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ABSTRACT

Cybersickness can be characterized by nausea, vertigo, headache,
eye strain, and other discomforts when using virtual reality (VR)
systems. The previously reported machine learning (ML) and deep
learning (DL) algorithms for detecting (classification) and predicting
(regression) VR cybersickness use black-box models; thus, they lack
explainability. Moreover, VR sensors generate a massive amount
of data, resulting in complex and large models. Therefore, having
inherent explainability in cybersickness detection models can sig-
nificantly improve the model’s trustworthiness and provide insight
into why and how the ML/DL model arrived at a specific decision.
To address this issue, we present three explainable machine learning
(xML) models to detect and predict cybersickness: 1) explainable
boosting machine (EBM), 2) decision tree (DT), and 3) logistic
regression (LR). We evaluate xML-based models with publicly avail-
able physiological and gameplay datasets for cybersickness. The
results show that the EBM can detect cybersickness with an accu-
racy of 99.75% and 94.10% for the physiological and gameplay
datasets, respectively. On the other hand, while predicting the cy-
bersickness, EBM resulted in a Root Mean Square Error (RMSE)
of 0.071 for the physiological dataset and 0.27 for the gameplay
dataset. Furthermore, the EBM-based global explanation reveals
exposure length, rotation, and acceleration as key features causing
cybersickness in the gameplay dataset. In contrast, galvanic skin
responses and heart rate are most significant in the physiological
dataset. Our results also suggest that EBM-based local explanation
can identify cybersickness-causing factors for individual samples.
We believe the proposed xML-based cybersickness detection method
can help future researchers understand, analyze, and design simpler
cybersickness detection and reduction models.

Keywords: Virtual Reality, Cybersickness, Explainable Machine
Learning, Cybersickness Detection.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—Interaction paradigms—Virtual reality; Human-
centered computing—Human computer interaction (HCI)—HCI
design and evaluation methods.

1 INTRODUCTION

Virtual reality (VR) has gained immense popularity in recent years
and has been adapted in a wide variety of applications including
medical training [29], education [48], national defense [3], public
safety/disaster management, [42] and many more [9, 17, 53, 59, 74].
However, VR users often experience cybersickness which is a set of
unpleasant symptoms such as eyestrain, headache, nausea, disorien-
tation, and such [10,20,48,53,59,65,66] which pose a serious threat
to the immersive experience of the user. Hence, it is vital to detect
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Figure 1: Overview of xML-based cybersickness (CS) classification, regression, and
explanation framework for virtual reality applications.

and reduce cybersickness during VR immersion [8]. For example,
it is feasible to apply cybersickness reduction techniques based on
the severity of cybersickness [26] or to allow the player to evaluate
their cybersickness score before purchasing a new VR game based
on their projected cybersickness [1].

Motivated by this, recent works in cybersickness detection in-
clude the use of Deep Learning (DL) and Machine Learning (ML)
from physiological signals (e.g., Heart Rate (HR), Galvanic Skin Re-
sponses (GSR), Breathe Rate (BR), Electroencephalogram (EEG))
[17, 50, 57, 68, 77] and using stereoscopic video [27, 41, 52]. For
example, Islam et al. [27], Lee et al. [41], and Jeong et al. [30] used
a complex multimodal deep fusion network with a 3D-CNN neural
network and CNN-LSTM neural networks and found that features
such as latency, optical-flow, disparity, saliency features, physiolog-
ical signals (e.g., HR, GSR, etc.) are most prevalent features for
causing cybersickness [13,27,28,52]. However, when utilizing com-
plex ML/DL models and fusing multimodal input from internal and
external sensors, the black-box ML/DL models become increasingly
complex, and their characteristics are difficult to interpret; thus, they
lack explainability. Therefore, having inherent interpretability (i.e.,
without using any external explanation tools/methods) in ML/DL
models can significantly improve the model’s trustworthiness and
provide insight into why and how the ML/DL model arrived at a
specific decision. Indeed, understanding why some samples were in-
correctly labeled as cybersickness is the first step toward discovering
which feature contributed to the classification result.

We believe that understanding the feature spaces and contributing
elements leading to cybersickness will enable future research to
create effective mitigation strategies. Therefore, in this research,
we present TruVR – a framework for developing a trustworthy
cybersickness detection method based on explainable machine learn-
ing (xML) [43]. The trustworthiness in our proposed method is
obtained via using a set of mechanisms, such as global and local
explanation, and explainable layers to make the model transparent,
understandable, and therefore, trusted by users [34,69]. Specifically,
the contribution of this paper can be summarized as follows.

