Role Models: Role-based Debloating for Web Applications

Babak Amin Azad
baminazad@cs.stonybrook.edu
Stony Brook University

ABSTRACT

The process of debloating, i.e., removing unnecessary code and
features in software, has become an attractive proposition to man-
aging the ever-expanding attack surface of ever-growing modern
applications. Researchers have shown that debloating produces
significant security improvements in a variety of application do-
mains including operating systems, libraries, compiled software,
and, more recently, web applications. Even though the client/server
nature of web applications allows the same backend to serve thou-
sands of users with diverse needs, web applications have been
approached monolithically by existing debloating approaches. That
is, a feature can be debloated only if none of the users of a web
application requires it. Similarly, everyone gets access to the same
“global” features, whether they need them or not.

Recognizing that different users need access to different features,
in this paper we propose role-based debloating for web applications.
In this approach, we focus on clustering users with similar usage
behavior together and providing them with a custom debloated
application that is tailored to their needs. Through a user study
with 60 experienced web developers and administrators, we first
establish that different users indeed use web applications differ-
ently. This data is then used by DBLTR, an automated pipeline for
providing tailored debloating based on a user’s true requirements.
Next to debloating web applications, DBLTR includes a transparent
content-delivery mechanism that routes authenticated users to their
debloated copies. We demonstrate that for different web applica-
tions, DBLTR can be 30-80% more effective than the state-of-the-art
in debloating in removing critical vulnerabilities.

KEYWORDS
Software Debloating, Web Applications, Attack Surface Reduction

ACM Reference Format:

Babak Amin Azad and Nick Nikiforakis. 2023. Role Models: Role-based
Debloating for Web Applications. In Proceedings of the Thirteenth ACM
Conference on Data and Application Security and Privacy (CODASPY ’23),
April 24-26, 2023, Charlotte, NC, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3577923.3583647

1 INTRODUCTION

Since the introduction of the World Wide Web, there has been
an exponential growth in the number of online websites and web

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY 23, April 24-26, 2023, Charlotte, NC, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0067-5/23/04...$15.00
https://doi.org/10.1145/3577923.3583647

Nick Nikiforakis
nick@cs.stonybrook.edu
Stony Brook University

services [38]. Our lives are entangled with online services, and
companies and governments are hosting their vital infrastructure
online. Both the quality and the complexity of these services have
increased drastically over the past decade. As the need for more
complex online services rose, the development community matured
and started building more and more reusable pieces of code.

The industry standard in web-development practices switched
from writing in-house code from “scratch” to the use of profes-
sionally developed and maintained third-party modules [25, 27, 30].
Modern web applications commonly incorporate frameworks and
packages from public sources to provide routine features such as
page management, user authentication, error handling, testing,
and logging [28]. Inherent to the use of off-the-shelf software, is
the resulting amalgam of useful and non-useful features. Packages
provide a variety of features (e.g., support for multiple database
backends) to be useful to as many projects as possible. At the same
time, this added flexibility comes at the price of code bloat. Code
bloat refers to parts of the application source code that serve no
purpose to its users. In the example of database APIs, if the website
only interacts with a MySQL database, the source code for other
database APIs still remains in the application. While this may seem
benign, flaws in the unused parts of applications can lead to security
vulnerabilities [2, 5].

One line of research called software debloating focuses on identi-
fying and neutralizing unused parts of applications. Existing sys-
tems perform debloating either directly at the source-code level
by rewriting the code to remove/block unused code paths [2, 18],
or alternatively limit the underlying APIs available to each page
to reduce the impact of exploits [5]. Unlike binaries, when dealing
with web-application vulnerabilities, attackers can inject data and
execute code, but cannot jump to arbitrary instructions within the
code. Therefore, removing dead code is only of limited benefit for
web applications. As a result, web-application debloating mecha-
nisms commonly remove live code that is deemed as unnecessary
based on dynamic code-coverage traces and static analysis.

One of the main limitations of prior work is the focus on one-size-
fits-all debloating. In such schemes, all users of the web application
regardless of their role and access type, receive the same treatment.
In other words, existing debloating systems produce a single copy of
a debloated application to serve all public and authenticated users.
One may be hopeful that the authentication and access control
modules within the web applications would only provide access to
critical features for those users who need them, yet this assumption
is critically flawed. First, not all popular web applications provide
fine-grained access control (e.g., phpMyAdmin), and for those that
do provide it (e.g., WordPress), the predefined list of available roles
may not match the behavioral patterns of users, leading to over-
authorization.

Furthermore, access-control flaws where users have access to
features that they should not have access to, are commonly found

https://doi.org/10.1145/3577923.3583647
https://doi.org/10.1145/3577923.3583647

CODASPY’23, April 24-26, 2023, Charlotte, NC, USA

even in popular platforms [7, 8]. Among other examples, attackers
have been able to directly invoke privileged vulnerable modules in
WordPress, which allowed them to fully bypass the authentication
and authorization of the main application [16].

To address the limitations of prior web application debloating
systems we propose DBLTR, an automatic role-based debloating
pipeline that identifies clusters of similar usage patterns among
users which can be considered equivalent to a dynamically gen-
erated access-control role. After identifying the optimal number
of roles (N), DBLTR creates N debloated copies of the web appli-
cation tailored to the true needs of each subset of users. DBLTR
orchestrates the access to these applications through the use of a
transparent reverse proxy that captures the successful authentica-
tion requests and subsequent authentication cookies to route known
users to their custom debloated web applications. This process is
done without the need to modify target web applications beyond
the debloating process, and requests are routed transparently from
the perspective of users.

DBLTR yields multiple concrete advantages compared to prior
schemes of debloating web applications. First, it creates a separa-
tion between public and authenticated users which protects web
applications even in the face of access-control errors. Second, it
limits the damage that is possible by a given authenticated user (e.g.,
due to compromised credentials or client-side attacks) by limiting
the attack to the parts of the web application that the user requires
for their tasks. Third, the clustering of users into sets that access
differently-debloated web applications, provides a fine-grained ac-
cess control mechanism, which operates on top of any existing
access-control mechanism and can capture the real needs of users
on a feature-by-feature basis. For instance, a WordPress adminis-
trator that only publishes blog posts and replies to comments will
receive access to a tailored WordPress application where critical
features (e.g., theme modification and plugin installation) are neu-
tralized for that user, yet remain available to other privileged users
in the same deployment who rely on them. Lastly, due to its mod-
ular nature, DBLTR can integrate with any future static/dynamic
end-to-end web application debloating scheme to improve their
debloating results.

To better understand how the various components of DBLTR
work in unison to differentially-debloat and secure web applications,
we have prepared the following demonstration. We show a scenario
involving a CSRF exploit on phpMyAdmin (CVE-2019-12616) and
two users who both visit the same exploit-launching page prepared
by an attacker. The video of our demonstration is available online
at: https://dbltr.debloating.com/.

Overall, we make the following original contributions:

e To back our intuition that different privileged users utilize
web applications in different ways, we perform a user study
including 60 participants to understand how experienced
developers and administrators interact with popular web
applications.

e We propose DBLTR, an automated web-application debloat-
ing and content-delivery system which is capable of reducing
the size of applications by more than 70% and removing as
much as 80% of severe security vulnerabilities beyond the
state-of-the-art in web application debloating.

Amin Azad et al.

e We analyze the security gains and quantify the attack-surface
reduction of our debloating scheme based on various source
code (e.g., line reduction) and security metrics (e.g., CVE
reduction, Critical API removal, etc.)

To motivate additional research in the area of software debloat-
ing, and to ensure reproducibility of our findings, we will be releas-
ing all of our software artifacts upon publication of this paper.

2 BACKGROUND

In this section, we review the topics that will be used as building
blocks for the remainder of the paper. First, we discuss the details
of debloating web applications based on dynamic code-coverage
traces. Then, we review several source-code metrics that can be
used to measure the effectiveness of debloating from the perspective
of attack-surface reduction.

