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Abstract—Virtual Reality Learning Environments (VRLEs) are a new form of immersive environments which are integrated with
wearable devices for delivering distance learning content in a collaborative manner in e.g., special education, surgical training. Gaining
unauthorized access to these connected devices can cause security, privacy attacks (SP) that adversely impacts the user immersive
experience (UIX). In this paper, we identify potential SP attack surfaces that impact the application usability and immersion experience,
and propose a novel anomaly detection method to detect attacks before the UIX can be disrupted. Specifically, we apply: (i) machine
learning techniques such as a multi-label KNN classification algorithm to detect anomaly events of network-based attacks that include
potential threat scenarios of DoS (packet tampering, packet drop, packet duplication), and (ii) statistical analysis techniques that use a
combination of boolean and threshold functions (Z-scores) to detect an anomaly related to application-based attacks (Unauthorized
access). We demonstrate the effectiveness of our proposed anomaly detection method using a VRLE application case study viz.,
vSocial, specifically designed for teaching youth with learning impediments about social cues and interactions. Based on our detection
results, we validate the impact of network and application based SP attacks on the VRLE UIX.

Index Terms—Virtual Reality, Security and Privacy, User Immersive Experience, Anomaly Detection, Machine Learning

!

1 INTRODUCTION

THE adoption of virtual reality using an integrated cloud-
based infrastructure merges the physical and the digital

world to create a new form of an interactive environ-
ment [1, 2]. This allows us to create distributed collaborative
environments on a large scale in the form of virtual real-
ity learning environments (VRLEs) for several application
domains such as defense (military training, flight simula-
tions), medicine (surgical training), and education (virtual
classrooms). Existing works [3–5] discuss the integration of
real-world smart objects with virtual world objects (user
avatars) to create virtual environments, where the objects
or entities can interact in a real-time manner. The VRLE sys-
tems render immersive content from the network-connected
wearable devices to the users and enhance human cognition
[4]. Although current VRLE systems provide such inherent
benefits in user experience and accessibility, they however
lack in addressing critical security and privacy (SP) issues
that can impact the functionality of the VRLE in terms of
user experience.

To understand the SP issues, an exemplar VRLE ar-
chitecture collects and aggregates data from distributed
user/instructor locations to a central cloud storage instance
using networked devices. This inter-connectivity of the net-
work edge and the core cloud that is necessary in a VRLE
setup makes it vulnerable to new kinds of attack risks. To
elucidate, user privacy can be compromised in terms of data
confidentiality by an attacker [6]. For instance, malicious
users can gain access to sensitive information related to en-
tities in the VRLE without any consent or authorization [7],
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which can create a loss of confidentiality (LoC) issue. An
example of a security attack can be seen in the case where an
attacker captures confidential data to tamper the VRLE con-
tent that can disorient an avatar (user in the virtual world),
which creates Loss of Integrity (LoI) issues. These SP attacks
can also cause defacing of content with offensive images
(overlay attack [8]), obstructions in the view of the users or
causing noise attenuation in their learning sessions occlusion
attack [8], and reduction of graphical content or delays
between both user and avatar movement. Consequently,
the SP attacks lead to disruption of the User Immersive
Experience (UIX), which we define as a combination of
usability of application and immersive experience factors. This
UIX factor can serve as the overall user experience metric in
VRLE sessions and also aid towards developing an effective
VRLE application.

In this paper, we propose a novel continuous monitoring
methodology using machine learning (ML) [9] and statistical
analysis techniques for the detection of SP attacks disrupting
UIX in VRLE applications. We further calculate a numerical
value termed as "UIX score" which is an aggregated mean of
the subjective data collected based on the considered usabil-
ity and immersion factors during a VRLE session. With the
obtained UIX score, we perform a graphical analysis that
shows the impact of all the detected SP attacks on VRLE
users’ experience. Further, we develop our methodology
using a realistic VRLE application case study viz., vSocial
[4]. The vSocial [10] serves as an immersive learning plat-
form using an integrated cloud-based infrastructure which
raises the need to ensure security and safety of the VRLE
users when subjected to cyberattacks. Failure to address
the SP attack issues in a VRLE can result in undesirable
user experience (e.g., poor student engagement, disruption
of learning/collaboration, reputation loss for the institution
hosting the VRLE, and disruption of user safety (e.g., phys-

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3216539

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Missouri Libraries. Downloaded on July 03,2023 at 17:48:42 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SERVICES COMPUTING 2

ical harm, eye strain, cybersickness).
We jointly analyze the combination of SP issues that can

impact UIX in the vSocial VRLE as follows. Firstly, based on
our prior works [11], we characterize potential SP attacks
that can disrupt UIX factors and model them into a novel
security and privacy - user immersive experience (SP-UIX)
attack tree [11]. We then perform impact analysis of SP
issues on UIX factors on a vSocial VRLE instance, via a
subjective survey deployed in the form of a virtual ques-
tionnaire (VQ) in the VR environment. Secondly, we create
a framework to continuously learn the dynamic resource
profiles at the network and application levels in an opera-
tional VRLE in order to apply relevant anomaly detection
methods. To the best of our knowledge, our work is the first
to investigate anomaly detection approaches that focus on
analyzing the impact of potential SP attacks on users’ UIX
in VRLE sessions. We highlight our attack detection shown
in Figure 5 as part of a monitoring system that analyzes
relevant data (user, system information) to detect any cyber-
attack events. Specifically, we perform pertinent anomaly
detection method for network-based attacks (i.e., related to
security issues arising from e.g., Denial-of-Service (DoS)
attacks) and application-based attacks (i.e., related to both
security and privacy issues arising from e.g., unauthorized
access).

In our work, we adopt a combination of ML classifier
algorithms (e.g., KNN, multi-label KNN) for the attack
datasets with common features (i.e., network-based DoS at-
tacks involving packet duplication, packet drop and packet tam-
pering). In addition, we use a statistical analysis technique
involving a combination of threshold functions (Z-scores)
and boolean conditions for application-based attack datasets
(i.e., different forms of unauthorized access that can cause
disclosure of user information) with unique/sparse features.
In both cases, we collect the different attack datasets from
preliminary SP analysis as well as from attack simulations
and store them in a Knowledge Base. The Knowledge Base
capability allows for training new classification algorithms
and for developing new statistical techniques beyond those
considered in this paper scope.

We validate the SP attacks outlined in our generated
SP-UIX tree of vSocial application using simulation tools
(such as Clumsy 0.2 [12] and Wireshark [13]). Based on the
collection and analysis of network and application based
SP attack traces, we create a new metric viz., suspiciousness
score (SSattack). The SSattack is calculated as a numerical
score based on the attack type and UIX parameters for each
of the detected SP attacks. Lastly, we evaluate our proposed
anomaly detection methods in a vSocial testbed hosted on
an Open Cloud infrastructure [14]. Based on our detection
results, we validate the impact of salient quantitative param-
eters (attack occurrence events, SSattack) related to network
and application based SP attacks on the VRLE users’ UIX
scores.

The remainder of this paper is organized as follows:
Section 2 presents related works and issues in similar
applications. Section 3 presents our problem formulation
and scope. Section 4 outlines our anomaly detection solu-
tion approach. Section 5 presents evaluation results on the
anomaly detection method. Section 6 provides discussion of
the analytical results. Section 7 concludes the paper.

