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ABSTRACT

Web vulnerability scanners (WVS) are an indispensable tool for

penetration testers and developers of web applications, allowing

them to identify and fix low-hanging vulnerabilities before they are

discovered by attackers. Unfortunately,malicious actors leverage the

very same tools to identify and exploit vulnerabilities in third-party

websites. Existing research in theWVS space is largely concerned

with howmany vulnerabilities these tools can discover, as opposed

to trying to identify the tools themselves when they are used illicitly.

In thiswork,we design a testbed to characterizeweb vulnerability

scanners using browser-based and network-based fingerprinting

techniques. We conduct a measurement study over 12 web vulner-

ability scanners as well as 159 users who were recruited to interact

with the same web applications that were targeted by the evaluated

WVSs. By contrasting the traffic and behavior of these two groups,

we discover tool-specific and type-specific behaviors inWVSs that

are absent from regular users. Based on these observations,

we design and build ScannerScope, a machine-learning-based,

web vulnerability scanner detection system. ScannerScope consists

of a transparent reverse proxy that injects fingerprinting modules

on the fly without the assistance (or knowledge) of the protected

web applications. Our evaluation results show that ScannerScope

can effectively detect WVSs and protect web applications against

unwanted vulnerability scanning, with a detection accuracy of

over 99% combined with near-zero false positives on human-visitor

traffic. Finally, we show that the asynchronous design of Scanner-

Scope results in a negligible impact on server performance and

demonstrate that its classifier can resist adversarial ML attacks

launched by sophisticated adversaries.
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· Security and privacy→Web application security; Intrusion

detection systems;Vulnerability scanners.
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1 INTRODUCTION

As theweb continues to become the platform of choice for delivering

applications to users, attackers are increasingly targeting web

applications to compromise their underlying systems and exfiltrate

personal and financial data. Moreover, the popularity of certain web-

facing technologies leads to software monocultures where a single

high-impact vulnerability discovered in a single piece of software

can be weaponized against millions of worldwide deployments of

that software. Just in 2021, NIST recorded 18,378 vulnerabilities [26],

representing a new record, with many web-related, high-impact

vulnerabilities among them, including the recently discovered Log4J

vulnerability [10], as well as critical RCE vulnerabilities in the web

UIs of VMWare and F5 products [15, 27].

One of the strategies used by developers and system administra-

tors to identify and correct vulnerabilities before they are abused by

attackers is the use ofWeb Vulnerability Scanners (WVSs). WVSs

are automated łpoint-and-clickž tools that scan web applications

for known and unknown vulnerabilities such as XSS, CSRF, RCE,

and exposed private files. WVSs can be used either manually (e.g.,

as part of a penetration-testing engagement) or incorporated in

Continuous Integration/Continous Delivery (CI/CD) pipelines to

scan a web application every time developers commit new code to

their repositories [32, 34].

Unfortunately, even though WVSs are meant to be used by le-

gitimate administrators and authorized penetration testers, nothing

stops attackers from downloading an off-the-shelf WVS, pointing it

to a target of interest, and scanning that target. Most WVSs support

rate-limiting and changing the default User-agent header, which can

be readily abused by attackers to hide their identity when scanning

targets. In fact, in their recent work on characterizing the automated

browsing activity that websites observe, Li et al. reported traces of a

specificWVS scanning their deployed web applications, despite the

lack of popularity of their honeypot websites [20]. From a research

perspective,most priorwork on knownWVSs has evaluated the abil-

ity of these tools to identify vulnerabilities [5, 12, 23, 24, 35, 36, 39],

as opposed to trying to identify the tools themselves when they are

used for unauthorized scanning. While there exists a rich body of

research on detecting Internet bots [6, 9, 16, 18, 20, 21, 31, 37, 40, 43],

WVS behavior is significantly different from the generic bots’

activities: Bots commonly conduct crawling, indexing, or occasional
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probing for specific vulnerabilities, while WVSs are designed for

the systematic evaluation or pentesting of websites against a long

list of potential vulnerabilities.

In this paper, we approach the problem of unwanted web

vulnerability scanning by compiling a list of 12 popularWVSs and

characterizing their capabilities and network-level behavior. To

this end, we develop a testbed capable of automatically launching

these scanners against our own targets while monitoring theWVSs’

network-level behavior and extracting fingerprintable attributes

using state-of-the-art browser and network-fingerprinting methods.

