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Abstract. Optimal transport, a theory for optimal allocation of resources, is widely used in var-
ious fields such as astrophysics, machine learning, and imaging science. However, many applications
impose elementwise constraints on the transport plan which traditional optimal transport cannot
enforce. Here we introduce supervised optimal transport (sOT), which formulates a constrained
optimal transport problem where couplings between certain elements are prohibited according to
specific applications. sOT is proved to be equivalent to an I! penalized optimization problem, from
which efficient algorithms are designed to solve its entropy regularized formulation. We demonstrate
the capability of sOT by comparing it to other variants and extensions of traditional optimal trans-
port in the color transfer problem. We also study the barycenter problem in sOT formulation, where
we discover and prove a unique reverse and portion selection (control) mechanism. Supervised opti-
mal transport is broadly applicable to applications in which a constrained transport plan is involved
and the original unit should be preserved by avoiding normalization.
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1. Introduction. Optimal transport (OT) is a powerful tool for geometrically
comparing and connecting measures. It seeks a globally optimal coupling between
two probability distributions that minimizes the total coupling cost given a predefined
finite cost [30, 24, 8, 40]. OT has been successfully applied in many fields recently,
such as astrophysics [20], machine learning [15, 3, 14], and imaging science [4, 25]. The
original OT is a linear programming problem which has a computational complexity
of O(n?) [40]. Recently, significant advancements in OT computation have been made
which enable the application of OT to large scale practical problems, for example, the
Sinkhorn algorithm [15], the Greenkhorn algorithm [2], and others [16, 22, 17, 29, 23].

However, there are limitations of OT that hinder its application to many prob-
lems, leading to several variants and extensions of OT. For example, unbalanced OT
was introduced to couple nonprobability measures and reduce noise in a transport
plan by replacing the original marginal constraints by soft divergence constraints [12,
11]. Partial OT generalizes OT to optimize the transport plan under the condition
that a given fraction of mass is transported [6, 7, 10]. From the dynamics model
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perspective, unnormalized OT was introduced to derive the transport dynamics be-
tween two marginals of different total mass with an external spatial-dependent or
spatiotemporal-dependent mass source [21, 26]. In summary, these OT variants re-
lax the marginal mass conservation constraint in the original OT to handle problems
where the total masses of the two marginals do not match.

Another major limitation of OT is that there are natural constraints on the trans-
port plans in many applications which cannot be handled by current OT methods. For
instance, when ground transportation is blocked after a major natural disaster, many
locations with a demand for resources cannot be safely reached by certain supply dis-
tribution locations. In the corresponding OT formulation, there should be constraints
on the transport plan, causing some entries in the transport plan to be occluded as
zero. This leads to a challenging OT problem since the total possible transported
mass becomes an unknown due to the elementwise blockages in the transport plan.

Here, we introduce supervised optimal transport (sOT), which supervises the
transport plan by enforcing a given elementwise constraint on the transport plan.
sOT optimizes both the total transported mass and the transport plan simultane-
ously. Different from the OT problems with prescribed inequality constraints [6], the
inequality constraints in sOT, arising due to the infinity entries in the cost matrix, are
implicitly determined through the optimization of the transport plan. We show that
sOT can be equivalently reformulated and linked to the unbalanced OT framework
[11]. We further extend the standard OT barycenter problem into a sOT barycenter
problem, in which an interesting and novel reverse and portion selection mechanism is
discovered. We propose several new numerical methods for entropy regularized sOT
based on Dykstra iteration.

We validate sOT and the proposed numerical algorithms in several numerical
experiments. By applying it to an important problem in imaging science, the color
transfer problem, we show the benefit and unique capability of SOT over other variants
and extensions of traditional OT. More importantly, we prove the reverse and portion
selection mechanism for the sOT barycenter problem, which is further validated in
detail by numerical examples.

2. Supervised optimal transport. In this section, we define the sOT and
derive an equivalent formulation upon which efficient algorithms are derived.

2.1. Definition of sOT. Let R} (and R%_,, respectively) denote the
n-dimensional nonnegative (and positive, respectively) vector space. We define the
probability simplex (and strictly positive probability simplex, respectively) as

(2.1)
Eﬁ:{a:(ai)i ERi:Zaizl}, Xh, = {a:(ai)i €R1+:Zai:1}.

