° (17)

t=1Ty

where 7 is now the total number of frames in the new sampling
(with mA?).

The parameter m must be chosen carefully such that, for the vast major-
ity of the given CST tree trajectory, just one or zero division events take
place in any step of m frames. Any cases with more divisions within m
frames are excluded in the trajectory products in Eqs. 16 and 17. The over-
all framework allows for the possibility of having more than one division
event in m frames, by adding more complexity to this second term in
Eq. 16. However, we keep the above formalism for simplicity and chose
m to minimize cases where two or more cell division events may take
place in the time step mAt.

The likelihood for the full CST tree using m-frame intervals is obtained
from the product as in Eq. 15, using Eqgs. 16 or 17 for each individual
cell’s likelihood, for cells that divide or do not divide, respectively.

The CST likelihood function (Lcsr) allows us to carry out Bayesian
inference given the trajectory data. The likelihood is a function of
MaxCal parameters (h, ha, Ka, he, Kac) and can be thought of as a Bayes
theorem probability function with no known prior distribution. With this
formalism, we can consider the probability associated with each point
(hayha,Ka, hey Kae) given a particular CST data set as,

P<ha7 hA7 KA; hc; KAL‘)‘CCST(hDu hAa KA; hc7 KAL‘)

cence conversion is not one fixed number, rather it is noisy due to several
uncertainties. We assume fluorescence per protein is Gaussian (41,73,74)
with average a and variance b?. The fluorescence from N proteins will be a
convolution of N Gaussian distributions, each with mean a and standard devi-
ation b. The resulting distribution will be Gaussian with mean Na and variance
NB?. Drawing from this distribution, we convert the synthetic data in protein
number trajectory (NV,,) to noisy fluorescence trajectory (f, ;). We vary levels
of corruption in the conversion to fluorescence by varying b/a. Specifically, we
usea = 100withh = 30andb = 50 yielding a fluorescence to protein con-
version noise level (b/a) of 30% and 50%, typical in experiments (see (55) for
more details). When inferring from this trajectory we assume the fluorescence
to protein number distribution is known, i.e., @ and b are known. Additional but
separate photobleaching experiments can be done to determine a and b (75—
87). Incorporating this distribution into Eq. 16, we obtain a new likelihood
for dividing cell p with transitions across m frames as

— 1 Nipay
Eﬂuor Jdiv

nm = H Zyj:l (I)] ut+1)

t=1, ij=0

(ilf.)

X/ (ym*ny/)kj (ym*ny/)zj (I)

(i) @ (Klfsna1) @(Ufousrain) 20)

P(hav hA7 KA; h('a KA(|CST) -

Without any knowledge about the prior, the posterior distribution of
MaxCal parameters given CST data are simply proportional to the likeli-
hood of observing data given a model (parameters). Thus, the most likely
model (parameters) can be determined by maximizing the likelihood. How-
ever, Bayesian formalism gives the entire probability distribution of param-
eters, which can be used to obtain averages ({ha), (ha), (Ka), {he), (Kac))
and standard deviations (o, 0n,, 0k, ,0n., 0k, ) Of the parameters. The
average of any quantity F is calculated using

(F) = / Flhas has Ko s Kne) Cesy Uras s Ky s K
{}

-1

/ ‘CCST(hOM hAy KA7 hCa KAC)
{t

19
where {} in the integration denotes all values of Lagrange multipliers. Stan-

dard deviation of quantity F is calculated using o = 1/(F?) — (F ). The

posterior distributions are calculated using Metropolis-Hastings algorithm
(72) by drawing one million samples.

Dealing with experimental data

The synthetic data used to find the likelihoods in the procedure above assume
CST data to be in the form of protein number for each cell. In a typical exper-
imental setting, data are instead recorded in arbitrary fluorescence units. To
mimic experimental CST data, we distort the synthetic data by converting pro-
tein number to fluorescence using a probability distribution. Protein to fluores-
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P(CST) (18)

For the last generation of cells, which do not divide, we have

Nimay

£21;?rnodlv _ H Z ym(I)Jlf,“Jr]) fb(llf‘“) . (21

t=1, ij=0

The likelihood for the full CST tree is obtained as before, using Eq. 15
with dividing and nondividing cells referring to Eqs. 20 and 21,
respectively.