To understand how the traffic thatWVSs generate is different from

the traffic of benign users, we conduct a separate user study with

159 users conducting typical activities on the same web applications

(e.g., reading articles and searching for content).

By contrasting these two datasets, we identify significant

differences in the type of traffic these two groups generate and

the overall network-level behaviors they exhibit. Among others,

we discover that WVSs send large numbers of requests to the

applications that they scan (up to hundreds of thousands of requests

in a single run), causing a disproportionate number of HTTP

errors while scanning (up to 98% HTTP error rate), and exhibiting

lacking/partial support of security mechanisms that are universally

present in modern web browsers (e.g., the inability to enforce CSP

policies, as well as the inappropriate loading of mixed content). We

also explore the deterministic nature ofWVSs (i.e.,will a givenWVS

produce the same requestswhen scanning the sameweb application)

and discover the use of randomness in some of the evaluatedWVSs.

Based on our observations of the differences between users and

WVSs, we propose ScannerScope, a system for detecting unwanted

web vulnerability scanning. ScannerScope is deployed at the server-

side ofweb applications, acting as a reverse proxy between incoming

HTTP requests and the webserver. Using supervised machine

learning, ScannerScope asynchronously classifies incoming requests

as belonging to users vs. WVSs. We demonstrate that ScannerScope

exhibits high detection accuracy (e.g., 99.30% for protectingWord-

Press applications), which it largely retains even when the protected

web application is entirely different from the web application on

which it was trained. Moreover, ScannerScope keeps its detection

accuracy even when facing unseenWVSs that were not part of its

training set. Across both scenarios, ScannerScope has near-zero

false positives (i.e.,misclassifying human visitors as scanners) and

can be combined with additional server-side techniques to ensure

that both regular users, as well as benign bots, are not affected.

Finally,wedemonstrate that ScannerScope incurs a negligible per-

formance overhead in deployments that already use reverse proxies

(e.g., for load-balancing purposes) and quantify howwell Scanner-

Scope resists adversarial attacks aimed at confusing its classifier.

Overall, this paper makes the following contributions:

• We deploy a testbed for measuring web vulnerability scanners

(WVS) and use it to curate a wide range of fingerprints (browser,

TLS, and behavioral) from the evaluated tools.

• We characterize a total of 12 popular web vulnerability scanners

and 159 user participants, pointing out the differences in the

browsing behavior that they exhibit. Through this process, we

obtain two ground-truth datasets that can be used in a supervised

machine-learning setting to differentiate between users and

WVSs. We will be sharing these datasets with other researchers.

• Wepropose ScannerScope, anML-based detection system that can

detect WVSs in incoming HTTP traffic. We show that Scanner-

Scope can effectively detect unwanted scanning activity without

adding significant overhead to the web server while retaining its

robustness against attackers who attempt to spoof their identity.

2 BACKGROUNDANDTHREATMODEL

WebVulnerability Scanners (WVSs) are automated tools used to scan

web applications for common vulnerabilities. These scanners range

from simple tools that request a series of predetermined endpoints

from the scanned web application (such as directory brute-forcers),

to complicated crawling-driven tools that first map all the endpoints

of a web application before attempting a series of attack vectors

in search of SQL injections, XSS vulnerabilities, RCEs, etc. WVSs

are available as open-source tools (e.g., OWASP ZAP [29], and

Arachni [4]), commercial tools, as well as via Scanning-as-a-Service

deployments (e.g., the Tenable [2] and Acunetix [1] cloud scanners).

While the intendedaudienceofWVSsarehiredpenetration testers

as well as web application administrators, these tools can be used

by attackers to scan arbitrary third-party web applications, without

their permission. In fact, Li et al.’s recent study onmalicious bots [20]

reported evidence of WVS activity even on newly-created websites

with zero organic traffic. Many bug bounty programs (e.g., Trello [8],

United Airlines [38], and Piwik [33]) explicitly prohibit the use of

automated scanners against their assets, mainly due to the large

number of requests that they generate, whichwill be amplifiedwhen

multiple researchers try to find vulnerabilities on the same websites.