2.1 Debloating based on dynamic usage traces

Debloating based on dynamic traces for web applications was first
introduced by the “Less is More” work of Amin Azad et al. [2].
The authors incorporated a set of automation tools and scripts to
simulate user behavior while recording the executed server-side
files as well as their respective lines.

The authors discussed two debloating strategies, file-level and
function-level debloating. File debloating only removes the whole
AST of a file, if none if its underlying statements are ever exercised
based on the dynamic usage traces. Conversely, function debloating
analysis is more fine grained and can remove sub-graphs of the
AST if it identifies a function with no code-coverage, and therefore,
can produce smaller applications with fewer vulnerabilities.

The “Less is More” system incorporates the XDebug PHP module
that allows it to record the list of executed PHP files and lines. In
this work, we follow a similar method to record code-coverage,
and extend the debloating ideas of Amin Azad et al. by analyzing
real user data, and identifying clusters of users that perform sim-
ilar actions. We use these clusters to demonstrate the debloating
improvements made possible by role-based debloating.

2.2 Debloating metrics

Debloating by definition removes or neutralizes parts of the applica-
tion that users do not require. In order to demonstrate the security
gains by removing a piece of code, previous work has used several
source-code metrics.

Size reduction: measures how much code was removed through
the debloating process. McConnell discussed in his work that the
size of the code positively correlates with the number of software
bugs it contains [20]. The reduction in Logical Lines of Code (LLOC)
measures the size reduction by counting the number of statements
in an application pre- and post-debloating and is resilient to changes
in the syntax and coding style.

Reduction of security vulnerabilities: is another metric that focuses
on historic CVEs. By mapping public CVEs to the source code of
web applications, we can identify whether the vulnerable piece
of code is removed by debloating. This is a powerful metric as it
focuses on real and mostly exploitable vulnerabilities as opposed
to proxy variables (such as LLOC) that may or may not result

https://dbltr.debloating.com/

Role Models: Role-based Debloating for Web Applications

in real vulnerabilities. In terms of downsides, next to the effort
required to map vulnerabilities to source code, CVE-reduction is
only meaningful in hindsight since it can be used to understand how
a debloating system would have performed if an application was
debloated before the now-known vulnerabilities were discovered.

Critical API Calls (CAC) reduction: PHP applications interact with
their environment through the APIs provided by the PHP engine,
which are also known as built-in functions. These functions expose
low-level C API implementations and provide a variety of func-
tionality to perform network, database, and file-system operations.
Similarly, PHP extensions which are also written in C, expose their
functionality through defining new APIs.

Protecting CACs has received the attention of binary debloating
and exploit prevention research in the past. Namely, Shredder [21],
ROPGuard [11], and kBouncer [29] have emphasized the impor-
tance of protecting Critical APIs. In the realm of web applications,
the literature on taint analysis for vulnerability detection commonly
incorporates the list of such critical APIs that attackers can use to
execute various types of attacks. For instance, attackers can abuse
APIs exposed through the MySQLi PHP extension to mount SQL
injection attacks. Similarly, the exploitation of file-system APIs can
lead to arbitrary file-write attacks. Therefore, reducing the access
of attackers to such functions through debloating provides tangible
security benefits. The RIPS tool by Dahse et al. provided a com-
prehensive list of Critical APIs, which were treated as sinks for
PHP taint analysis [6]. We incorporate the 205 sinks from RIPS
and measure the removal of such critical API calls (CACs) from the
debloated web applications.

We categorize the sensitive sinks from RIPS into four main
groups. Code Execution APIs are those which can be used to
directly, or indirectly run code or change the control flow of the
application (e.g., call an arbitrary function). Next on this list are
File System APIs which enable interactions with the file system,
such as, deletion and file manipulation and can be abused to take
over an application by overwriting files, overriding credentials, and
removing sensitive configuration files. Information Disclosure
functions can be abused by attackers to expose sensitive informa-
tion from the web application or its host operating system. Lastly,
for APIs that do not clearly belong to one of the aforementioned
categories, we list them under Other. This group of critical APIs
may allow attackers to conduct malicious actions, such as, sending
spam emails, or evading authentication by changing environment
variables.

PHP Object Injection Gadgets: Object injection is a vulnerability
where user-controlled values reach an unserialize API without
proper sanitization. In such cases, attackers can assemble a list
of PHP classes that already exist in an application and mount an
exploit which commonly leads to arbitrary file writes and even
remote code execution.

In the case of object-injection attacks, the attacker can abuse the
code in the existing classes in their target web applications. Since
attackers cannot divert the control flow directly by calling arbitrary
functions from the injected classes, they rely on specific functions
(e.g., class destructors) to piece-together exploit payloads which
are called “gadgets.”

CODASPY’23, April 24-26, 2023, Charlotte, NC, USA

In this paper, we incorporate the list of publicly reported gadgets
by PHPGGC [35]. This tool includes a repository of gadget chains
within popular third-party packages. Therefore, if a vulnerable ap-
plication makes use of any of these packages, attackers can inject
one of the gadget chains from PHPGGC to gain RCE (Remote Code
Execution), write to arbitrary files or interact with the database.
PHPGGC does not provide a comprehensive list of gadgets for all
packages and all classes in our target web applications. Neverthe-
less, this approach which is also incorporated in the literature [2]
provides us with a quantitative measure for the reduction in gadget
chains after debloating.

For each of the web applications in our dataset and their third-
party packages, we check for the existence of gadget chains based on
the PHPGGC dataset. We then check whether debloating removes
these gadgets. For debloated instances where we have removed the
gadgets, even if attackers find an object injection vulnerability, they
cannot abuse any of the public gadget chains in their exploits.

3 USER-STUDY

To empirically evaluate the behavior of users of popular web ap-
plications and understand the patterns of their interactions, we
conduct a user study. The main goal of this user study is to un-
derstand whether administrators use different subsets of the over-
all features available to them and would therefore benefit from
differentially-debloated web applications. Moreover, through this
study, we analyze which features in the web applications in our
dataset are commonly used among developers and administrators,
and which features are relatively unpopular, used by only a fraction
of administrators.

We hire the user-study participants by advertising paid projects
on popular freelancing platforms, such as, Upwork and Fiverr [10,
39]. We interview freelancers with 2-10 years of expertise on web de-
velopment and system administration. We specifically interviewed
candidates who mentioned phpMyAdmin, WordPress, or Magento
on their resume. We focused on these web applications since they
were used in the “Less is More” study of Amin Azad et al. [2],
allowing us to compare and contrast our findings with theirs.

3.1 User-Study Deliverables

The task description for each project consists of an overview of the
user-study, the background required to participate, and the expected
deliverables. Moreover, we include the information about the con-
sent to participate in our study and describe the information that
we collect (i.e., server-side logs and code-coverage information).

After interviewing the participants and reviewing their resumes,
we hire 20 experts for each web application for a total of 60 experts
on phpMyAdmin, WordPress, and Magento. We compensate the
participants at the rate of $15 per hour. During the pilot experiments,
we realized that not every freelancer is familiar with the concept of
a user study. More importantly, to avoid future disputes, freelancers
preferred to work on a predefined list of deliverables.

Based on these observations, we define two milestones for our
user study. First, we ask our participants to provide a list of web
application features that they commonly use in their daily tasks
and projects. Most of our participants listed both maintenance
and administration tasks. Among the common tasks, we observed

CODASPY’23, April 24-26, 2023, Charlotte, NC, USA

1750 4 T - L 9000
L5500 500 ’L
1500 |
9 L5000 & 475 4 T L 8000
g0y T F' T
g L4500 © 450 4
& 1000 1 J_‘ | |] k7000
i 750 1 I_I ‘-l-' [4000 %425— J H
500 1 |_|_| l 3500 © 450 T‘ [0000
2501 + ‘ : [3000 3751 - L5000
\\Y] X0 \\¥ el X0
& & & R ot
Sla X o Sla « e
Q“&I\ QO W Q‘\Q\]\ QO W

Figure 1: Distribution of requests and covered files for user-study
participants. For box plots of phpMyAdmin and WordPress refer the
left y-axis and for Magento, refer to the right y-axis.

verification of the functionality of the website (e.g., registering as
new customers, submitting orders, etc.), maintenance tasks (e.g.,
backups, importing data, etc.) and even search-engine optimization.