2 RELATED WORKS
The literature on the assessment of user experience and at-
tack detection mechanisms for networked and cloud-hosted

Table 1: Literature review of state-of-the-art of VRLEs

Areas Contributions Our Focus/Novelty

Immersion &
Usability
in VR

- Measures user experience from participants
via traditional survey methods [15, 16]
- User preference in virtual questionnaires
(VQs) as surveys in VRLEs

- Perform UIX assessment via combination
of traditional surveys and VQs
- Adapted questionnaires related to cyber-
sickness and virtual reality

Security,
Privacy
in VR

- Cybersickness caused by immersive cyberattacks
[17, 18] and exposure in VR [19]
- SP challenges but lack in vulnerability analysis
that impact users [20, 21]

Generate a SP-UIX attack tree to perform
threat modeling related to novel SP attack
surfaces impacting VRLE user’s experience
(UIX) based on our prior work
[18, 22]

Detection
methods

for SP issues

- Using network parameters [18] to detect anomaly
event over a variety of methods such as
attacker POV [23], anomaly-based intrusion
detection system [24], and attack fault trees [22]
for attack profiles
- Development of machine learning and deep
learning models [25, 26]for anomaly
detection in network scenarios and network
intrusion detection systems (NDIS) [27]

- Employ a ML-based approach for
network-based attacks \newline
- Employ a statistical technique using a
boolean z-score calculation or
application-based attacks

applications is vast, which motivates us to focus mainly
on the prior works applicable to VRLE applications. These
works feature common techniques used to address related
issues and we contrast them with our novel contributions as
summarized in Table 1.
2.1 Immersion and Usability in Virtual Reality
The works in [16, 28] outline user experience models for an
immersive virtual environment to measure user feedback
via questionnaires using traditional survey methods. The
authors in [28] create a tool that measures user experience
based on the questions related to judgment, emotion, and
technology adoption. In addition, the authors in [15] show-
case how a VRLE user can experience side-effects due to the
virtual realism of the VRLE termed as cybersickness [29].

To evaluate a virtual simulation in a VRLE, the work
in [30] use surveys in the form of virtual questionnaires
(VQs) instead of the traditional user experience assessment.
In our work, we use a combination of both traditional
surveys and VQ as part of our UIX assessment [30]. For our
survey regarding the questions related to immersion and
usability, we adapt the closely related questions from the
works in [28, 31] based on our experiments planned for the
vSocial users.

2.2 Security, Privacy Risks in VR Systems
We found limited prior works on the specific SP issues in
VR systems. In [32] the authors showed how simple attacks
can jam or even manipulate the entire position and pose
tracking process in VR with their possible countermeasures.
Consequently, the authors in [33] showed that cyber-attacks
can potentially cause cybersickness based on frame rate ma-
nipulation via exploitation of GPU and network vulnerabil-
ities. Moreover, the authors in [8] discuss immersion attacks
that can cause physical harm and disrupt user immersion
by simulating attacks such as creation of physical collision
attackwith the real world objects by modifying the SteamVR
[17] chaperone file, a disorientation attack implemented by
changing translation and yaw, a human joystick attack meant
to make a user unintentionally and incrementally move and
an overlay attack meant to display unintended images. The
work in this study [8] serves as one of the main sources
for our attack data i.e., to study attack patterns that can
potentially affect UIX in a VRLE.

In addition, existing works such as [19, 20] present
several security and privacy challenges and their associated
threat surface areas on Augmented Reality (AR) and Virtual
Reality (VR) systems. However, these works fail to explore
the specific vulnerabilities that impact the user in virtual
environments at room-scale. The authors in the work [21]
discuss how the participants get disoriented due to the
exposure in a virtual environment even for a 20 minutes

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2022.3216539

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Missouri Libraries. Downloaded on July 03,2023 at 17:48:42 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SERVICES COMPUTING 3

Figure 1: Overview of vSocial system architecture.
session. Our preliminary work in [11, 18] proposes a novel
threat model related to security, privacy and safety issues in
VRLE systems. Therein, we perform SQL injections, packet
analysis under different attack scenarios to capture the
adverse effects on the functionality of the VRLE [22]. We
use these results as a baseline for the attack simulations we
generate for our SP-UIX attack tree model. Thus, our work
uniquely focuses on exploring novel attack surfaces related
to SP in VRLE applications and their impact on UIX.

2.3 Detection Methods and Parameters for SP Issues
As part of our proposed anomaly detection method de-
velopment, we focused on the works relevant to novel SP
attacks in human-computer interaction (HCI) and cloud
applications. A subset of works address possible defense
mechanisms to mitigate the SP issues. The authors in the
work [34] discuss the network bandwidth specifications,
network delay and computational requirements in VR sys-
tems. Their study provides quantifying parameters that
can help us in detecting anomaly events in any of the
networked devices in VRLEs. In addition, the work in [35]
investigates DoS attacks from an attacker point of view, in
the hope of determining an optimal attack strategy that can
aid in the development of more efficient defense strategies.
Moreover, the work in [24] embeds an anomaly based Intru-
sion Detection system to defend ethereum smart contracts.
The event of a network attack in an immersive VRLE can
trigger cybersickness. For instance, the work in [22] details
a novel framework that uses attack-fault trees for different
attacker profiles, and shows how statistical techniques can
determine the most vulnerable threat scenarios that induce
cybersickness in users.

There are several prior works [25, 26, 36] that adapt
different ML methods as part of attack detection. The work
in [25] uses a Naive Bayes model to detect SQL injection
related anomalies with 93.3% accuracy. In order to deter-
mine the network anomalies that can cause DoS attacks,
the work in [26] develops an intrusion detection mechanism
using a decision tree ML classifier with twelve features and
gives the resultant detection rate of 98%. Similarly, a study
in [36] compared two ML models (support vector machines,
neural networks) in terms of detection rate to determine
the more successful one. However, this study [36] uses only
one dataset and the hyperparameters for the neural network
were not optimized.

The authors in [23] develop a hierarchical hybrid intru-
sion detection approach for an open-set attack classification
on emerging smart network devices. Similarly, the work
in [37] investigates the reduction of computational resources
in network intrusion detection systems using an ensemble of
autoencoders to track network traffic patterns for detecting
various network attacks in a computationally-efficient and
online manner. Based on our survey of all these existing
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Figure 2: Attack tree modeling of SP attacks that disrupt UIX

works for detection methods, we propose a novel anomaly
detection method that employs ML models and statistical
analysis techniques based on the attack type (i.e., network-
based or application-based).

3 PRELIMINARIES OF SP ATTACKS IN A VRLE
In this section, we formulate our problem by stating the
relationship between potential SP (Security and privacy)
attacks and UIX factors in two phases: (i) threat modeling
of potential SP issues in VRLE that disrupts users’ UIX, and
(ii) analyzing the relationship of the impact of SP attacks on
UIX due to the vulnerabilities in VRLE.

3.1 Threat Modeling of SP Issues using Attack Trees
3.1.1 VRLE system overview
To identify the potential threat scenarios that can disrupt
UIX, we use vSocial [4] as our VRLE application case study.
In the vSocial application, users interact with each other,
move to different spaces within the VRLE, and use their
virtual hands (controllers) to complete learning activities
as shown in Figure 1. vSocial features content rendering
by High Fidelity [38], an open source platform to run
VRLEs featuring virtual worlds. The wearables in vSocial
include: VR headsets (e.g., HTC Vive [39]) equipped with
VR controllers, EEG headsets (e.g., Muse) on the client-side.
A cloud server which runs on an Open Cloud infrastructure
slice [14] where the VRLE content is delivered to the users
in these virtual classrooms in a real-time manner.