2.1 WVS Functionality

Prior work has focused on comparing WVSs across dimensions

related to their ability to discover vulnerabilities. We focus on the

dimensions that are relevant for detecting their unwanted presence

in incoming web traffic.

• Target Dependence: Target-independent tools send the same

requests regardless of the targeted web application. These

requests are typically aimed at identifying hidden directories,

backup files, and other sensitive content that is not directly linked

from a web application. Contrastingly, target-dependentWVSs

first crawl the target web application and then launch a series

of attacks against the identified endpoints.

• Use of Browser Engine: Some WVSs send requests to their

target web applications through the use of simple HTTP libraries

(API equivalents of wget and curl). In contrast, more sophisti-

catedWVSs incorporate a full browser engine in their tool. This

can be done by proxying all requests through a real browser or by

actually embedding a headless version of a browser in their tools.

2.2 WVS Threat Model

Our threat model targets malicious actors abusing off-the-shelf

web vulnerability scanners to scan target websites without the

permission of their owners. We anticipate that attackers can use

the full native capabilities offered to them by these tools, both

in terms of attack vectors as well as stealthiness, to find as many

vulnerabilities as possible while evading detection. Our goal is

to fingerprint the incoming requests generated by these tools,

differentiate them from the requests of regular users and benign

bots, and enable administrators to apply one or more access-control
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policies to the detectedWVSs (e.g., blocking their IP address). Even

if a web application is secure against the types of vulnerabilities that

WVSs are likely to find, we argue that knowing that a specific host

or group of hosts are illicitly scanning aweb application is of interest

to administrators because it reveals an ongoing attack that can be

countered early, before it escalates to other tools and attack vectors.

3 DATACOLLECTION

To be able to detect unwanted vulnerability-scanning activity on

a web application, we must first understand how popular WVSs

operate and analyze the type of traffic they generate. To this end, we

developed a testbed consisting of real web applications that we can

askWVSs to scan for vulnerabilities. This testbed adopts state-of-

the-art fingerprinting andmonitoring techniques to extract as much

information as possible about the connecting clients. This informa-

tion will be later compared against the traffic that real users produce

when visiting the same websites to build a supervised machine-

learning classifier for differentiating betweenWVSs and users.

3.1 Web Applications

To understand the extent to which a givenWVS’s network activity

is coupled to the web application that it is scanning, our testbed

uses two different types of web applications. Given their popularity,

we opted to deploy recent versions ofWordPress and Joomla, two

Content Management Systems that can be extensively customized

and are together estimated of powering more than 40% of online

websites [41, 42]. WordPress in particular is so popular that two

of the WVSs that we evaluate are custom-made to only attack

WordPress web applications.

3.2 Fingerprinting Setup

We follow the fingerprinting regime recently proposed by Li et

al. [20] to build our fingerprinting capabilities. We augment the de-

ployed web applications with traditional JavaScript-based browser

fingerprinting, behavior fingerprinting, and TLS fingerprinting as

described below:

Browser fingerprinting. Our testbed first evaluates a client’s

Java-Script support by invoking standard APIs related to AJAX

requests and DOM manipulation. For example, the testbed uses

JavaScript to create a new <img> tag on the client-side and append

that image to the DOM. If the client requests that image, this

indicates basic support of JavaScript. Similarly we fingerprint

the client’s support for security headers such as CSP and framing

policies by adding additional resources in the webpage.

Following Li et al.’s intuition, a lack of basic security-mechanism

support can reveal the presence of a non-standard client (i.e., a

WVS), regardless of that client’s identity claims. Lastly, we check for

the presence of ad-blockers by loading resources that are commonly

attributed to advertisement libraries and checking whether the

client browser loads and executes such scripts.

Behavioral fingerprinting. Behavioral-fingerprinting techniques

analyze a client’s browsing patterns such as visited pages, injected

parameters, and payloads, server-response codes, and caching. Our

testbed records the response code for each request so that we can an-

alyze the response-code distribution (i.e., ratio of successful vs. error

HTTP codes) as part of ourWVS analysis. Related to the aforemen-

tioned fingerprinting of security mechanisms, we also test to what

extent WVSs load mixed resources (e.g., loading a remote JavaScript

file over HTTP, in an otherwise HTTPS-protected page), in search

of behavior divergence compared to what all modern browsers do.

