
CommonGraph: Graph Analytics on Evolving Data
Mahbod Afarin

∗

mafar001@ucr.edu

CSE Department, UC Riverside

USA

Chao Gao
∗

cgao037@ucr.edu

CSE Department, UC Riverside

USA

Shafiur Rahman

mrahm008@ucr.edu

CSE Department, UC Riverside

USA

Nael Abu-Ghazaleh

nael@cs.ucr.edu

CSE Department, UC Riverside

USA

Rajiv Gupta

rajivg@ucr.edu

CSE Department, UC Riverside

USA

ABSTRACT
We consider the problem of graph analytics on evolving graphs

(i.e., graphs that change over time). In this scenario, a query typi-

cally needs to be applied to different snapshots of the graph over

an extended time window, for example to track the evolution of

a property over time. Solving a query independently on multiple

snapshots is inefficient due to repeated execution of subcomputa-

tion common to multiple snapshots. At the same time, we show

that using streaming, where we start from the earliest snapshot

and stream the changes to the graph incrementally updating the

query results one snapshot at a time is also inefficient. We pro-

pose CommonGraph, an approach for efficient processing of queries

on evolving graphs. We first observe that deletion operations are

significantly more expensive than addition operations for many

graph queries (those that are monotonic). CommonGraph converts

all deletions to additions by finding a common graph that exists

across all snapshots. After computing the query on this graph, to

reach any snapshot, we simply need to add the missing edges and

incrementally update the query results. CommonGraph also allows

sharing of common additions among snapshots that require them,

and breaks the sequential dependency inherent in the traditional

streaming approach where snapshots are processed in sequence,

enabling additional opportunities for parallelism. We incorporate

the CommonGraph approach by extending the KickStarter stream-

ing framework. We implement optimizations that enable efficient

handling of edge additions without resorting to expensive in place

graph mutations, significantly reducing the streaming overhead,

and enabling direct reuse of shared edges among different snapshots.

CommonGraph achieves 1.38×-8.17× improvement in performance

over Kickstarter across multiple benchmarks.

CCS CONCEPTS
• Computing methodologies→ Parallel computing method-
ologies; • Information systems→ Computing platforms.

∗

Both authors contributed equally to this research.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9916-6/23/03.

https://doi.org/10.1145/3575693.3575713

KEYWORDS
evolving graphs, iterative graph algorithms, work sharing

ACM Reference Format:
Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Ra-

jiv Gupta. 2023. CommonGraph: Graph Analytics on Evolving Data. In

Proceedings of the 28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Volume 2 (ASPLOS
’23), March 25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3575693.3575713

1 INTRODUCTION
Analyses on large graphs are an increasingly important computa-

tional workload as graph analytics is employed in many domains

– social networks [7, 10, 13, 21, 42], web graphs [30], brain net-

works [6] and others – to uncover insights by mining high volumes

of connected data. Due to the iterative nature of many graph an-

alytics workloads, repeated passes over the graph are required

until the algorithm converges to a stable solution. Since real-world

graphs can be very large (e.g., YahooWeb has 1.4 billion vertices and

6.6 billion edges), iterative graph analytics workloads are highly

memory-intensive. There has been significant interest in develop-

ing scalable and efficient graph analytics systems. Some examples

of such systems are Ligra [41], Galois [35], GraphChi [29], Grid-

Graph [48], GraphLab [31], GraphX [18], and PowerGraph [17].

Graphs are often dynamic, with edges and vertices being added

or removed over time [5]. There are two broad classes of analyses

on dynamic graphs: (1) Streaming graph analytics: where results of
a query are continuously updated as the graph continues to change

because updates to it stream in over time; for example, we may

want to maintain the shortest path to a destination as the traffic

conditions change. Typically incremental algorithms are employed

to update query results in response to graph changes and thus avoid

recomputing the query from scratch [8, 14, 23, 32, 38, 40, 44]; and

(2) Evolving graph analytics: in this scenario, queries seek to answer

questions about a dynamic graph as it evolves over longer time

scales [19, 22, 43]. Multiple snapshots of the graph are available

in this scenario. Typically an evolving graph (EG) query seeks

to track a graph property over a long time scale by computing its

value at different snapshots within the time window identified by

the query. This makes the problem potentially significantly more

computationally expensive than both traditional analytics on a

static graph as well as streaming analytics on a changing graph.

A straightforward approach to this problem is to apply the query

to the individual snapshots independently; however, this approach

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

133

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

has significant overheads since we end up solving the query in-

dependently on many different snapshots. Alternatively, another

approach that has been used [15, 22] starts from the earliest snap-

shot and uses streaming to move from one snapshot to the next in

sequence. While this approach results in significantly less work,

provided that the number of changes between snapshots is not too

large, it has a number of drawbacks. First, we show that for many

algorithms the cost of edge deletions is very high; thus, perfor-

mance benefits of the incremental algorithm are limited. Second,

the solution moves between snapshots in sequence which limits

opportunities for sharing query evaluation work among them.

In this paper, we propose CommonGraph, a new algorithm and

system for efficiently evaluating an evolving graph query. Common-
Graph reduces the overhead of multiple evaluations by identifying

the common subgraph that is shared by the multiple snapshots of

interest. Specifically, we first process this common graph, sharing

this overhead among all the snapshots, and then stream in addi-

tional edges that convert this common graph into each of the other

snapshots. CommonGraph is motivated by two key new insights:

(1) Converting expensive deletions to additions. We show that

the incremental cost of processing deletions is significantly

greater than additions for an important class of algorithms

that is monotonic (these are the algorithms supported by

Kickstarter).Therefore, the CommonGraph is designed to nat-

urally convert all deletion operations into addition operations–

we start with the common set of edges across a group of

snapshots, and only have to add edges to reach any snap-

shot, eliminating the high overhead deletions. The overhead

of graph mutation is also reduced with only additions; and

(2) Breaking the dependencies between incremental computations.
The addition of edges to reach any snapshot is an indepen-

dent operation and thus, we can benefit from the efficient in-

cremental additions algorithm for all snapshots. This makes

possible a new structure, the Triangular Grid, that enables
further work sharing among subsets of snapshots via reuse

of the edge additions shared by them.

We implement CommonGraph by extending the Kickstarter [44]

system, a state of the art streaming graph framework; Common-
Graph is a general algorithmic idea that can be implemented within

other frameworks as well. We observe that the dynamic graph up-

date process within kickstarter is extremely expensive, and, given

the structure of CommonGraph come up with a graph representa-

tion that adds the new edges without having to change the primary

graph representation. This strategy also enables us to share the

common changes naturally among multiple snapshots in a space

efficient way. This implementation enables us to compare Com-
monGraph against the two baselines: computing the query on each

snapshot; and streaming all the changes from the initial snapshot.

The key contributions of our work are as follows:

● A new approach to evolving graphs analysis that avoids

processing of expensive deletions by converting all graph

updates to additions over the CommonGraph, replaces ex-
pensive deletions by additions, and removes dependencies

that enable work sharing among the snapshots.

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

75
K

15
0K

22
5K

30
0K

37
5K 75

K
15

0K
22

5K
30

0K
37

5K 75
K

15
0K

22
5K

30
0K

37
5K 75

K
15

0K
22

5K
30

0K
37

5K

BFS SSSP SSWP SSNP

Ti
m

e
(S

ec
on

ds
)

Addition Deletion

Incremental Computation Cost

0

0.05

0.1

0.15

0.2

0.25

0.3

75K 150K 225K 300K 375K

Ti
m

e (
Se

co
nd

s)

Addition Deletion

Graph Mutation Cost

Figure 1: Kickstarter [44] Costs: (Top) Computation Cost of
Deletions vs. Additions; and (Bottom) Graph Mutation Cost.

● A new structure called Triangular Grid (TG) that exposes

work sharing possibilities among the snapshots. We demon-

strate that maximizing work sharing corresponds to solving

the Steiner tree problem on the TG, enabling further opti-

mization of evolving graph queries.

● Agraph representation that avoids the need tomutate graphs

and enables reuse of edges by snapshots that share them.

● We build the CommonGraph that exploits the three ideas

above to achieve speedups ranging between 1.38× and 8.17×

over Kickstarter both by avoiding deletions and performing

work sharing. Further speedups are also possible since the

evaluations of the snapshots are highly parallelizable.

2 LIMITATIONS OF EXISTING SYSTEMS AND
OVERVIEW OF COMMONGRAPH

In this section, we discuss the factors that limit the performance of

existing evolving graph processing systems and then provide an

overview of CommonGraph and how it overcomes these limitations.

2.1 Dynamic Graph Workloads and Systems
Dynamic graph systems can be categorized into streaming graph

and evolving graph systems. A streaming graph system maintains

a single version of the changing graph and, using incremental algo-

rithms, continuously updates the results of a query as the graph is

modified to maintain the query solution relative to the latest graph.