For the second milestone, we ask our participants to spend one
hour of their time on our instrumented web applications and per-
form the tasks that they listed earlier. This process provides them
with the list of deliverables and expectations, and also enables us
to validate their effort on this project.

For freelancing platforms that provide a time-tracking utility, we
use this feature to verify the participation of users together with
cross-validating their task report with our code-coverage traces.
For submissions that did not follow our guidelines (e.g., did not
spend enough time, skipped the majority of tasks in the reports,
etc.) we asked the participants to revise their submission.

IRB Approval Since our experiments involved the assistance of
real users, we obtained an Institutional Review Board (IRB) approval
for our user study. Upon providing thorough details of our tasks
and the human interactions, along with the information that we
collect from the users, we obtained IRB approval on May 27, 2021.

Throughout this user study, we interviewed over 110 individuals,
some of whom decided not to participate in our study due to rea-
sons such as non-recurring and short-term nature of our tasks, their
busy schedule, etc. Overall, we spent numerous weeks interviewing
our participants and following up with them to ensure the timely
delivery of their tasks. The cost of this experiment was approxi-
mately $1,000, most of which was used to pay the administrators
in our user study and the remainder to pay for domain names and
the hosting of virtual machines on public clouds.

3.2 Setup of Web Applications

To facilitate the setup of web applications for our user-study par-
ticipants, we prepared the following environments:

e phpMyAdmin (version 5.1.0), with multiple pre-populated
databases including the ones from WordPress and Magento
web applications.

e WordPress (version 5.8) with an admin account, over 20
blog posts, multiple pages, and comments.

e Magento (version 2.3.5) configured with an inventory of
over 1,000 products.

Each participant received their own instance with the admin
credentials on a unique subdomain. We use a PHP code profiler to
collect the usage traces from user interactions in the form of file
and line-coverage data.

Amin Azad et al.

3.3 Web Application Roles and Usage Patterns

Looking at the usage traces (i.e., file and function coverage) of
our user-study participants, we observe several patterns. Figure 1
shows the distribution of PHP files invoked as the result of the
requests of each user. We observe that for different web applica-
tions, administrators sent a range of requests. For instance, looking
at phpMyAdmin, we observe that the majority of administrators
sent between 500-800 requests with some outliers who sent as lit-
tle as 240 and as many as 1,292 requests which invoked 388-512
distinct PHP files. This variance in the number of requests and the
invoked files indicates the difference in the usage patterns of our
participants.

In this step, through the analysis of submitted reports and the
code-coverage, we manually extracted common and unique access
patterns. phpMyAdmin relies on its database backend (i.e., MySQL)
to authentication users and enforce access-control. As a result, all
users of phpMyAdmin have access to all features at the web applica-
tion level (e.g., file upload, form submission, etc.), and access-control
is only enforced when running SQL queries directly or indirectly
through the UL From our user-study logs, we observe a list of
tasks that virtually all users performed. Creating new databases
and tables, executing SQL queries, and using the import/export
functionality of phpMyAdmin to backup and restore databases are
among the commonly used features. On the contrary, only a subset
of users changed the structure of existing tables and databases,
or deleted data. From the export functionality, only a few users
exported files with file extension other than SQL (e.g., CSV), and a
few individuals used the provided filters to limit the query results.

WordPress on the other hand ships with six hard-coded roles
and the default role (i.e., Administrator) has the highest permission.
WordPress administrators must rely on third-party plugins to cus-
tomize the roles. By analyzing the usage traces of our WordPress
user-study participants, we observe a group of users that focused
on customizing themes and installing plugins. Another group fo-
cused on the website content, and their tasks included creation of
new blog posts, along with adding tags and keywords to existing
posts to enhance the SEO. Interestingly, only a few individuals used
the import/export functionality of WordPress to backup blog post
content, or setup the RSS/WXR feeds.

Lastly, Magento provides the finest level of control over user
permissions and roles. In this web application, administrators can
define custom roles and assign permissions for individual sections
of the administration panel. From our logs, we observe that the
majority of users created new products, managed product inventory,
and modified prices. Conversely, only a subset of users enabled sales
promotions, gifts and shopping cart rules. Similarly, only some users
customized the front-end UI of the website.

Based on our observations, we determine that web applications
must provide a baseline functionality to all of their users. Beyond
this baseline, only a subset of the provided features are required
by some and not all of their users (e.g., different export file for-
mats), and certain features are left unused (e.g., phpMyAdmin GIS
visualization). Previous work on debloating web applications only
focused on the latter (i.e., debloating features that are not required
by any of the web application users). We identify the opportunity
to provide customized debloating matching the needs of groups of

Role Models: Role-based Debloating for Web Applications

CODASPY’23, April 24-26, 2023, Charlotte, NC, USA

—Network— ——Data— ——Logic—

&

Process requests
& responses

°.
0’0
Auth Cookie
Found?

‘ J—>{ Redirect to public webserver
N

Content delivery

—>|Lookup webserver mapping and redirect = -
e ’
=i Shared Database
=) Session Storage
Webservers
Backend

Figure 2: System Architecture of DBLTR. In Step 1, we provide the debloated web applications and user to cluster mappings to DBLTR’s content
delivery module. User requests (2) are processed by DBLTR’s reverse-proxy (Step 3). After identifying the identity of the user (Steps 4-6), DBLTR
internally routes the requests to the custom debloated web applications (Step 7).

users within a web application. Motivated by this observation, we
discuss the design of our role-based debloating system in the next
section.

4 SYSTEM DESIGN

In this section, we discuss the design of DBLTR, our role-based
debloating system. DBLTR consists of data processing, code rewrit-
ing (i.e., debloating), and content-delivery steps, making up a full
debloating pipeline. We evaluate the performance of DBLTR on the
usage traces collected through our user study. Initially, DBLTR’s
data-analysis step processes the code-coverage traces from web
application users and identifies clusters of users with similar behav-
ioral patterns. It then produces debloated copies of web applications
customized to the needs of each cluster.

Figure 2 shows the end-to-end architecture of DBLTR. First, we
review Step 1 in Section 4.1, which consists of analyzing the behav-
ior of users, clustering them into roles and producing the debloated
applications for each group of users with similar behavior. Then
we discuss the design of DBLTR’s content delivery modules (Steps
3-7) in Section 4.2.

4.1 Processing the code-coverage information
and debloating

We extract the list of file and line coverage information for all users
of each web application. Next, we identify clusters of users that
performed similar tasks. In order to cluster similar users together,
we train an unsupervised clustering model based on source code
features from the users’ code-coverage.

4.1.1 Data preparation and clean up. Some web applications (e.g.,
Magento) create temporary PHP files for caching purposes. Other
interactions with the web applications such as installing a new
module can also result in the introduction of new PHP code. For our
debloating scheme, we consider an application in a stable state (i.e.,
we assume that all the required plugins and modules are already
installed prior to debloating). Therefore, we perform a cleanup
step through which we remove references from code-coverage
traces that point to non-existing files in the original version of
the applications. Our cleanup step will effectively remove newly
installed modules during the user study experiments, but will keep
the code in the original application that enables users to install new
modules.

4.1.2 Vectorizing code-coverage. DBLTR extracts a list of features
representing the usage profiles from the code-coverage traces. Most
commonly, web application source files are partitioned under di-
rectories that indicate the feature they implement. Moreover, for
external dependencies (i.e., composer packages), the file-path in-
cludes the name of the module that the files belong to. The same
holds true for namespaces, class names and function names in that
they usually represent the underlying feature that they implement.
DBLTR’s clustering does not need the naming conventions of the
web application modules to be meaningful, as long as the naming
scheme can uniquely represent the underlying feature that is being
used.