TLS fingerprinting. TLS fingerprinting extracts information from

theTLSClient Hellomessage that a client sends to the serverwhen

attempting to establish an encrypted communication channel. Prior

workhas shownthat this informationcanreveal the truenatureof the

connecting client since modern browsers present different support

forTLSversions and ciphersuites, compared to command-line clients

and HTTP libraries [19, 20]. We incorporate the FingerprinTLS

library [7] in our system to passively collect TLS fingerprints.

3.3 Scanners Data Collection

To obtain a comprehensive view of Web Vulnerability Scanners

(WVSs), we selected the top 10 open sourceWVSs from the list of

top OWASP pentesting tools [28, 30], which included all scanners

that are non-commercial and publicly available. We augment this

list with two academic scanners: Black Widow [14] and Enemy of

the State [11], resulting in 12 scanners. Though we do not expect

academic scanners to be used for attacks in the wild, we opted to

include two characteristic versions to evaluate the extent to which

these scanners behave differently compared to popular WVSs.

Table 1 lists the 12 scanners that we analyze in this study along with

their corresponding version information. For each tool, we used

the latest version available at the time of our analysis. We analyze

the scanners and report their characteristics such as the number of

requests they send, the crawling behavior, and their browser engine.

Overall, we run each scanner for 10 rounds, against both our

WordPress and Joomla web applications. This results in a total of 240

experiment runs (12𝑊𝑉𝑆𝑠×2𝑤𝑒𝑏𝑎𝑝𝑝𝑠×10 𝑟𝑜𝑢𝑛𝑑𝑠) for which our

testbed collected extensive logs of the requests thatWVSs sent, the

responses these requests elicited, and the fingerprintable attributes

of theWVSs during their runs.

3.4 User Data Collection

To identify how the traffic that real users produce when they

interact with a web application is different from that of WVSs,

we conducted an IRB-approved user study by hiring 159 online

participants using the Amazon Mechanical Turk platform [25]. A

summary of demographic information is included in Table 5 in the

Appendix. Overall, we were able to collect user-browsing data for

numerous different browsers and underlying platforms which we

contrast against browsing data generated byWVSs.

4 SCANNERBEHAVIOR

In this section, we provide an in-depth analysis of web vulnerability

scanners (WVS) through the lens of our collected dataset. Our aim

is to understand how these scanners behave, how they are different

from each other, and how their traffic can be differentiated from that

of regular users browsing the sameweb applications. Alongwith the

discovered statistics, we also present a series of observations which

we later capitalize on, for our supervised ML detection ofWVSs.

O1. The majority of scanners send a large number of requests,

which can negatively affect the performance of web servers.

While our testbed websites contain fewer than 20 pages and less

than 100 resources (e.g., JavaScript andCSSfiles), we observe that the
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Table 1: List of web vulnerability scanner tools. Results represent themedian of 10 runs.

Scanner Name Version Number of Requests Site-Specific Deterministic Invalid URL Browser-Based

(Median) Ratio

WPScan(kali) 3.8.13 168 ✓ ✓ 86.25% ✗

Arachni 1.5.1 220,822.5 ✓ ✓ 13.98% ✓(Optional)

OWASP Zap D-2020-12-21 128,346 ✓ ✓ 4.90% ✓

WMap 1.5.1 29,183 ✗ ✓ 98.67% ✗

Wapiti 3.0.3 50,970.5 ✓ ✓ 5.06% ✗

Nikto 2.1.6 8,651.5 ✗ ✓ 91.09% ✗

W3af 1.6.45 4,698 ✓ ✗ 33.41% ✗

Skipfish (kali) 2.10b 11,464 ✓ ✗ 43.50% ✗

Commix 2.9-stable 18,518 ✗ ✓ 0.00% ✗

Google Tsunami 0.0.5 1,182.5 ✓ ✗ 4.96% ✗

BlackWidow N/A 135,042.5 ✓ ✗ 0.00% ✓

Enemy of the State N/A 32 ✗ ✓ 0.00% ✗

median number of requests per run ismore than 1,000 requests for 10

out of 12 scanners. Looking at the scanners with the highest number

of requests, we observe Arachni, Black Widow, and the OWASP

ZAP sending out 220,823, 135,043, and 128,346 requests respectively.