• We exploit the inherent interpretability of Explainable Boost-
ing Machine (EBM) [51], Decision Tree (DT) [21], Logistic
Regression (LR) [39], and Linear Regression (LIR) [4] model
to classify and regress the cybersickness using two open-source
datasets [24, 56].
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• We also provide a global explanation (i.e., identifying fea-
tures crucial for the overall prediction) and local explanation
(i.e., identifying features dominating for an individual sample
prediction) details for analyzing and identifying dominating
features causing cybersickness.

It is worth mentioning that EBM is a tree-based, cyclic gradient
boosting Generalized Additive Model with automatic interaction
detection, which is often as accurate as state-of-the-art black box
models while remaining completely interpretable [51]. EBMs are
also knowns for being highly compact and fast at prediction time.
All the utilized models in this work are inherently interpretable; thus,
they do not require any external explanation tools, such as SHapley
Additive exPlanations (SHAP) [5] for explaining the cybersickness
detection outcomes. Our results show that the EBM model is highly
accurate when compared to the DT, LR, and LIR models and clas-
sifies cybersickness (i.e., binary classification) with an accuracy of
99.75% for the physiological [24] dataset and 94.10% for the game-
play [56] dataset. In addition, the EBM model regresses ongoing
cybersickness(i.e., Fast Motion Scale (FMS) score [35]) with a Root
Mean Square Error (RMSE) 0.071 for the physiological [24] dataset
and 0.27 for the gameplay [56] dataset.

2 RELATED WORKS

The most popular theories for cybersickness are the sensory conflict
theory, poison theory, and postural instability theory [40]. Among
them, the sensory conflict theory is the widely accepted one. Ac-
cording to the sensory conflict theory, cybersickness is caused by
perceived pseudo-movement detected by visual sensory while the
individual remains stationary [40]. Interestingly, cyberattack was
also reported was one of the indirect reasons behind cybersick-
ness in [22, 71, 72]. Additionally, there are certain variables that
may influence the degree of cybersickness based on the partici-
pants’ age, gender, and prior VR experience [14, 19, 23, 60]. In
order to measure cybersickness researchers have proposed several
subjective measurements such as the Simulator Sickness Question-
naire (SSQ) [10–12, 15, 64, 74], the FMS [35] and the Motion
Sickness Susceptibility Questionnaire (MSSQ) [33]. In addition
with subjective measures, objective measurements (i.e., physio-
logical signals) for cybersickness have also been proposed by re-
searchers [25, 28, 55]. According to previous research, objective
measurement such as HR, GSR, and EEG vary significantly when
cybersickness occurs. [13, 28, 44, 44, 61]. They found that HR and
EEG delta waves positively correlate with cybersickness, whereas
EEG beta waves have a negative correlation [44]. Another study
reported that GSR has a much more positive correlation with cyber-
sickness than other objective measurements and could be used to
detect cybersickness [28, 67].

Recently, numerous ML and DL-based techniques have been
proposed to automatically detect cybersickness from various objec-
tive and subjective data [2, 16, 25, 28, 31, 32, 36–38, 41, 73, 75]. For
instance, Jin et al. [32] used three DL/ML algorithms: Convolu-
tional neural network (CNN), Long short-term memory (LSTM),
and support vector regression classifiers (SVM) to estimate the level
of discomfort, where LSTM achieved the best results. Agundez et
al. [18], utilizing a mix of physiological and game parameters along
with users’ respiratory and skin conductivity to analyze them us-
ing SVM and K-nearest neighbors (KNN) classifiers to classify the
cybersickness severity. In [52], the authors used depth and optical
flow features from the VR video data to predict cybersickness. In
contrast, Lee et al. in [41] used a 3D-CNN and a multi-modal deep
fusion approach with optical-flow, disparity, and saliency features
and reported an improved accuracy for cybersickness detection when
compared to the work in [52]. In [37], the authors used CNN and
LSTM models to estimate the cognitive state using brain signals
and how they relate to cybersickness levels. In contrast, the authors
in [38] applied LSTM and Kalman filtering techniques. Authors

in [28] classify the cybersickness severity from users’ physiological
signals (e.g. HR, GSR, etc.). In addition, a symbolic ML-based
approach is presented in [55] to identify the levels of cybersickness.

Methods based on DL are excellent at detecting cybersick-
ness. Nonetheless, the forecast conclusions are incomprehensi-
ble. As interpretability is crucial to comprehending cybersickness
causes/symptoms, the fundamental complexity of DL models may
restrict their utility. In this context, an xML-based approach can be
advantageous. The application of xML has already been investigated
in healthcare [45,46,63], finance [7], and law [62]. Sarica et al. used
an EBM-based XML approach for predicting Alzheimer’s disease
from MRI Hippocampal Subfields [63].

Indeed, it is crucial to identify the key features inducing cyber-
sickness in VR to develop effective mitigation methods [70] which
can be achieved by using xML techniques. However, to the best of
our knowledge xML techniques for detecting and predicting cyber-
sickness has not been explored yet, which motivates our work in the
paper.

