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ABSTRACT

We consider the problem of graph analytics on evolving graphs
(i.e., graphs that change over time). In this scenario, a query typi-
cally needs to be applied to different snapshots of the graph over
an extended time window, for example to track the evolution of
a property over time. Solving a query independently on multiple
snapshots is inefficient due to repeated execution of subcomputa-
tion common to multiple snapshots. At the same time, we show
that using streaming, where we start from the earliest snapshot
and stream the changes to the graph incrementally updating the
query results one snapshot at a time is also inefficient. We pro-
pose CommonGraph, an approach for efficient processing of queries
on evolving graphs. We first observe that deletion operations are
significantly more expensive than addition operations for many
graph queries (those that are monotonic). CommonGraph converts
all deletions to additions by finding a common graph that exists
across all snapshots. After computing the query on this graph, to
reach any snapshot, we simply need to add the missing edges and
incrementally update the query results. CommonGraph also allows
sharing of common additions among snapshots that require them,
and breaks the sequential dependency inherent in the traditional
streaming approach where snapshots are processed in sequence,
enabling additional opportunities for parallelism. We incorporate
the CommonGraph approach by extending the KickStarter stream-
ing framework. We implement optimizations that enable efficient
handling of edge additions without resorting to expensive in place
graph mutations, significantly reducing the streaming overhead,
and enabling direct reuse of shared edges among different snapshots.
CommonGraph achieves 1.38x-8.17x improvement in performance
over Kickstarter across multiple benchmarks.
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1 INTRODUCTION

Analyses on large graphs are an increasingly important computa-
tional workload as graph analytics is employed in many domains
- social networks [7, 10, 13, 21, 42], web graphs [30], brain net-
works [6] and others — to uncover insights by mining high volumes
of connected data. Due to the iterative nature of many graph an-
alytics workloads, repeated passes over the graph are required
until the algorithm converges to a stable solution. Since real-world
graphs can be very large (e.g., YahooWeb has 1.4 billion vertices and
6.6 billion edges), iterative graph analytics workloads are highly
memory-intensive. There has been significant interest in develop-
ing scalable and efficient graph analytics systems. Some examples
of such systems are Ligra [41], Galois [35], GraphChi [29], Grid-
Graph [48], GraphLab [31], GraphX [18], and PowerGraph [17].
Graphs are often dynamic, with edges and vertices being added
or removed over time [5]. There are two broad classes of analyses
on dynamic graphs: (1) Streaming graph analytics: where results of
a query are continuously updated as the graph continues to change
because updates to it stream in over time; for example, we may
want to maintain the shortest path to a destination as the traffic
conditions change. Typically incremental algorithms are employed
to update query results in response to graph changes and thus avoid
recomputing the query from scratch [8, 14, 23, 32, 38, 40, 44]; and
(2) Evolving graph analytics: in this scenario, queries seek to answer
questions about a dynamic graph as it evolves over longer time
scales [19, 22, 43]. Multiple snapshots of the graph are available
in this scenario. Typically an evolving graph (EG) query seeks
to track a graph property over a long time scale by computing its
value at different snapshots within the time window identified by
the query. This makes the problem potentially significantly more
computationally expensive than both traditional analytics on a
static graph as well as streaming analytics on a changing graph.
A straightforward approach to this problem is to apply the query
to the individual snapshots independently; however, this approach
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has significant overheads since we end up solving the query in-
dependently on many different snapshots. Alternatively, another
approach that has been used [15, 22] starts from the earliest snap-
shot and uses streaming to move from one snapshot to the next in
sequence. While this approach results in significantly less work,
provided that the number of changes between snapshots is not too
large, it has a number of drawbacks. First, we show that for many
algorithms the cost of edge deletions is very high; thus, perfor-
mance benefits of the incremental algorithm are limited. Second,
the solution moves between snapshots in sequence which limits
opportunities for sharing query evaluation work among them.

In this paper, we propose CommonGraph, a new algorithm and
system for efficiently evaluating an evolving graph query. Common-
Graph reduces the overhead of multiple evaluations by identifying
the common subgraph that is shared by the multiple snapshots of
interest. Specifically, we first process this common graph, sharing
this overhead among all the snapshots, and then stream in addi-
tional edges that convert this common graph into each of the other
snapshots. CommonGraph is motivated by two key new insights:

(1) Converting expensive deletions to additions. We show that
the incremental cost of processing deletions is significantly
greater than additions for an important class of algorithms
that is monotonic (these are the algorithms supported by
Kickstarter).Therefore, the CommonGraph is designed to nat-
urally convert all deletion operations into addition operations—
we start with the common set of edges across a group of
snapshots, and only have to add edges to reach any snap-
shot, eliminating the high overhead deletions. The overhead
of graph mutation is also reduced with only additions; and

@
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Breaking the dependencies between incremental computations.
The addition of edges to reach any snapshot is an indepen-
dent operation and thus, we can benefit from the efficient in-
cremental additions algorithm for all snapshots. This makes
possible a new structure, the Triangular Grid, that enables
further work sharing among subsets of snapshots via reuse
of the edge additions shared by them.

We implement CommonGraph by extending the Kickstarter [44]
system, a state of the art streaming graph framework; Common-
Graph is a general algorithmic idea that can be implemented within
other frameworks as well. We observe that the dynamic graph up-
date process within kickstarter is extremely expensive, and, given
the structure of CommonGraph come up with a graph representa-
tion that adds the new edges without having to change the primary
graph representation. This strategy also enables us to share the
common changes naturally among multiple snapshots in a space
efficient way. This implementation enables us to compare Com-
monGraph against the two baselines: computing the query on each
snapshot; and streaming all the changes from the initial snapshot.