DBLTR extracts file names, active namespaces, used classes, and
invoked functions from the code-coverage traces. These features are
effective indicators of the functionality corresponding to each user’s
code-coverage. We then map each feature to a unique representation
in a binary feature space. Based on these features, we cluster the
code-coverage of users using unsupervised clustering algorithms,
and optimize the number of clusters (i.e., roles) to produce the best
debloating (i.e., highest number of removed functions across roles).
DBLTR then produces the following artifacts:

o N debloated variants of web applications, where N is the number
of roles that optimizes the debloating by grouping users with similar
behavior together.

o Configuration files for the reverse-proxy and the web servers to
host the debloated web applications in a containerized environment.

o Database with the mapping of users to roles.

4.1.3 Measuring code-coverage similarity. Unsupervised clustering
requires a measure for similarity between the data points (i.e., code-
coverage of users). We use the Jaccard similarity coefficient to
measure how dissimilar the code-coverage of two users are, and
use it as the distance metric in our clustering. Under this scheme,
we assign the distance of zero to users with identical code-coverage.
Similarly, we assign a distance of one to users with no overlap in
their code-coverage.

4.14 Clustering code-coverage information. We experimented with
three different unsupervised clustering algorithms namely, K-means
[17], Spectral clustering [24] and DBSCAN [9]. The output of the
clustering step is a list of roles and the mapping of users to those
roles.

CODASPY’23, April 24-26, 2023, Charlotte, NC, USA

[%)

S 10 .
B —— phpMyAdmin
g ol Nl WordPress
=]

e I NS - Magento
« 08

[

fa)

E o

c

[

= 06

=]

o

[0

=4

123456 7 8 91011121314 1516 17 18 19 20
Number of roles

Figure 3: Reduction in number of functions after debloating for dif-
ferent number of roles compared to “Global” debloating (i.e., one role).

On one end, we build a single role which acts as the baseline for
our debloating measurements. This role which contains the code-
coverage of all users resembles the “global” debloating structure
of Less is More [2]. On the other end, we can assign a unique role
to each user. By doing so, each user receives their own uniquely
debloated web application which ensures the maximum tailoring of
features. We argue that the optimal number of roles lies in between
these two extremes, such that the debloating metrics are maximized
while minimizing the total number of roles.

After comparing the debloating statistics of different clustering
algorithms, we observed that Spectral clustering outperformed the
other algorithms. Therefore, we use Spectral clustering in DBLTR
and report its debloating statistics in the remainder of this paper.
Table 1 lists the LLOC reduction statistics for all the evaluated
clustering algorithms.

4.1.5 Determining the optimal number of roles. DBLTR determines
the optimal number of roles for each web application by using the
elbow method [3]. By measuring the decrease in the average number
of functions in the debloated copy of the web applications, DBLTR
chooses the smallest number of roles that produce the highest
reduction.

Figure 3 depicts the reduction in the average number of functions
remaining in the web applications after debloating based on the
total number of roles. Given the ways that the 60 administrators
used the evaluated web applications during our user study, the
optimal number of roles are as follows: six roles for phpMyAdmin,
seven for WordPress, and seven for Magento.

4.1.6 Debloating the applications. For each role, we merge the code-
coverage information for all the users of that role, and then use
the aggregate file and line coverage information to identify unused
files/functions and debloat them. In this step, we first perform file
debloating and then debloat functions within the remaining files.

The process of debloating consists of neutralizing unused files
and functions by replacing them with a routine that blocks the
further execution of the code. By neutralizing unused files and
functions, we immediately stop the execution of code paths that
invoke the debloated code. This immediate termination would pre-
vent the application from executing paths with debloated functions
and potentially introducing new bugs. Moreover, this allows us
to display an error message to the user and log this event for the
administrators for further analysis (e.g., in the case of potential
exploitation attempts).

Amin Azad et al.

Table 1: Minimum, median, and maximum size of debloated applica-
tions for optimal number of roles reported as thousands of LLOC.

‘Web Clustering K-LLOC
Application | Algorithm | Min | Median | Max
Spectral 32 39 42
phpMyAdmin | DBSCAN 34 39 41
K-means 32 40 42
Spectral 44 54 64
WordPress DBSCAN 47 59 64
K-means 44 52 64
Spectral 241 270 326
Magento DBSCAN 251 275 310
K-means 251 283 316

This debloating procedure provides us with N copies of the
original application, with N being the optimal number of roles
determined by DBLTR. Debloated applications for each role cater to
the use cases of all their underlying users. Lastly, we measure the
debloating metrics such as size, CVE, and CAC reduction across the
debloated copies of our web applications. We discuss these results
in more detail in Section 5.

4.2 Content delivery

The second stage of the DBLTR pipeline is responsible for serving
the debloated web applications and seamlessly routing users to
their underlying debloated web applications. DBLTR implements a
reverse-proxy module based on OpenResty, which is a popular high
performance scalable web server that extends NGINX and provides
content manipulation APIs through Lua code [26]. This is depicted
in Figure 2 as step 3.

We implement the login-detection logic as a Lua module for
OpenResty. This module is responsible for detecting successful
login requests, extracting username and session cookie information,
as well as storing and retrieving the user-to-debloated-application
mappings from the data store.

The login procedure for web applications consists of a request
containing the credentials followed by the server response assigning
the authentication cookie to the users in the case of successful login.
DBLTR inspects the request-response pairs for successful login at-
tempts. For instance in phpMyAdmin, a successful login comprises
a POST request towards the login endpoint “/” or “index.php” that
receives a 302 HTTP response code which redirects the user to the
administration page of the application. We extract the username
from the POST request with the field name of “pma_username”
and then verify through the HTTP response code that we detected
a successful login. Finally, we extract the session cookie named
“phpmyadmin” and store this user-to-session-cookie mapping in
the Redis data store for subsequent requests.

During the debloating stage, DBLTR produces mappings that
directs our OpenResty module to redirect users to specific instances
of debloated web applications. This information is stored in a Redis
data store along with a hashed copy of the session cookie and user-
name mappings extracted by the Lua module. Producing these Lua
modules is a simple process for anyone with a basic understanding
of web applications who can use approaches such as the Developer
Tools of modern browsers to identify the right requests, and form

Role Models: Role-based Debloating for Web Applications

fields. Once authored, these short modules (typically under 20 lines
of Lua code and mostly made up of boilerplate code) will be valid
for all deployments of that web application and will only need to
be updated, if the web application changes its authentication logic
in a later version.

For subsequent requests containing a valid session cookie, DBLTR
first queries the username from the data store and then determines
the target web server based on the username mapping. Steps 4,
5, and 6 in Figure 2 depict this process. Once the upstream web
server is determined, traffic is routed to the corresponding web
server. Any subsequent log-out requests and timeouts invalidate
the session-cookie mapping.

5 DEBLOATING RESULTS

In this section, we measure the debloating performance of our
system and demonstrate its ability to reduce the attack surface
of web applications beyond the previous work. Next, we compare
the debloating results of DBLTR and quantify its improvements
over the baseline model through source code metrics such as LLOC
reduction, as well as security metrics, namely CVE, gadget chain,
and CAC reductions.

5.1 Debloating results

5.1.1 LLOC Reduction. We measure the reduction in size of web
applications in terms of logical lines of code (LLOC), which counts
the number of statements in the application source code. By re-
porting the size of the debloated applications in LLOC, we reduce
the effects of various syntax and coding styles (i.e., the debloating
process changing the code style after rewriting).

Table 2 shows the LLOC reduction results of our debloating
scheme. The numbers are reported in terms of thousands of LLOC.
The column marked as “Baseline” lists the debloating results of
combining the code-coverage data of all users together and assign-
ing them to a single role, which is equivalent to prior debloating
approaches, such as the one by “Less is More” of Amin Azad et
al. [2]. “DBLTR” shows the LLOC statistics with the optimal number
of roles chosen by DBLTR for each web application, as discussed
in Section 4.1.5. For DBLTR column, we report the size of the role
with highest debloated LLOC (Max) and the smallest role with min-
imum removed LLOC (Min) along with the median. The number in
the parenthesis for Baseline and DBLTR denotes the percentage of
LLOC reduction with respect to the size of the original application.