The polytope of the couplings between (a,b) € R x R is defined as
U(a,b)={P e R?*"™: Pl =a,P"1=b},
where P7 is the transpose of P and 1 is the all-ones matrix. The dimension of 1

is determined by dimension consistency of matrix multiplication in the context. We
further define the following polyhedra:
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U(<a,<b)={PeR}":P1<aP"1<b},
U(=a,<b)={PeR}*":Pl=aP"1<b}.
We denote by t¢ the indicator of a set C,
0 ifzxelC,
te(x) = _
oo otherwise.
For P = (P;;) € R™™, we define its entropy as
H(P)=—-Y P;(log P — 1),
4,3

in which we use the convention 0log0 = 0. The Kullback-Leibler (KL) divergence
between P = (P;;) € R}*™ and Q = (Qy;) € R}}™ is defined as

L(P|Q) = Z ;log (

For two vectors u = (u;),v = (v;) of the same dimension, we denote entrywise
multiplication and division by

)—Pij—FQij.

uoOv=(uvy); w/v=_(u;/v;);.

For the standard Kantorovich’s OT problem with discrete marginal measures a,b €
X%, it reads

(2.2) Lor(a,b;C) = Pe%i&b)@, C)= Z P;;Ci;.

In the framework of sOT, the marginal measures (a,b) € R? x R do not necessarily
have the same sum, and we are interested in the cost matrix C = (C};) that contains
oo entries. The oco-pattern of C is defined as the set [9]

(2.3) Poo(C)={(4,7) : Cij =00, i=1,2,...,n, j=12,...,m},

of positions of C containing an infinity element. Similarly one can define the O-pattern
of a transport plan P. By virtue of OT, the 0-pattern of the optimal plan P* must
contain the oo-pattern of C, namely, Py(P*) 2 P (C). We further define a feasible
set Ag for the marginal blocked distribution (u,v) as follows:

(2.4)
Ac = {(u, v) € [0,a] x [0,b] | IP € U(a — u, b — v) such that (P,C) < oo},
in which the inclusion (p,v) € [0,a] x [0,b] is entrywise, namely, p; € [0,a;],i =

1,2,...,n,and v; € [0,b;],5=1,2,....,m
We define sOT as the following minimization problem:

2.5 Ly ,b;C) = i P,C),
(2.5) sor(a,b;C)i= min o omin ~ (P,C)

where B := argmin(, vyc e |[M/[1 +[|V]1. In other words, we aim to find the OT plan
P which transports the most marginal density (blocks the least (p,v)) with minimal
cost.
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Remark 2.1. Note that when the cost matrix C contains oo, (u,v) = (0,0) may
still be a feasible point in Ac (and therefore in B ). For example, one can consider

1 ~© 1 0.2 0.4 01 0 0.1
cC=|11 1|,a=|03]|,b=|03]|,P=]01 01 01 |,
1 1 1 0.5 0.3 0.2 02 0.1

then (u,v) = (0,0) € Ac since P € U(a,b) and (P, C) is finite. In this case, sOT
reduces to the standard OT as U(a, b) is nonempty and the minimum is reached at
some optimal P*.

In practical applications, the cost matrix C could be sparse with respect to the
oo entries, which most likely leads to (p,v) = (0,0) ¢ Ac. On the other hand, Ac
is nonempty as (u,v) = (a,b) is always an element in Ag. Therefore, we expect to
find some (u,v) € [0,a] x [0,b] with smallest [-norm, and the associated OT plan
P* over U(a— u,b —v).

A problem related to sOT (2.5) is the partial transport problem [6], which finds
the optimal plan to transport a given fraction of mass instead of the total amount
of marginal mass. It is formulated as follows. Given marginal densities (a,b) €
R, x R, , not necessarily with the same total mass, the partial transport problem
minimizes

(2.6) PeUr(rlSiggb){(P, C): (P, 1) =0},

in which 6 is the given fraction of mass. Different from partial OT, sOT does not re-
quire a given fraction of mass to be transported and instead optimizes the transported
mass. Specifically, sOT can be rewritten as

2.7 . P,C): (P,1) =6},
>0 96[07miflr(127¥11,bT1)]PeUr&lgéb){( ) ) }

where sOT performs an extra maximization over the transported mass 6. Note that
if the cost matrix C does not contain oo entries and a’1 = bT]l7 the reformulated
problem (2.7) degenerates to the standard OT problem (2.2) since 6 can be equal to
the total mass, the largest possible value. On the other hand, if the cost matrix C
contains oo entries, the partial transport problem (2.6) may not be well defined for a
given fraction of mass 6 since the feasible set is potentially empty. In this case, sSOT
(2.7) remains wellposed as 6 = 0 is always a feasible transported mass.

2.2. Equivalent sOT formulations. The sOT in the forms (2.5) or (2.7) is a
double optimization problem which is computationally challenging. Here, we recast
it to the form of a single optimization:

(2.8) Lsor(a, b; C) = min (P, C) +7([[ufx + [[v]1)
(1, v)EAC
PceU(a—p,b—v)

for sufficiently large v depending on C. The equivalence between (2.5) and (2.8) is
summarized in Lemma 2.3.