Assuming the Gaussian distribution for fluorescence from protein
count, p(fIN) = (2NB*m)~ "2 exp (— (f — Na)* /2ND?), we obtain the
distribution of protein count given fluorescence using Bayes’ theorem,

p(fIN) P(N)
PN = S o) PN @2

Here, we also invoke the stationary distribution P(N), as in Eq. 11.

RESULTS AND DISCUSSION

MaxCal can infer underlying rate parameters for
sharp-sigmoidal protein number-dependent
division rate

Using the procedures described above, we determine
optimal Lagrange multipliers h,, ha,Ka,he,Kse in two
ways. First, we maximize the likelihood (Eq. 15) for a given
stochastic trajectory. In the second method, we find the
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TABLE 1 Inferred effective rates from protein number trajectories using MaxCal is compared against the true rates

g(s™h g (s h r(s™h dp (571 dy (571
True rates 5.0x 1073 50.0x 1073 1.0x 1073 3.0x 107° 1.0x 1073
Predicted rates (maximum likelihood) 4.66 50.0 1.013 3.0 0.8
Predicted rates (using posterior) 4.66 =0.05 50.0 =0.1 1.013 +=0.004 3.0 £0.2 0.8 £0.2
The first row reports true underlying protein synthesis and degradation rates used to create synthetic input data (with f; = 5.0 x 1073s™!, b, = 50s71,
fp =6.0x 10" 31, b, =3.0x 10" S5 assuming the intrinsic timescale is in seconds, as well as the cell division time in the high and low states (8 = 1
was used). Synthetic input data were recorded at Az = 300s. The second row reports the same quantities of interest, but extracted using the minimal MaxCal
model and maximum likelihood with corresponding Lagrange multipliers 7, = — 0.583,h4 = 0.266,K4 = 0.0376,h, = — 4.66,Ks = — 0.0396.
The third row reports average rates and their standard deviation obtained from the posterior distribution of the Lagrange multipliers. The average and standard
deviation of the Lagrange multipliers are i, = — 0.583+0.005, iy = 0.26%+0.01, K4, = 0.0376+0.0005, h, = — 4.66+0.08, K4, = — 0.040=*

0.007. Inference was carried out by sampling data with Ar = 300s,m = 6, M = 16.

average and standard deviation from the full posterior distri-
bution of the Lagrange multipliers (Eq. 19) for the same tra-
jectory. The stochastic trajectory in terms of protein number
continued for a total of 200, 000 s starting from a single cell
with zero proteins expressed and gave rise to A = 415
unique cell identities (following 6 = 1 cell division dy-
namics) at the end of the allotted time. Data on protein num-
ber (N4) for each cell as well as number of cells
were recorded after every At = 300s time step. These
numbers were chosen to match reasonable experimental
conditions (6).

Effective values for the underlying protein production,
protein degradation, and cell division rate parameters were
determined for both the maximum likelihood and average
likelihood MaxCal models by using (Eq. 5). The standard
deviations of the average rate parameters were also calcu-
lated using the posterior distributions (provided in the
supporting material). These results are given in Table 1
and compared against the known values to provide a quan-
titative estimate of MaxCal’s ability to infer from CST.

MaxCal inferred underlying cell division rates (dy, dp),
effective protein production rate (g*) in the activated state,
and degradation rate (r) match well with the “true” rates
used to create the synthetic CST data. Only the true rate value
of the low state protein creation rate g is not within the stan-
dard deviation from the rates inferred by the MaxCal model.
This discrepancy could be because MaxCal is not an exact
mapping of the underlying model, in fact it is a low-dimen-
sional description of the detailed model used to generate
the data. As a result, inferred rates from (Eq. 5) are only ap-
proximations of the underlying model and deviations are ex-
pected. Nevertheless, the inferred average value of g is within
7% of the true value. Posterior distributions of the inferred
rates and their comparison to the true values can be found
in the supporting material (see Fig. S1). As a further check,
we compared MaxCal-predicted protein number distributions
with that of the synthetic data (see Fig. 2). Protein number
distribution for the synthetic data was gathered by following
the gene network dynamics for a single cell using the auto-
activation scheme used in Eq. | without the cell division dy-
namics (rest of the parameters were same as the ones reported
in the caption of Table 1).

The number of skipped frames m = 6 was chosen to
assure sufficient cell division events have been recorded
while also mimicking experimentally realistic sampling
times akin to that of observing an actively dividing cell col-
ony every 30 min. The inference was further carried out for
an upper bound m = 12 corresponding to a maximum
observational time interval of 1 h. The results for m = 12
case (see Fig. S2 and Table S1) are in good agreement
with true values, showing the robustness of the inference
scheme irrespective of the choice of m values.