Contrastingly, some scanners exhibit a small footprint. Namely,

WPScan only sent 168 requests per run. WPScan is specific toWord-

Press platforms and is equipped with a list of vulnerable plugins and

endpoints. Unlike the application-agnostic scanners in our dataset,

WPScan does not inject its payloads in the identifiedfields and inputs

of every page, and as a result, we observe fewer requests even on

WordPress websites, compared to otherWVSs. Enemy of the State

(one of the two academicWVSs in our dataset) terminates early on in

thescanprocess.This ismost likelydue to the toolnothavingbeenup-

dated since its release. Nevertheless, we kept this tool in our dataset

as its other features can still be used in our classifier for detection.

O2. Some scanners have distinct exploration and attack phases

which change based on the content of target web applications.

Scannerswith a distinct exploration phase initially crawl andmap

the structure of the target by issuing and modifying requests based

on the server’s response. Not all scanners, however, perform these

two steps sequentially. Scanners like Arachni send their payloads

as soon as they discover new entry points in the application.

Moreover, we observed that some scanners incorporate a hard-

coded list of endpoints that they request while others dynamically

mapped the web applications. To capture this effect into our data

models, we categorize the browsing behavior of scanners into two

major groups: Site-specific and Deterministic. Table 1 shows how

differentWVSs behave across these two categories.

The Site-specific attribute describes whether theWVS behaves

differently based on the targetweb application.We compare the scan

results of WordPress and Joomla for each scanner, and if we observe

over 70% difference in the request URIs, we mark that scanner as

site-specific. We chose the 70% threshold empirically to account for

hybrid tools that send requests towards hardcoded endpoints as well

as endpoints they discovered during their mapping phase. These

hardcoded endpoints correspond to checks for sensitive resources

including configuration files and common backup filenames.

On the other hand,WVSs that are not site-specific send out the

same request URIs regardless of the target web application. Scanners

likeWMap and Nikto fall into this category.

O3. Scanners may only use a subset of their attack vectors during

each execution.

We analyzed the scanner’s behavior over multiple runs on

the same web application and identified that certain scanners

have randomness built into their scans, specifically in the list and

order of the scanned files. In Table 1, we marked each scanner as

deterministic if more than 70% of the requested files across multiple

runs on the same web application are similar.

Unexpectedly, we discovered that a third of the scanners in our

dataset (W3af, Skipfish, Google Tsunami, and BlackWidow) show

non-deterministic behavior. For instance, W3af only incorporates

a subset of its payloads in every scan. Similarly, BlackWidow has

built-in randomization mechanisms to choose the next payload.

Even among deterministic scanners such asNiktowhich scans for

the sameURLs over subsequent scans,we observe the randomization

of a subset (<25%) of its payloads.

Overall, we consider the use of randomization byWVSs as less

than ideal for vulnerability-detection purposes. In practice, the

use of randomization means that any given vulnerability may

remain undetected for long periods of time if it happens to not be

selected in any given run. Particularly in the context of Continuous

Integration/Continuous Delivery (CI/CD) pipelines, a vulnerability

discovered by a non-deterministic scanner may be wrongly

associated with the last commit that triggered the scan, sending

developers down the wrong path for detecting it and fixing it.

O4. Scanners focus on different endpoints and produce a large

number of invalid requests compared to human visitors.

This behavior is rooted in the design principles of web vulner-

ability scanners. We analyzed the scanned URIs by extracting the

top terms using the TF-IDF algorithm. The results indicate that

scanners place more emphasis on resources within the main pages

of web applications, such as JavaScript resources and links.

We looked at the HTTP response-code distribution for each

scanner, focusing on those associated with invalid URLs. We define

the invalid URL ratio as the ratio of requests with an HTTP 404

response code compared to the total number of requests. Since we

did not deliberately include any links to non-existing resources on

our testbed websites, we do not expect normal browsing to lead to
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Table 2: Request-based features. For HTTP-header-names and TLS

fingerprints, we incorporate the information about the order of

elements in the form of bigrams and trigrams.