Table 2: Salient acronyms related to our proposed SP
anomaly detection approach

Acronym Definition

VRLE Virtual Reality Learning Environment
UIX User Immersive Experience
SP Security and Privacy
SP-UIX Security and Privacy for User Immersive Experience
VQ Virtual Questionnaire
SSattack Suspicousness score of a given attack

3.1.2 SP attack scenarios in vSocial Environment
To study SP attacks on vSocial, there are existing works [27]
that can aid in enlisting the potential SP attacks in a VRLE.
However they do not account for the SP attacks that can
occur concurrently or serially in real-world systems. In
order to study different SP attacks on vSocial, we use an
attack tree (AT) method which has been used extensively
in threat modeling [40, 41]. Our proposed work applies the
concept of ATs to explore the security, privacy (SP) threat
scenarios that can impact UIX factors via a hierarchical
visual representation of potential vulnerabilities and threats
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Figure 3: Activities and their associated virtual questionnaires used for the immersion survey experiment.

as shown in the SP-UIX AT in Figure 2.
Our SP-UIX AT has a goal node (i.e., disruption in UIX)

which can be compromised by an attacker via potential
attack steps shown as child nodes (i.e., intermediate and
leaf nodes). With this AT threat model, we also explore the
temporal dependencies in terms of sharing subtrees where
the cause and effect relationship of SP attacks on UIX is
outlined [22]. In our study context, we generate this SP-
UIX attack tree by validating the potential threat scenarios
from our prior work in [11, 18] and penetration testing on
the vSocial as explained in Section 5.4. Due to the need for
ensuring a reliable and safe VRLE application while the user
is in session, we focus on the specific VRLE attack “cause
and effect relationship" scenarios (e.g., DDoS, Unauthorized
access) that disrupt the UIX as shown in Figure 2. For
instance, the leaf node packet drop can be maliciously used
for triggering an attack scenario (i.e., intermediate nodes
such as e.g., Denial of Service) as shown in Figure 2. Our SP-
UIX attack tree approach is also applicable to other SP attack
surfaces that are novel and specific to VRLE applications
(e.g., tampering of VRLE learning content, modification of
chaperone file as detailed in our prior works [11, 18]).

3.2 Impact Analysis of SP Factors on UIX
3.2.1 Experimental Setup for SP attacks in vSocial
In order to understand the impact on UIX factors due
to the listed potential SP attacks (individual attacks and
combination attacks), we set up a vSocial instance with
three different activities for users to perform as shown in
Figure 3. These activities are part of the learning curriculum
of the vSocial environment [18] and rely on fine movement,
visual clarity, and clear audio, all of which are disrupted
by simulated attacks. We perform an experimental analysis
based on one of our earlier works [18] to assess significant
factors that disrupt UIX in a VRLE. We simulate three
attacks across the activities and quantify UIX using a set
of virtual questionnaires (VQs) as shown in Figure 3.

After the orientation of the vSocial, a test subject partici-
pates and his/her feedback is collected at the end of activity
1 which is the baseline data for a normal functioning VRLE
without any attack scenario. Next, the subject proceeds to
activity 2, where a security attack is simulated with a data
packet drop that disrupts the rendering of the VRLE [18],
after which user feedback is collected using a VQ. The
user then proceeds to activity 3, where a privacy attack
is simulated to capture the user’s virtual location and a
distracting noise is played such that the user’s learning
experience is disrupted. We stop this disruption for the
VRLE user approximately halfway through activity 3, where
the user response is recorded using another VQ. For the
rest of activity 3, we simulate a combination of security and
privacy attack (packet tampering and disclosing the user
location), after which the users exit the vSocial environment
to submit their feedback via a post-session survey.

Figure 4: Results of the UIX survey experiments.

These SP attacks are simulated for a duration of 180
seconds (i.e., until the next checkpoint) and then are stopped
to avoid further discomfort to the user in relation to their
time spent in the VRLE. The surveys conducted for this
attack analysis using VQs and post-session paper format are
used to measure each of the UIX factors i.e., usability of the
application and immersiveness which the VRLE users feel.
These VQs’ are integrated into the VRLE such that they do
not cause any disruption to the users [30].

We recruited 15 participants who are college students
for this survey on UIX due to SP attacks. These participants
had prior experience in using VR applications and were
aware of various VR-related functionalities. We collected
their feedback for each of the questions present in our UIX
survey on a scale of 1 (very poor) to 5 (excellent). This
collected immersion and usability factors subjects data can
be used to quantify the aggregated mean value of UIX
termed as “UIX scores" in a VRLE setting. Each of the UIX
score for every considered SP attack scenario is used for
performing the validation analysis of our proposed anomaly
detection approach as detailed in Section 5.

3.2.2 Results of the analysis about the impact of SP attacks
on UIX factors

Based on our data collected for the SP versus UIX factors
analysis, we outline the data points for each question versus
the average rating given by the users as shown in Figure 4.
We observe that the security, privacy, and combination of
SP attacks have significantly impacted both the immersion
and usability factors. In addition, using the results shown
in Figure 4, we further analyze whether the UIX factors i.e.,
immersion or usability are negatively impacted by the SP
attack scenarios. Based on these results, we observed that
such SP attack scenarios triggered an impact of 56% decrease
in immersion and 43% decrease in usability. In addition, we
also observe that the mental engagement (ME) factor gets
more impacted in the case of a privacy breach and in combi-
nation scenarios, whereas smoothness of movement (SoM)
is affected during a security breach. Similarly, visual clarity
(VC) is the usability factor that gets negatively impacted
during an SP attack event in a VRLE.
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Figure 5: Anomaly detection of SP attacks on VRLE(s).

From these results, we understand that SP attacks do
certainly affect UIX factors and cause disruption in the
functionality of the VRLE. With this preliminary assessment
and our modeled SP-UIX attack tree, we further explore the
threat signatures to use for detection of such attack scenarios
before they disrupt UIX in a VRLE.

4 ANOMALY DETECTION METHOD FOR VRLES

In real-world VRLE applications [3–5] of dynamic user-
system interactions, there exists SP attacks (individual and
combination of attacks) with diverse attack patterns. An
example of a multi-attack scenario can be seen in a case
where sensitive user information has been disclosed (privacy
attack) by gaining unauthorized access to the VRLE user data
(security attack). We propose a novel anomaly detection
method to continuously learn from such anomalous VRLE
system behaviors and their impact on UIX factors detailed in
Section 3.2.2. Our anomaly detection approach is based on
DevSecOps principles [42] that suggest the use of diverse
solutions for detection of anomalous events (pertaining to
both attacks and faults detection) in resilient systems.

The primary goal of our proposed anomaly detection
method is to enable the development of a reliable and
safe VRLE with capabilities to: (a) identify vulnerabilities
against cyber-attacks, and (b) avoid the disruption of UIX
caused due to anomaly events during operational use. In
this section, we present an overview of our novel anomaly
detection approach that is categorized into two main mod-
ules: i) Anomaly Detection module to check and classify for
anomaly events in the incoming data, ii) Computation of
Suspiciousness Score SSattack for the detected attacks (i.e.,
network-based attacks and application attacks) in the VRLE
data as shown in Figure 5

4.1 Attack Detection Module

Our anomaly detection module utilizes an ML classifier and
statistical analysis for classifying the detected anomalies
into specific attack types. In a VRLE application setting,
our anomaly detection approach runs the ML model to
analyze the incoming data from VRLE sessions, whereas
the statistical analysis continuously monitors the VRLE to
identify and recursively trace the origin of the attack.