To amortize the cost of streaming, typically updates are batched.

An evolving system evaluates a query on multiple snapshots of a

graph, that can stretch over a large time window, extracting his-

torical/trend data. It may carry out query evaluation on multiple

134

CommonGraph: Graph Analytics on Evolving Data ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

snapshots in parallel or start with one snapshot at a time and lever-

age incremental algorithms developed for streaming systems to

reach others.

Let 𝐺𝑡 represent the snapshot of a dynamic graph at snapshot

𝑡 . At snapshot 𝑡 + 1, the graph changes to 𝐺𝑡+1 via application of

two batches of updates, a batch of edge additions Δ𝑡+ and a batch

of edge deletions Δ𝑡−. In a streaming graph system a single version

of graph is maintained, i.e. 𝐺𝑡 changes to 𝐺𝑡+1 after application

of batches of updates (i.e., Δ𝑡+ and Δ𝑡−). In an evolving graph sce-

nario multiple snapshots of the graph [𝐺𝑡0 , 𝐺𝑡1 , 𝐺𝑡2 , 𝐺𝑡𝑛] are

considered (e.g., for a transportation network, the snapshots may

correspond to different amounts of traffic at different times of the

day, or across different days of the week). If the snapshots are very

far away from each other in time, streaming a large batch of up-

dates may be more expensive than evaluating the query on the two

snapshots independently. However, if snapshots are closer in time

(more accurately, the number of updates is not excessive), then the

incremental algorithms used by streaming systems can be leveraged

to avoid redundant recomputation.

When incremental algorithms are being leveraged, after evaluat-

ing the query on one snapshot, the graph for the snapshot is first

mutated (i.e., the data structures are changed in place) to obtain the

one for the other snapshot and then the incremental algorithm is

used to update query results. A primary observation that motivates

CommonGraph is that when the system has to handle both deletions

and additions, the cost of incremental computation that handles

deletions is significantly higher than that for additions. Moreover,

the cost of graph mutations is also significant. In Figure 1 these

effects are shown for the Kickstarter [44] system. The incremen-

tal cost of processing a batch of deletions is nearly 3× the cost

of processing an equal number of additions, and this observation

holds across batches of different sizes. Handling deletions is more

expensive because the algorithm is more complex for monotonic al-

gorithms and impacts on query results are more widespread across

the graph, necessitating significantly more processing. Finally, Kick-

starter’s cost of graph mutation is also several times greater for

deletions than additions.

2.2 CommonGraph: Converting Deletions to
Additions

To address the above problems (i.e., the high incremental cost of

deletions and the significant cost of mutation), our system shown

in Figure 2 based on CommonGraph introduces these three comple-

mentary techniques. The graph is represented in form of the shared

CommonGraph and additional batches of edges (Δ batches) that can

be used in conjunction with the CommonGraph to realize different

snapshots. This representation of the graph and its updates allows

different query evaluation schedules (shown as red arrows) to be

realized that do not require deletions, incorporate work sharing,

and do not require explicit graph mutation. Next, we provide an

overview of these three features.

Converting Deletions to Additions. To overcome the high com-

putational cost of processing edge deletions, we make a key obser-

vation: all deletions can be converted to additions by computing

a CommonGraph that includes only the edges that are common

to all the snapshots under consideration. Once query results have

Common
Graph

Evolving Graph Engine

Vertex value
arrays

Graph
Updates

batches of 𝝙 edges

Query
Results

Query on
Snapshots

CSR
Format

Query Evaluation Schedule

Figure 2: Our Approach.

Δ!" additions

𝐺" 𝐺"!#

𝐺$Δ%"
additions

Δ!"
additions

Δ%" deletions

9 11

23

16

29

3

12
15

Figure 3: CommonGraph 𝐺𝑐 for two snapshots 𝐺𝑖 and 𝐺𝑖+1;
the latter is created via a Δ𝑖+ additions (blue edges) and Δ𝑖−
deletions (red edges); going from 𝐺𝑐 to 𝐺𝑖 and 𝐺𝑖+1 requires

only addition of Δ𝑖− and Δ𝑖+ respectively.

been computed on this graph, then results for any snapshot can

be computed by adding the batch of missing edges to the Common-
Graph and employing the incremental algorithm to update query

results. That is, we can avoid the use of the more expensive incre-

mental algorithm for deletions since deletions become additions if

we reverse the order in which the snapshots are processed.

Figure 3 illustrates how CommonGraph converts deletions into

additions. The top two graphs represent two snapshots of the evolv-

ing graph. The standard streaming approach will apply Δ𝑖+ edge

additions and Δ𝑖− deletions to update query results for the first

snapshot𝐺𝑖 and obtain the query results for second snapshot𝐺𝑖+1.

On the other hand, by creating the CommonGraph𝐺𝑐 , we can incre-

mentally update query results for𝐺𝑐 via independently performing

edge additions Δ𝑖+ and Δ𝑖− to obtain results for 𝐺𝑖 and 𝐺𝑖+1.

Work Sharing for a Large Number of Snapshots. Although the

CommonGraph achieves work sharing among all the snapshots to

process the common graph itself, as the time window grows and the

135

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

number of snapshots increases, additional opportunities for work

sharing of the graph updates among subsets of snapshots arise.

Specifically, any subset of the snapshots may share additional edges

in common (for example, if we constructed the common graph just

for that subset), and can share work if we stream the additional

edges to reach this larger common graph together instead of each

query adding them separately to each snapshot. Let us assume

that we have 𝑛 snapshots to consider. Our second contribution, the

Triangular Grid (TG) representation, allows systematic exploration

and discovery of a 𝑛 incremental computations that result in query

results for all 𝑛 snapshots while at the same time maximizing the

overall work sharing beyond the base level of sharing that the

CommonGraph naturally achieves.

The TG representation incorporates original snapshots, the Com-
monGraph representation, and many intermediate CommonGraphs
that correspond to CommonGraphs for subsequences of original
snapshots. Edges connecting snapshots are labeled with batches of

edge additions that convert one CommonGraph into another rep-

resenting a smaller sequence of snapshots. We show that solving

the Steiner Tree problem on the Triangular Grid representation

identifies the sequence of transitions through the grid that maxi-

mizes reuse. Algorithms for constructing the TG representation and

finding the set of incremental computations that maximize work

sharing are discussed in the next section.

Evolving Graph Representation for Evaluating Query. Besides the
two algorithmic contributions above, we also identify a signifi-

cant source of overhead in streaming graph systems. Specifically,

we observe that there is a high cost of mutation –updating the

graph representation – for converting one snapshot into another.

To address this overhead, we introduce a new representation that

significantly reduces the mutation overhead. In addition to the Com-

pressed Sparse Row (CSR) representation of the CommonGraph, we
also create CSR representations of the batches of edges that corre-

spond to edges that transition from one node to another in the TG.

This way, the CommonGraph is never changed but rather batches

of additional edges that need to be added to the CommonGraph to

obtain an intermediate or final snapshot are simply loaded to aug-

ment the CommonGraph. Different snapshots are thus represented
by the set of additional edges they include.

Next we present the Triangular Grid representation and algo-

rithms for finding query evaluation schedule to exploitwork sharing.

3 COMMONGRAPH ALGORITHMS
We present two CommonGraph based algorithms for evaluating a

query on a sequence of snapshots corresponding to a time window.

First, we present the direct hop algorithm for query evaluation and

show the work sharing enabled by the CommonGraph reduces the

cost of query evaluation. Second, we present the Triangular Grid
(TG) representation, which providesCommonGraph representations
for subsequences of snapshots, and show how it is used to find an

even better query evaluation schedule that maximizes work sharing.

3.1 Direct Hop Query Evaluation
Since the CommonGraph represents edges common to all snapshots

under consideration, a significant degree of work sharing across

Δ!" =
{𝑒#, 𝑒$%, 𝑒$&}
additions

𝐺" 𝐺"!$ 𝐺"!%

𝐺'

Δ(" =
{𝑒), 𝑒$$, 𝑒$*, 𝑒%#, 𝑒%)}

deletions

Δ!"!$ =
{𝑒), 𝑒$$, 𝑒$+, 𝑒%+, 𝑒%)}

additions

Δ("!$ =
{𝑒#, 𝑒+, 𝑒,, 𝑒$-, 𝑒$*}

deletions

Δ!'$ =
{𝑒+, 𝑒,, 𝑒), 𝑒$-, 𝑒$$, 𝑒$*, 𝑒%#, 𝑒%*, 𝑒%)}

additions

Δ!'% =
{𝑒#, 𝑒+, 𝑒,, 𝑒$-, 𝑒$%, 𝑒$&, 𝑒%*}

additions

Δ!'# =
{𝑒), 𝑒$$, 𝑒$%, 𝑒$+, 𝑒$&, 𝑒%+, 𝑒%)}

additions

Figure 4: Showing an example for direct-hop algorithm.

snapshots is achieved by evaluating the query on the Common-
Graph and then updating the results incrementally by applying

the impact of edge additions corresponding to each snapshot. This

approach avoids the need to use the expensive incremental algo-

rithm for deletions while achieving significant work sharing via

the CommonGraph. We name this method the direct-hop algorithm

because the query evaluation schedule directly computes the query

results for each snapshot from the results of the CommonGraph.
The example in Figure 4 illustrates the benefits of this approach.