Feature name Type N-grams

URI-Word URI Unigram

HTTP-header-name Headers Unigram,Bigram

HTTP-header-value Headers Unigram

TLSFP TLS fingerprints Unigram,Bigram,Trigram

any significant number of invalid requests. For non-site-specific

scanners that incorporate a static list of potentially vulnerable

or sensitive resources, we observe a large ratio of requests for

non-existing files. This is reflected in the ratio of HTTP 404 errors

produced for each scan (shown in Table 1). For example, A larger por-

tion of requests from Skipfish target potentially sensitive files with

extensions such as .bak, .bat, .orig, .ver. Nikto scans include keywords

such as łpasswdž, łexež, łdirž, and łformmailž. Those keywords are

part of scanned URLs, which point to sensitive files that may contain

passwords and executable files. Overall, we can clearly attribute

a higher invalid URL ratio to the probing activities of scanners.

O5. Browser-based scanners have similar capabilities as human

visitors.

One category of features that is of interest for detection is the

various types of browser fingerprints that a server can extract from

a connecting client. Some scanners incorporate an HTTP library

to generate their HTTP requests while others use instrumented

browsers. We refer to the scanners that use instrumented browsers

as browser-based in Table 1. Browser-based scanners are specifically

harder to detect using traditional browser-fingerprinting techniques.

The JavaScript capabilities and support for security mechanisms

of these scanners will be similar (if not identical) to the capabilities

exhibited by regular users. For example, the łBlackWidowžWVS

fully honors our CSP rules only requests CSS and images that are

allowed by these rules.

Overall, we observe that there exist a number of dimensions

where different WVSs exhibit different behaviors, not just from

regular users, but also from each other. In the next section, we

describe how we can capture these differences in features used to

detect the presence of unwantedWVSs.

5 SYSTEMDESIGNOF SCANNERSCOPE

Having observed that users andWVSs exhibit different behaviors

across our testbed, we incorporate these differences into an auto-

mated detection system. In this section, we introduce ScannerScope,

a web-application agnostic, server-side tool for differentiating

betweenWVSs and benign users.

A high-level view of ScannerScope is shown in Figure 1. Scanner-

Scope is placed between the HTTP traffic reaching the server and

the webserver(s) receiving and processing that traffic. ScannerScope

routes client requests through its reverse proxy and relays them

to the destination web server. Upon receiving responses from the

webserver, ScannerScope then passes the responses back to clients.

ScannerScope transparently augments the outgoing response pages

with different fingerprinting modules and extracts fingerprints

and statistical information from the requests. This information

is then provided to the classifier module over an asynchronous

message queue, decoupling the performance of ScannerScope from

the overall performance of the protected web application.

5.1 Proxy Setup

The main component of ScannerScope is a reverse proxy. Scan-

nerScope’s reverse-proxy architecture allows it to intercept and

analyze the incoming traffic regardless of theweb applications being

used, as well as stop malicious incoming traffic from ever reaching

the web servers. Our reverse proxy consists of the following

subcomponents: i) Fingerprintingmodules, ii) AsynchronousQueue,

iii) WVS classifier, and iv) Access-control module. ScannerScope

automatically collects the browser and network-level fingerprints

by appending fingerprinting resources described in Section 3.2

(e.g., JavaScript fingerprints, CSP support, caching behavior, and

TLS fingerprints) to the outgoing HTML pages and headers. When

requests arrive, ScannerScope immediately routes them to the

webserver. In parallel, it asynchronously sends a copy of each

incoming request to the feature-extraction module; Based on the

verdicts of our classifier, we can decide to block the requests from

scanners using ScannerScope’s access-control module.

5.2 DataModeling

In this section we discuss the details of data modeling (such as, the

process of vectorizing features) based on our prior observations,

and identify the best performing machine learning models for use

in ScannerScope.

5.2.1 Feature Extraction. Based on our observations in Section 4,

we extract features from request header and body, and categorize

them in to Request-based and Capability-based features.

For the request-based features, we choose the request URI,

HTTP headers and TLS fingerprints based on observationsO1-O4.