4.1.1 Machine Learning (ML) Techniques
Once an anomaly event is identified, our attack detection
module uses ML techniques to classify the type of network-
based attacks. Incorporating ML techniques to deal with the
continuous input data (session and network information)
can aid in automating the detection process and security
analysis (e.g., malware, network log classification) [43].
However, such existing works [43] lack in correlation analy-
sis of anomaly events related to user and VRLE system be-
haviors. For example, large sets of data logs generated from
multiple wearable devices (headsets, controllers, emotion
headbands) corresponding to geographically distributed
users in a VRLE setting can be parsed into an ML model.
Moreover, ML can be integrated into functionalities such
as network performance and user emotion monitoring, and
also anomaly events tracking across VRLE sessions. Based
on these motivations, we implement a ML classifier in our
proposed anomaly detection module that can accurately
differentiate normal (benign) behavior from a number of
network-based attacks (e.g., DoS). Even though these net-
work attacks generate significant amounts of data, these at-
tacks share common traits for feature extraction [44], which
in turn suggests a good fit for applying ML techniques.

Our ML model used in the anomaly detection method
mainly consists of two steps: (i) pre-processing of the
anomaly event data, and (ii) classification of the attack type
as shown in Figure 5. In case of network-based attacks, the
pre-processing step considers the packet data and the user
data for training an ML classifier. Based on pattern analysis,
our ML technique can categorize the baseline data (VRLE
components, user interaction data) of benign behavior vs.
attack classification data. However, in the case of SP issues
related to application-based attacks, attacks evolve with
varied patterns and diverse features which can make the
labeling of the data infeasible in real-time. To address this
different feature dimension issue, we focus our ML classifier
only for network-based attacks with common feature traits.

4.1.2 Statistical Analysis Technique
Application-based attacks e.g., unauthorized access that is
recorded in a database log as a privacy breach cannot pro-
vide enough quantifiable data to use for feature extraction
and training ML classifiers. To address this issue, our pro-
posed anomaly event detection module includes performing
statistical analysis to detect such application-based attacks.

Due to the single-dimensional nature of the input data
used for statistical analysis, we adopt the Z-scores calcula-
tion method [45] instead of principal component analysis
[46]. Algorithm 1 shows the steps involved in our method
to perform Z-score analysis. Our statistical Z-score analysis
technique utilizes flag conditions that are further separated
into threshold functions [46] and boolean conditions. To flag
the benign data (no anomaly) with respect to application-
based attack data in VRLEs, we need to determine the
thresholds for each triggered attack. For calculating the
threshold value, our statistic analysis approach first cal-
culates the standard deviation for each sample of baseline
data. The Z-score is computed using the standard deviations
from a mean, where standard deviation alone only indicates
variance.

We adapt the formulations [47, 48] for standard devia-
tions (Equation 1) and Z-score (Equation 2) for sample size
n , as follows:

SD =
√∑

(X−X)2
n−1 (1)
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z =
(X − µ)

σ
(2)

where X is the individual value, µ is mean, SD is standard
deviation,X is sample mean and n is the sample size. Based
on the deviation from the mean using the formulations in
Equations 1 and 2, the threshold values are calculated. The
threshold values represent the Z-scores for baseline data.
Moreover, the threshold values are applied to any data that
follows standard distribution as discussed in Section 5.3.

Once the Z-scores for baseline data are calculated, our
anomaly detection method proceeds to calculate the Z-
scores for the incoming data and determines an anomaly
event based on the deviation from the Z-scores of baseline
data. The standard deviation, mean used for the calculation
of Z-score of the baseline data are represented as σ and µ,
respectively.

f(z) =

{
Baseline data, if z ∈ [x, y]

Anomaly, otherwise
(3)

More specifically, we use the Equation 3 to compare Z-
scores of the incoming data vs. the baseline data in the
threshold function listed in line 3 of Algorithm 1. In addition
to the Z-score, the threshold function in Algorithm 1 also
calculates suspiciousness score (SSattack) of the identified
anomaly event.

The second set of flag conditions is the Boolean function
(see line 15 of Algorithm 1) which is used to validate the
boolean conditions especially for application-based attacks
such as data tampering. If the boolean conditions are true,
then the data is flagged as a malicious event and the IP
of that user is retrieved to calculate the suspiciousness
score SSattack of that specific anomaly event. Thus, the
application-based attacks are detected based on the calcu-
lation of Z-scores in order to determine the threshold and
boolean conditions to flag malicious events as indicated in
the Algorithm 1.

Algorithm 1: Statistical analysis pseudocode
Input: Di: Input application data (user, session info) from logs
Output: Return suspiciousness score value

1 begin
2 Function SA ():
3 Function Threshold ():
4 Function Z-scores ():
5 Calculate Z-scores: Zb, SD : σb for baseline data using Eqn. 2;
6 for each y ∈ Di do

7 SDi =

√
(x−µb)

2

n−1

8 Zi =
x−µb
SDb

9 end
10 end Function
11 if Zi /∈ range(Zb) then
12 Suspiciousness score();
13 end
14 else
15 return as benign data;
16 end
17 end Function
18 Function Boolean ():
19 if Bcon_attackisTrue then
20 Suspiciousness score();
21 end
22 end Function
23 Function Suspiciousness score ():
24 SS = Est.Impact ∗ Attack
25 return as SS;
26 end Function
27 end Function SA
28 end

Figure 6: VRLE architecture implemented in an OpenCloud
testbed setup.

4.2 Calculation of Suspiciousness Score
We define the suspiciousness score (SSattack) as a numerical
score for a specific attack pattern detected and classified
via our anomaly detection module. The (SSattack) listed
in Algorithm 1 is calculated based on the estimated level
of impact on the UIX and functionality of the VRLE. This
SSattack defined in Equation 4 serves as a quantitative
analysis metric of the risk associated with an attack or a
specific user in a VRLE. The suspiciousness score calculated
for each detected attack in VRLE is defined as follows:

SSattack =
∑n

i=1 (AttackScenarioi ∗ EstLevelOfImpacti) (4)

Our anomaly detection method stores baseline data, VRLE
session information, detected attack patterns (qualitative de-
scriptions of each attack) along with the associated SSattack,
and user data into a database, created to serve as a knowledge
base for training the models employed in our detection
approach.

5 EVALUATION OF ANOMALY DETECTION METHOD

In this section, we establish the effectiveness of our pro-
posed anomaly detection method. We evaluate the per-
formance of our two mechanisms (ML classifier, Z-score
analysis) in the detection module using both numerical
simulations and event-driven experimental testbed evalu-
ations based on the vSocial use case. Our evaluation goals
are: (i) validation of different security and privacy attacks
(individual and combination), (ii) detection of network and
application based attacks, and (iii) calculation of suspicious-
ness score for each of the detected network and application-
based attacks to show their impact on UIX scores in realistic
settings. To demonstrate our anomaly detection effective-
ness for each targeted attack type, we start by describing our
testbed configuration, followed by the data collection efforts
for the various attack experiments, and finally conclude
with discussion of the obtained results.

5.1 Attack Data Generation in the vSocial application
5.1.1 Testbed setup
The realistic, Open Cloud [14] testbed that we used in our
anomaly detection experiments is shown in Figure 6. The
testbed contains two software-defined networking (SDN)
switches, a root switch, and a slave switch. The slave switch
is attached to nodes (users and attackers) and a connection
to the root switch. Moreover, the root switch is connected
to an elastic virtual machine (VM), which could serve as a
candidate for hosting the target application (i.e., the vSocial
portal) that could be compromised by the attackers. All
switches are connected to a unified SDN controller located
in the cloud service provider domain, which directs the pol-
icy updates. In our testbed setup, the three attackers try to
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Figure 7: A before and after scenario showcasing the effect
of DoS attack on vSocial causing a server crash.
disrupt the server functionality, hosted on the VM connected
to the root switch. We use Frenetic [49] to link the nodes
together and subsequently implement a slowhttptest
script in order to simulate a DoS attack in the Open Cloud
testbed.