By comparing the LLOC reduction of Baseline to DBLTR, it be-
comes evident that a one-size-fits-all debloating (i.e., Baseline), ex-
poses certain users and roles to a much larger code-base than they
actually require. This unnecessary bloat for Baseline debloating can
be as high as 30% of extra LLOC for applications. This unnecessary
exposure is most significant for larger web applications such as Ma-
gento where certain users inherit up to 90,000 unnecessary LLOC
which is 36% larger—compared to the smallest DBLTR role—than
what they actually need.

Moreover, we observe that all DBLTR roles (including the one
with maximum remaining LLOCs) are strictly smaller than the
Baseline, meaning that the globally debloated application is still
bloated as far as individual users are concerned.

CODASPY’23, April 24-26, 2023, Charlotte, NC, USA

Table 2: LLOC reduction of debloated clusters: Numbers are reported
in terms of thousands of LLOC. For Baseline, and DBLTR, we report
the percentage of LLOC reduction compared to the Original applica-
tion. DBLTR columns show the roles with maximum, median and
minimum number of debloated LLOC.

Web Original | Baseline DBLTR

Application Max Median Min
phpMyAdmin | 155 44 (V72%) | 32 (V79%) | 39 (V75%) | 42 (V73%)
WordPress 103 66 (V36%) | 44 (v57%) | 54 (v48%) | 64 (¥38%)
Magento 1,050 330 (V69%) | 240 (V77%) | 270 (V74%) | 326 (V69%)

5.1.2 CVE Reduction. One of the metrics to model the effects of
debloating on the security of applications is removal of actual vul-
nerabilities. Historic CVEs provide a good source of information on
vulnerabilities and we incorporate a mapping of CVE to source code
to identify whether a debloated variant of applications includes the
vulnerability or not.

One of the challenges of this approach is the availability of patch
information. In order to map a CVE to the vulnerable parts of the
source code, we use the data that is available in the form of bug
report analysis, Git diffs, and security patches. The goal of this step
is to identify the files and functions responsible for the vulnerability.

In our user study, we focused on the latest versions of web
applications, so we opted to map all CVEs to these versions. In
practice, this translates to mapping the location of a CVE to a
specific function in a specific file, even if that function is currently
patched. The purpose of this step is to identify whether the code
that contained the vulnerability would have been retained by a
debloating approach because it was part of the functionality that
the administrators in our user study relied upon.

Some of the web applications in our dataset maintained a stable
structure of their source code over time (e.g., WordPress) which
makes the process of mapping CVEs from older versions to the
recent one straightforward. Conversely, phpMyAdmin and Magento
changed drastically since their older versions (i.e., Magento version
1.x vs 2.x) and it is not always possible to find the same PHP file/class
to perform the mapping. Moreover, the developers of phpMyAdmin
and WordPress usually acknowledge CVEs in their patches and
GitHub commits, whereas for Magento, CVEs are only discussed
with minimal details and the patches are released in the form of
Major and Minor updates ranging from 500 to 4,000 modifications.

As a result, we mapped 20 CVEs to the source code of php-
MyAdmin and WordPress, and mapped 10 recent CVEs to source
code of Magento, for a total of 50 mapped CVEs. We selected the
CVEs with the highest CVSS score, and skipped the ones where the
vulnerability or patch information was unavailable.

Figure 4 depicts the number of CVEs remaining after debloat-
ing for each web application. The “DBLTR” bar shows the median
CVE reduction across roles, while “DBLTR-Max” shows the roles
with highest CVE reduction representing the maximum protec-
tion provided by DBLTR for users in those roles. For example, for
phpMyAdmin we discover that 3/6 roles (accounting for 65% of
users) exposed to the fewest remaining vulnerabilities. These roles
contained 5 historic CVEs corresponding to 45% reduction of CVEs
compared to the Baseline debloating and 75% reduction compared
to the non-debloated application. Similarly, the median number of

CODASPY’23, April 24-26, 2023, Charlotte, NC, USA

X3 phpMyAdmin E—1 WordPress [Magento

20 20
20 ~
18
15
g 15
5 ‘N
O 12
° 10
5 10 9
Qo
E 8
2 55 5 5 5 5
3 3
2 2
0

0@ 0SS o~
PR o
0&‘%@@\\0‘6;%\5@'\

o<\¢‘ﬁse“§%§:c‘*"w o<\@‘ﬁe®‘“§6§;w‘“#

Figure 4: CVE reduction statistics of debloated web applications. “Orig-
inal” represents the total number of mapped CVEs, “Baseline” repre-
sents the reduction of global debloating, “DBLTR” depicts the median
reduction across roles, and “DBLTR-Max” represents the roles with the
highest CVE reduction.

vulnerabilities among the roles was 5.5 accounting for 40% reduc-
tion compared to the Baseline approach. This effect is even more
pronounced in WordPress where DBLTR reduces the median num-
ber of CVEs per role to 4 accounting for a 73% reduction compared
to the 15 CVEs remaining after the Baseline debloating approach.
Magento exhibits a similar trend of localized debloating gains.
Overall, our results demonstrate that debloating web applications
based on clusters of usage-data (i.e., roles) results in significant
reduction of severe historic CVEs, compared to prior debloating
schemes that could only remove code that was determined to be
globally unnecessary for all users of a deployed web application.

5.1.3 Case Study: phpMyAdmin Database Export Local file Inclu-
sion Vulnerability. phpMyAdmin version 4.0 is vulnerable to CVE-
2013-3240 which resides in the database export functionality. This
vulnerability allows the attackers to bypass the checkParameters
function by sending a specially-crafted variable. phpMyAdmin uses
this variable to determine the database export file type (e.g., .sql, or
.zip) and load the corresponding plugin. Malicious users can abuse
this flaw to load and execute arbitrary PHP files from the server.
The export feature in phpMyAdmin is commonly used to backup
existing databases and therefore is highly unlikely to be removed
by prior global-debloating mechanisms. Nevertheless, we observed
that one of our roles produced by DBLTR included four users who
did not exercise the export functionality. As a result, DBLTR is able
to remove this feature from the source code of that specific role,
protecting the web application from abuse by these four specific
users (including from attackers who compromise their accounts).

5.1.4 Critical API Calls Reduction. Another security metric that we
analyze is the reduction in Critical API Calls (CACs). Figure 5 depicts
the average CAC reduction across all roles. The first bar of each
group shows the total number of CACs for the Baseline debloating.
Baseline indicates the reductions in the global debloating scheme
where all users are grouped into a single role. DBLTR bars show the
average reduction of CACs based on the optimal number of roles
for each web application and DBLTR-Max represents the maximum
reduction in CACs for a subset of users.

Across all CAC categories and all web applications, we observe
a reduction of 10% up to 70% for DBLTR debloating. This reduction
indicates that a sizable number of CACs are in unused parts of
the applications. Upon closer inspection of phpMyAdmin results,

Amin Azad et al.

BN Code Execution =1 File System [Information Disclosure 2 Other

phpMyAdmin CAC Reduction
131

115 104
100 74
63 55
49
50 45 41
2 7 6 4
© 0 T
8 WordPress CAC Reduction
% 840
— 706
o 571
2 500 376
5 286 222 150 108
5 N w0 f2pme
v 0
2 Magento CAC Reduction
€ 757
=3
z

o
1=}
1=

518
355 268 197
143 87
NN 25,26
e — —1 | ZVA v s

0

AN o+ WS o~ WS oF e\ 2t
PONASNSIENS PEONASRIENG AT AN ARG W
& O oq,»“* Py 0%6“ Ty 0%6‘" g © 9%6‘*‘

Figure 5: Critical API Call (CAC) reduction after debloating. Baseline
represents the global debloating approach where all users are assigned
to the same role. DBLTR indicates the average reduction across roles.

it becomes evident that 85% of code execution APIs reside in the
external dependencies of the web application, out of which, DBLTR
removed 12%-20%. For the larger applications such as Magento,
the reduction in Code Execution APIs is more significant where
32%-53% of these APIs are removed by DBLTR. Over all categories
of CACs, we observe that DBLTR removes tens to hundreds of such
API calls beyond the Baseline, further protecting web applications
from exploits that target these APIs.