3 METHODOLOGY

An overview of the proposed xML-based framework for cybersick-
ness classification, regression, and explanation framework for VR
applications (Figure 1). First, VR simulation data is divided into
70% for training and the remaining 30% for testing. Then, train-
ing data is used for training xML-based models (e.g., EBM, DT,
and LR) for cybersickness classification and regression. Next, the
trained xML-based classification and regression models are used for
classifying and regressing the cybersickness from the test dataset.
The cybersickness detection phase aims at classifying the test data
in cybersickness and no cybersickness classes using the trained xML
models. After the cybersickness classification phase, the cyber-
sickness explanation is applied using global and local explanation
methods. In a global explanation, the overall feature ranking is
performed based on the overall outcome. On the contrary, the local
explanation performs individual feature ranking based on the individ-
ual prediction. Finally, in the cybersickness prediction (regression)
phase, the xML models regress the next value of the ongoing cyber-
sickness FMS score range of 0 to 10. In the following sections, we
describe the details of cybersickness classification, regression, and
explanation.

3.1 Cybersickness Classification using EBM

EBM is built upon Generalized additive models (GAMs) [51]. Let
us assume a cybersickness dataset D contains a total N number of
samples, and β denotes the learning intercept, xn denotes the feature
from dataset D, yn represents the target label (i.e., cybersickness and
no cybersickness), and gn denotes the non-linear functions namely,
shape or feature function that describe the relationship between
the output and input variable. Then, the link function that adapts
the GAM for classification can be represented as: f (E [y]) = β0 +
∑gn (xn). To ignore the feature order, the boosting tree is applied
in a round-robin fashion for each feature with a very low learning
rate of 0.01. To learn the shape function gn for each feature cyclic
gradient boosting [51] is considered with a number of iterations.
To minimize the co-linearity, EBM iterates through each feature to
learn the best feature function gn and provides the list of features
that contribute to the prediction. The contribution of every feature
to the final prediction can be visualized and understood by plotting
the function gn.

3.2 Cybersickness Classification using Decision Tree

DT constructs a tree-structured model to predict cybersickness out-
comes based on the input features of the cybersickness dataset D.
Given samples M from D, the expected information In f o(M) needed
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to correctly identify the cybersickness is given as:

In f o(M) =−
m

∑
i=1

pilog2(pi) (1)

In Equation 1, pi represents the probability of the cybersickness
prediction that belongs to an actual cybersickness class Ci. The
difference between the original information required and new infor-
mation needed to predict cybersickness is defined as information
gain Gain(A) = In f o(M)− In f oA(M), where In f oA(M) denotes
the expected information needed after partitioning using feature
A from the cybersickness dataset D. The gain ratio is then calcu-
lated [21]. In this paper, we first create the trees with a maximum
depth of 3. Then, the attributes for the root node are identified. Next,
the Gini cost function [21] is used to determine how pure a node is
to select the next node. After prediction of the cybersickness, we
provide the feature importance in terms of explanation.

3.3 Cybersickness Classification using Logistic Regres-
sion

This paper uses LR to predict cybersickness and then applies the
cybersickness explanation. LR model has a fast training time, and it
also provides good interpretability [6]. For the LR, we used the cross-
entropy [39] loss function to measure the performance of a prediction
model whose output has a probability value for cybersickness. Then,
we explain the predicted cybersickness.

3.4 Cybersickness Regression with xML Models
In the regression analysis, we use three xML-based models, namely
EBM, DT, and LIR, to estimate the cybersickness FMS score from 0
to 10. The cybersickness regression task can be defined as follows:
Given the cybersickness, FMS score at previous time steps t − 1
then, we have to predict the FMS score at the next time steps t. The
predicted cybersickness FMS score at time t based on the last time
t− 1 of physiological signals is denoted by CSt . For instance, if
we predict the cybersickness FMS score at time t = 5 seconds then,
CSt can be written as: CSt ⇒ [Mt−4,Mt−3,Mt−2, . . . ,Mt ], where M
denotes the user’s physiological state.

3.5 Cybersickness Explanation with xML
The explainable ML methods produce visual representations, either
as a DT (CART), scoring table (RiskSLIM) or as a set of visualiza-
tions either in global or local explanation [51]. We present these
tables and visualizations for EBM, LR, and DT to give a clear un-
derstanding of each model’s interpretability regarding cybersickness
classification. We provide two explanations of the model decisions
regarding global and local explanations. The overall feature impor-
tance ranking (global explanation) of cybersickness classification is
visualized in bar graphs or CART. For the local explanation, each
sample is randomly chosen from the test dataset, which contains
all the features. For the local and global explanation, the mean
absolute score (MAS) is used to calculate the feature importance
during cybersickness classification. MAS is actually calculated as
logits or log odds [79]. To convert these logits into a probability, we
sum them up and pass them through the logistic link function. This
logistic link function L is calculated for the feature ranking as fol-
lows: L(x) = 1

1+e−sum(logits) , where logits = x− x0 and x0 represents
the sigmoid’s midpoint for the sample x.