The inference above was done with ) given by Eq. 9,
which does not assume specific details about how proteins
from mother cells are distributed to the daughter cells. As
a proof of concept we also performed additional calculation
assuming proteins from mother cell are partitioned to the
daughter cells following a binomial distribution () = yh
given by Eq. 13). The assumed mechanism is consistent
with the creation of the synthetic data. Not surprisingly, in-
ferred rates agree well with true rates (see Table S3).

An additional analysis was done by generating CSTs
where cell division rates in the high and low states are iden-
tical (dy = d; = 3.0x 1077s~ ). We first carried out

0.18

= Detailed model
— MaxCal

Probability
=
il
N

S
o
<)

0 20 40 60 80
Number of proteins

FIGURE 2 MaxCal-predicted protein number distributions (red) agree
well with the detailed model (blue) generated distribution for 8 = 1. Un-
derlying reaction rates used for the detailed model are reported in gener-
ating synthetic data coupling gene expression and cell division section
and legend in Table 1. Lagrange multipliers for MaxCal model are the
ones inferred using the maximum likelihood optimization reported in the
legend to Table 1. To see this figure in color, go online.
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FIGURE 3 Protein number-dependent division rate d(N) predicted by
MaxCal (red graph) is compared against the true division rate (blue) gener-
ated using 8 = 0.1 in Eq. 2. MaxCal-predicted rates and error bars were
calculated from the rate distributions (shown in the supporting material) ob-
tained from the posterior distribution of the Lagrange multipliers. To see
this figure in color, go online.

inference using )’ given by Eq. 9. Inferred rates for the gene
network and cell division rates again agree reasonably well
with the true values used to generate the data. Cell
division rates in the high and low protein states are compa-
rable but not equal. Next we carried out the inference using
)Y = )P. The inferred rates are again in good agreement
with the true rates for gene network. Moreover, cell division
rates in the high and low states are closer and are within the
standard deviation. The average of the Lagrange multiplier
K4, with its standard deviation encloses zero, implying
that cell division and protein number are not coupled in
this control case. Results for this control study can be found
in the supporting material (see Fig. S3 and Tables S2
and S4).

MaxCal can infer smooth-sigmoidal protein
number-dependent division rate

Cellular division can have both sharp-sigmoidal and
smooth-sigmoidal (gradual) dependence on gene expres-
sion (30). We generated synthetic CST data using § =
0.1 in Eq. 2 to model a less sensitive (smooth-sigmoidal)

protein number-dependent cellular division, in contrast to
B = 1 used to describe sharp-sigmoidal dependence dis-
cussed above. We inferred the optimal Lagrange multiplier
values by maximizing the likelihood of the synthetic trajec-
tory data. The inferred values of the Lagrange multipliers
predict division rate (d(N)) as a function of protein number
(N). This is in contrast to the § = 1 data set where we pre-
dicted only two relevant division rates, dy and dj. These
two rates (dy and dp) represent almost uniform division
rate in all of high and all of low states, respectively. How-
ever, for § = 0.1 with smooth dependence of division rate
on the protein number, it is useful to predict the entire
spectrum of rate values. Inferring complete protein num-
ber-dependent division rates (fitness) is useful to learn evo-
lution of these circuits inside an organism under different
stressors (88). Fig. 3 shows comparison between MaxCal-
predicted protein number-dependent division rates (red)
against the true rates (blue) used to generate the synthetic
data. Error bars are calculated from the posterior distribu-
tion of the Lagrange multipliers. MaxCal-predicted rates
show maximum deviation from the true rate values at
high protein numbers. It is important to realize proposed
Hamiltonian is only an approximation of the mechanism
used to generate the synthetic data. The observed discrep-
ancy between the predicted and true rates is a reflection of
this approximation. Moreover, the region of maximum
discrepancy has insufficient statistics due to inherently
small probability of protein numbers in this regime. On
the other hand, MaxCal-predicted rates agree well with
true values where protein number distribution is significant.
As an example, when protein number probability is greater
than 0.05 the deviation between the predicted and the true
division rate is at most 11%.