Let us consider we have three snapshots namely𝐺𝑖 ,𝐺𝑖+1, and𝐺𝑖+2.

Let us assume that the batches of edge additions and deletions that

derive 𝐺𝑖+1 from 𝐺𝑖 (i.e., Δ
𝑖
+ and Δ𝑖−) and then derive 𝐺𝑖+2 from

𝐺𝑖+1 (i.e., Δ
𝑖+1
+ and Δ𝑖+1−) are as shown in Figure 4.

Consider that the CommonGraph 𝐺𝑐 that has all the common

edges from the three snapshots as shown in Figure 4. We can reach

𝐺𝑖 , 𝐺𝑖+1, and 𝐺𝑖+2 by adding Δ𝑐1+ , Δ𝑐2+ , and Δ𝑐3+ to 𝐺𝑐 respectively.

Next we show that the direct-hop algorithm with only additions is

more efficient than the incremental approach used in Kickstarter

that evolves the graph from𝐺𝑖 to𝐺𝑖+1 to𝐺𝑖+2 with both additions

and deletions. Finding query results for 𝐺𝑖+1 from 𝐺𝑖 and 𝐺𝑖+2

from𝐺𝑖+1 will require processing 8 additions (⋃︀Δ
𝑖
+⋃︀ + ⋃︀Δ

𝑖+1
+ ⋃︀) and 10

deletions (⋃︀Δ𝑖−⋃︀ + ⋃︀Δ
𝑖+1
− ⋃︀). On the other hand, direct-hop approach

will require processing of 22 additions (⋃︀Δ𝑐1+ ⋃︀ + ⋃︀Δ
𝑐2
+ ⋃︀ + ⋃︀Δ

𝑐3
+ ⋃︀). Since

deletions are more expensive than additions (3× in Kickstarter),

direct-hop evaluation is expected to be more efficient. This obser-

vation is confirmed by our experimental results presented later in

the paper. Note that while Kickstarter will compute the query from

scratch on 𝐺𝑖 , direct-hop wil do so on the CommonGraph. Since,
the CommonGraph is a subgraph of 𝐺𝑖 , we conservatively (in favor

of Kickstarter) assume that these costs are similar.

Finally, we observe that if we simply want to incrementally

evaluate a query on snapshot 𝐺𝑖+1, then evaluating it from 𝐺𝑐 is

less expensive than evaluating it from 𝐺𝑖 . The former requires 7

additions and the latter requires 3 additions and 5 deletions.

3.2 Triangular Grid Based Algorithm for Query
Evaluation with Maximal Work Sharing

In this section we consider work sharing when evaluating a query

over a long sequence of snapshots 𝐺0,𝐺1,⋯,𝐺𝑛 . Once again 𝐺𝑐 in-

cludes all the edges that are common to all the snapshots𝐺0,𝐺1,⋯,𝐺𝑛

136

CommonGraph: Graph Analytics on Evolving Data ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Δ!" additions

𝐺" 𝐺"!#

𝑰𝑪𝑮𝟏

Δ!"!# additions

Δ%"!# deletions

𝐺"!&

Δ%" additions

𝑰𝑪𝑮𝟐

𝑮𝒄

1 2 3 4

5 6

Figure 5: Triagular Grid (TG) corresponding to three original
snapshots 𝐺𝑖 , 𝐺𝑖+1, and 𝐺𝑖+2.

and, using the additions-only incremental algorithm, from the re-

sults of𝐺𝑐 the results for 𝐺0,𝐺1,⋯,𝐺𝑛 can be independently com-

puted via direct-hop approach. However, we observe that when

there are large number of snapshots, it becomes possible to create
intermediate common graphs for subsequences of snapshots and take
advantage of additional work sharing opportunities.

Triangular Grid: To take advantage of additional work sharing

we introduce the Triangular Grid (TG) representation which is illus-

trated, without loss of generality, for three snapshots 𝐺𝑖 , 𝐺𝑖+1, and

𝐺𝑖+2 in Figure 5. The TG includes two Intermediate Common-Graphs
(ICGs) that are common-graphs for pairs of original snapshots. In

Figure 5,𝐺𝑐(𝑖→𝑖+1) is the ICG for𝐺𝑖 and𝐺𝑖+1 while𝐺𝑐(𝑖+1→𝑖+2) is

the ICG for 𝐺𝑖+1 and 𝐺𝑖+2. Finally, the CommonGraph for all three
snapshots is denoted as 𝐺𝑐(𝑖→𝑖+2) or simply 𝐺𝑐 .

Note that although we have shown a TG for three snapshots, the

symmetric nature of the representation shows that it applies to any

arbitrary number of snapshots. If there are𝑛 original snapshots to be

analyzed, the TGwill contain exactly 𝑛−2 intermediate levels as the

number of ICGs reduces by one for each level. More importantly

we note that edges from the root CommonGraph 𝐺𝑐 to the two

ICGs and then from the two ICGs to the original snapshots are all

labelled exclusively with additions. That is, to move from the root

𝐺𝑐 to any original snapshot via intermediate ICGs we only need

to perform batches of edge additions. Finally, by starting from the

root 𝐺𝑐 , and then potentially moving through exactly one ICG at

each intermediate level, a query evaluation schedule can be chosen

that exploits additional sharing among subsequence of snapshots

represented by the chosen ICG. TG guarantees the presence of an

ICG to represent any consecutive sub-sequence of snapshots. It is

important to note that the ICGs are never stored and are generated

on demand only by streaming the common edge additions if they

are needed (that is, when we need to compute multiple snapshots

reachable from the ICG).

Next we show how, from the batches of additions and deletions

between original snapshots, we can compute the additions labelling

all other edges in the TG leading to or originating from the ICGs.

Let us assume that the batches of edge additions and deletions that

derive 𝐺𝑖+1 from 𝐺𝑖 (i.e., Δ
𝑖
+ and Δ𝑖−) and then derive 𝐺𝑖+2 from

𝐺𝑖+1 (i.e., Δ
𝑖+1
+ and Δ𝑖+1−) are as follows:

Δ𝑖+ = {𝑒3, 𝑒12, 𝑒15}

Δ𝑖− = {𝑒9, 𝑒11, 𝑒16, 𝑒23, 𝑒29}

Δ𝑖+1+ = {𝑒9, 𝑒11, 𝑒14, 𝑒24, 𝑒29}

Δ𝑖+1− = {𝑒3, 𝑒4, 𝑒7, 𝑒10, 𝑒26}

Around the intermediate level of the TG (i.e., just below the

original snapshots and just above 𝐺𝑐), we can easily compute the

values of the following six batches of additions corresponding to

the six edges (four involving original snapshots and two involving

𝐺𝑐) as follows:

1 Δ𝐼𝐶𝐺1→𝐺𝑖
+ = Δ𝑖− = {𝑒9, 𝑒11, 𝑒16, 𝑒23, 𝑒29}

2 Δ𝐼𝐶𝐺1→𝐺𝑖+1
+ = Δ𝑖+ = {𝑒3, 𝑒12, 𝑒15}

3 Δ𝐼𝐶𝐺2→𝐺𝑖+1
+ = Δ𝑖+1− = {𝑒3, 𝑒4, 𝑒7, 𝑒10, 𝑒26}

4 Δ𝐼𝐶𝐺2→𝐺𝑖+2
+ = Δ𝑖+1+ = {𝑒9, 𝑒11, 𝑒14, 𝑒24, 𝑒29}

5 Δ𝐺𝑐→𝐼𝐶𝐺1

+ = Δ𝑖+1− − Δ𝑖+ = {𝑒4, 𝑒7, 𝑒10, 𝑒26}

6 Δ𝐺𝑐→𝐼𝐶𝐺2

+ = Δ𝑖+ − Δ𝑖+1− = {𝑒12, 𝑒15}

Query Evaluation Schedules: Every tree rooted at 𝐺𝑐 and includ-

ing all leaves (snapshots) represents a query evaluation schedule.