4 DATASET & EXPERIMENTAL SETUP

This section explains the experimental setup and data used to validate
and explain the xML-based classification and regression approaches
for cybersickness. We used Python, and the Scikit-learn [54] for
training and evaluating our xML models. For explaining the xML
models, we used the InterpretML [51] library.

4.1 Datasets
To validate the effectiveness of the proposed xML models, we used
the two datasets, such as gameplay [56] and physiological [24]
datasets. The gameplay dataset [56] is comprised of 22 different
features from the sources such as candidate profiles, questionnaires,
user field of view, user position, speed of the game in playtime,
etc. This dataset is generated using two VR games, i.e., racing and
flight games, with a total of 88 participants. However, the data from
37 participants was stored due to their valid cybersickness. It is
worth mentioning that the gameplay dataset contains a total of 9391
samples recorded with 5 minutes of VR gameplay simulation [55].

On the other hand, the physiological dataset [24] contains the
physiological signals (such as HR, HR Variability (HRV), BR, and
GSR) of 31 participants immersed in a VR roller coaster simulation.
The HR, BR, GSR, and HRV data consist of four subcategories,
including the percentage of change from resting baseline (PC), min-
imum inside 3s rolling window (MIN), the maximum value of 3s
rolling window (MAX), and moving average of 3s rolling window
(AVG). This dataset has a total of 14775 samples recorded with a
maximum of 897 seconds of VR simulation. We applied the random
oversampling [78] technique to the training samples of the physi-
ological dataset due to class imbalance problems. As mentioned
earlier, we used the 70% samples from both datasets for training the
xML models and their remaining 30% samples for cybersickness
classification and regression.

4.2 Ground-Truth Construction
In this paper, we proposed a binary classification model for cy-
bersickness classification. Thus, in both datasets, the presence of
cybersickness is labeled as 1, whereas the absence of cybersickness
(no cybersickness) is labeled as 0. It is worth mentioning that the
physiological dataset contains three different cybersickness severity
classes: low sickness, moderate sickness, and acute sickness. We
labeled ‘moderate sickness’ and ‘acute sickness’ as 1 and low sick-
ness as 0 for this work. Similarly, for the gameplay dataset, the
four original cybersickness classes are: none, slight, moderate, and
severe, and we converted them into binary classes. We labeled ‘none’
as class 0 and ‘slight’, ‘moderate’, and ‘severe’ as class 1. For the
regression analysis, the ground truth of the FMS score is labeled,
ranging from 0 to 10 for both physiological and gameplay datasets.

4.3 Performance Metrics
The performance of the xML models for the cybersickness classifica-
tion can be quantified using the standard quality metrics such as ac-
curacy, precision, recall, F-1 score, the Area Under the Curve (AUC),
and Receiver Operating Characteristic curve (ROC) [2]. Likewise,
the performance of the regression models can be analyzed using
the well-known loss functions such as Mean Square Error (MSE),
RMSE, Mean Absolute Error (MAE), and R2 score [27, 38, 52].

4.4 Hyper-Parameter
For training the EBM model, we used the learning rate of 0.001
for boosting the tree. To prevent the model from overfitting, we
deployed an early-stopping strategy with a patience value of 30
while training the EBM model [51]. We used the default values for
the rest of the parameters (e.g., maximum tree leaves, maximum
bins, etc.). For training DT, we used trees with a maximum depth
of 3 to prevent the model from overfitting [76]. Consequently, L2
penalty term is used for training the LR with binary cross-entropy
loss function [39].

5 RESULTS

This section presents the results obtained from the cybersickness
classification and regression using the EBM, LR, DT, and LIR-based
methods.

779

Authorized licensed use limited to: University of Missouri Libraries. Downloaded on July 03,2023 at 17:58:05 UTC from IEEE Xplore.  Restrictions apply. 



Table 1: Cybersickness classification using xML models for the gameplay dataset
xML models Precision% Recall% F1-Score% Acc.%
EBM 87 90 88.94 94.10
LR 75 88 78.69 84.90
DT 72 85 74.14 80.51

Table 2: Cybersickness classification using xML models for the physiological dataset
xML models Precision% Recall% F1-Score% Acc.%
EBM 98.22 100 98.89 99.75
LR 72 75 73 77.92
DT 75 80 75 75.42

5.1 Cybersickness Classification Using Decision Tree
Table 1 and Table 2 summarize the precision, recall, F-1 scores, and
the accuracy of cybersickness classification using the DT model for
both the gameplay and physiological datasets. The cybersickness
classification using the DT model results in an accuracy of 80.51%
for the gameplay dataset and 75.42% for the physiological dataset.
The gameplay dataset’s precision, recall, and F-1 score are 72%,
85% and 74.14%, and 75%, 80%, and 75% for the physiological
dataset, respectively.