5.1.2 Tools Used
In order to simulate a DoS attack on vSocial, we used
Clumsy0.2 [12] and Wireshark [13] to capture the packet
rates, where the attacks were run against a vSocial client and
the corresponding vSocial server. Using the above-specified
tools and the testbed setup, we generate the attack data
for network-based attacks (i.e., DoS) and application-based
attacks (i.e., Unauthorized access).

5.1.3 Attack simulations
In order to generate the attacks listed in the SP-UIX tree
shown in Figure 2 related to the VRLE application, we
perform SP attacks. Using the leaf nodes as vulnerabilities
in the SP-UIX attack tree, we generate SP attacks such as
DoS (Packet Drop, Packet Tampering, Packet Duplication),
Unauthorized access (to obtain local files).
a) Unauthorized access attack: As part of gaining unautho-
rized access, a password attack is executed using a Brute-
force method. This attack can impact the integrity of the
VRLE if the attacker gains administrator level access and
discloses the user information or tampers the content in
the VRLE. Our proposed anomaly detection module detects
this form of unauthorized access to avoid potential privacy
breaches. Moreover, an attacker requires a considerable
amount of resources to gain unauthorized access via brute-
force as detailed in Section 5.3.
b) Denial-of-service (DoS) attack: To launch a DoS attack
on the vSocial environment, we perform packet tampering,
packet duplication, and packet drop with malicious intent.
These attacks impact the VRLE server such that when the
DoS attack occurs, the server crashes as shown in Figure 7.
To elucidate, the packet dropping attack targets the commu-
nication between the user and VRLE server to disrupt the
learning experience [18]. Based on our experimentation, we
identify that a packet drop at 80% disrupts the connection
to the server very quickly [18], in a worst-case scenario as
shown in Figure 8. Using packet tampering in a man-in-the-
middle attack scenario can reveal confidential information
as discussed in [18]. From our experiments, we observe that
a tamper rate of 20% is sufficient to crash the VRLE server
as shown in Figure 8.

In our proposed work, we use the Attacker Profile (AP)
characteristics [50–52] such as – (i) skill level of the attacker,
(ii) resources required to perform a SP attack [11, 22] in VR-
LEs. Through the SP attack simulation experiments detailed
in Section 5.1 we develop the APs as shown in Table 3 as
part of validating the SP-UIX tree shown in Figure 2. Each

Table 3: Attacker profiling with estimated level of impact.

Attack Resources/
Skill

Level of
Impactφ

Impact Scaleφ

Unauthorized Access High 5 1. Normal System
Obtaining Local Files Medium 4 Functionality
Dropping Packets1 Medium 3 2. Minor Decrease
Duplicating Packets2 Medium 3 in System Functionality
Tampering Packets3 Low 5 3. Unusable System
XSS Browser Attack High 3 Functionality
Overlay Attack Medium 4 4. Partially Compromised
Packet Sniffing High 4 System
Malicious Script
Execution

High 3 5. Fully Compromised
System

Modification of
Chaperone

Medium 5

180% Drop Rate
220x Rate, 40% Likelihood
320% Tamper Rate

Figure 8: Packet rate time series for single attacks.

of the enlisted APs in Table 3 detail the characteristics to
perform SP attacks and can be used to estimate the impact
value using a uniform scale of 1 to 5.

We categorize the level of impact using the numeric
impact value based on the number of VRLE components
that get disrupted during an SP attack scenario as shown
in Table 3. The APs shown in Table 3 contribute primarily
to the calculation of the suspiciousness score discussed in
Section 5.4. However, these APs can be further extended
for risk management and deploying defense mechanisms
on VRLEs in the future. Based on the simulated SP attack
data [53], and the modeled SP-UIX attack tree, we illustrate
the evaluation of our detection approach employed in the
vSocial application.

5.2 Proposed Anomaly Detection in vSocial Testbed
With the collected data from different SP attacks generated,
our proposed anomaly detection uses a two-stage ensemble
learning scheme from [18]. The first stage includes attack
(anomaly event) detection whereas, the second stage is
about the classification of these events into specific attack
types. We collect a significant amount of data to utilize
in our two-stage ensemble learning scheme for attack de-
tection and classification effectively. For evaluation pur-
poses, our proposed approach detects and classifies DoS
attacks (network-based attack) using a machine learning
classifier, Unauthorized access (application-based attacks)
by performing Z-score statistical analysis. We also illustrate
the potential privacy breach that is caused due to unautho-
rized access in vSocial and then present how our anomaly
detection approach can be used in real-time.

5.2.1 ML on a single label network-based attack dataset
Herein, we detail the pre-processing of the data collected,
feature extraction and the subsequent attack detection steps
for detection of single and multi-labeled network-based
attacks using ML techniques.
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Figure 9: Five of the most distinguishing extracted features.
Data Pre-Processing for our ML-based approach: To iden-
tify and accurately differentiate benign data from a num-
ber of selected network attacks, our proposed anomaly
detection method aims to develop a pertinent machine
learning classifier. We generate training and testing datasets
by sampling different types of network-based attacks (i.e.,
DoS), and also the causes of DoS attack (i.e., packet tam-
pering, packet drop, packet duplication). Moreover, we use
the attack simulation data obtained using our SP-UIX tree
analysis method detailed in Section 3.1.2, and also the data
obtained through experiments in Section 5.1 for training
our ML models to distinguish between benign and anomaly
event datasets.

In our preprocessing step, we opt for a low-demand data
collection approach. As part of data collection, we monitor
network activity during: (i) normal time periods, and (ii)
while performing each of the three DoS attacks such that all
this data is updated into the Knowledge Base. We calculate
the number of packets sent per second over a span of time
by capturing the raw data associated with the timestamp
of each packet. With this, we construct a dataset of packet
rates captured over a time span for each attack type, thereby
initializing a time series classification problem. In this study,
we consider that the samples are collected in a uniform
distribution such that each class is distributed uniformly.

The considered data set includes four classes: Normal
(benign) behavior class and the remaining three classes are
DoS attack events (packet duplication, packet tampering,
and packet dropping). For each class, we collect 40 samples
of 15-second sequences, where each sequence contains a
packet rate at 1-second intervals. We collect data at equally
spaced time intervals (1 second) i.e., packets rate per second
(PRS). We can model the packet data effectively as time se-
ries data, where each class has its own individual sequence.
We support our statement by analyzing how the time series
of the packet rates for each class contains distinguishing
features as shown in Figure 8. This motivates our work to
use this time series data to train an effective ML model that
can take packet rate data at a sequence of time as an input
and accurately label the data as one of the four attack data
classes.
Feature Extraction: As part of feature extraction, we use
tsfresh [54], a time series feature extraction tool that can
be used for translating the time series data to a data format
that can be utilized for training traditional ML models. To
select the features (i.e., predictors) that contribute most to
the target variable, we used the Select K Best (SKB) method.
Moreover, we used filter-based feature extraction methods
in our proposed anomaly detection approach where the
five most distinguishing features among the 212 relevant

Table 4: Performance comparison of our approach vs. base-
line models.

Name of the model Classification Accuracy
Baseline 1 52%
Baseline 2 70%

Two-stage ensemble 95%

returned features are selected as shown in Figure 9. Using
our feature extraction, we determine 5 distinguishing fea-
tures – Sum of Values, Mean of Values, Ricker Wavelet, Fourier
Coefficient (real), and Fourier Coefficient (absolute value) that
clearly differentiate the various classes from one another,
and are used for training an ML classifier.