5.1.5 PHP Object Injection Gadget Reduction. To identify existing
object injection gadgets in the applications, we incorporate PH-
PGGC [35], an open-source project listing available gadget chains
for popular composer packages. After mapping the list of vulnera-
ble package with those in phpMyAdmin, WordPress, and Magento,
we search for the removal of classes and functions used within the
gadget chains after debloating.

Table 3 lists the packages in each of our web applications with a
known gadget chain based on PHPGGC. Under the column named
“Original” we list the number of gadget chains within each package.
As before, the Baseline column lists the number of gadget chains
available after the global debloating (i.e., single role), whereas the
DBLTR column lists the percentage of roles in DBLTR exposed to
these gadgets.

The TCPDF package in phpMyAdmin includes one known gad-
get chain that can lead to arbitrary code execution. While global
debloating (Baseline) does not remove this gadget chain, DBLTR
removes it for 17% of the roles, thereby protecting the web applica-
tion from users belonging to that role. For WordPress, the baseline
debloating strategy removes the existing gadget therefore there are
no opportunities for any additional gains by DBLTR.

More interestingly, Magento contains 10 known gadget chains.
For Magento’s Guzzle package, we observe that while 2 gadgets are
still present in the Baseline debloating, one of the gadget chains
is fully removed from all roles. For the gadget chain within the
Magento package itself, only (1/7) 14% of roles produced by the
DBLTR contain this gadget, therefore, the majority of users are
protected.

Role Models: Role-based Debloating for Web Applications

Table 3: PHP Object Injection Gadgets statistics after debloating. List-
ing number of existing gadgets for Baseline and the percentage of roles
in DBLTR exposed to those gadgets.

Web Application | Package | Original | Baseline | DBLTR
. Symfony 2 0 0
phpMyAdmin = <5 1 1 83%
WordPress Generic 1 0 0
Guzzle 3 2 100%, 0%
Magento Magento 1 1 14%
Monolog 6 0 0

Our results confirm the findings of previous work that debloating
is a highly effective defense for removing publicly known object in-
jection gadget chains. Moreover, we observe that by clustering users
into multiple groups, we can further breakdown the availability of
gadgets and in certain cases, further complicating the exploitation
of object injection vulnerabilities. Under a DBLTR-protected deploy-
ment, attackers not only need to identify the available gadgets in
the target web application to build their exploit chain, but they also
have to target specific victims who have access to the underlying
gadgets used in their exploits.

6 DISCUSSION

In this section we discuss and evaluate possible strategies for han-
dling the addition and removal of users from a DBLTR-protected
web application. We then review the important takeaways, and
finally discuss the limitations of our approach.

6.1 Addition and Removal of Users

The process of assigning a role to new users in RBAC web ap-
plications is based on an administrator’s discretion regarding the
required capabilities of the new users. Unlike traditional RBAC
roles, DBLTR roles are defined dynamically and are unique to each
deployment of a web application based on the behavior of its users.
As a result, assigning new users to existing DBLTR roles requires
special treatment.

The conservative approach is to assign new users to a non-
debloated web application and record their usage behavior. DBLTR
can straightforwardly handle this by the mere introduction of a
new containerized environment containing that non-debloated web
application and a mapping rule assigning the new user to that con-
tainer. A more aggressive approach is to assign users to a globally-
debloated web application with the expectation that a newly added
user will use features used by at least one existing user of that web
application. For both strategies (i.e., conservative and aggressive as-
signment), administrators can collect usage traces for that new user
and eventually invoke DBLTR to produce new roles and migrate
the new user to a more tailored cluster of users.

To evaluate the latter more aggressive user-assignment strategy,
we start by assuming a setup for DBLTR where the usage traces
for the majority of users have been collected and the roles are
produced. This setup resembles an environment (e.g., a company)
where the majority of employees were present for the usage-trace
collection period and a limited number of new users (e.g., newly-
hired employees) are periodically added to this steady-state system.
When a new user is added to the system, we use the sum of the

CODASPY’23, April 24-26, 2023, Charlotte, NC, USA

M
& os
3
. ;
8 oa T Yo
N WordPress
R N Magento

0% 1% 2% 3% 4% 5%
Percentage of false positives

Figure 6: CDF of observed false positives from the perspective of new
users. The X axis depicts the percentage of false positives (i.e., ratio of
the number of missing files compared to total used files by each new
user).

code-coverage of all existing users to produce a globally-debloated
web application, which still contains a significantly smaller attack
surface compared to the original application.

To simulate this, we conduct the following leave-one-out experi-
ment: we remove the code-coverage information of each user from
the training dataset and create a debloated copy of the web appli-
cation based on the code-coverage of remaining users (i.e., 19/20
users). This globally-debloated web application is strictly larger
than any of the role-specific copies of the same application and is
equivalent to prior dynamic debloating approaches [2]. We then sim-
ulate the addition of new users by introducing the code-coverage of
the user that we left out and measuring false positives, i.e., the files
required by that user that are not present in the globally-debloated
web application.

Figure 6 provides the CDF of false positives (i.e., missing files)
when adding new users. For phpMyAdmin and WordPress, the
majority (60-70%) of users in the leave-one-out experiment could
be added to the “globally-debloated” web application without any
false positives. Likewise, more than 85% of new users would experi-
ence breakage in less than 1% of the overall files that they interact
with. For Magento, while most new users assigned to the “globally-
debloated” web application would experience some breakage, most
still fall below the 1% threshold. Overall, across all three web appli-
cations in our dataset, even for users with notably unique behavior,
we observe less than 5% of the overall files missing when their
usage behavior traces were omitted from the training dataset.

Looking at the unique behavior of users that led to false positives,
in phpMyAdmin, we observe enabling multistep authentication
modules, using query explainer features, and creating SQL Views
to be the underlying cause (i.e., desired functionality that is unavail-
able to new users). For WordPress, customizing the RSS feed, using
specific text blocks in posts such as text art, and quotes, and using
less popular embedding protocols led to false positives under this
aggressive user-assignment strategy. Finally, for Magento, various
users interacted with unique features. These features include third-
party integrations (e.g., monitoring, marketing, and automation
services), PDF invoices, and wish lists.

Overall, our results show that the modular architecture of DBLTR
allows it to successfully serve different types of environments. For
environments with fixed workloads or where security is priori-
tized over usability, DBLTR can be used to assign new users to a

CODASPY’23, April 24-26, 2023, Charlotte, NC, USA

globally-debloated web application. Alternatively, when adminis-
trators are unsure about the needs of new users, DBLTR can be used
to serve the original version of a web application to these users,
until enough usage traces are collected to allow DBLTR to create
new roles and clusters. In either scenario, the security-related de-
bloating benefits of existing users are not in any way compromised
when new users are added to a system. In terms of removing users,
administrators can merely disable user-role mappings in DBLTR’s
configurations and optionally delete containers that do not have
any roles associated with them.

6.2 Main Takeaways

Static roles in web applications are over authorized and ad-
ministrators only need a subset of the available features:
Throughout our user study, we determined that administrators of
the same web application use different subsets of the features avail-
able to them. While in theory, administrators have full access to
every feature in the administration panel, in practice only 25% and
52% of the lines in the administrative panels of phpMyAdmin and
WordPress respectively, were among the commonly exercised fea-
tures. Evidently, the existing authorization mechanisms of these ap-
plications aim to offer access to a large variety of features whereas,
in reality, administrators only need a subset of them. DBLTR builds
an accurate list of required features and enforces the principle of
least privilege via debloating.

One-size-fits-all debloating still produces bloated web ap-
plications: As demonstrated by this work and the literature, de-
bloating web applications is highly effective in reducing the attack
surface of web applications by removing unused features and their
underlying vulnerabilities.