For request URIs, we only retain their values, while for HTTP

headers and TLS fingerprints, we retain the bigram and trigram

relationships to model their order. We use a TF-IDF vectorizer to

extract distinctive terms from the request file paths, the request

parameters, HTTP header names, and a subset of HTTP header

values. To rule out the randomness (O3) from dynamic HTTP

headers and avoid spoofing, we ignore the value of dynamic headers

such as Host, Referer, User-Agent and Cookies. Note that 9/10

of the non-academicWVSs we evaluated in this paper, support the

spoofing of User-Agent headers. We incorporate the information

about the order of HTTP headers and TLS parameters by using

bigrams and trigrams in our vectorization as listed in Table 2.

Capability Features describe the browsing environment of clients.

Based onO5, we look at features extracted from our fingerprinting

scripts which report on a client’s support of JavaScript, CSP,

Framing, mixed-content, and even the presence of ad-blockers. We

refer to this set of features as Capability-based features. Unlike the

request-based features, these features are tracked over a browsing

session across multiple requests. As a result, ScannerScope’s

accuracy directly benefits from larger number of requests. For

example, to determine whether the client supports CSP, we have

to wait for the client to have a chance to load the resources on the

web pages before we observe potential CSP violations.

5.2.2 Selection of Machine Learning Model. Our initial dataset

contains a total of 240 runs fromWVSs, and 159 browsing sessions

from human visitors. We split 80% of the dataset for training, and
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APPENDIX

A DATACOLLECTIONDETAILS

Our user data collection is done through AmazonMechanical Turk

(AMT) Platform. On AMT, we deployed two Human Interaction

Tasks (HIT) with a total of 100 participants (50 forWordPress and

50 for Joomla).

Each participant was given access to either a WordPress or a

Joomla installation (populated with mock content) and was given

a list of tasks that they had to complete. These tasks included typical

user behavior that one could expected on a Content Management

System (CMS), such as reading articles, posting comments, and

searching for specific keywords. Each action translates to tens of

client-side requests corresponding to user clicks, form submissions,

the loading of images, JavaScript, CSS, etc. The participants received

a randomized list of tasks to ensure that the order of their requests

was different so as to more faithfully mimic the actions that real

users would perform on a CMS. An example of the task lists that

were given to participants is available in Table 6.

To ensure that our webserver logs did not contain traffic from

web bots that discovered our web applications during the period

of our user study, each user was provided with a unique token

embedded in their URLs. These tokens were removed during post

processing and any requests that were lacking these tokens (i.e.

they did not originate from our HITs) were discarded. At the end of

our study, we observed that we had recorded information for more

than 100 participants since some participants started their tasks but
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Table 5: Demographic data of AMT user study participants.

Web application User count Number of requests (median) Time to finish task (median)

WordPress 77 592 0:16:19

Joomla 82 823 0:11:56

never finished them. We opted to keep these requests since they

still account for valid user-browsing patterns (e.g., reading a single

article and then leaving the website).

In total, we recorded 159 user browsing sessions, consisting of 77

WordPress users and 82 Joomla users. On average, each participant

spent 15 minutes on our websites. WordPress users required a

median of 16minutes to finish the assigned tasks, compared to 12

minutes for Joomla users. Each participant who completed the task

list was paid $0.5. The vast majority of users (91.10%) navigated to

our websites using a Google Chrome browser, with the remaining

users (8.9%) completing their list of tasks using Mozilla Firefox,

Microsoft Edge, Safari, and Opera. A total of 106 (66.7%) participants

usedMicrosoftWindows 10, while the rest of 53 (33.3%) participants

used other operating systems including Windows 8.1, Mac OS

X, and Android. All of these statistics were extracted from the

participants’ User-Agent headers (based on the findings of prior

browser-fingerprinting studies [13, 44], we assume that AMT users

are highly unlikely to be spoofing their User Agents).

B ANALYSIS
OF FALSE POSITIVES OF SCANNERSCOPE

Benign bots. Given that ScannerScope is trained on WVS vs.

human-user data, we seek to understand whether the traffic

originating from benign bots looks more like human-user traffic,

as opposed to vulnerability-scanning traffic.