Before we implement an ML classifier, we perform sev-
eral tests based on quantifiable metrics that suit our data. We
repeat the feature extraction step on multiple ML classifiers
to aid in developing an algorithm for an accurate detec-
tion approach. We implement the following classifiers i.e.,
{Decision Tree, Random Forests, K Nearest Neighbors, Ensemble
Voting Classifier} [55] by adapting from the sklearn python
machine learning library for the best-fit analysis. For each
of the classifiers, we run 1000 tests, each of which included
a random train-test split designed to prevent overfitting.
Each test consists of training the model with 112 samples
and testing it on 48 samples. There are several performance
evaluation metrics that can be used for a classification exer-
cise. We specifically use performance metrics such as average
time, precision and recall that are computed to decide the
suitable classifier for our data collected in order to classify a
sample as an attack or a benign data class. We calculate the
considered performance metrics as follows:

Recall =
TruePositives

FalseNegatives+ TruePositives

Precision =
TruePositives

FalsePositives+ TruePositives

Figure 10: Single-label classifier accuracy comparison.
The detailed comparison in terms of the performance

metrics (precision and recall) and time needed for each model
to classify a sample between ML classifiers is shown in
Figure 10. Based on our analysis shown in Figure 10, we
determine that the KNN with the K-parameter set to 2 is
most suitable with 97.8% average precision and 97.6% aver-
age recall. We compare the KNN performance for different
K-parameters ranging from 2 to 20 where the KNN performs
at its best with the K-parameter set to 2. On an average this
KNN takes 7 milliseconds to classify a sample. Although
the decision tree is able to run faster for classification of a
sample in 1.52 milliseconds, we give priority to the preci-
sion and recall factors for accuracy in classifying a sample.
Moreover, we expected the KNN + Random forest (voting
classifier) to be the winner among the considered classifiers.
But, the KNN was most suitable due to the huge difference
in running the classifier in terms of the considered metrics
of performance.

In addition, we compared the performance of our pro-
posed system with baseline models (i.e., Logistic regression
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Table 5: Performance metrics of our anomaly detection method in terms of detection and classification of anomaly events.

Type of ML Model
Stage 1: Detection - time to detect network attacks (in seconds) for each

Anomaly Type (Ai) and accuracy metric
Stage 2: Classification

Avg. time to classify
into n/w attacks
(in milli seconds)

Avg. accuracy to
classify

into network attacks
A1 A2 A3 A4 A5 A6 A7

Avg. detection
time (in seconds)

Avg. accuracy
for detection

Multi labeled KNN
(Multi attack scenario)

4.0 2.0 2.8 2.6 1.2 3.6 3.6 2.82 99.5% 1.3 87.5%

Single labeled KNN
(single attack scenario)

4.4 2.4 2.8 - - - - 3.2 98.8% 7 97.5%

(Baseline 1) and Support Vector Machine (Baseline 2)) [56]
in terms of accuracy for prediction of anomaly event cate-
gories. These baseline models can identify an anomaly event
but cannot accurately identify the type of anomaly that is
triggered. In contrast, our proposed approach can classify
a detected anomaly event into a specific anomaly event
category. Table 4 presents the classification accuracy values
for these baseline models in comparison with our proposed
anomaly detection approach. Based on our analysis shown
in Table 4, we determine that the KNNwith the K-parameter
set to 2 in our anomaly detection approach is most suitable
with 95% accuracy when compared to both the baseline
models.

Further, to determine the most suitable classifier in terms
of faster attack detection along with higher accuracy in
classification, we use average speed (i.e., time taken to
classify a single sample) as another metric. Based on the
graphical analysis shown in Figure 10, we use the most
suited classifier KNN and use it for attack detection and
classification for single labeled data. We term the time taken
to recognize the attack initiation as Time to detect an attack.
We calculate the attack detection time by monitoring the
network packet rate as it transitions from normal (benign)
behavior to any of the events related to DoS attacks. To
elucidate, we calibrate the average time (in seconds) from
the start of a DoS attack to the identification of such anomaly
behavior by the ML classifier in the anomaly detection
scenarios as shown in Table 5.

We determine the average time taken by our anomaly
detection approach applying KNN classifier for detection
of network-based attacks (i.e., DoS) as 3.2 seconds. Based
on our preliminary work [18], we highlight that the time
taken to detect an attack is lower than the time taken
for a DoS attack to cause a VRLE server crash. With this
detection result, it is evident that our anomaly detection
method works effectively and can avoid any VRLE server
crash before the user gets interrupted or before an attack
event causes a significant impact on VRLE sessions. The
Listed anomaly types (Ai) in the Table 5 are the set of: {A1–
Dropping, A2– Duplication, A3– Tampering} simulated single
attack scenarios and N– represents a ‘no breach scenario’.

5.2.2 Multi-label network based attack detection and clas-
sification using multi-label KNN
Based on the results shown in Figure 10 and in Table 5,
we justify the potential of employing a suitable classifier
in our proposed anomaly detection method to identify any
network-based anomaly events from a sample of time-series
based packet data. However, considering the dynamic inter-
actions in a VRLE, we determine with several experiments
that a multi-attack scenario (combination of attacks) can
occur in a real-time VRLE application. The above discussed
single-label KNN classification classifier will not have the
capability to handle a multi-attack scenario. Although the
single labeled model can determine the occurrence of an
attack, it has no capability to identify which specific attacks
are acting in a combination.

In order to address such multi-attack scenarios,
our anomaly detection method adapts multi-labeled K-
nearest neighbors (KNN) classification based on the ex-
isting works [57]. The single-label KNN classifier in
our anomaly detection method uses adaptations (i.e., the
skmultilearn.adapt module) for multi-label classifica-
tion with changes in cost/decision functions. In our devel-
opment of a multi-label ML classifier, we collect the attack
data similar to the single-label classifier data. We collect
the packet rate in a time-series format while a combination
of two or more DoS attacks is simulated on the VRLE
application. By observing the time-series data, we proceed
to develop our multi-label KNN classifier by adapting from
the works in [58–60].

In addition, the multi-label KNN initially identifies the
k nearest neighbors of the test instance where the label sets
of its neighboring instances are obtained. Next, the multi-
label KNN uses a maximum a posteriori (MAP) principle
to predict the set of labels of the test instance using the
information of the labels obtained in the neighborhood of
an instance [57, 60]. Using a Laplace smoothing method on
the Bayes theorem, it determines the posterior probability of
an instance labeled for a particular class given the number
of neighbors that are in that same class. We employ this
multi-label KNN as part of our anomaly detection approach
for different network scenarios (e.g., benign or DoS) in a
network-based VRLE. We determine that the time complex-
ity of our anomaly detection method for: (i) training phase is
O(n2d+nqk) and for (ii) testing phase is O(nd+qk), where
n is the length of unseen instances (n), d is the distance
computation between an instance and its neighbors, q is the
number of classes, and k is the hyperparameter for selecting
the closest neighbors [60].

We run our developed multi-label KNN classifier model
for 1000 tests where a combination of network attack events
from the normal behavior (benign) class of data with an
average accuracy of 99.5% are detected. We compare these
results to check the capability of our model with the existing
work [26], where their optimal detection model discusses
the potentiality to exceed 99% accuracy in detecting various
DoS attacks from normal (benign) behavior data. More-
over, our multi-label KNN classifier accurately identifies
if any attack behavior is observed in the VRLE sessions.
In addition, the multi-label KNN classifier is successful in
labeling the data samples with the appropriate class/classes
with an average accuracy of 87.5% for 1000 trials. Although
this classification accuracy is significantly lower than our
single-label KNN classifier, these results can be used as
a preliminary model considering the complexity in deter-
mining a multi-attack scenario (multi-class labels). We also
compare our multi-label KNN classifier with existing works
that discuss classifier chains and label powerset models. We
observed that the average accuracy of these two models
failed to exceed 60% which is lower than our developed
multi-labeled KNN classifier.