Although these results for both datasets seem close to each other
considering their performance metrics, the AUC score in the case of
the physiological dataset is 1.12 times less than that of the gameplay
dataset. Hence, overall the gameplay dataset performs comparatively
better than the physiological dataset in cybersickness classification.
This is because the size of the physiological dataset is quite large.
Therefore, a single tree may grow complex and cause the overfitting
of the DT model. Due to overfitting, the variance in the output
increases, leading to less efficient cybersickness classification.

5.2 Cybersickness Classification Using Logistic Regres-
sion

As shown in Table 1 and Table 2, the precision, recall, F1-score, and
accuracy for cybersickness classification using LR are 75%, 88%,
78.69%, and 84.90% with the gameplay dataset and 72%, 75% and
73% and 77.92% with the physiological dataset, respectively. Figure
2 presents the AUC-ROC curves for both datasets (the dashed-dotted
line represents the ROC values). The gameplay dataset possesses a
higher AUC score of 0.887; however, the physiological dataset has
a comparatively lower AUC score of 0.748. Hence, cybersickness
classification using the LR model has better performance in the case
of the gameplay dataset as compared to the physiological dataset.
This is because the gameplay dataset contains features from mostly
users’ profile data, which is relatively linear; however, the physio-
logical dataset is mostly non-linear. The LR lacks the capability of
solving non-linear problems. Also, the physiological dataset’s di-
mensionality is quite large compared to the gameplay dataset, which
eventually leads to an over-fitting problem in LR.

5.3 Cybersickness Classification Using EBM
We observe that the cybersickness classification using EBM per-
forms better than DT and LR models in the gameplay and the phys-
iological datasets, as shown in Table 1 and Table 2. For instance,
cybersickness classification using EBM for the gameplay dataset
exhibits 94.10% accuracy, which is almost 14 and 9 times higher
than that of DT and LR models. Likewise, cybersickness classi-
fication using EBM has 99.75% accuracy with the physiological
dataset that is almost 24 and 22 times greater than that of DT and LR
models, respectively. In addition, EBM achieves higher precision,
recall, and F1-score for both datasets than other ML models. The
precision, recall, and F1-score for the gameplay dataset are 87%,
90% and 88.94% and, 98.22%, 100% and 98.89% for the physio-
logical dataset, respectively. Moreover, the AUC-ROC score for
the cybersickness classification using EBM in Figure 2 is higher

Table 3: Cybersickness regression using xML models for the physiological dataset
xML Models MSE RMSE R2 MAE

EBM 0.005 0.071 0.975 0.0454
LIR 0.222 0.471 -0.06 0.461
DT 0.1702 0.4126 0.19 0.2970

Table 4: Cybersickness regression results using xML models for the gameplay dataset
xML Models MSE RMSE R2 MAE

EBM 0.073 0.27 0.45 0.071
LIR 0.1414 0.38 0.081 0.301
DT 0.127 0.372 0.41 0.197

(a)

(b)

Figure 2: AUC-ROC curve for EBM, LR, and DT. (a) physiological dataset (b) gameplay
dataset.

than that of DT and LR models in both datasets. The physiological
dataset has an AUC score of 0.996, and the gameplay dataset has
an AUC score of 0.913. Hence, EBM performs better than DT and
LR models. This is because EBM assigns a tree for each feature,
unlike DT and LR models, and then computes the probability. This
provides depth insight into the feature, leading to high classification
accuracy.

5.4 Cybersickness Regression Using Decision Tree
Table 3 and Table 4 shows the MSE, RMSE, MAE, and (R2) values
for the cybersickness regression using the DT model for both phys-
iological and gameplay datasets. The MSE, RMSE, MAE and R2

score values for the gameplay dataset are 0.127, 0.372, 0.197, and
0.41 respectively. However, the physiological dataset has compar-
atively higher MSE, RMSE, and MAE values and lower R2 scores
such as 0.1702, 0.4126, 0.2970, and 0.19 respectively.

Hence, cybersickness regression using the DT model has low
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(a) (b)

Figure 3: The global explanation of DT-based cybersickness classification. (a) gameplay dataset, (b) physiological dataset.
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Figure 4: The global explanation of LR-based cybersickness classification. (a) physiological dataset, (b) gameplay dataset.
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Figure 5: The global explanation of EBM-based cybersickness classification for gameplay dataset. (a) overall feature importance, (b) explanation for the feature User vision problem.

performance with the physiological dataset compared to the game-
play dataset. The reason is that the DT does not perform well with
continuous numerical variables. However, all measurements in the
physiological dataset are continuous. Furthermore, unlike the phys-
iological dataset, the gameplay dataset contains the user’s profile
data, which belongs to categorical variables.