The key contributions of our work are as follows:

e A new approach to evolving graphs analysis that avoids
processing of expensive deletions by converting all graph
updates to additions over the CommonGraph, replaces ex-
pensive deletions by additions, and removes dependencies
that enable work sharing among the snapshots.
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Figure 1: Kickstarter [44] Costs: (Top) Computation Cost of
Deletions vs. Additions; and (Bottom) Graph Mutation Cost.

e A new structure called Triangular Grid (TG) that exposes
work sharing possibilities among the snapshots. We demon-
strate that maximizing work sharing corresponds to solving
the Steiner tree problem on the TG, enabling further opti-
mization of evolving graph queries.

o A graphrepresentation that avoids the need to mutate graphs
and enables reuse of edges by snapshots that share them.

e We build the CommonGraph that exploits the three ideas
above to achieve speedups ranging between 1.38x and 8.17x
over Kickstarter both by avoiding deletions and performing
work sharing. Further speedups are also possible since the
evaluations of the snapshots are highly parallelizable.

2 LIMITATIONS OF EXISTING SYSTEMS AND
OVERVIEW OF COMMONGRAPH

In this section, we discuss the factors that limit the performance of
existing evolving graph processing systems and then provide an
overview of CommonGraph and how it overcomes these limitations.

2.1 Dynamic Graph Workloads and Systems

Dynamic graph systems can be categorized into streaming graph
and evolving graph systems. A streaming graph system maintains
a single version of the changing graph and, using incremental algo-
rithms, continuously updates the results of a query as the graph is
modified to maintain the query solution relative to the latest graph.
To amortize the cost of streaming, typically updates are batched.
An evolving system evaluates a query on multiple snapshots of a
graph, that can stretch over a large time window, extracting his-
torical/trend data. It may carry out query evaluation on multiple
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snapshots in parallel or start with one snapshot at a time and lever-
age incremental algorithms developed for streaming systems to
reach others.

Let G; represent the snapshot of a dynamic graph at snapshot
t. At snapshot t + 1, the graph changes to G;4; via application of
two batches of updates, a batch of edge additions A%, and a batch
of edge deletions A”. In a streaming graph system a single version
of graph is maintained, i.e. G changes to G;41 after application
of batches of updates (i.e., A} and A”). In an evolving graph sce-
nario multiple snapshots of the graph [Gy,, Gy, Gt,, -.... Gt,,] are
considered (e.g., for a transportation network, the snapshots may
correspond to different amounts of traffic at different times of the
day, or across different days of the week). If the snapshots are very
far away from each other in time, streaming a large batch of up-
dates may be more expensive than evaluating the query on the two
snapshots independently. However, if snapshots are closer in time
(more accurately, the number of updates is not excessive), then the
incremental algorithms used by streaming systems can be leveraged
to avoid redundant recomputation.

When incremental algorithms are being leveraged, after evaluat-
ing the query on one snapshot, the graph for the snapshot is first
mutated (i.e., the data structures are changed in place) to obtain the
one for the other snapshot and then the incremental algorithm is
used to update query results. A primary observation that motivates
CommonGraph is that when the system has to handle both deletions
and additions, the cost of incremental computation that handles
deletions is significantly higher than that for additions. Moreover,
the cost of graph mutations is also significant. In Figure 1 these
effects are shown for the Kickstarter [44] system. The incremen-
tal cost of processing a batch of deletions is nearly 3x the cost
of processing an equal number of additions, and this observation
holds across batches of different sizes. Handling deletions is more
expensive because the algorithm is more complex for monotonic al-
gorithms and impacts on query results are more widespread across
the graph, necessitating significantly more processing. Finally, Kick-
starter’s cost of graph mutation is also several times greater for
deletions than additions.

2.2 CommonGraph: Converting Deletions to
Additions

To address the above problems (i.e., the high incremental cost of
deletions and the significant cost of mutation), our system shown
in Figure 2 based on CommonGraph introduces these three comple-
mentary techniques. The graph is represented in form of the shared
CommonGraph and additional batches of edges (A batches) that can
be used in conjunction with the CommonGraph to realize different
snapshots. This representation of the graph and its updates allows
different query evaluation schedules (shown as red arrows) to be
realized that do not require deletions, incorporate work sharing,
and do not require explicit graph mutation. Next, we provide an
overview of these three features.

Converting Deletions to Additions. To overcome the high com-
putational cost of processing edge deletions, we make a key obser-
vation: all deletions can be converted to additions by computing
a CommonGraph that includes only the edges that are common
to all the snapshots under consideration. Once query results have
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Figure 3: CommonGraph G. for two snapshots G; and Gj1;

the latter is created via a A} additions (blue edges) and AL

deletions (red edges); going from G¢ to G; and G;41 requires
only addition of AL and AL respectively.

been computed on this graph, then results for any snapshot can
be computed by adding the batch of missing edges to the Common-
Graph and employing the incremental algorithm to update query
results. That is, we can avoid the use of the more expensive incre-
mental algorithm for deletions since deletions become additions if
we reverse the order in which the snapshots are processed.