As before, predicted values of the parameters of the
gene network are in reasonable agreement with the true
values (see Table 2). Posterior distributions of these rates
are provided in Fig. S4. We also notice MaxCal-predicted
protein number distribution agrees well with the true
distribution (see Fig. S5). As with the sharp-sigmoid
(6 = 1) and control cases, we carried out additional
inference using )’ to better model the synthetic data.
As expected, inferred parameters of the gene network

TABLE 2 Inferred effective rates from protein number trajectories using MaxCal is compared against the true rates for a CST
generated with 3 = 0.1 in Eq. 2

g G r(sh)
True rates 5.0x 1073 50.0 x 1073 1.0x 1073
Predicted rates (maximum likelihood) 4.77 50.0 1.013
Predicted rates (posterior) 4.77 £0.04 499 0.1 1.014 =0.004

The first row reports true underlying protein synthesis in the basal (g) and activated state (¢*) and degradation rate () used to create the synthetic input data
(withfy = 5.0x 107371, by = 50571, f, = 6.0x 107%s1, b, = 3.0 x 1075571, 8 = 0.1) assuming the intrinsic timescale is in seconds. Synthetic
input data were recorded at Az = 300s. The second row reports the same quantities of interest, but extracted using the maximum likelihood MaxCal model

with corresponding Lagrange multipliers (h, = — 0.573, hy = 0.276, K4 = 0.0369, h, = — 4.80, Ksc = — 0.0371). The third row reports average
rates and their standard deviation obtained from the posterior distribution of the Lagrange multipliers. The average and standard deviation of the Lagrange
multipliers are (h, = — 0.573%+0.004, 4 = 0.28+0.01,K4 = 0.0369+0.0004, . = — 4.80x0.08, K4 = — 0.038 =0.006). Inference was carried

out withm = 6 and M = 16.
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TABLE 3 Inferred effective rates from synthetic fluorescence trajectory generated with sharp-sigmoidal protein number-dependent
division rate (3 = 1) are compared against the true rates
g g (s r(s7!) d (s71) dy 571

True rates 5.0x 1073 50.0 x 1073 1.0x 1073 3.0x 1077 1.0x 1077
0% (max likelihood) 4.66 50.0 1.013 3.0 0.8
b/a = 30% (maximum likelihood) 4.69 50.6 1.051 3.0 0.9
b/a = 50% (maximum likelihood) 4.35 51.34 1.089 3.0 0.9
b/a = 30% (using posterior) 4.6 £0.1 50.7 £0.1 1.050 +0.005 3.0 0.2 0.8 0.2
b/a = 50% rates (using posterior) 4.35 +£0.05 51.37 =£0.09 1.089 +0.006 3.0 £0.2 09 £0.2

The first row reports true underlying protein synthesis, degradation, and cell division rates used to create the synthetic input data (same rates and conditions as
Table 1). The second row reports MaxCal inferred rates when trajectories are in protein number (same as values reported in the second row of Table 1). Rows
3 to 4 report inferred rates using maximum likelihood optimization on synthetically corrupted trajectories generated using different values of b/ a (indicated
in column 1). Rows 5 and 6 report the average and standard deviation of effective rates (in the same fluorescence trajectories) using the full posterior dis-

tribution of the Lagrange multipliers.

and protein number-dependent cell division rates (with er-
ror) agree reasonably well with the true rates (see
Table S5 and Fig. S6).

MaxCal can infer models from noisy fluorescence
trajectories

The above section describes the utility of MaxCal when
CST data are expressed in protein number. However, as
argued before, experimental readouts are often in fluores-
cence instead of protein numbers. Fluorescence per protein
can be a Gaussian distribution with a given mean (a) and
variance (b*). Using the procedure described in the mate-
rials and methods, we created two synthetic trajectories in
fluorescence where b/a = 0.3 and b/a = 0.5. The under-
lying protein number trajectory was identical to the one used
earlier with parameters noted in Table 1. For the protein
number-dependent cell division we first considered the
sigmoidal dependence with 8 = 1. We inferred underlying
parameters with MaxCal using two procedures, maximum
likelihood optimization (rows 3 and 4 in Table 3) and
computing averages using the full posterior distributions
(rows 5 and 6 in Table 3). MaxCal inferred rates match
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reasonably well with true rates even when data are signifi-
cantly distorted due to noisy fluorescence as high as
b/a = 0.5. As expected, the discrepancy between the in-
ferred and true rates increases with increased level of cor-
ruption (greater b/a). MaxCal-predicted protein number
distribution (blue) agrees well with the actual protein num-
ber distribution (red) for b/a = 0.3, but deviates for higher
degree of corruption with b/a = 0.5 (see Fig. 4).