The global debloating approach explored by the prior work pro-
duces one debloated web application which as demonstrated by
our analysis, can contain as much as 29% extra LLOC compared to
what users actually need. In this work, we integrated DBLTR with
a dynamic debloating scheme and demonstrated that DBLTR can
provide improvements across all debloating metrics. We demon-
strated that in the case of global debloating, users in at least half of
the roles would be provided with larger web applications contain-
ing 5,000-60,000 more lines of code than required, and exposed to
40%-70% more CVEs.

DBLTR provides a content delivery environment for deblo-
ated web applications: One of the main contributions of our work
is our content delivery pipeline which reduces the need for modifica-
tions and customizations to target web applications, while keeping
the debloating platform entirely invisible to web application users.

6.3 Limitations

Usage behavior modeling: Our debloating reports are based
on the code-coverage that we collected during our user study. Us-
ing our domain knowledge, we have established that the collected
dataset is a representative sample of web-application use in the real
world. At the same time, different deployments of web applications
may be used differently and therefore be debloated differently. Re-
gardless of the degree of use, DBLTR can offer concrete security
advantages to any existing or future end-to-end debloating strat-
egy by automatically removing code that is not globally required

Amin Azad et al.

by all users of a given deployment and clustering users to their
appropriately-debloated codebase.

Applications with a public interface: As depicted in Figure 2,
DBLTR routes unauthenticated requests towards a “public” profile
of the debloated web application. This profile includes the code for
user authentication as well as any other code required for public
unauthenticated users.

For administrative applications that are behind an authentication
wall, producing a public profile is straightforward. In the example
of phpMyAdmin, we only need to perform successful and failed
login attempts to generate the baseline code-coverage and debloat
the application to produce the public debloated profile. For other
applications such as WordPress and Magento, this step is more
involved. First, we would remove all the files that are only avail-
able to the administrators, for the WordPress and Magento, this
constitutes of removing administrator directories (e.g., wp-admin
for WordPress and module-backend directory for Magento). Next,
we need to only retain the features and modules that are available
to public users. Therefore, we need to record the code-coverage of
unauthenticated users with benign behavior.

One of the main benefits of our role-based debloating is the re-
moval of features that are not limited by the authentication and
authorization boundaries of web applications. If attackers can some-
how taint the code-coverage of unauthenticated profiles to include
a vulnerable piece of code, they can force the debloating pipeline
to retain that code, and exploit it later. This only applies to the
potential vulnerabilities in the public interface of the applications.
A possible solution to this problem is to use artificial modeling tech-
niques, such as automated crawlers, to extract the code-coverage
of public users.

Changes to the source code: In this work, we studied the debloat-
ing of web applications at a stable state. That is, all the required
configurations, updates, and plugins were installed and available at
the time of debloating. For smaller updates, we need to repeat the
debloating to produce new copies of the updated web application
while not touching the modified files during the update. For major
version updates that include drastic changes to the architecture of
the source code and modules, we would need to collect the code-
coverage traces again. This limitation is shared by all debloating
systems that offer security benefits via late-stage code transforma-
tions. Note however that DBLTR can be used to stage a move from
the old version of a web application to the new version by slowly
migrating users from their old containerized environments to the
new ones, one role at a time.

Number of users of the web applications: In our user study,
we hired a total of 60 participants (20 participants for each web
application). While most websites are operated by a small num-
ber of administrators, there clearly exist web applications (such as
popular social networks) with billions of users and thousands of
administrators. Understanding how DBLTR could be used in such
an environment requires the collaboration of a large operator, some-
thing which we do not have access to. DBLTR’s current architecture
does allow for horizontal scaling of servers, enabling it to serve an
arbitrary number of users and roles. As such, we hope that, through
the open-sourcing of our system, large organizations will be able
to evaluate DBLTR in their environments and user populations.

Role Models: Role-based Debloating for Web Applications

7 RELATED WORK

The idea of software debloating was initially discussed by Zeller
et al. [40] as a means to isolate failure-inducing code. This idea
was later applied to the context of software security to reduce
the attack surface of applications. Ghavamnia et al. and Rastogi
et al. explored the idea of debloating containers [12, 33], while
Abubakar et al. debloated the kernel [1]. Orthogonally, another line
of research explores binary debloating [13, 14, 19, 22, 31, 32, 34, 36],
and debloating web applications [2, 5, 15, 18].

At a high level, there are three mainstream approaches to de-
bloating: i) using static analysis to identify unreachable code [13,
18, 32, 34, 36], ii) debloating reachable code which is unused given
a set of tests (e.g., automated test cases, or dynamic code-coverage
traces) 2, 14, 19, 31], and finally, iii) API specialization, which con-
sists of disabling sensitive APIs or hardening them with respect to
the execution context of applications [5, 15, 22, 23].

Our work is mainly motivated by the “Less is More” approach of
Amin Azad et al. [2]. By comparing the debloating results of DBLTR
with the Baseline debloating approach of “Less is More” (Section 5),
we demonstrated that role-based debloating outperforms the “Less
is More” approach, both in terms of security metrics and reducing
concrete vulnerabilities.

In another line of work targeting binaries and web applications,
Mishra et al. [21, 23], Bulekov et al. [5], and Jahanshahi et al. [15]
provided solutions to reduce the software attack surface of applica-
tions through limiting the list of available APIs for each piece of
code. By incorporating their defense, attackers are limited in their
ability to exploit the application vulnerabilities. These solutions
are orthogonal to our work and can be used in combination with
DBLTR to further protect the applications against attacks.

Koishybayev et al. proposed Mininode, a tool to debloat Node.js
applications by focusing on third-party modules [18]. Their ap-
proach is based on static analysis which they use to identify un-
reachable code in third-party modules and the chain dependencies
of Node.js applications. While static analysis is helpful in identi-
fying unused code, several categories of common web application
vulnerabilities (e.g., SQLi, XSS, CSREF, etc.) reside in reachable parts
of the source code. DBLTR incorporates dynamic analysis and there-
fore, is capable of debloating even the reachable but unused parts
of the code.

Bocic et al. and Son et al. studied access-control bugs in web
applications [4, 37]. They analyzed open-source Ruby on Rails and
PHP applications and identified over 100 authorization bugs. Their
findings reinforce the motivation for DBLTR’s role-based debloating
which guarantees the separation of public vs. authenticated users,
even in the presence of access-control errors.

8 CONCLUSION

In this paper, we explored the idea of “role-based debloating”, which
consists of producing multiple versions of debloated web applica-
tions, each tailored to a cluster of users with similar usage behaviors
(i-e., roles). We started by conducting a user study to understand
how experienced developers and administrators interact with web
applications. We then used this data in combination with DBLTR,
our proposed tool that is capable of collecting code-coverage traces
of the users of an application, forming clusters of users with similar

CODASPY’23, April 24-26, 2023, Charlotte, NC, USA

usage behavior, and producing differently-debloated applications
customized to the needs of each group. DBLTR also includes a
content-delivery pipeline that can transparently route users to their
clusters of dedicated debloated web applications without the need
to modify the target web applications.

Through our detailed analysis, we quantitatively showed that
DBLTR can outperform the state-of-the-art in web application de-
bloating. By incorporating the idea of role-based debloating, we
can produce debloated web applications that are 30% smaller in size,
and contain 80% fewer severe vulnerabilities (i.e., historic CVEs)
compared to the “globally” debloated web applications produced by
prior work. We also explored the contribution of each user to the
code-coverage of roles, in an effort to understand the robustness
of clustered debloating compared to the extreme where each users
receives their own copy of the debloated applications.

We showed that DBLTR’s clustering expands the code-coverage

of similar features in each role for up to 38% of all files, which affects
more than half of the packages and classes in the web applications.
This effect on the code-coverage allows DBLTR to retain the code
for similar features that role members may use in future. Overall,
our results demonstrate that role-based debloating is a superior
approach compared to past global-debloating approaches, with
tangible benefits, both in terms of security (greater degree of attack-
surface reduction) as well as usability (lower likelihood of breakage
and support for “live” introduction/migration of users into new and
existing debloating clusters).
Acknowledgements: This work was supported by the Office of
Naval Research (ONR) under grant N00014-21-1-2159 as well as by
the National Science Foundation (NSF) under grants CNS-1813974,
CNS-1941617, and CNS-2126654.