We consider different attack combinations, where we
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Figure 11: Multi-label K-NN classifier confusion matrix.

compute the average time taken by our multi-label KNN
classifier to detect an attack is 2.8 seconds as shown in Table
5. We generate a confusion matrix for the multi-labeled clas-
sifier as shown in Figure 11 with the correct classifications
and the incorrectly labeled predictions. The listed anomaly
event types shown in the Table 5 includes the combination
of {A4– Duplication + Dropping, A5– Dropping + Tampering,
A6– Duplication + Tampering, A7– Tampering + Duplication +
Dropping}multi-attack scenarios simulated andN– represents
a no breach scenario as shown in Figure 11. Our algorithm
does not fail in classifying a single attack (Duplication) that
is part of a combination attack (Dropping + Duplication).
This shows that our multi-label solution can identify and
classify an anomaly event (in combination scenario), and at
the very least could specify one attack out of a combination
of attacks that are present in the VRLE. Thus, our anomaly
detection method detects different DoS attack scenarios
(single and combination) efficiently using the most suitable
KNN classifier. We enlist all the detection results for the
network attacks considered in different scenarios in terms
of different performance metrics (time taken to detect and
classify, accuracy) as shown in Table 5.

5.3 Application-based attack detection using statistical
analysis
Next, our proposed anomaly detection method employs sta-
tistical techniques for identifying application-based attacks
such as unauthorized access, and disclosure of confidential
information which are not feasibly detected by an ML
classifier. An example of an attack generating no/less data
is when a VRLE session starts and the attacker tries to
gain access to the system and seeks to modify the files
after the session start timestamp. In this case, there are no
quantifiable parameters to determine file modification (i.e.,
data tampering). As a solution, we implemented the boolean
conditions to flag malicious events and thresholding equa-
tions to perform Z-score analysis as shown in Section 4.1.
We illustrate our experimental evaluation of our statistical
technique to calculate the thresholds for the application-
based attacks using Z-scores. We consider this baseline data
and further compare it with the calculated z-scores of the
input data as mentioned in Equation 3. This calculation of
SSattack can aid in alerting the VRLE server administrator
about the attack.

5.3.1 Data collection for Z-score based statistical analysis
In order to test the effectiveness of our statistical analysis
technique, our anomaly detection method collects the data
by simulating unauthorized access on the VRLE application.

Table 6: Bruteforce attack detection scenarios in terms of
precision and recall metrics

Statistic Good password dataset Attacker database
Precision 99.95% 99.7%
Recall 99.92% 99.93%

In order to perform a brute force attack (a form of unautho-
rized access), we parsed a database of 1,000,000,000 common
passwords [61], and categorized a set of passwords as good
passwords (possible errors a user can make while typing the
password). This good set of password data consists of the
passwords that are less than two characters different and
within 2 characters of the correct password. We calculate
the ratio of good passwords to the total set of passwords as
10

4958 approximately.
As part of data collection, the tests are run within a

reasonable amount of time to determine the normal data
set (benign user) and malicious data set (attacker patterns).
For this, we consider the fraction 10

4958 , where the numerator
value denotes a good password dataset of 10 passwords.
On the other hand, the denominator value can be denoted
as an attacker database of 4958 passwords. We use 123456 as
the sample correct password of a user for testing different
user scenarios. In order to collect data of a non-malicious
user logging into the system, we run this test by removing
the good passwords until the sample correct password is
identified. Our data collection approach runs the test 1000
times to record the data that determines the number of
attempts taken to identify the correct password. To collect
the data related to unauthorized access (malicious user
trying to login), we run the same test 1000 times using
the attacker database of passwords to simulate a Brute-force
attack scenario onto a VRLE system. The data is recorded to
identify the number of attempts taken by a malicious user
to guess the correct password.

5.3.2 Application-based attack detection using Z-score
analysis
The data collected in terms of normal (benign) user attempts
and malicious (attacker) attempts are analyzed using the
deviations calculated from the mean. With this, the Z-
scores are rounded to the nearest whole number due to
the computational requirements. We were able to run only
1000 tests due to system limitations and computation time
for the statistical analysis. Using the Boolean and threshold
functions, we generate a histogram to show the distribution
of Z-score frequency for normal (benign) user data on login
attempts and for malicious user (unauthorized access) login
attempt data as shown in Figure 12.

The Z-score data related to benign users shown in Fig-
ure 12, follows a Gaussian distribution along with thresh-
olds created with a sensitivity value of 2. Any data that falls
outside the range of these thresholds can be categorized as
anomaly events (malicious attacks). We run the Z-score anal-
ysis 100 times on both the benign user data and malicious
user data to calculate precision and recall scores for each test.
The average precision and recall scores are calculated for 100
tests on both the good password and attacker database as
shown in Table 6 where we identify that these both statistics
are with higher levels of 99% in terms of precision and recall
factors.

Our statistical analysis technique considers other forms
of unauthorized access for determining the efficiency of our
Z-score based analysis. For simplicity, we run tests related
to an attacker database of 100 passwords instead of the
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Figure 12: Bruteforce password attempt Z-score distribution.
Table 7: Calculation of suspiciousness scores based on mul-
tiple combination of attacks.

Type of attack Detected attack
scenarios

Impact value
from AP

Total
Suspiciousness
Scores (SSattack)

No breach
(baseline data)

Benign Data
(non-malicious)

1 0

Single network
attack scenario
(DoS attack)

Duplication 3 0.17
Dropping 3 0.17
Tampering 5 0.40

Multi network
attack scenario
(combination
of DoS attacks)

Duplication + Dropping 6 0.50
Tampering + Duplication 8 0.70
Tampering + Dropping 8 0.70
Tampering + Dropping +

Duplication
11 1

Single non-
network based
attack

Brute Force attack 5 0.40
Unauthorized access (other

forms)
5 0.40

4958 passwords. This, considered 100 sets of passwords,
represents the scenario where an attacker tries to gain access
using other forms of sniffing methods to narrow down the
correct password to a small number. For uniformity, we per-
form the same number of tests similar to the tests performed
for determining the number of login attempts to Brute-force
a VRLE system. We tabulate statistical parameters precision
and recall for other forms of attacks as shown in Table 6 to
understand the efficiency of our Z-score based analysis.

Although the password data considered for the other
forms of unauthorized access is significantly reduced from
the password data considered for the brute force attack, our
solution in Section 4.1 demonstrates very promising results
with above levels of 99% in terms of precision and recall
factors. The y-axis in the bar graphs shown in Figure 12 rep-
resents the frequency of the data and the x-axis represents
the Z-score value ranges. The thresholds for the normal
data (benign user) are in the form of the dotted line on the
extreme left as shown in Figure 12. The malicious attack
data is detected and flagged, as the Z-score distribution
falls out of the threshold range. This case is annotated as
malicious data in the bar graph shown in Figure 12. Thus,
using statistical analysis, we identify the application-based
attacks (i.e., unauthorized access) with the data threshold
shown in Figure 12.