To measure this, we extracted the search-engine bot traces

(includingGoogle Bot, Bing bot, as well as other smaller benign bots)

from the Good-Bot-Bad-Bot dataset by Li et al. [20]. Given that our

classifier uses similar web applications and fingerprinting features

as those used by Li et al., wewere able to successfully extract features

from their dataset (we pick one month of traffic at random from

Li et al.’s dataset and focus on the requests labeled as belonging to

well-known benign bots) and pass them to ScannerScope’s classifier,

as if these requests would have arrived on our ownweb applications.

Out of 411 search engine bot IP addresses, ScannerScope marked

408 (99.27%) as non-scanners. Upon further analysis, we identified

that the Similarity-based features, HTTP headers, and URLs are the

determining features that tell search engine bots from vulnerability

scanners apart. More specifically, we observed that while scanners

often request invalid resources that result in HTTP 404 response

codes, search engine bots mostly request valid resources.

False positives on human requests.Although ScannerScope

exhibits high accuracy in detecting scanners, false positives are still

costly (from a business perspective) when they occur. Looking at the

test results of training onWordPress and testingWordPress, we over-

all observe 238 true negatives, 0 false positives, 11 false negative, and

1,323 true positives. Across theWordPress and Joomla experiments,

we observe a false positive rate ranging from 0% to 0.86%.

To identify possible skews in our user study dataset due to the geo-

graphic distribution of AMTworkers, we verified the distribution of

locale-relatedHTTPheaders. Fromthisperspective,we found that all

users report łen_USž locale as their preferred language setting under

łAccept-LanguagežHTTPheader.At the same time, less than20.1%of

users advertised multiple locales such as łen-GBž or łen-INž. In com-

parison, in theWVS dataset, we observed that some scanners do not

send the łAccept-Languagež header, while others advertised łen-USž.

As a result, language-relatedHTTP header preferences due to the ge-

ographic distributionofAMTusers, shouldnot skew thefingerprints.

C ROBUSTNESS
AGAINSTADVERSARIALATTACKS

In Section 6.1, we demonstrated the high accuracy and precision

of ScannerScope in successfully classifying WVS traffic even in

challenging deployment scenarios, such as, when considering

unseen scanners or when the testing web application is different

from the training one. In this section, we evaluate the robustness

of our model against adversarial attacks. To that end, we simulate

sophisticated attackers who have the ability to modify and spoof

certain properties of their scanners beyond the options provided

through their configurations. These properties could be spoofed

either by changing the source code of the tools or by proxying all

connections at the client-side and rewriting fields appropriately.

While these attack scenarios are expressly outside our threat model

(Section 2), we evaluate them to understand the detection limits and

degradation behavior of ScannerScope.

In the first adversarial scenario, we consider attackers that can

modify arbitrary HTTP headers from their scans. Even though we

have already removed the easily modifiable HTTP headers from

our training data (e.g.,User-agent and cookies), attackers may still

modify other headers (such as encoding, content length, etc.) which

are not particularly crucial for web servers, in an effort to evade

classifiers that are relying on them. Separate frommodified HTTP

request headers, we also explore the robustness of our classifier

against attackers with modified TLS fingerprints.

For these two experiments, we gradually replace the HTTP head-

ers andTLSfields fromscannerswith values fromhuman-visitor traf-

fic and measure the drop-off in the accuracy of our ScannerScope’s

classifier. We refer to the ratio of replaced fields in Figure 5 as the

ładversarial ratež which ranges from 0 to 1. The value of one denotes

that theWVS features are fully replaced with non-WVS samples.

As expected, gradually replacing the features with the opposite

class lowers the accuracy until the majority of scanner samples

are classified as non-scanners. As evident in Figure 5, replacing

merely 10% of the headers from the requests of scanners can degrade

the accuracy down to 61.86% for the classifier only trained on

HTTP headers. Similarly, replacing 20% of HTTP headers with

human-request samples results in 57.21% accuracy. These numbers

quantify the ability of attackers to bypass detection for classifiers

that only focus on a subset of easily modifiable scanner properties;

Performing the same test on TLS fingerprints yields similar results.

D PERFORMANCE
OVERHEAD IN PROXYMODE

ScannerScope is meant to be deployed inline with the web applica-

tions that it is protecting. At the same time, through the use of asyn-

chronous queues andML classifiers,we have designed ScannerScope

to have aminimal impact on aweb application’s performance. In this

section, we report on the performance overhead of ScannerScope.
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