Figure 3 illustrates how CommonGraph converts deletions into
additions. The top two graphs represent two snapshots of the evolv-
ing graph. The standard streaming approach will apply AL edge
additions and A’ deletions to update query results for the first
snapshot G; and obtain the query results for second snapshot G 1.
On the other hand, by creating the CommonGraph G, we can incre-
mentally update query results for G via independently performing
edge additions Ai and AL to obtain results for Gj and Gj41.

Work Sharing for a Large Number of Snapshots. Although the
CommonGraph achieves work sharing among all the snapshots to
process the common graph itself, as the time window grows and the
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number of snapshots increases, additional opportunities for work
sharing of the graph updates among subsets of snapshots arise.
Specifically, any subset of the snapshots may share additional edges
in common (for example, if we constructed the common graph just
for that subset), and can share work if we stream the additional
edges to reach this larger common graph together instead of each
query adding them separately to each snapshot. Let us assume
that we have n snapshots to consider. Our second contribution, the
Triangular Grid (TG) representation, allows systematic exploration
and discovery of a n incremental computations that result in query
results for all n snapshots while at the same time maximizing the
overall work sharing beyond the base level of sharing that the
CommonGraph naturally achieves.

The TG representation incorporates original snapshots, the Com-
monGraph representation, and many intermediate CommonGraphs
that correspond to CommonGraphs for subsequences of original
snapshots. Edges connecting snapshots are labeled with batches of
edge additions that convert one CommonGraph into another rep-
resenting a smaller sequence of snapshots. We show that solving
the Steiner Tree problem on the Triangular Grid representation
identifies the sequence of transitions through the grid that maxi-
mizes reuse. Algorithms for constructing the TG representation and
finding the set of incremental computations that maximize work
sharing are discussed in the next section.

Evolving Graph Representation for Evaluating Query. Besides the
two algorithmic contributions above, we also identify a signifi-
cant source of overhead in streaming graph systems. Specifically,
we observe that there is a high cost of mutation —updating the
graph representation — for converting one snapshot into another.
To address this overhead, we introduce a new representation that
significantly reduces the mutation overhead. In addition to the Com-
pressed Sparse Row (CSR) representation of the CommonGraph, we
also create CSR representations of the batches of edges that corre-
spond to edges that transition from one node to another in the TG.
This way, the CommonGraph is never changed but rather batches
of additional edges that need to be added to the CommonGraph to
obtain an intermediate or final snapshot are simply loaded to aug-
ment the CommonGraph. Different snapshots are thus represented
by the set of additional edges they include.

Next we present the Triangular Grid representation and algo-
rithms for finding query evaluation schedule to exploit work sharing.

3 COMMONGRAPH ALGORITHMS

We present two CommonGraph based algorithms for evaluating a
query on a sequence of snapshots corresponding to a time window.
First, we present the direct hop algorithm for query evaluation and
show the work sharing enabled by the CommonGraph reduces the
cost of query evaluation. Second, we present the Triangular Grid
(TG) representation, which provides CommonGraph representations
for subsequences of snapshots, and show how it is used to find an
even better query evaluation schedule that maximizes work sharing.

3.1 Direct Hop Query Evaluation

Since the CommonGraph represents edges common to all snapshots
under consideration, a significant degree of work sharing across
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snapshots is achieved by evaluating the query on the Common-
Graph and then updating the results incrementally by applying
the impact of edge additions corresponding to each snapshot. This
approach avoids the need to use the expensive incremental algo-
rithm for deletions while achieving significant work sharing via
the CommonGraph. We name this method the direct-hop algorithm
because the query evaluation schedule directly computes the query
results for each snapshot from the results of the CommonGraph.

The example in Figure 4 illustrates the benefits of this approach.
Let us consider we have three snapshots namely G;, G;+1, and Gj2.
Let us assume that the batches of edge additions and deletions that
derive Gj4+1 from G;j (i.e., A+ and AL ) and then derive Gj4» from
Git+1 (ie., A+ ! and AHI) are as shown in Figure 4.

Consider that the CommonGraph G that has all the common
edges from the three snapshots as shown in Figure 4. We can reach
Gi, Gi+1, and Gj12 by adding Ail, A%, and Af} to G respectively.
Next we show that the direct-hop algorithm with only additions is
more efficient than the incremental approach used in Kickstarter
that evolves the graph from G; to G;41 to G;1 with both additions
and deletions. Finding query results for G;;1 from G; and Gjyo
from G;,1 will require processing 8 additions (|A% | + |AZ!|) and 10
deletions (|AL| + |A™1|). On the other hand, direct-hop approach
will require processing of 22 additions (|A$!| + |AS?| +|AS|). Since
deletions are more expensive than additions (3x in Kickstarter),
direct-hop evaluation is expected to be more efficient. This obser-
vation is confirmed by our experimental results presented later in
the paper. Note that while Kickstarter will compute the query from
scratch on Gj, direct-hop wil do so on the CommonGraph. Since,
the CommonGraph is a subgraph of G;, we conservatively (in favor
of Kickstarter) assume that these costs are similar.

Finally, we observe that if we simply want to incrementally
evaluate a query on snapshot Gj41, then evaluating it from G is
less expensive than evaluating it from G;. The former requires 7
additions and the latter requires 3 additions and 5 deletions.