For our example, the TG representation and two query evaluation

schedules are shown in Figure 6. Recall that for this example, in

the preceding section, we had shown that the cost of direct-hop

schedule is 22 additions. However, when we consider the two trees

shown here, their costs are 19 additions (for𝑇𝑟𝑒𝑒1) and 21 additions

(for 𝑇𝑟𝑒𝑒2). This is because both the schedules shown take advan-

tage of additional work sharing: in𝑇𝑟𝑒𝑒1, by including 𝐼𝐶𝐺1, we can

share additions that are common to 𝐺𝑖 and 𝐺𝑖+1 but not present in

𝐺𝑖+2; and in 𝑇𝑟𝑒𝑒2, by including 𝐼𝐶𝐺2, we can share additions that

are common to𝐺𝑖+1 and𝐺𝑖+2 but not present in𝐺𝑖 . In other words,

𝐺! 𝐺!"# 𝐺!"$

𝐼𝐶𝐺#

𝐺%Tree𝟏

5	𝑎𝑑𝑑

𝐼𝐶𝐺$

3	𝑎𝑑𝑑 5	𝑎𝑑𝑑

4	𝑎𝑑𝑑 2	𝑎𝑑𝑑

𝐶𝑜𝑠𝑡 = 19	𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠

𝐺! 𝐺!"# 𝐺!"$

𝐼𝐶𝐺#

𝐺% Tree𝟐

5	𝑎𝑑𝑑

𝐼𝐶𝐺$

5	𝑎𝑑𝑑 5	𝑎𝑑𝑑

4	𝑎𝑑𝑑 2	𝑎𝑑𝑑

𝐶𝑜𝑠𝑡 = 21	𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠

𝐺! 𝐺!"# 𝐺!"$

𝐼𝐶𝐺#

𝐺%

5	𝑎𝑑𝑑

𝐼𝐶𝐺$

3	𝑎𝑑𝑑 5	𝑎𝑑𝑑 5	𝑎𝑑𝑑

4	𝑎𝑑𝑑 2	𝑎𝑑𝑑

𝑻𝑮

Figure 6: Query Evaluation Schedules: (TG) Triangular Grid;
(𝑇𝑟𝑒𝑒1, 𝑇𝑟𝑒𝑒2) Two Trees Corresponding to Query Evaluation

Schedules with Different Costs.

137

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

𝐺! 𝐺!"# 𝐺!"$

𝐺%

𝐺!"&

Δ!" Δ!#

Δ!$ Δ!% Δ!& Δ!'

Δ!(Δ!) Δ!* Δ!"+ Δ!"" Δ!"#

Δ!# + Δ!'Δ!" + Δ!$

𝐺! 𝐺!"# 𝐺!"$

𝐺%

𝐺!"&

Δ!(Δ!) Δ!"" Δ!"#

𝐺! 𝐺!"# 𝐺!"$

𝐼𝐶𝐺#

𝐺%

𝐺!"&

Δ!" Δ!#

Δ!$ Δ!% Δ!& Δ!'

Δ!(Δ!) Δ!* Δ!"+ Δ!"" Δ!"#

𝐼𝐶𝐺$ 𝐼𝐶𝐺&

𝐼𝐶𝐺' 𝐼𝐶𝐺(

𝐼𝐶𝐺# 𝐼𝐶𝐺$ 𝐼𝐶𝐺&

𝐼𝐶𝐺' 𝐼𝐶𝐺(

𝐼𝐶𝐺# 𝐼𝐶𝐺&

Figure 7: Algorithm Steps: (a) Create TG; (b) Identify Steiner Tree; and (c) Bypass nodes with indegree and outdegree of 1.

Algorithm 1 Algorithm for Identifying Minimum Cost Query Evaluation Schedule using the Steiner Tree Algorithm.

1: Inputs: Snapshots; Additions; and Deletions.

2: Snapshots– 𝐺1(𝑉1, 𝐸1), 𝐺2(𝑉2, 𝐸2), ... , 𝐺𝑁 (𝑉𝑁 , 𝐸𝑁);

3: Batches of Additions – Δ+𝐺1

, Δ+𝐺2

, ... , Δ+𝐺𝑁
;

4: Batches of Deletions – Δ−𝐺1

, Δ−𝐺2

, ... , Δ−𝐺𝑁
;

5: Output: 𝑇𝐺 & 𝑇𝑟𝑒𝑒 (Minimum Cost Schedule).

6: Build-Triangular-Grid;

7: Identify-Steiner-Tree;

8: Compress-Steiner-Tree;

9: function Build-Triangular-Grid

10: 𝑆 ← Snapshots; 𝑇𝐺 ← 𝜙 ; 𝑖 ← 0;

11: for each 𝐺𝑖(𝑉𝑖 , 𝐸𝑖) and 𝐺𝑖+1(𝑉𝑖+1, 𝐸𝑖+1) ∈ 𝑆 do
12: if 𝐺𝑖 and 𝐺𝑖+1 are leaf nodes then
13: 𝑤1 = Δ−𝐺𝑖

; 𝑤2 = Δ+𝐺𝑖

14: else
15: 𝑤1 = Δ−𝐺𝑖+1

− Δ+𝐺𝑖
; 𝑤2 = Δ+𝐺𝑖

− Δ−𝐺𝑖+1
;

16: Δ+𝐼𝐶𝐺𝑖
=𝑤2; Δ−𝐼𝐶𝐺𝑖

=𝑤1

17: end if
18: 𝑇𝐺 ← 𝑇𝐺 ∪ {(𝐼𝐶𝐺𝑖 ,𝐺𝑖 ,𝑤1)

19: 𝑇𝐺 ← 𝑇𝐺 ∪ {(𝐼𝐶𝐺𝑖 ,𝐺𝑖+1,𝑤2)

20: 𝑆 ← 𝑆 ∪ 𝐼𝐶𝐺𝑖 ; 𝑖 ← 𝑖 + 1

21: end for
22: end function

23: function Identify-Steiner-Tree

24: Let 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑙𝑠 be the leaves and root in 𝑇𝐺 ;

25: 𝑇𝑟𝑒𝑒 ← subtree of 𝑇𝐺 with at least one terminal;

26: while 𝑇𝑟𝑒𝑒 does not span all terminals do
27: Select a terminal 𝑥 not in 𝑇𝑟𝑒𝑒 such that

28: 𝑥 is closest to a vertex in 𝑇𝑟𝑒𝑒

29: Add to 𝑇𝑟𝑒𝑒 , shortest path connecting 𝑥 to 𝑇𝑟𝑒𝑒

30: end while
31: end function

32: function Compress-Steiner-Tree

33: for each vertex 𝑣 ∈ 𝑇𝑟𝑒𝑒 do
34: if 𝑣 has one incoming and one outgoing edge then
35: Bypass 𝑣

36: end if
37: end for
38: end function

the edges that are traversed multiple times are only computed once

stopping at the ICG where the paths diverge, reducing the number

of additions through work sharing.

While the reduction in number of total additions in the above

example is small, it should be noted that this reduction will grow

as the number of snapshots grows because, especially in higher

levels of the TG, each edge can lead to many snapshots and would

have been added independently and redundantly for each snapshot

in direct-hop. Moreover, a secondary factor is that the size of 𝐺𝑐

becomes smaller as the number of edge additions and deletions

increases with more snapshots, leading to more unexploited work

sharing opportunities among the subsequences of snapshots grow.

Finally, note that when there is a path from 𝐺𝑐 to a leaf snapshot

which passes through an 𝐼𝐶𝐺 which has exactly one incoming and

outgoing edge in the 𝑇𝑟𝑒𝑒 identified, we simply bypass the node

and combine the addition batches for incoming and outgoing edges

into one larger batch to maximize parallelism. In our example, in

𝑇𝑟𝑒𝑒1 we bypass 𝐼𝐶𝐺2 and in 𝑇𝑟𝑒𝑒2 we bypass 𝐼𝐶𝐺1.

Complete Algorithm for Finding Minimum Cost Query Evaluation
Schedule. The algorithm consists of three steps as shown in Figure 7.

In the first step, we will create the Triangular Grid TG for a given

sequence of snapshots on which a user query needs to be evaluated.

The optimal query evaluation schedule consists of the tree that

reaches all the snapshots with minimum total cost; this minimum

cost represents the maximal degree of reuse, allowing the cost to

drop to this minimal from the direct-hop cost which has no reuse.

138

CommonGraph: Graph Analytics on Evolving Data ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

This problem is the Steiner tree problem [20]. Thus, the second step

of our algorithm finds the best paths from 𝐺𝑐 to all the snapshots

using the Steiner tree algorithm that finds a minimum cost tree

𝑇𝑟𝑒𝑒 , that is, the sum of additions labelling the edges included in

𝑇𝑟𝑒𝑒 is the minimum. Finally, in the third step, we bypass 𝐼𝐶𝐺

nodes that have exactly one incoming and one outgoing edge in

𝑇𝑟𝑒𝑒 and merge the edge addition batches for individual edges into

one batch corresponding to the union of the edge batches on the

incoming and outgoing edges of each bypassed ICG. In Figure 7 we

can bypass nodes and combine batches Δ1

+ and Δ3

+ into one batch

and also combine Δ2

+ and Δ6

+ into one batch.