Next, we challenged MaxCal to predict smooth-sigmoidal
protein number-dependent division rate (3 = 0.1) when the
observed trajectory is reported in fluorescence. We notice
reasonable agreement between the true rate dependence
(blue) and MaxCal-predicted division rates (red) inferred
from synthetic trajectories generated with b/a = 0.3 (left
panel Fig. 5) and b/a = 0.5 (right panel Fig. 5). Error
bars are again calculated using the posterior distribution. In-
ferred parameters of the gene networks also agree will with
the true values (see Table 4). MaxCal-predicted protein
number distribution matches with the true distribution
when b/a = 0.3 but starts to deviate for b/a = 0.5 (see
Fig. S7). These overall agreements demonstrate that
MaxCal can reasonably infer underlying details of gene net-
works as well as protein number-dependent cell division
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FIGURE 4 MaxCal-predicted protein number distributions (in red) generated from maximum likelihood Lagrange multipliers inferred from fluorescence
trajectories with b/a = 30% (left) and 50% (right) are compared against the true distribution (blue). Synthetic trajectories were generated using 8 = 1. To

see this figure in color, go online.
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FIGURE 5 Protein number-dependent division rate d(N) predicted by MaxCal (red) compares well against the true division rate (blue) when 8 = 0.1.
Two synthetic fluorescence trajectories were generated with b/a = 0.3 (leff) and b/a = 0.5 (righr) and analyzed to infer the underlying rate dependence

using MaxCal. To see this figure in color, go online.

rates even when cell division, gene expression, and protein
to fluorescence conversion noise are all coupled. From our
previous analysis of protein number trajectories, we noticed
inference using )’ performs reasonably well and only a
slight improvement is gained by using )”. Thus, we omitted
additional calculations using ) for fluorescence trajec-
tories, although such calculations can be performed if
desired.

CONCLUSION

We developed a formalism to describe the CSTs of cell di-
vision and gene expression using the principle of MaxCal.
The underlying gene network is a single-gene auto-acti-
vating switch that slows down cell division when in the
activated state. The minimal MaxCal model maximizes
path entropy subject to five constraints. Three of the five
constraints capture details of gene network by constraining
average protein production, degradation rates, and feed-
back/auto-activation. Two additional constraints impose
average cell division rate and its coupling to protein level.
The corresponding five Lagrange multipliers are determined
from synthetic trajectory data within a Bayesian formalism.
Inferred Lagrange multipliers can be further used to deter-
mine five underlying rates of the systems that are not

directly accessible from time trajectory data. These are
effective rates of: protein production in the basal and acti-
vated states, protein degradation, and cell division rates in
the high and low states (of gene expression for sharp-
sigmoidal case). Using synthetic trajectories generated
with known rates, we show that MaxCal can infer these
otherwise unknown rates reasonably well. MaxCal can
also infer details of the network and protein number-depen-
dent cell division rates when cellular division depends on
protein number in a gradual manner, instead of a sharp-
sigmoidal dependence. Bayesian formalism allows predict-
ing errors and full posterior distribution of the inferred rates.
Finally, we show MaxCal inference scheme can be used to
provide reasonable estimates of rates even when data are
in fluorescence and not in protein numbers, typical in exper-
iments. The success of MaxCal-based inference presented
here will motivate future studies of other complex genetic
circuits where cell division depends on protein number
and the underlying protein number distribution is not
bimodal, for example in case of oscillatory circuits such
as the repressilator (3, 56). Beyond gene network, MaxCal
can also be used to model other complex biological systems
where processes at different scales are coupled, and time
dependent CSTs are experimentally measured but underly-
ing details are unknown.

TABLE 4 Parameters of the genetic network inferred from the synthetic fluorescence trajectory generated with slowly varying
protein number-dependent division rate (3 = 0.1) compared against the true values (first row)

g

G r(s!)

True rates 50x 1073
0% (maximum likelihood) 4.77
b/a = 30% (maximum likelihood) 4.81
b/a = 50% (maximum likelihood) 4.46
b/a = 30% (using posterior) 4.81 =0.05
b/a = 50% (using posterior) 4.46 +0.04

50.0 x 1073 1.0x 1073
50.0 1.013
50.56 1.055
51.39 1.097

50.57 =0.09 1.055 +£0.004

51.39 £0.08 1.097 +0.004

Second, third, and fourth rows report inferred values for different levels of b/a using maximum likelihood approach, while the last two rows report average

rates and their standard deviations using the full posterior distribution.
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