3.2 Triangular Grid Based Algorithm for Query
Evaluation with Maximal Work Sharing
In this section we consider work sharing when evaluating a query

over a long sequence of snapshots Gy, Gy, ---, Gn. Once again G¢ in-
cludes all the edges that are common to all the snapshots Gy, Gy, -, Gn
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Figure 5: Triagular Grid (TG) corresponding to three original
snapshots Gj, Gj+1, and Gj 2.

and, using the additions-only incremental algorithm, from the re-
sults of G¢ the results for Gy, Gy, ---, Gn can be independently com-
puted via direct-hop approach. However, we observe that when
there are large number of snapshots, it becomes possible to create
intermediate common graphs for subsequences of snapshots and take
advantage of additional work sharing opportunities.

Triangular Grid: To take advantage of additional work sharing
we introduce the Triangular Grid (TG) representation which is illus-
trated, without loss of generality, for three snapshots G;, Gj+1, and
Gi2 in Figure 5. The TG includes two Intermediate Common-Graphs
(ICGs) that are common-graphs for pairs of original snapshots. In
Figure 5, G ;4 1) is the ICG for G; and Giy1 while G (41 ,449) is
the ICG for G;+1 and Gj42. Finally, the CommonGraph for all three
snapshots is denoted as G (;_, ;) or simply Ge.

Note that although we have shown a TG for three snapshots, the
symmetric nature of the representation shows that it applies to any
arbitrary number of snapshots. If there are n original snapshots to be
analyzed, the TG will contain exactly n—2 intermediate levels as the
number of ICGs reduces by one for each level. More importantly
we note that edges from the root CommonGraph G¢ to the two
ICGs and then from the two ICGs to the original snapshots are all
labelled exclusively with additions. That is, to move from the root
G to any original snapshot via intermediate ICGs we only need
to perform batches of edge additions. Finally, by starting from the
root G¢, and then potentially moving through exactly one ICG at
each intermediate level, a query evaluation schedule can be chosen
that exploits additional sharing among subsequence of snapshots
represented by the chosen ICG. TG guarantees the presence of an
ICG to represent any consecutive sub-sequence of snapshots. It is
important to note that the ICGs are never stored and are generated
on demand only by streaming the common edge additions if they
are needed (that is, when we need to compute multiple snapshots
reachable from the ICG).

Next we show how, from the batches of additions and deletions
between original snapshots, we can compute the additions labelling
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all other edges in the TG leading to or originating from the ICGs.
Let us assume that the batches of edge additions and deletions that
derive Gj4+1 from G; (i.e., Ai and A'_) and then derive Gj;o from
Git1 (ie., Aﬂ:’l and Ai_“) are as follows:

Ay = {e3,e12,el15}
AL = {e9,ell,e16,e23,e29}
AP = {e9,el1,e14,e24, 29}

AT = {e3,e4,¢7,€10,¢26}

Around the intermediate level of the TG (i.e., just below the
original snapshots and just above G¢), we can easily compute the
values of the following six batches of additions corresponding to
the six edges (four involving original snapshots and two involving
G¢) as follows:

A1+CG1—»Gi = AL = {e9ell,el6,e23,e29}
A{'—CGI_)GL"F] - Ai = {e3,el2,el5}
AiCGZ_’Gi+1 = A1 - {e3,e4,e7,€10,e26}
A{'—CGZ—’Gi+Z - Aiﬂ = {e9, ell, el4,e24, 829}
Afe"ICGl AL Ai_ = {ed,e7,e10,e26}

e Afﬁzccz AL - AT {e12,e15}

Query Evaluation Schedules: Every tree rooted at G¢ and includ-
ing all leaves (snapshots) represents a query evaluation schedule.
For our example, the TG representation and two query evaluation
schedules are shown in Figure 6. Recall that for this example, in
the preceding section, we had shown that the cost of direct-hop
schedule is 22 additions. However, when we consider the two trees
shown here, their costs are 19 additions (for Tree;) and 21 additions
(for Treey). This is because both the schedules shown take advan-
tage of additional work sharing: in Trees, by including ICG1, we can
share additions that are common to G; and G;41 but not present in
Gi+2; and in Treey, by including ICG,, we can share additions that
are common to G;41 and Gj42 but not present in G;. In other words,

Gity

Gty

Sadd 3fdd  Sadd 5gid
1CG, 1CG,

4ddd 2g4dd

TG | Ge
Gi Gi+1 Gi+2 Gi Gi+1 Gi+2
£ P N % % g <
Sadd 3rdd 5 gdd . 5add Sedd 5gdd
ICG, 1CG) \(1ce, ey
4"&@_(1 29{:1(1 \\‘f‘ add 21195;1//

\

N GC \/

Cost = 21 additions

G, Tree,

Figure 6: Query Evaluation Schedules: (TG) Triangular Grid;
(Treeq, Treez) Two Trees Corresponding to Query Evaluation
Schedules with Different Costs.
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Algorithm 1 Algorithm for Identifying Minimum Cost Query Evaluation Schedule using the Steiner Tree Algorithm.

: Inputs: Snapshots; Additions; and Deletions.

: Snapshots— GI(VI,EI), Gz(Vz,Ez), . GN(VN’ EN);
: Batches of Additions - AZ;I, AEZ, - AEN;

. Batches of Deletions — AE;I, AZ;Z, s A&N;

: Output: TG & Tree (Minimum Cost Schedule).