The pseudocode of the above three step process is given in Al-

gorithm 1. It should be noted that this algorithm is general in two

respects. First, it handles an arbitrary number of snapshots, i.e. it
builds the TG with appropriate number of levels. Second, since it

supports bypassing, it subsumes the direct-hop solution, i.e. it is per-
fectly capable of generating the direct-hop query schedule if all the

available sharing can be achieved by the𝐺𝑐 graph and no additional

sharing opportunities exist among subsequences of snapshots.

4 COMMONGRAPH SYSTEM
In this section we discuss our system design and implementation

for processing evolving graphs using CommonGraph algorithms.

We first present an overview of the framework and then describe

the core processing engine in more detail.

4.1 Framework overview
The framework consists of the storage and memory representation

of the evolving graphs, as well as the set of primitives to manage

the storage and the version control of the snapshots in memory

during execution. We discuss these aspects of the framework next.

We use the common graph as the basis for storing the graph as a

series of common graphs for each range of snapshots as well as the

set of edges in the Triangular Grid for each of them. Thus, there is a

minimal cost for generating common graphs while the updates are

stored as sets of Δ edges corresponding to the Triangular Grid edges.

For Kickstarter [44], we use its storage format based on Ligra [41].

The key feature of the data structures that we use to support

evolving graphs is that we avoid the cost of updates to the graph as

Table 1: Common graph main primitives for query
computation and graph update.

Version control API Description

get_version(number) Retrieve a snapshot

diff(snapshot, snapshot)
Identifies difference between

two snapshots

new_version(Δ+, Δ−)
Create a new snapshot and

update common graph

Query API API function

edge_function(edge) Algorithm specific edge function

schedule(vertex_id, mode) Schedule active vertex

update(vertex_id) Atomic update function

it evolves. As discussed in Section 3, the common graph and Δ edges

are stored separately, and different versions of the graph are reached

by including different subsets of the Δ edges as specified by the TG.

The representation is space optimal as each edge in the system only

gets represented once. In addition to avoiding expensive mutations,

this organization also significantly reduces both memory footprint

and memory access overheads. To access the graph, we support the

primitives shown in Table 1. These primitives are used to retrieve a

snapshot or find the difference between snapshots. The overhead in

querying a snapshot is much lower than that in Aspen [12], which

is a multi-version storage system for evolving graphs; the overhead

for Aspen has up to 2× overhead than Ligra+ on static graphs.

When a new snapshots are to be created by a stream of batches,

the system uses the batches to update the common graph and the

TG. Specifically, the new edges (both the additions and deletions)

will be removed from the common graph and additional nodes

representing the new snapshot will be added to the TG.

Algorithm 2 Mutation-Free Incremental Algorithm

1: Inputs: common graph; streaming batches, query algorithm;

2: Output: Query result↪ vertex_value_array[].

3: function Incremental Computation

4: for edge in streaming batches do
5: if edge_function(edge) == True; then
6: update(destination);

7: schedule(dst, mode);

8: end if
9: end for
10: while scheduler is not empty do
11: for vertex in scheduler do
12: for edges ∈ common graph+update batch do
13: if edge_function(edge) == True; then
14: schedule(vertex, mode);

15: end if
16: end for
17: end for
18: end while
19: end function

4.2 Execution Engine
The system executes a query targeting multiple snapshots in two

steps: a scheduling phase; and a computation phase. The scheduler
derives the query execution plan following Algorithm 1, this step is

not needed for direct hop. The query execution phase is divided to

two parts: initial computation of the query on the common graph

and incremental update to add the batches to reach the next graph,

and eventually all the snapshots. In the initial stage, computation

happens on the common graph only, with active vertices pushing

information to neighbors. The computation iterates till the graph

stabilizes. For the second phase, we extend the Kickstarter stream-

ing algorithm as shown in Algorithm 2. Specifically, the system first

starts with streaming batches (lines 4-9), the destination vertices

are updated and scheduled based on the edge function. Next, the

scheduled vertices repeatedly push updates to their outgoing neigh-

bors and new vertices are scheduled and updated (Algorithm 2,

139

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

lines 10-18). The steps in the algorithm shown in red are APIs for

programming the engine.

A major difference between common graph engine and other

streaming engines is it takes a graph with batches of streaming

edges as input instead of doing computation on just single version.

The edge function in Table 1 is applied both on common graph and

streaming batches. This strategy avoids expensive graph mutation

operation with reasonable overhead.

4.3 Scheduler design
Scheduler referenced in Algorithm 2 on lines 10-11 incorporates

another policy in our system. The key idea is to switch between

synchronous and asynchronous mode. For large streaming batch,

the scheduler will work in synchronous mode, and vertex updates

will take effective in next iteration. For a small streaming batch, the

scheduler is set to asynchronous mode and updated vertex value

will be available in the current iteration.

5 PERFORMANCE EVALUATION
All experiments are conducted on a shared memory system, which

contains 56 Intel Xeon E5-2680 processor and 520GB memory. The

CommonGraph system is compiled by g++ 7.3.1 and runs on

CentOS Linux 7.

We evaluate CommonGraph on five benchmarks (all monotonic

algorithms). The benchmarks are shown in Table 3, along with

their push operations, which is the primary difference between the

benchmarks. We use the four input graphs shown in Table 2. Update

batches consisting of edge additions and deletions are generated

for each benchmark to transition from one snapshot to the next,

and the evaluation targets a number of snapshots specified with

each experiment.

Table 2: Edges and Vertices of the Input Graphs.

Input Graph | Edges | | Vertices | |Avg degree|

LiveJournal (LJ) [3] 70M 4M 28.26

DBpediaLinks (DL) [2] 170M 18M 18.85

WikipediaLinks (Wen) [27] 400M 13M 64.32

Twitter (TTW) [28] 1.5B 41M 70.51

Our first experiment tracks the execution time for evaluating a

query of each of the five benchmarks on 50 consecutive snapshots.

Each snapshot is separated from the next by a batch of 75,000 edge

changes split evenly between additions and deletions, which repre-

sents approximately 0.01% of the number of edges in LiveJournal,

the smallest benchmark among our input graphs. The first row for

each benchmark in the table is baseline KickStarter : we start from
the initial snapshot and stream in the batches to reach the next

snapshot repeatedly until we reach the final snapshot. The second

row for each benchmark uses CommonGraph but Direct-Hops the
additions to reach each snapshot in a single batch; although the

snapshots can be processed in parallel, we report the total sequen-

tial time. Finally, the last row introduces the maximalWork-Sharing
algorithm based upon building the TG and solving the Steiner tree

to identify the paths that minimize the overall work to be able to

reach all the snapshots. Snapshots that share subsets of their path,

Table 3: Benchmarks and their Push Operations. CASMIN(a;
b) sets a = b if b < a atomically; CASMAX is similarly defined.
The algorithms are Breadth First Search (BFS), Single Source
Widest Path (SSWP), Single Source Narrowest Path (SSNP),

Single Source Shortest Path (SSSP), and Virterbi.

Algorithm EdgeFunction (𝑒(𝑢, 𝑣))

BFS 𝐶𝐴𝑆𝑀𝐼𝑁 (𝑉𝑎𝑙(𝑣),𝑚𝑖𝑛(𝑉𝑎𝑙(𝑢) + 1, 𝑣𝑎𝑙(𝑣)))

SSWP 𝐶𝐴𝑆𝑀𝐴𝑋(𝑉𝑎𝑙(𝑣),𝑚𝑖𝑛(𝑉𝑎𝑙(𝑢),𝑤𝑡(𝑢, 𝑣)))

SSNP 𝐶𝐴𝑆𝑀𝐼𝑁 (𝑉𝑎𝑙(𝑣),𝑚𝑎𝑥(𝑉𝑎𝑙(𝑢),𝑤𝑡(𝑢, 𝑣)))

SSSP 𝐶𝐴𝑆𝑀𝐼𝑁 (𝑉𝑎𝑙(𝑣),𝑉𝑎𝑙(𝑢) +𝑤𝑡(𝑢, 𝑣))

Viterbi 𝐶𝐴𝑆𝑀𝐴𝑋(𝑉𝑎𝑙(𝑣),𝑉𝑎𝑙(𝑢)⇑𝑤𝑡(𝑢, 𝑣))

share the processing to reach the node of the Triangular grid where

they diverge; we are computing each addition batch once for the

snapshots that share it.