5.5 Cybersickness Regression Using Linear Regression

As shown in Table 3 and Table 4, MSE, RMSE, MAE, and (R2)
values for the cybersickness regression using LIR are 0.222, 0.471,
0.461 and −0.06, respectively for the physiological dataset; and
0.1414, 0.38, 0.301 and 0.081, respectively for the gameplay dataset.
Note that the negative R2 score indicates bad prediction, which is

not obvious in the gameplay dataset.
The LIR works well on the dataset with small features and less

bias. However, the physiological dataset contains a large number of
continuous variables, which lead to high error in the corresponding
model and hence, causes a negative R2 score.

5.6 Cybersickness Regression using EBM

The cybersickness regression using the EBM outperforms the DT
and LIR models for both the physiological and gameplay datasets.
For instance, the cybersickness regression using the EBM has 44
times lower MSE than that with the DT and LIR models in the
case of the physiological dataset. The gameplay dataset also has 2
times lower MSE than other ML models in this paper. Table 3 and
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Figure 6: The global explanation of EBM-based cybersickness classification for the physiological dataset. (a) overall feature importance, (b) explanation for the feature PC GSR.
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Figure 7: The local explanation of EBM-based cybersickness classification for the physiological dataset. (a) explanation for actual cybersickness, (b) explanation for no cybersickness.

Table 4 show that the cybersickness regression using EBM results
in (R2) score, RMSE, MAE, and MSE as 0.975, 0.071, 0.0454, and
0.005 for the physiological dataset and 0.45, 0.27, 0.071, and 0.073
for the gameplay dataset, respectively. The reason behind the poor
performance of the DT and LIR models is the fact that they highly
depend on the variation in the data. The higher the variations in the
data, the lesser the chance of good cybersickness regression with
the DT and LIR models. In contrast, as mentioned before, the EBM
model is independent of the features in the data, and thus EBM
exhibits a better regression outcome.

5.7 Cybersickness Global Explanation
This section explains the results obtained from the global explanation
of the cybersickness using DT, LR, and EBM.

5.7.1 Cybersickness Global Explanation Using Decision Tree
Figure 3a illustrates the global feature ranking for the gameplay
dataset where the root node contains the auto-movement of camera
as a feature for 11088 observations (#Obs). Out of these observa-
tions, (5544, 5544) sample refer to (cybersickness, no cybersick-
ness). From this growing DT, the feature importance can be easily
inferred; hence, the features that lead to better splits can be iden-
tified. For instance, the root node is split into time stamps, with
#Obs (1787, 5378) and user vision problems, with #Obs (3757, 166)
for two classes, under the threshold 0.50 automovement of camera.
Next, the time stamps less than equal to 57 is used for the decision
node and hence, split into the usage of user glasses with #Obs (561,
132) and user genere with #Obs (1226, 5246). The decision node
with the feature user glasses usage has an impurity value of 0.50,
identifies 107 ‘cybersickness’ and 96 ‘no cybersickness’ samples.

We can also reason about the cybersickness using this DT. For in-
stance, if the usage of user glasses is high, then the user will be
more likely to suffer from the cybersickness. Likewise, Figure 3b
illustrates the feature importance for the physiological dataset using
the growing DT. For instance, the PC BR which corresponds to the
percentage change of BR measurement at the decision node, indi-
cates that the higher the value of PC BR, the higher the chances of
the user suffering from cybersickness. The cybersickness classifica-
tion using the DT model for the physiological dataset has quite low
accuracy, as discussed in Section 5.1. So, there is a wrong split of
the features such as, PC BR in the decision node in Figure 3b. Such
misclassified cybersickness explanation provides insights into the
classification results and builds the trust of the model outcome to
take further decisions.

5.7.2 Cybersickness Global Explanation using Logistic Re-
gression

Figure 4 illustrates the feature importance of both the physiological
and the gameplay datasets for the global explanation of the cybersick-
ness using the LR model. In Figure 4a, the most predictive feature
GSR MIN, which corresponds to the minimum GSR measurement,
of the cybersickness classification is highlighted with the orange
color. However, the second leading feature for the no cybersickness
classification GSR MAX which corresponds to the maximum GSR
measurement, is highlighted with the blue color. Interestingly, the
feature for cybersickness and no cybersickness classification both
correspond to the GSR measurement. This means that the LR model
has many false positives and negatives for the physiological dataset.
Hence, the cybersickness explanation using the LR model is not
acceptable for further decision-making in the physiological dataset.
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Figure 8: The local explanation of EBM based cybersickness classification for gameplay dataset (a) explanation for actual cybersickness, (b) explanation for no cybersickness, (c)
explanation for the wrong cybersickness classification (false positive), (d) explanation for wrong cybersickness classification (false negative).