G W N e

6: BUILD-TRIANGULAR-GRID;
7: IDENTIFY-STEINER-TREE;
8: COMPRESS-STEINER-TREE;

9: function BUiLD-TRIANGULAR-GRID

10: S « Snapshots; TG « ¢; i< 0;

1 for each G;(V;, E;i) and Gj41(Vi41,Ei+1) € S do
12: if G; and G are leaf nodes then

13: wy = AE;I,; wy = Aa

14: else

15: wi=AgG,,, —AS; w2 =A5, - AG,, s
16: A;—CG,- = W33 AI_CGi = w1

17: end if

18: TG < TG u {(ICG;, G;, wy)

19: TG « TG U {(ICG;, Git1,w3)

20: S« SUICG;; i<i+1

21: end for

22: end function

23: function IDENTIFY-STEINER-TREE

24: Let Terminals be the leaves and root in TG;

25: Tree < subtree of TG with at least one terminal;
26: while Tree does not span all terminals do

27: Select a terminal x not in Tree such that

28: x is closest to a vertex in Tree

29: Add to Tree, shortest path connecting x to Tree
30: end while

31: end function

32: function COMPRESS-STEINER-TREE

33: for each vertex v € Tree do

34: if v has one incoming and one outgoing edge then
35: Byprass v

36: end if

37: end for

38: end function

the edges that are traversed multiple times are only computed once
stopping at the ICG where the paths diverge, reducing the number
of additions through work sharing.

While the reduction in number of total additions in the above
example is small, it should be noted that this reduction will grow
as the number of snapshots grows because, especially in higher
levels of the TG, each edge can lead to many snapshots and would
have been added independently and redundantly for each snapshot
in direct-hop. Moreover, a secondary factor is that the size of G¢
becomes smaller as the number of edge additions and deletions
increases with more snapshots, leading to more unexploited work
sharing opportunities among the subsequences of snapshots grow.
Finally, note that when there is a path from G to a leaf snapshot
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which passes through an ICG which has exactly one incoming and
outgoing edge in the Tree identified, we simply bypass the node
and combine the addition batches for incoming and outgoing edges
into one larger batch to maximize parallelism. In our example, in
Tree; we bypass ICG, and in Tree; we bypass ICGj.

Complete Algorithm for Finding Minimum Cost Query Evaluation
Schedule. The algorithm consists of three steps as shown in Figure 7.
In the first step, we will create the Triangular Grid TG for a given
sequence of snapshots on which a user query needs to be evaluated.
The optimal query evaluation schedule consists of the tree that
reaches all the snapshots with minimum total cost; this minimum
cost represents the maximal degree of reuse, allowing the cost to
drop to this minimal from the direct-hop cost which has no reuse.
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This problem is the Steiner tree problem [20]. Thus, the second step
of our algorithm finds the best paths from G¢ to all the snapshots
using the Steiner tree algorithm that finds a minimum cost tree
Tree, that is, the sum of additions labelling the edges included in
Tree is the minimum. Finally, in the third step, we bypass ICG
nodes that have exactly one incoming and one outgoing edge in
Tree and merge the edge addition batches for individual edges into
one batch corresponding to the union of the edge batches on the
incoming and outgoing edges of each bypassed ICG. In Figure 7 we
can bypass nodes and combine batches AL and A? into one batch
and also combine A% and Aﬁ into one batch.

The pseudocode of the above three step process is given in Al-
gorithm 1. It should be noted that this algorithm is general in two
respects. First, it handles an arbitrary number of snapshots, i.e. it
builds the TG with appropriate number of levels. Second, since it
supports bypassing, it subsumes the direct-hop solution, i.e. it is per-
fectly capable of generating the direct-hop query schedule if all the
available sharing can be achieved by the G, graph and no additional
sharing opportunities exist among subsequences of snapshots.

4 COMMONGRAPH SYSTEM

In this section we discuss our system design and implementation
for processing evolving graphs using CommonGraph algorithms.
We first present an overview of the framework and then describe
the core processing engine in more detail.

4.1 Framework overview

The framework consists of the storage and memory representation
of the evolving graphs, as well as the set of primitives to manage
the storage and the version control of the snapshots in memory
during execution. We discuss these aspects of the framework next.

We use the common graph as the basis for storing the graph as a
series of common graphs for each range of snapshots as well as the
set of edges in the Triangular Grid for each of them. Thus, there is a
minimal cost for generating common graphs while the updates are
stored as sets of A edges corresponding to the Triangular Grid edges.
For Kickstarter [44], we use its storage format based on Ligra [41].

The key feature of the data structures that we use to support
evolving graphs is that we avoid the cost of updates to the graph as

Table 1: Common graph main primitives for query
computation and graph update.

’ Version control API ‘ Description

get_version(number) Retrieve a snapshot

Identifies difference between
two snapshots

diff(snapshot, snapshot)

Create a new snapshot and

new_version(A+, A-) update common graph

’ Quer Yy API ‘ API function

edge_function(edge) Algorithm specific edge function

schedule(vertex_id, mode) Schedule active vertex

update(vertex_id) Atomic update function
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it evolves. As discussed in Section 3, the common graph and A edges
are stored separately, and different versions of the graph are reached
by including different subsets of the A edges as specified by the TG.
The representation is space optimal as each edge in the system only
gets represented once. In addition to avoiding expensive mutations,
this organization also significantly reduces both memory footprint
and memory access overheads. To access the graph, we support the
primitives shown in Table 1. These primitives are used to retrieve a
snapshot or find the difference between snapshots. The overhead in
querying a snapshot is much lower than that in Aspen [12], which
is a multi-version storage system for evolving graphs; the overhead
for Aspen has up to 2x overhead than Ligra+ on static graphs.
When a new snapshots are to be created by a stream of batches,
the system uses the batches to update the common graph and the
TG. Specifically, the new edges (both the additions and deletions)
will be removed from the common graph and additional nodes
representing the new snapshot will be added to the TG.