In Table 4, we can see the speedup forCommonGraphwith Direct-
Hop (direct traversal to each snapshot); it outperforms the baseline

KickStarter 1.02×-7.91×; even though it processes a higher number

of edges compared to KickStarter, all these edges are additions and

benefit also from parallelism among additions since they are pro-

cessed in a single batch. Moreover, some of the benefits come from

avoiding the cost of graph mutation through our graph represen-

tation. Additional speedup is achieved using work sharing, for an

overall speedup of 1.38x-8.17x over baseline KickStarter.

The next set of experiments evaluate the scalability of the direct

hop and work sharing algorithms with respect to two different

scaling parameters, number of snapshots and the batch size. We

used our biggest graph (TTW) and four benchmarks (BFS, SSSP,

SSWP, and SSNP) for the scalability experiment. In the first exper-

iment we fix the batch size to 75K graph updatesand varied the

number of snapshots from 5 to 50. As we can see from Figure 8,

the execution time of CommonGraph based algorithms is superior

to that of Kickstarter; the execution time for all three algorithms

increases linearly with the number of snapshots.

We also observe that for fewer snapshots the direct-hop algo-

rithm works better than work-sharing. At a smaller number of

snapshots, the degree of work sharing is small as each batch is

reused by at most 2 snapshots. At the same time, having to stabilize

the solution at an intermediate common graph reduces the amount

of parallelism available in executing a larger number of updates

concurrently. However, work sharing significantly outperforms

direct hop when we increase the number of snapshots beyond 23

to 35 for different benchmarks.

In Figure 9, we show the second analysis for the scalability. In

this analysis, we fix the total number of graph updates and vary

the batch size – smaller batch size corresponds to more snapshots

and more accurate picture of changes in query results. As shown

in the Figure 9, we start with 75K batch sizes for 50 snapshots and

then increase the batch size to 375K for 10 snapshots. For the bigger

batch size, the direct-hop algorithm works better compared to the

work-sharing, and for the smaller number of the batch size, the

work-sharing works better. This is because for smaller batch size

we have a greater number of snapshots and the benefit of TG grows

due to increased opportunities for sharing.

We also varied the ratio of additions and deletions to show that

across different ratios our common graph representation provides

140

CommonGraph: Graph Analytics on Evolving Data ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Table 4: Average Execution Times in Seconds for KickStarter with Both Additions and Deletions, and the speedup of
CommonGraph Direct Hop and CommonGraph Work-Sharing Algorithm over KickStarter for 50 Snapshots.

Graph Query Evaluation Algorithm BFS SSSP SSWP SSNP Viterbi

LJ
KickStarter Time 3.43s 3.88s 3.69s 3.75s 5.17s

Direct-Hop Speedup 1.58× 1.07× 1.23× 1.18× 1.02×

Work-Sharing Speedup 1.86× 1.43× 1.38× 1.43× 1.62×

DL
KickStarter Time 27.22s 27.64s 27.91s 27.51s 31.87s

Direct-Hop Speedup 7.09× 7.45× 7.3× 6.7× 7.91×

Work-Sharing Speedup 7.17× 8.17× 7.64× 7.21× 8.17×

Wen
KickStarter Time 4.65s 4.59s 4.72s 4.20s 2.03s

Direct-Hop Speedup 4.53× 1.32× 2.73× 2.08× 3.24×

Work-Sharing Speedup 4.68× 2.42× 3.31× 2.40× 3.8×

TTW
KickStarter Time 10.91s 11.73s 11.32s 11.31s 15.30s

Direct-Hop Speedup 3.09× 2.36× 2.52× 1.85× 2.85×

Work-Sharing Speedup 3.35× 2.94× 3.14× 2.62× 3.42×

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40 45 50

Ti
m

e
(S

ec
on

ds
)

Snapshots

 KickStarter Direct-Hop Work-Sharing

0

2

4

6

8

10

12

14

5 10 15 20 25 30 35 40 45 50

Ti
m

e
(S

ec
on

ds
)

Snapshots

 KickStarter Direct-Hop Work-Sharing

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40 45 50

Ti
m

e
(S

ec
on

ds
)

Snapshots

 KickStarter Direct-Hop Work-Sharing

0

2

4

6

8

10

12

5 10 15 20 25 30 35 40 45 50

Ti
m

e
(S

ec
on

ds
)

Snapshots

 KickStarter Direct-Hop Work-Sharing

TTW-BFS TTW-SSSP

TTW-SSWP TTW-SSNP

Figure 8: Execution time for KickStarter, CommonGraph Direct-Hop, and Work-Sharing.

gains over KickStarter. In Figure 10 we show the speedups by vary-

ing batches from from 150K additions and 50K deletions to 50K

additions and 150K deletions. As we can see, as greater percentage

of deletion updates are considered, the speedup of Direct-Hop over

KickStarter increases.

CommonGraph also exposes opportunities for parallelism that

are difficult to realize in streaming only systems such as Kickstarter.

Specifically, we can execute the direct hop algorithm in parallel

to reach each of the snapshots independently from the common

graph. In contrast, Kickstarter processes the snapshots sequentially,

making it difficult to parallelize the processing. In Table 5, we show

the time for the longest direct hop evaluation to reach any of the 50

snapshots. Given a system with sufficient cores, this is an estimate

of the overall run time of these embarrassingly parallel evaluations.

We can see that there is an opportunity to achieve speedups upwards

of 2 orders of magnitude compared to Kickstarter. We note that it

is also possible to parallelize the work sharing version of common

graph, resulting in a more work efficient algorithm.

141

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

0

2

4

6

8

10

12

75000-50 93750-40 125000-30 187500-20 375000-10

Ti
m

e
(S

ec
on

ds
)

Batch Size - Snapshots

KickStarter Direct-Hop Work-Sharing

TTW-BFS

0

2

4

6

8

10

12

14

75000-50 93750-40 125000-30 187500-20 375000-10

Ti
m

e
(S

ec
on

ds
)

Batch Size - Snapshots

KickStarter Direct-Hop Work-Sharing

TTW-SSSP

0

2

4

6

8

10

12

75000-50 93750-40 125000-30 187500-20 375000-10

Ti
m

e
(S

ec
on

ds
)

Batch Size - Snapshots

KickStarter Direct-Hop Work-Sharing

0

2

4

6

8

10

12

75000-50 93750-40 125000-30 187500-20 375000-10
Ti

m
e

(S
ec

on
ds

)
Batch Size - Snapshots

KickStarter Direct-Hop Work-Sharing

TTW-SSWP TTW-SSNP

Figure 9: Execution times while batch size is varied, total number of graph updates is fixed.

Table 5: Execution times (seconds) and speedups of parallel implementation of the Direct-Hop algorithm over KicKStarter.

G Direct-Hop BFS SSSP SSWP SSNP Viterbi

LJ
Time 0.044s 0.072s 0.06s 0.063s 0.101s

Speedup 78.76× 53.73× 61.56× 59.25× 51.14×

DL
Time 0.077s 0.074s 0.076s 0.082s 0.08s

Speedup 354.93× 372.52× 365.37× 335.19× 395.64×

Wen
Time 0.021s 0.07s 0.034s 0.04s 0.041

Speedup 226.17× 66.06× 136.89× 104.12× 161.85×

TTW
Time 0.071s 0.099s 0.09s 0.122s 0.107s

Speedup 154.54× 118.09× 126.11× 92.5× 142.39×

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

BFS SSSP SSWP SSNP Viterbi

Sp
ee
du

p

150K-50K 100K-100K 50K-150K

Figure 10: Sensitivity of performance to the ratio of
additions and deletions.

0
2
4
6
8

10
12
14
16
18

CG KS CG KS CG KS CG KS CG KS

BFS SSSP SSWP SSNP Viterbi

Ti
m

e
(S

ec
on

ds
)

Incremental Addition Incremental Deletion

Mutation Addition Mutation Deletion

Figure 11: Breakdown of the execution time for TTW
graph for the baseline KickStarter (KS) and

CommonGraph (CG) Work-Sharing algorithm.

142

CommonGraph: Graph Analytics on Evolving Data ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Figure 11 shows the breakdown of the execution time for the

TTW graph both for KickStarter and CommonGraph . As we can

see, the CommonGraph approach eliminates the mutation time for

additions and deletions as well as the incremental deletion time.

The incremental addition time for CommonGraph is lower than the

combined incremental addition and deletion time in KickStarter.

Thus, we observe that benefits of CommonGraph result from both

reductions in computation cost and mutation cost.

6 RELATEDWORK
In this section we summarize the existing dynamic graph systems

and accelerators that aim at providing flexible graph storage and

fast incremental concurrent graph querying.