This analysis is aligned with the results in Section 5.2. In the game-
play dataset, the most predictive feature leading to cybersickness
classification is user experience as highlighted in orange color in
Figure 4b. Another feature auto-movement of camera contributes
more towards no cybersickness classification in the gameplay dataset.
That is why the accuracy for the cybersickness classification using
the gameplay dataset is higher than that of the physiological dataset
and hence, provides a better feature ranking.

5.7.3 Cybersickness Global Explanation using EBM
Figure 5a presents the overall feature importance in the cybersick-
ness classification using EBM for the gameplay dataset. MAS is
used to calculate the overall ranking of the most important features
contributing to the cybersickness classification. It is observed that
the features such as user Flicker, user vision problems, user age, user
gender together, time exposure, etc., are the most predictive features
in cybersickness classification. Figure 5b provides a deeper insights
into the global explanation of the cybersickness classification for the
most influential feature user vision problem. For instance, the fea-
ture user vision problem has higher importance in the cybersickness
classification because there are more non-zero valued samples are
sampled in its density curve. A feature sampled at zero has a very
small effect on the model outcome, whereas a non-zero value has a
large MAS which affects the cybersickness classification. Similarly,
Figure 6a provides the overall feature importance in the cybersick-
ness classification using EBM for the physiological dataset. We
observe that the features PC GSR, corresponding to the percentage
of GSR measurement, and PC HR corresponding to the percentage
of HR measurement of the user, have a much stronger influence
in the cybersickness classification. That is why the percentage of
GSR and HR varies much more than other features when a user feels
discomfort. It is worth mentioning that higher or lower HR indicates

a person’s discomfort. Simialr to Figure 5b, Figure 6b also provides
a deeper insights into the global explanation of the cybersickness
classification for the most influential feature PC GSR. Therefore,
more non-zero valued datapoints are sampled in the density curve
for the feature PC GSR.

5.8 Cybersickness Local Explanation
For a local explanation of cybersickness using EBM, the first 2
samples are taken from the physiological dataset, and 4 samples
are taken from the gameplay dataset to individually explain their
outcome. Figure 7a shows the results for the local explanation using
EBM for the physiological dataset. The EBM does not have false
positives and false negatives for cybersickness classification with
the physiological dataset due to high accuracy (i.e., 99.75%) as dis-
cussed in Section 5.3. Therefore, no misclassification results are
considered in this paper. Figure 7a show the cybersickness classifica-
tion (true positive) outcome with a MAS of 1. The yellow and blue
colored bars in Figure 7a show cybersickness and no cybersickness
probabilities on that individual outcome, respectively. Most features
contribute to the negative impact indicated as yellow bars; hence,
an accurate decision is made for cybersickness classification. For
example, in Figure 7b, the decision regarding no cybersickness clas-
sification has a MAS of 1, which indicates that most of the features
contribute to the positive impact. Hence, an accurate decision is
made for no cybersickness classification. Furthermore, we observe
that HR and GSR are the most influential feature for cybersickness
classification in the first 2 samples.

The local explanation of the classified cybersickness using the
EBM model for the gameplay dataset is shown in Figure 8. In Fig-
ure 8a, the MAS for both the true and predicted classes is 0.984,
respectively, for the accurate classification of cybersickness. Also,
most of the features contribute to the actual cybersickness classifica-
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tion except camera rotation Y and user eye dominance in Figure 8a.
However, Figure 8b show that the majority of the features participate
in the positive outcome (no cybersickness), and their MAS is 1 for
the accurate classification of no cybersickness. The user experi-
ence, player position on the Z-axis, Camera field of view, Camera
auto movement, and static frame are the most influential features
for no cybersickness classification. Both Figure 8c and Figure 8d
have misclassifications for the cybersickness. For instance, Figure 8c
shows no cybersickness, but the EBM model classifies cybersickness
(false positive) with a MAS of 0.676 for cybersickness and 0.324
for no cybersickness. The user flicker, player position on the Z-axis,
static frame are the most influential features for misclassifications.
Consequently, Figure 8d shows the false negative of the predicted
cybersickness class with a MAS of 0.345 for cybersickness and with
a MAS of 0.655 for no cybersickness class. Here, the user genere
again the most influential feature for the misclassifications. Since the
DT and LR models have limited cybersickness classification results
(low accuracy), their local explanation has been omitted from this
paper. Their feature ranking with global explanation is discussed in
Section 5.7.1 and Section 5.7.2.