9 AVAILABILITY

To ensure full transparency while promoting future work in the
space of debloating web applications, we will provide public access
to all developed code and artifacts upon publication of this paper
at https://dbltr.debloating.com.

REFERENCES

[1] Muhammad Abubakar, Adil Ahmad, Pedro Fonseca, and Dongyan Xu. 2021.
SHARD: Fine-Grained Kernel Specialization with Context-Aware Hardening. In
Proceedings of the 30th USENIX Security Symposium.

[2] Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis. 2019. Less is more:
quantifying the security benefits of debloating web applications. In Proceedings
of the 28th USENIX Security Symposium.

[3] PurnimaBholowalia and Arvind Kumar. 2014. EBK-means: A clustering technique
based on elbow method and k-means in WSN. International Journal of Computer
Applications (2014).

[4] Ivan Boci¢ and Tevfik Bultan. 2016. Finding access control bugs in web applica-
tions with CanCheck. In 31st IEEE/ACM International Conference on Automated
Software Engineering.

[5] Alexander Bulekov, Rasoul Jahanshahi, and Manuel Egele. 2021. Saphire: Sand-
boxing PHP Applications with Tailored System Call Allowlists. In Proceedings of
the 30th USENIX Security Symposium.

[6] Johannes Dahse and Jorg Schwenk. 2010. RIPS-A static source code analyser
for vulnerabilities in PHP scripts. In Seminar Work. Horst Gortz Institute Ruhr-
University Bochum.

[7] Michael Dalton, Christos Kozyrakis, and Nickolai Zeldovich. 2009. Nemesis:
Preventing Authentication & Access Control Vulnerabilities in Web Applications.
(2009).

[8] Adam Doupé, Bryce Boe, Christopher Kruegel, and Giovanni Vigna. 2011. Fear
the EAR: Discovering and mitigating execution after redirect vulnerabilities. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security.

https://dbltr.debloating.com

CODASPY’23, April 24-26, 2023, Charlotte, NC, USA

(9]

[10
[11]

[12

[13]

[14

[15

[16]

[17
[18

[19]

[20]
[21]

[22]

[23

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining (KDD’96).

Fiverr. 2022. The online marketplace for freelance services. https://fiverr.com
Ivan Fratri¢. 2012. ROPGuard: Runtime prevention of return-oriented program-
ming attacks. Technical report (2012).

Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. 2020. Confine: Automated System Call Policy Generation for Container
Attack Surface Reduction. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses.

Seyedhamed Ghavamnia, Tapti Palit, Shachee Mishra, and Michalis Polychron-
akis. 2020. Temporal system call specialization for attack surface reduction. In
Proceedings of the 29th USENIX Security Symposium.

Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective
program debloating via reinforcement learning. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security.

Rasoul Jahanshahi, Adam Doupé, and Manuel Egele. 2020. You shall not pass:
Mitigating sql injection attacks on legacy web applications. In Proceedings of the
15th ACM Asia Conference on Computer and Communications Security.

Pawan Jaiswal. 2022. WordPress File Manager Plugin Unauthenticated RCE Ex-
ploit. https://medium.com/swlh/wordpress-file-manager- plugin- exploit-for-
unauthenticated-rce-8053db3512ac

Xin Jin and Jiawei Han. 2010. K-Means Clustering. Springer US.

Igibek Koishybayev and Alexandros Kapravelos. 2020. Mininode: Reducing
the Attack Surface of Node.js Applications. In Proceedings of the International
Symposium on Research in Attacks, Intrusions and Defenses.

Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis. 2019.
Configuration-driven software debloating. In Proceedings of the 12th European
Workshop on Systems Security.

Steve McConnell. 2004. Code complete. Pearson Education.

Shachee Mishra and Michalis Polychronakis. 2018. Shredder: Breaking exploits
through API specialization. In Proceedings of the 34th Annual Computer Security
Applications Conference.

Shachee Mishra and Michalis Polychronakis. 2020. Saffire: Context-sensitive
Function Specialization and Hardening against Code Reuse Attacks. In IEEE
European Symposium on Security & Privacy.

Shachee Mishra and Michalis Polychronakis. 2021. SGXPecial: Specializing
SGX Interfaces against Code Reuse Attacks. In Proceedings of the 14th European

Amin Azad et al.

Workshop on Systems Security.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2001. On Spectral Clustering:
Analysis and an Algorithm. In Proceedings of the 14th International Conference on
Neural Information Processing Systems: Natural and Synthetic (Vancouver, British
Columbia, Canada) (NIPS’01). MIT Press, Cambridge, MA, USA, 849-856.

NPM. 2022. Node Package Manager Statistics. https://blog.npmjs.org/post/
615388323067854848/s0-long-and- thanks-for-all-the-packages.html
OpenResty. 2022. Scalable Web Platform by Extending NGINX with Lua. https:
//openresty.org/en/

Packagist. 2022. The PHP Package Repository. https://packagist.org/statistics
Packagist. 2022. Popular PHP Packages. https://packagist.org/explore/popular
Vasilis Pappas. 2012. kBouncer: Efficient and transparent ROP mitigation. (2012).
PyPI. 2022. Package Download Statistics. https://pypistats.org/top

Chenxiong Qian, Hyungjoon Koo, ChangSeok Oh, Taesoo Kim, and Wenke Lee.
2020. Slimium: Debloating the Chromium Browser with Feature Subsetting. In
Proceedings of the ACM SIGSAC Conference on Computer and Communications
Security.

Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating software through
piece-wise compilation and loading. In Proceedings of the 27th USENIX Security
Symposium.

Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick
McDaniel. 2017. Cimplifier: automatically debloating containers. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering.

Nilo Redini, Ruoyu Wang, Aravind Machiry, Yan Shoshitaishvili, Giovanni Vigna,
and Christopher Kruegel. 2019. Bintrimmer: Towards static binary debloating
through abstract interpretation. In International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment.

Ambionics Security. 2017. PHPGGC: PHP Generic Gadget Chains. https://github.
com/ambionics/phpggc

Peter Snyder, Cynthia Taylor, and Chris Kanich. 2017. Most websites don’t need
to vibrate: A cost-benefit approach to improving browser security. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security.
Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. 2013. Fix Me Up: Repairing
Access-Control Bugs in Web Applications.. In NDSS.

Statistica. 2022. How many websites are there? https://www.statista.com/chart/
19058/number- of-websites-online/

Upwork. 2022. The marketplace for freelancers. https://upwork.com

Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering 28, 2 (2002).

https://fiverr.com
https://medium.com/swlh/wordpress-file-manager-plugin-exploit-for-unauthenticated-rce-8053db3512ac
https://medium.com/swlh/wordpress-file-manager-plugin-exploit-for-unauthenticated-rce-8053db3512ac
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html
https://blog.npmjs.org/post/615388323067854848/so-long-and-thanks-for-all-the-packages.html
https://openresty.org/en/
https://openresty.org/en/
https://packagist.org/statistics
https://packagist.org/explore/popular
https://pypistats.org/top
https://github.com/ambionics/phpggc
https://github.com/ambionics/phpggc
https://www.statista.com/chart/19058/number-of-websites-online/
https://www.statista.com/chart/19058/number-of-websites-online/
https://upwork.com

	Abstract
	1 Introduction
	2 Background
	2.1 Debloating based on dynamic usage traces
	2.2 Debloating metrics

	3 User-Study
	3.1 User-Study Deliverables
	3.2 Setup of Web Applications
	3.3 Web Application Roles and Usage Patterns

	4 System Design
	4.1 Processing the code-coverage information and debloating
	4.2 Content delivery

	5 Debloating Results
	5.1 Debloating results

	6 Discussion
	6.1 Addition and Removal of Users
	6.2 Main Takeaways
	6.3 Limitations

	7 Related Work
	8 Conclusion
	9 Availability
	References