6.1 Evolving & Streaming Graphs Frameworks
Among the most recent works on rapid analysis of evolving graphs

are RisGraph [16] and Tegra [22]. RisGraph achieves impressive

query evaluation speeds by developing a new data structure to sup-

port fast edge insertions and deletions. However, this is achieved at

the expense of 3.25× to 3.38× increased memory costs via precom-

puted indexes that are necessary to support both fast insertions

and deletions. Tegra [22] provides a novel API for performing ad-

hoc queries on arbitrary time windows of the graph. It accelerates

query evaluation using a compact in-memory representation for

both graph and intermediate computation state. Both RisGraph

and Tegra leverage existing algorithms developed for streaming

systems to support incremental computation for handling edge

additions and deletions. Other storage systems to support evolving

and streaming graphs include GraphOne [26] and Aspen [12] while

systems that amortize the cost of memory accesses and computation

include Chronos [19] and FA+PA [43].

A number of systems for streaming graphs have been proposed.

These algorithms maintain a single version of the graph and a stand-

ing query’s results that are incrementally updated when a batch of

updates are applied to the graph. The focus of these works is on

incremental computation, i.e. how to efficiently update query re-

sults. Early streaming systems (such as Kineograph [9], Naiad [33],

Tornado [40] and Tripoline [23]) only support incremental com-

putations for edge additions while more recent systems (such as

Kickstarter [44] and GraphBolt [32]) also support edge deletions.

Note that even thoughmany of the above evolving and streaming

systems support both edge additions and deletions, they pay a high

cost for supporting deletions, as we showed in the comparison to

Kickstarter. CommonGraph is the first system to convert deletions

into additions for evolving graph analysis and thus reduce the cost

of graph mutation as well as incremental computation (via work

sharing) significantly.

6.2 GPUs and Other Accelerators
Recent works have begun to exploit accelerators to speedup up

graph algorithms. Much of this work is aimed at static graphs (e.g.,

Gunrock [46], CuSha [24, 25],Tigr [36], Subway [39] etc.) and the

problem addressed is to map irregular graph computation to reg-

ular GPU architectures. Specialized graph accelerators have also

been developed for both static graphs [1, 11, 34, 37] and streaming

graphs [4, 38, 47]. Some recent works have begun to support dy-

namic graphs in accelerators such as GraSu [45]. However, to our

knowledge, no work has been done to exploit single accelerators

to address evolving graph analysis. We expect that the tremen-

dous memory and computational demands of evolving graphs will

require development of multi-accelerator systems.

7 CONCLUDING REMARKS
Graph analytics on a dynamic graph that evolves over large time

scales is a challenging problem. A user is typically interested in

queries that span potentially large time windows, which translates

into having to solve sub-queries targeting snapshots of the graph

within those windows. We propose new algorithms that signifi-

cantly improve the performance of evolving graphs compared to

state-of-the-art streaming graph systems. In particular, we observe

that deletions are significantly more expensive than additions, and

that streaming from one original snapshot limits opportunities for

work sharing. We propose CommonGraph, a representation of an

evolving graph that captures the part of the graph that is common

among a group of snapshots. Moving from this graph to any snap-

shots can be accomplished by adding the missing edges needed for

the particular snapshot. We also show that CommonGraph exposes

opportunities for work sharing among snapshots that share groups

of edges, and capitalize on this opportunity using a Triangular

Grid structure, that enables optimal work sharing when computing

queries across a sequence of snapshots. Finally, we observe that

streaming implementations incur substantial cost to mutate the

graph as it changes, and come up with a representation that en-

ables composing representations in place to represent the different

snapshots without mutation. Taken together, our ideas result in

1.38× to 8.17× improvement in the evaluation of five query types, an

advantage that grows with the number of snapshots being analyzed.

We believe that CommonGraph offers additional opportunities

and advantages. It breaks the sequential dependency in streaming al-

gorithms since we are able to move to each snapshot independently

of the prior ones. This offers opportunities for parallel execution to

further improve performance. It also enables efficiencies in storage

and query execution: for example, it enables efficient range queries

without having to start from an initial stored snapshot that can be

far from the start of the range, and therefore requires substantial

overhead just to reach the first snapshot. We intend to pursue these

ideas in future work

ACKNOWLEDGMENTS
We thank all the reviewers for their valuable feedback. This work

is supported in part by National Science Foundation Grants CNS-

1955650, CNS-2053383, CCF-2028714, CCF-2002554 andCCF-2226448

to the University of California, Riverside.

REFERENCES
[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiyoung Choi.

2015. A Scalable Processing-in-memory Accelerator for Parallel Graph Processing.

SIGARCH Comput. Archit. News 43, 3 (June 2015), 105–117. https://doi.org/10.

1145/2872887.2750386

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. 2007. DBpedia: A Nucleus for a Web of Open Data. In The
Semantic Web, Karl Aberer, Key-Sun Choi, Natasha Noy, Dean Allemang, Kyung-

Il Lee, Lyndon Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro

143

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mahbod Afarin, Chao Gao, Shafiur Rahman, Nael Abu-Ghazaleh, and Rajiv Gupta

Mizoguchi, Guus Schreiber, and Philippe Cudré-Mauroux (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 722–735.

[3] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.

Group Formation in Large Social Networks: Membership, Growth, and Evolution.

In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Philadelphia, PA, USA) (KDD ’06). ACM, New York,

NY, USA, 44–54. https://doi.org/10.1145/1150402.1150412

[4] Abanti Basak, Zheng Qu, Jilan Lin, Alaa R. Alameldeen, Zeshan Chishti, Yufei

Ding, and Yuan Xie. 2021. Improving Streaming Graph Processing Perfor-

mance Using Input Knowledge. In MICRO-54: 54th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (Virtual Event, Greece) (MICRO ’21). As-
sociation for Computing Machinery, New York, NY, USA, 1036–1050. https:

//doi.org/10.1145/3466752.3480096

[5] Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and Torsten Hoe-

fler. 2021. Practice of streaming processing of dynamic graphs: Concepts, models,

and systems. IEEE Transactions on Parallel and Distributed Systems (2021).
[6] E. Bullmore and O.Sporns. 2009. Complex brain networks: graph theoretical

analysis of structural and functional systems. In Nature Reviews Neuroscience,
10(3). 186–198.

[7] P. Burnap, O. F. Rana, N. Avis, M. Williams, W. Housley, A. Edwards, J. Morgan, ,

and L. Sloan. 2015. Detecting tension in online communities with computational

Twitter analysis. In Technological Forecasting and Social Change, 95. 96–108.
[8] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu,

Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012. Kineograph: taking

the pulse of a fast-changing and connected world. In Proceedings of the 7th ACM
european conference on Computer Systems. 85–98.

[9] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming

Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012. Kineograph:

Taking the Pulse of a Fast-Changing and Connected World. In Proceedings of the
7th ACM European Conference on Computer Systems (Bern, Switzerland) (EuroSys
’12). Association for Computing Machinery, New York, NY, USA, 85–98. https:

//doi.org/10.1145/2168836.2168846

[10] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi

Muthukrishnan. 2015. One trillion edges: Graph processing at facebook-scale.

Proceedings of the VLDB Endowment 8, 12 (2015), 1804–1815.
[11] Vidushi Dadu, Sihao Liu, and Tony Nowatzki. 2021. PolyGraph: Exposing the

Value of Flexibility for Graph Processing Accelerators. IEEE Press, 595–608. https:

//doi.org/10.1109/ISCA52012.2021.00053

[12] Laxman Dhulipala, Guy E Blelloch, and Julian Shun. 2019. Low-latency graph

streaming using compressed purely-functional trees. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation.
918–934.

[13] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi. 2013. The anatomy of a

scientific rumor. In Scientific Reports, http://dx.doi.org/10.1038/srep02980.
[14] David Ediger, Rob McColl, Jason Riedy, and David A Bader. 2012. Stinger: High

performance data structure for streaming graphs. In 2012 IEEE Conference on
High Performance Extreme Computing. IEEE, 1–5.

[15] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao

Han, and Wenguang Chen. 2021. RisGraph: A Real-Time Streaming System for

Evolving Graphs to Support Sub-Millisecond Per-Update Analysis at Millions

Ops/s. In Proceedings of the 2021 International Conference on Management of Data
(Virtual Event, China) (SIGMOD ’21). Association for Computing Machinery, New

York, NY, USA, 513–527. https://doi.org/10.1145/3448016.3457263

[16] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao

Han, and Wenguang Chen. 2021. RisGraph: A Real-Time Streaming System for

Evolving Graphs to Support Sub-millisecond Per-update Analysis at Millions

Ops/s. In Proceedings of the 2021 International Conference on Management of Data.
513–527.

[17] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.

2012. Powergraph: Distributed graph-parallel computation on natural graphs. In

Proceedings of the 10th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 12). 17–30.

[18] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J

Franklin, and Ion Stoica. 2014. Graphx: Graph processing in a distributed dataflow

framework. In 11th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 14). 599–613.