Algorithm 2 Mutation-Free Incremental Algorithm

1: Inputs: common graph; streaming batches, query algorithm;
2: Output: Query result — vertex_value_array(].
3: function INCREMENTAL COMPUTATION

4 for edge in streaming batches do

5: if edge_function(edge) == True; then
6: update(destination);

7 schedule(dst, mode);

8 end if

9: end for

10: while scheduler is not empty do

11: for vertex in scheduler do

12: for edges € common graph+update batch do
13: if edge_function(edge) == True; then

14: schedule(vertex, mode);

15: end if

16: end for

17: end for

18: end while

19: end function

4.2 Execution Engine

The system executes a query targeting multiple snapshots in two
steps: a scheduling phase; and a computation phase. The scheduler
derives the query execution plan following Algorithm 1, this step is
not needed for direct hop. The query execution phase is divided to
two parts: initial computation of the query on the common graph
and incremental update to add the batches to reach the next graph,
and eventually all the snapshots. In the initial stage, computation
happens on the common graph only, with active vertices pushing
information to neighbors. The computation iterates till the graph
stabilizes. For the second phase, we extend the Kickstarter stream-
ing algorithm as shown in Algorithm 2. Specifically, the system first
starts with streaming batches (lines 4-9), the destination vertices
are updated and scheduled based on the edge function. Next, the
scheduled vertices repeatedly push updates to their outgoing neigh-
bors and new vertices are scheduled and updated (Algorithm 2,
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lines 10-18). The steps in the algorithm shown in red are APIs for
programming the engine.

A major difference between common graph engine and other
streaming engines is it takes a graph with batches of streaming
edges as input instead of doing computation on just single version.
The edge function in Table 1 is applied both on common graph and
streaming batches. This strategy avoids expensive graph mutation
operation with reasonable overhead.

4.3 Scheduler design

Scheduler referenced in Algorithm 2 on lines 10-11 incorporates
another policy in our system. The key idea is to switch between
synchronous and asynchronous mode. For large streaming batch,
the scheduler will work in synchronous mode, and vertex updates
will take effective in next iteration. For a small streaming batch, the
scheduler is set to asynchronous mode and updated vertex value
will be available in the current iteration.

5 PERFORMANCE EVALUATION

All experiments are conducted on a shared memory system, which
contains 56 Intel Xeon E5-2680 processor and 520GB memory. The
CommonGraph system is compiled by g++ 7.3.1 and runs on
CentOS Linux 7.

We evaluate CommonGraph on five benchmarks (all monotonic
algorithms). The benchmarks are shown in Table 3, along with
their push operations, which is the primary difference between the
benchmarks. We use the four input graphs shown in Table 2. Update
batches consisting of edge additions and deletions are generated
for each benchmark to transition from one snapshot to the next,
and the evaluation targets a number of snapshots specified with
each experiment.

Table 2: Edges and Vertices of the Input Graphs.

‘ Input Graph ‘ | Edges | “ Vertices mAvg degreeH
LiveJournal (LJ) [3] 70M aM 28.26
DBpediaLinks (DL) [2] 170M 18M 18.85
WikipediaLinks (Wen) [27]| 400M 13M 64.32
Twitter (TTW) [28] 1.5B 41M 70.51

Our first experiment tracks the execution time for evaluating a
query of each of the five benchmarks on 50 consecutive snapshots.
Each snapshot is separated from the next by a batch of 75,000 edge
changes split evenly between additions and deletions, which repre-
sents approximately 0.01% of the number of edges in LiveJournal,
the smallest benchmark among our input graphs. The first row for
each benchmark in the table is baseline KickStarter: we start from
the initial snapshot and stream in the batches to reach the next
snapshot repeatedly until we reach the final snapshot. The second
row for each benchmark uses CommonGraph but Direct-Hops the
additions to reach each snapshot in a single batch; although the
snapshots can be processed in parallel, we report the total sequen-
tial time. Finally, the last row introduces the maximal Work-Sharing
algorithm based upon building the TG and solving the Steiner tree
to identify the paths that minimize the overall work to be able to
reach all the snapshots. Snapshots that share subsets of their path,
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Table 3: Benchmarks and their Push Operations. CASMIN(a;
b) sets a = b if b < a atomically; CASMAX is similarly defined.
The algorithms are Breadth First Search (BFS), Single Source
Widest Path (SSWP), Single Source Narrowest Path (SSNP),
Single Source Shortest Path (SSSP), and Virterbi.

| Algorithm | EdgeFunction (e(u,0)) |

BFS CASMIN (Val(v), min(Val(u) + 1,0al(v)))
SSWP CASMAX (Val(v), min(Val(u), wt(u,0)))
SSNP CASMIN (Val(v), max(Val(u), wt(u,v)))
SSSP CASMIN (Val(v),Val(u) + wt(u,v))
Viterbi CASMAX (Val(v),Val(u)/wt(u,v))

share the processing to reach the node of the Triangular grid where
they diverge; we are computing each addition batch once for the
snapshots that share it.