6 DISCUSSION

Our results show that the EBM model can classify the cybersickness
with an accuracy of 99.75% for the physiological and 94.10% for
the gameplay dataset with explainability. The precision and recall
percentage for cybersickness classification using EBM were signif-
icantly higher than the other two methods (DT and LR) for both
datasets. In the regression analysis task, the EBM model also pre-
dicted the ongoing cybersickness with an RMSE value of 0.27 for the
gameplay dataset and an RMSE value of 0.071 for the physiological
dataset. The R2 and other metrics are explained in Tables 3 and 4 for
both of the datasets. To ensure the trustworthiness of the proposed
cybersickness classification approach, we provide explanations in
terms of global and local explanations as discussed in Section 5.7
and Section 5.8. Regarding the overall feature importance ranking,
in the case of the gameplay dataset, features such as exposure time,
rotation, and acceleration are the most influential features in causing
cybersickness (section 5.7). Consequently, for the physiological
dataset, the GSR and the HR of the user are the most influential
feature in causing cybersickness. The local explanations of the in-
dividual prediction provided useful insight for each sample, which
is also beneficial for the misclassification cases. However, we can
easily identify the features that influence misclassification using the
local explanation.

Since there is no previous work that applies explainable machine
learning for detecting and explaining cybersickness, our results are
not directly comparable with prior works. However, we compare our
results regarding cybersickness prediction performance using the
bio-physiological measurement from the prediction and detection
perspective. For instance, our results show that the EBM model
with bio-physiological data achieved an accuracy of 99.75% and R2

value of 97.5%. In contrast, Dennison et al. [13] reported accuracy
of 78% and R2 values 75% for the physiological data. Consequently,
Kim et al. [37], Jeong et al. [30], and Chenxin et al. [57] reported
cybersickness detection accuracy of 89.16%, 94.02%, and 96.85%,
respectively, using EEG/ECG signals. The most relevant to our
work is by Padmanaban et al. [52] that uses a binary decision tree
with video and optical features for detecting cybersickness with an
accuracy of 51.94%.

Prior researchers have applied different ML, and DL models
to predict cybersickness severity from bio-physiological signals
and HMD’s integrated sensors [25, 28]. In contrast, little research
has been conducted on identifying the causes of cybersickness [25,
27, 37, 52]. However, to the best of our knowledge, to date the
exists no prior work on applying explainable machine learning for
cybersickness detection and explanation. Indeed, such explanations

can help the developer to understand the reasons behind correct and
incorrect cybersickness classification. Thus, we believe that xML-
based frameworks are highly suitable for cybersickness detection,
which can be further utilized for deploying effective cybersickness
reduction methods.

7 LIMITATIONS

Although the proposed xML-based system, specifically EBM, out-
performed both publicly available datasets, our approach has a few
drawbacks. We performed binary classification to simplify the mod-
els for explanation purposes, e.g., to understand how different fea-
tures contribute to a decision (why some samples are labeled as
cybersickness or no cybersickness). However, state-of-the-art litera-
ture performed multiclass classification to classify different severity
levels of cybersickness [25,28,37,55]. Moreover, cybersickness can
vary based on the individual parameters, VR environment, and other
factors [40, 58]. The dataset that we used contained was not gender
balanced. Given that gender may influence cybersickness [47, 49],
we plan to conduct a further study with more diverse and gender-
balanced participants.

8 CONCLUSION AND FUTURE WORKS

In this paper, we used xML-based models namely, EBM, DT, LR,
and LIR with both local and global explanations for cybersickness
classification and regression. To the best of our knowledge, this
is the first work to employ xML for explaining the results of cy-
bersickness classification and regression in VR applications. To
demonstrate the effectiveness of our proposed approach, we employ
two different publicly available datasets i.e., physiological and game-
play datasets. Our results show that the xML-based EBM model
classifies cybersickness with an accuracy of 99.75% for the phys-
iological dataset and 94.10% for the gameplay dataset along with
explainability. Also, the EBM model predicts the ongoing cyber-
sickness FMS score range of 0 to 10 with an RMSE of 0.071 for the
physiological dataset and 0.27 for the gameplay dataset. However,
cybersickness classification accuracy is comparatively smaller and
prediction RMSE is relatively higher for DT, LR, and LIR models
when compared to the EBM model for both datasets. In the future,
we plan to extend this work for classifying cybersickness severity
levels (multiclass classification) using explainable machine learning.
We also plan to build a cybersickness dataset by recruiting more
female participants and integrating eye-tracking, and head tracking
data in a real-world VR testbed. We believe that our xML-based
cybersickness classification and regression approach can also be
used in the cybersickness reduction frameworks.
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A. Miede, and S. Göbel. Development of a classifier to determine
factors causing cybersickness in virtual reality environments. Games
for health journal, 8(6):439–444, 2019.

[19] L. E. Garrido, M. Frı́as-Hiciano, M. Moreno-Jiménez, G. N. Cruz,
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