[19] Wentao Han, YoushanMiao, Kaiwei Li, MingWu, Fan Yang, Lidong Zhou, Vijayan

Prabhakaran, Wenguang Chen, and Enhong Chen. 2014. Chronos: a graph engine

for temporal graph analysis. In Proceedings of the Ninth European Conference on
Computer Systems. 1–14.

[20] Frank K Hwang and Dana S Richards. 1992. Steiner tree problems. Networks 22,
1 (1992), 55–89.

[21] H. Isah, P. Trundle, , and D. Neagu. 2014. Social media analysis for product safety

using text mining and sentiment analysis. In 14th UKWorkshop on Computational
Intelligence (UKCI).

[22] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E. Gonzalez, and Ion

Stoica. 2021. TEGRA: Efficient Ad-Hoc Analytics on Evolving Graphs. In 18th

USENIX Symposium on Networked Systems Design and Implementation (NSDI
21). USENIX Association, 337–355. https://www.usenix.org/conference/nsdi21/

presentation/iyer

[23] Xiaolin Jiang, Chengshuo Xu, Xizhe Yin, Zhijia Zhao, and Rajiv Gupta. 2021.

Tripoline: generalized incremental graph processing via graph triangle inequality.

In EuroSys ’21: Sixteenth European Conference on Computer Systems, Online Event,
United Kingdom, April 26-28, 2021. ACM, 17–32. https://doi.org/10.1145/3447786.

3456226

[24] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. 2015. Scalable SIMD-

Efficient Graph Processing on GPUs. In Proceedings of the International Conference
on Parallel Architectures and Compilation (PACT ’15). 39–50. https://doi.org/10.

1109/PACT.2015.15

[25] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan. 2014. CuSha:

vertex-centric graph processing on GPUs. In Proceedings of the 23rd International
Symposium on High-Performance Parallel and Distributed Computing (HPDC ’14).
ACM, 239–252. https://doi.org/10.1145/2600212.2600227

[26] Pradeep Kumar and H Howie Huang. 2020. Graphone: A data store for real-time

analytics on evolving graphs. ACM Transactions on Storage (TOS) 15, 4 (2020),
1–40.

[27] Jérôme Kunegis. 2013. KONECT – The Koblenz Network Collection. In In Pro-
ceedings of International Conference on World Wide Web Companion, May 13–17,
2013, Rio de Janeiro, Brazil. ACM, 1343–1350.

[28] Haewoon Kwak, Changhyun Lee, Hosung Park, and S. Moon. 2010. What is

Twitter, a social network or a news media?. In WWW ’10.
[29] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-Scale

Graph Computation on Just a PC. In 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10,
2012. USENIX Association, 31–46. https://www.usenix.org/conference/osdi12/

technical-sessions/presentation/kyrola

[30] N. Laptev and S. Amizadeh. 2015. Yahoo anomaly detection dataset S5. In

http://webscope.sandbox.yahoo.com/catalog. php?datatype=s&did=70.
[31] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,

and Joseph Hellerstein. 2014. Graphlab: A new framework for parallel machine

learning. arXiv preprint arXiv:1408.2041 (2014).
[32] Mugilan Mariappan and Keval Vora. 2019. Graphbolt: Dependency-driven syn-

chronous processing of streaming graphs. In Proceedings of the Fourteenth EuroSys
Conference 2019. 1–16.

[33] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martín Abadi. 2013. Naiad: a timely dataflow system. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. 439–455.

[34] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim. 2017. GraphPIM: Enabling

Instruction-Level PIM Offloading in Graph Computing Frameworks. In 2017 IEEE
International Symposium on High Performance Computer Architecture (HPCA).
457–468. https://doi.org/10.1109/HPCA.2017.54

[35] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight

Infrastructure for Graph Analytics. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (Farminton, Pennsylvania) (SOSP ’13).
456–471. https://doi.org/10.1145/2517349.2522739

[36] Amir Hossein Nodehi Sabet, Junqiao Qiu, and Zhijia Zhao. 2018. Tigr: Transform-

ing irregular graphs for gpu-friendly graph processing. ACM SIGPLAN Notices
53, 2 (2018), 622–636.

[37] S. Rahman, N. Abu-Ghazaleh, and R. Gupta. 2020. GraphPulse: An Event-Driven

Hardware Accelerator for Asynchronous Graph Processing. In 2020 53rd Annual
IEEE/ACM International Symposium onMicroarchitecture (MICRO). 908–921. https:
//doi.org/10.1109/MICRO50266.2020.00078

[38] Shafiur Rahman, Mahbod Afarin, Nael Abu-Ghazaleh, and Rajiv Gupta. 2021.

JetStream: Graph Analytics on Streaming Data with Event-Driven Hardware

Accelerator. In MICRO-54: 54th Annual IEEE/ACM International Symposium on
Microarchitecture (Virtual Event, Greece) (MICRO ’21). Association for Computing

Machinery, New York, NY, USA, 1091–1105. https://doi.org/10.1145/3466752.

3480126

[39] Amir Hossein Nodehi Sabet, Zhijia Zhao, and Rajiv Gupta. 2020. Subway: min-

imizing data transfer during out-of-GPU-memory graph processing. In Pro-
ceedings of the Fifteenth EuroSys Conference (EuroSys ’20). 12:1–12:16. https:

//doi.org/10.1145/3342195.3387537

[40] Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado: A Sys-

tem For Real-Time Iterative Analysis Over Evolving Data. In Proceedings of the
2016 International Conference on Management of Data (San Francisco, California,

USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA,

417–430. https://doi.org/10.1145/2882903.2882950

[41] Julian Shun and Guy E Blelloch. 2013. Ligra: a lightweight graph processing

framework for shared memory. In Proceedings of the 18th ACM SIGPLAN sympo-
sium on Principles and practice of parallel programming. 135–146.

[42] L. Takac. 2012. DATA ANALYSIS IN PUBLIC SOCIAL NETWORKS.

[43] K. Vora, R. Gupta, and G. Xu. 2016. Synergistic Analysis of Evolving Graphs.

In ACM Transactions on Architecture and Code Optimization (TACO), Volume 13,
Issue 4, Article No. 32, 27 pages.

144

CommonGraph: Graph Analytics on Evolving Data ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[44] Keval Vora, Rajiv Gupta, and Guoqing Xu. 2017. Kickstarter: Fast and accurate

computations on streaming graphs via trimmed approximations. In Proceed-
ings of the twenty-second international conference on architectural support for
programming languages and operating systems. 237–251.

[45] Qinggang Wang, Long Zheng, Yu Huang, Pengcheng Yao, Chuangyi Gui, Xiaofei

Liao, Hai Jin, Wenbin Jiang, and Fubing Mao. 2021. GraSU: A fast graph update

library for FPGA-based dynamic graph processing. In The 2021 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. 149–159.

[46] Yangzihao Wang, Yuechao Pan, Andrew A. Davidson, Yuduo Wu, Carl Yang,

Leyuan Wang, Muhammad Osama, Chenshan Yuan, Weitang Liu, Andy T. Riffel,

and John D. Owens. 2017. Gunrock: GPU Graph Analytics. ACM Transactions on
Parallel Computing 4, 1 (2017), 3:1–3:49. https://doi.org/10.1145/3108140

[47] Jin Zhao, Yun Yang, Yu Zhang, Xiaofei Liao, Lin Gu, Ligang He, Bingsheng He,

Hai Jin, Haikun Liu, Xinyu Jiang, and Hui Yu. 2022. TDGraph: A Topology-Driven

Accelerator for High-Performance Streaming Graph Processing. In Proceedings
of the 49th Annual International Symposium on Computer Architecture (New York,

New York) (ISCA ’22). Association for Computing Machinery, New York, NY,

USA, 116–129. https://doi.org/10.1145/3470496.3527409

[48] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale

Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning.

In USENIX Annual Technical Conference (USENIX ATC), July 8-10, Santa Clara,
CA, USA. USENIX Association, 375–386. https://www.usenix.org/conference/

atc15/technical-session/presentation/zhu

Received 2022-07-07; accepted 2022-09-22

145

	Abstract
	1 Introduction
	2 Limitations of Existing Systems and Overview of CommonGraph
	2.1 Dynamic Graph Workloads and Systems
	2.2 CommonGraph: Converting Deletions to Additions

	3 CommonGraph Algorithms
	3.1 Direct Hop Query Evaluation
	3.2 Triangular Grid Based Algorithm for Query Evaluation with Maximal Work Sharing

	4 CommonGraph System
	4.1 Framework overview
	4.2 Execution Engine
	4.3 Scheduler design

	5 Performance Evaluation
	6 Related Work
	6.1 Evolving & Streaming Graphs Frameworks
	6.2 GPUs and Other Accelerators

	7 Concluding Remarks
	Acknowledgments
	References