In Table 4, we can see the speedup for CommonGraph with Direct-
Hop (direct traversal to each snapshot); it outperforms the baseline
KickStarter 1.02x-7.91x; even though it processes a higher number
of edges compared to KickStarter, all these edges are additions and
benefit also from parallelism among additions since they are pro-
cessed in a single batch. Moreover, some of the benefits come from
avoiding the cost of graph mutation through our graph represen-
tation. Additional speedup is achieved using work sharing, for an
overall speedup of 1.38x-8.17x over baseline KickStarter.

The next set of experiments evaluate the scalability of the direct
hop and work sharing algorithms with respect to two different
scaling parameters, number of snapshots and the batch size. We
used our biggest graph (TTW) and four benchmarks (BFS, SSSP,
SSWP, and SSNP) for the scalability experiment. In the first exper-
iment we fix the batch size to 75K graph updatesand varied the
number of snapshots from 5 to 50. As we can see from Figure 8,
the execution time of CommonGraph based algorithms is superior
to that of Kickstarter; the execution time for all three algorithms
increases linearly with the number of snapshots.

We also observe that for fewer snapshots the direct-hop algo-
rithm works better than work-sharing. At a smaller number of
snapshots, the degree of work sharing is small as each batch is
reused by at most 2 snapshots. At the same time, having to stabilize
the solution at an intermediate common graph reduces the amount
of parallelism available in executing a larger number of updates
concurrently. However, work sharing significantly outperforms
direct hop when we increase the number of snapshots beyond 23
to 35 for different benchmarks.

In Figure 9, we show the second analysis for the scalability. In
this analysis, we fix the total number of graph updates and vary
the batch size — smaller batch size corresponds to more snapshots
and more accurate picture of changes in query results. As shown
in the Figure 9, we start with 75K batch sizes for 50 snapshots and
then increase the batch size to 375K for 10 snapshots. For the bigger
batch size, the direct-hop algorithm works better compared to the
work-sharing, and for the smaller number of the batch size, the
work-sharing works better. This is because for smaller batch size
we have a greater number of snapshots and the benefit of TG grows
due to increased opportunities for sharing.

We also varied the ratio of additions and deletions to show that
across different ratios our common graph representation provides
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Table 4: Average Execution Times in Seconds for KickStarter with Both Additions and Deletions, and the speedup of
CommonGraph Direct Hop and CommonGraph Work-Sharing Algorithm over KickStarter for 50 Snapshots.

| Graph | Query Evaluation Algorithm || BFS | SSSP | SSWP | SSNP | Viterbi |

KICKSTARTER TIME 3.43s 3.88s 3.69s 3.75s 5.17s
LJ DirecT-HoP SPEEDUP 1.58x | 1.07x 1.23x 1.18x 1.02x
WORK-SHARING SPEEDUP 1.86x | 1.43x 1.38x 1.43x 1.62x
KICKSTARTER TIME 27.22s | 27.64s | 27.91s | 27.51s 31.87s
DL DirecT-HoP SPEEDUP 7.09%x | 7.45x 7.3x 6.7x 7.91x
WORK-SHARING SPEEDUP 7.17x | 8.17x 7.64x 7.21x 8.17x
KICKSTARTER TIME 4.65s 4.59s 4.72s 4.20s 2.03s
Wen DirecT-HoP SPEEDUP 4.53%x | 1.32x 2.73x | 2.08x 3.24x
WORK-SHARING SPEEDUP 4.68x | 2.42x 3.31x 2.40x 3.8%
KICKSTARTER TIME 10.91s | 11.73s | 11.32s | 11.31s 15.30s
TTW DirecT-Hor SPEEDUP 3.09x | 2.36x% 2.52x 1.85x 2.85x%
WORK-SHARING SPEEDUP 3.35x | 2.94x 3.14x 2.62x 3.42x
M KickStarter ® Direct-Hop Work-Sharing M KickStarter m Direct-Hop Work-Sharing
12 14
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Figure 8: Execution time for KickStarter, CommonGraph Direct-Hop, and Work-Sharing.

gains over KickStarter. In Figure 10 we show the speedups by vary-
ing batches from from 150K additions and 50K deletions to 50K
additions and 150K deletions. As we can see, as greater percentage
of deletion updates are considered, the speedup of Direct-Hop over
KickStarter increases.

CommonGraph also exposes opportunities for parallelism that
are difficult to realize in streaming only systems such as Kickstarter.
Specifically, we can execute the direct hop algorithm in parallel
to reach each of the snapshots independently from the common
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graph. In contrast, Kickstarter processes the snapshots sequentially,
making it difficult to parallelize the processing. In Table 5, we show
the time for the longest direct hop evaluation to reach any of the 50
snapshots. Given a system with sufficient cores, this is an estimate
of the overall run time of these embarrassingly parallel evaluations.
We can see that there is an opportunity to achieve speedups upwards
of 2 orders of magnitude compared to Kickstarter. We note that it
is also possible to parallelize the work sharing version of common
graph, resulting in a more work efficient algorithm.
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Figure 9: Execution times while batch size is varied, total number of graph updates is fixed.

Table 5: Execution times (seconds) and speedups of parallel implementation of the Direct-Hop algorithm over KicKStarter.

| G | Direct-Hop || BFS | sssP | sSWP | SSNP | Viterbi |
L TiIME 0.044s 0.072s 0.06s 0.063s 0.101s
SPEEDUP 78.76% 53.73x% 61.56x 59.25x% 51.14x
DL TiMmE 0.077s 0.074s 0.076s 0.082s 0.08s
SPEEDUP 354.93x | 372.52x | 365.37x | 335.19x | 395.64x
Wi TiME 0.021s 0.07s 0.034s 0.04s 0.041
‘en
SPEEDUP 226.17x | 66.06x | 136.89x | 104.12x | 161.85x
TiME 0.071s 0.099s 0.09s 0.122s 0.107s
TTW
SPEEDUP 154.54x | 118.09x | 126.11x 92.5x 142.39x
W 150K-50K m 100K-100K m 50K-150K @ Incremental Addition @ Incremental Deletion
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Figure 10: Sensitivity of performance to the ratio of
additions and deletions.