5.4 Calculation of Suspiciousness Scores (SSattack)
Once an attack is detected as shown in Figure 5, next we
calculate the respective suspiciousness score SSattack as
described in Section 4.1. Using a sandbox technique the
SSattack scores are calculated based on the parameter ‘Esti-
mated level of impact of an attack on the UIX’ as defined in
the following equation:

est.levelI =
(x−minimpact)

maximpact −minimpact
(5)

Each of the SSattack values are normalized on a scale from
0.0 to 1.0; where 1.0 represents the maximum score of
SSattack. There are a few attacks that have similar indicators

in the case of a single attack or a multiple attack scenario. To
elucidate, a recently modified system file can cause an over-
lay attack (where a default image file has been overridden)
or a Chaperone file modification attack [8]. On the other
hand, unauthorized access encompasses any kind of brute-
force attack or administrator login from a non-administrator
user role. In addition, for the attacks that affect privacy,
it is difficult to get quantifiable indicators such as in the
case of log files being stolen or browsers being hooked. We
include all these attacks to build an attacker profile [50, 51].
We remark that these can be extended for future works to
determine quantifiable parameters for the application-based
attacks.

These SSattack scores can also be used for defense mech-
anisms when an attack is detected. In this study, we remark
that we focus only on developing an anomaly detection
method through SSattack score calculation. We store all
this historic data on detected attack patterns, SSattack score
and impact on UIX score in the knowledge base, to train
models for zero-day attack anomaly events detection by
continuously learning the dynamic interactions in a VRLE.

6 DISCUSSION

Based on the analytical results discussed in Sections 3.2
and 5, we highlight salient takeaways that can provide
insights for employing effective and efficient anomaly de-
tection mechanisms in future VRLE designs.

6.1 Faster Attack Detection
We created a Knowledge Base (KB) to map different attack
patterns which have been detected and can be used as a
reformulated knowledge in the detection of future anomaly
events. Using the KB, we can also train ML models for
identifying zero-day attack anomaly events and achieve
faster attack detection by continuously learning the dynamic
interactions in a VRLE. The KB has information based on
our experimental validation in our prior works [18]. For
instance, it has information on how we determined the
average time taken to crash a VRLE server e.g., complete
disruption of a VRLE session due to a DoS attack is 85.5
seconds. In Section 5, we showed that the average detection
time of single and multi-attack scenarios by our anomaly
detection approach is within 3 seconds. Such an amount of
time is less than the determined duration (i.e., 85.5 seconds)
that is required to trigger a complete disruption of user
experience in a VRLE.

Thereby, we showcase how our anomaly detection
method can alert the system administrator in a timely
manner to notify that an anomaly event is occurring dur-
ing a VRLE session. Based on this notification, the VRLE
administrator can look into employing counter measures
to mitigate the impact of the detected anomaly events
that cause bottlenecks. Using our SSattack (that indicates
the attack occurrence) history parameter, we can perform
even faster detection such that the rate of user experience
disruption can be reduced. Thereby, with the KB approach,
our anomaly detection can aid in collecting sufficient labeled
data for continuously rising attack variants in the form
of threat intelligence and can aid in notifying alerts that
prompt countermeasure responses to address the anomaly
events that cause bottlenecks.

6.2 Validation of SP attacks Impact on UIX
After the detection of SP attacks and calculation of SSattack

using our anomaly detection method, the next step is to
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Figure 13: Relative change in UIX as the Suspiciousness
scores increase for different type of SP breaches.

validate the impact of the detected attacks on the UIX score.
In this section, we provide a validation of the impact of
detected SP attacks that aids with the SSattack calculation,
which in turn impacts the overall UIX score. We calculate
the UIX score for different types of scenarios (attack and
benign user), as shown in the Figure 13.

The analysis between the calculated SSattack and UIX
score for different types of scenarios (attack and benign
user) is shown in Figure 13. The x-axis in Figure 13 denotes
the breaches occurred where, NB – No breach, SB – Security
breach, PB – Privacy breach and CB – Combination of breaches
in the vSocial case study. The y-axis in Figure 13, represents
the percentage change value that occurs in both UIX and
SSattack parameters. We observe that for every security,
privacy breach scenario in the VRLE, the UIX score is
significantly reduced compared to the benign user behavior
(NB scenario). On the other hand, the SSattack is increased
for every type of breach included in this analysis. We also
highlight that as SSattack increases, the overall UIX score
is reduced significantly for the attack scenarios considered
in this validation of impact analysis. With this analysis, we
highlight the fact that SSattack and UIX score can be used
as salient quantitative parameters in our proposed anomaly
detection method. Further, it can be leveraged for notifying
attack events before they occur in real-world VRLE systems.
We store all this historic data on detected attack patterns,
SSattack score and impact on UIX score in the knowledge
base for handling recurring anomaly events impacting UIX.

Due to this, we determine that a particular anomaly
event is more prevalent in VRLEs and can be classified
as a critical threat for future recurring anomaly detection.
In addition, the SSattack that is associated with estimation
of level of impact of several attacks for different attacker
profiles can aid in choosing suitable mitigation strategies.
For example, a potential defense mechanism, based on
SSattack, would include blacklisting the IP of the malicious
user, encrypting log files or routine scanning for open ports.

7 CONCLUSION AND FUTURE WORK

VRLEs deliver learning content in a collaborative manner
to provide an immersive experience for geographically dis-
tributed users (i.e., students and instructor(s)). Unautho-
rized access and DoS attacks affecting VRLE components
or data can disrupt the functionality of VRLEs and impact
UIX. With our experimental survey, we demonstrated the
disruptive effects of various application-based and network-
based SP attacks on UIX factors. Building upon these estab-
lished observations, we proposed a novel anomaly detection
method that: (a) effectively identifies an attack event or
a combination of attack events and, (b) correspondingly

classifies the relevant anomaly events into a specific attack
category recorded in a knowledge base.

We utilize attack trees to model the SP attacks that
are caused due to the vulnerabilities in VRLEs that can
potentially disrupt UIX. Our proposed anomaly detection
method involved two major techniques: (i) ML-based KNN
classifiers for detection of network-based attacks, and (ii)
Z-score based analysis for detection of application-based at-
tacks. Using a real-world VRLE application case study viz.,
vSocial, we successfully detected single network attack sce-
narios (e.g., security attack) within 3.2 seconds and classified
the attack with an accuracy of 97.5%. Moreover, we adapted
a multi-label KNN classifier model to detect multi-attack
scenarios (i.e., combinations of security and privacy attacks)
within 2.82 seconds, and classified the attack categories with
an accuracy of 87.5%. Additionally, our anomaly detection
method identified unauthorized access via a Z-score based
statistical analysis with an average precision of 99.7%. We
also generated an attack-specific ‘Suspiciousness Score’ met-
ric normalized on a scale of 0-1 for both network-based and
application-based attacks in order to serve as a quantifiable
parameter for future attack events. We utilized different
attacker profiles generated from our experiments in our
extensive attack simulations on a vSocial testbed to demon-
strate our proposed anomaly detection method’s efficacy in
terms of accuracy, precision and recall. In the same context,
we created a knowledge base that stores detected attack
patterns along with a history of calculated Suspiciousness
Scores and UIX scores. The created knowledge base can thus
be used to extend our proposed anomaly detection method
to identify zero-day attack events on VRLE systems.

As part of future work, studies can address security
and privacy attacks that target the creation of cybersickness
issues amongst users, thus not only impacting the UIX but
also the user safety in VRLEs. Further, our findings can
be used to inform the best practices to incorporate suitable
mitigation strategies for bottleneck anomaly events in future
VRLE designs. In addition, we can further improve our
ML algorithm by using explainable artificial intelligence
techniques (XAI) that enhances the interpretability and trust
in our anomaly detection approach [62, 63].
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