Figure 11: Breakdown of the execution time for TTW
graph for the baseline KickStarter (KS) and
CommonGraph (CG) Work-Sharing algorithm.
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Figure 11 shows the breakdown of the execution time for the
TTW graph both for KickStarter and CommonGraph . As we can
see, the CommonGraph approach eliminates the mutation time for
additions and deletions as well as the incremental deletion time.
The incremental addition time for CommonGraph is lower than the
combined incremental addition and deletion time in KickStarter.
Thus, we observe that benefits of CommonGraph result from both
reductions in computation cost and mutation cost.

6 RELATED WORK

In this section we summarize the existing dynamic graph systems
and accelerators that aim at providing flexible graph storage and
fast incremental concurrent graph querying.

6.1 Evolving & Streaming Graphs Frameworks

Among the most recent works on rapid analysis of evolving graphs
are RisGraph [16] and Tegra [22]. RisGraph achieves impressive
query evaluation speeds by developing a new data structure to sup-
port fast edge insertions and deletions. However, this is achieved at
the expense of 3.25x to 3.38x increased memory costs via precom-
puted indexes that are necessary to support both fast insertions
and deletions. Tegra [22] provides a novel API for performing ad-
hoc queries on arbitrary time windows of the graph. It accelerates
query evaluation using a compact in-memory representation for
both graph and intermediate computation state. Both RisGraph
and Tegra leverage existing algorithms developed for streaming
systems to support incremental computation for handling edge
additions and deletions. Other storage systems to support evolving
and streaming graphs include GraphOne [26] and Aspen [12] while
systems that amortize the cost of memory accesses and computation
include Chronos [19] and FA+PA [43].

A number of systems for streaming graphs have been proposed.
These algorithms maintain a single version of the graph and a stand-
ing query’s results that are incrementally updated when a batch of
updates are applied to the graph. The focus of these works is on
incremental computation, i.e. how to efficiently update query re-
sults. Early streaming systems (such as Kineograph [9], Naiad [33],
Tornado [40] and Tripoline [23]) only support incremental com-
putations for edge additions while more recent systems (such as
Kickstarter [44] and GraphBolt [32]) also support edge deletions.

Note that even though many of the above evolving and streaming
systems support both edge additions and deletions, they pay a high
cost for supporting deletions, as we showed in the comparison to
Kickstarter. CommonGraph is the first system to convert deletions
into additions for evolving graph analysis and thus reduce the cost
of graph mutation as well as incremental computation (via work
sharing) significantly.

6.2 GPUs and Other Accelerators

Recent works have begun to exploit accelerators to speedup up
graph algorithms. Much of this work is aimed at static graphs (e.g.,
Gunrock [46], CuSha [24, 25],Tigr [36], Subway [39] etc.) and the
problem addressed is to map irregular graph computation to reg-
ular GPU architectures. Specialized graph accelerators have also
been developed for both static graphs [1, 11, 34, 37] and streaming
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graphs [4, 38, 47]. Some recent works have begun to support dy-
namic graphs in accelerators such as GraSu [45]. However, to our
knowledge, no work has been done to exploit single accelerators
to address evolving graph analysis. We expect that the tremen-
dous memory and computational demands of evolving graphs will
require development of multi-accelerator systems.

7 CONCLUDING REMARKS

Graph analytics on a dynamic graph that evolves over large time
scales is a challenging problem. A user is typically interested in
queries that span potentially large time windows, which translates
into having to solve sub-queries targeting snapshots of the graph
within those windows. We propose new algorithms that signifi-
cantly improve the performance of evolving graphs compared to
state-of-the-art streaming graph systems. In particular, we observe
that deletions are significantly more expensive than additions, and
that streaming from one original snapshot limits opportunities for
work sharing. We propose CommonGraph, a representation of an
evolving graph that captures the part of the graph that is common
among a group of snapshots. Moving from this graph to any snap-
shots can be accomplished by adding the missing edges needed for
the particular snapshot. We also show that CommonGraph exposes
opportunities for work sharing among snapshots that share groups
of edges, and capitalize on this opportunity using a Triangular
Grid structure, that enables optimal work sharing when computing
queries across a sequence of snapshots. Finally, we observe that
streaming implementations incur substantial cost to mutate the
graph as it changes, and come up with a representation that en-
ables composing representations in place to represent the different
snapshots without mutation. Taken together, our ideas result in
1.38x to 8.17x improvement in the evaluation of five query types, an
advantage that grows with the number of snapshots being analyzed.

We believe that CommonGraph offers additional opportunities
and advantages. It breaks the sequential dependency in streaming al-
gorithms since we are able to move to each snapshot independently
of the prior ones. This offers opportunities for parallel execution to
further improve performance. It also enables efficiencies in storage
and query execution: for example, it enables efficient range queries
without having to start from an initial stored snapshot that can be
far from the start of the range, and therefore requires substantial
overhead just to reach the first snapshot. We intend to pursue these
ideas in future work
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