To begin the proof, we need a lemma characterizing the difference between Py
and Pj for the maximal possible transported mass 6 and a mass 6 smaller than but
close to 6.
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LEMMA 2.2. Let C = {x : Ax < b} be a bounded convex polyhedron where
A=[d]| - |aﬂT € R™™ and b € R". Define

6 := max 17z, Cj = argmax 17z,
zeC zeC

and
Co={zecC:17x =0},

for any possible value of 0 that 172 can take. Then there exists a critical 6y < 0

such that for any fized 6 € (6o,0], and any x € Cy, there evists an T € Cy such that
llx — Z||1 < )6 — 0|, where n is independent of 6.

Proof. By definition, Cy is a bounded convex polyhedron, which can be refor-
mulated as the convex hull of its extreme points:

Cy = conv (mél), xéz), . a:és(g))>

in which :E(gl), :véZ), e ,wé‘q(g)) are all extreme points of Cy. We denote by Jy := {j :
a;fxék) = b, for some 1 < k < s(6)} the indices of constraints which are saturated in

at least one extreme point of Cy. In other words, Jy are the indices of constraints
which interact with hyperplane 17z = § on C. Letting Ec = {z1,...,2,,} be the
set of extreme points of C' such that C' = conv(E¢), we denote by E; := {z € E¢ :
asz = b, } the extreme points of C saturating the jth constraint, and E;, = Ujej, E;.

Evaluating the linear function 17z over E¢, we know that the maximal value over
{1Tzy,...,1%2,,} equals §. Let the second maximal value over {17z1,..., 17x,,}
be 6. Note that in an extreme case where the second maximal value 6y cannot be
attained, the maximal value @ is reached in the entire C, and the conclusion of the
lemma is trivially held. So we only consider the nontrival case where the second
maximal value 6 is attained. It is evident that E, is invariant for any 6 € (6o, ).

For any 6 € (0,0), we consider the extreme points {xé] )}jfl) of Cg in which
5(0) = s. As 0 — 0, we have azé]) — E((;J) for j = 1,...,s. Here {iéj)}jzl are the
extreme points of Cg, some of which might be repeatedly counted. Now for any point
x € Cy such that

x = )\133((,1) +- 4+ )\sxés), itjo € 35,

we can take T as

T =Mz AT,
then
- ) =) ) =)
. —zll; < — D, < . — 79,
(2.9) lo — 2zl < max flzg” — 75" [l < |ILll2 - mmax |log” — 25”12

) x(gj) and 1,
z”)—xgﬁﬂ>

— 2§ 2|12

Now we consider the angle o; made by

(2.10) 0j = arccos

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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It turns out that ¢; cannot be 7/2. Otherwise,
0= (s —af 1) =00

implies that # = 6, which is the trivial case that 6 is attained everywhere in C. Hence
{cos0;}5_; must be bounded away from 0. Then we have

cosoy 75 — ol 12 = (2] i 1) =00,
which leads to

O N N S S
||£L'9 Ly H2 COSO'j”]l”Q( )

Combining with (2.9), we have
1

ming <<, COS 0

|z —Z|1 < 16— 6.

The conclusion holds by taking 7 = (minj<;<scoso;) ™!, A
Last, we show that coso; is independent of 6, or more speciﬁcally of xéj ). To this
end, we choose an arbitrary 6 € (6,0). Note that xé] ) and i‘g ) saturate the same set

of constraints since when @ — 6, the hyperplane 172 = 6 does not go through any

extreme point of C' (Ey, is invariant for any 6 € (6, 6]); therefore the point

o ._0=0 6, 0-0 ()
(2.11) Ty =5 g% + 7550
which saturates the same set of constraints as zéj ) and Egj ), is exactly the extreme

point of U that falls on the line segment between xéj ) and jgj ), Finally the linear
relation (2.11) together with the definition of o; indicates that coso; is independent

of 8. The proof is completed. A schematic polyhedron is shown in Figure 1. ]

LEMMA 2.3. Given a cost matriz C with oco-pattern Poo(C), the two sOT for-
mulations (2.5) and (2.8) are equivalent for sufficiently large .

Proof. Step 1. Let (Wopt, Vopt) be an optimal pair of blocked measures for (2.5),

namely, the system can at most transfer the amount of mass 6 = [[a — |1 =

FIG. 1. A schematic polyhedron for Lemma 2.2. The green face is the hyperplane 1Tz = 0. The
pink plane is the hyperplane 1Tz = 0. When the pink plane is close enough to the green one, the set
of extreme points E;, is invariant. See the proof of Lemma 2.2 for the definitions of the notation.
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[b — Vopt 1. We denote by Pj a corresponding OT plan. Take any nonnegative and
feasible 6 < 0; if we can show that for a plan P} defined as

(2.12) Py = argmin{(P,C) : P € U(< a,< b),(P,1) = 6},
P

one has that
(2'13) <P3 - P;7 C> < 2’7<P3 - P;’ 1)7
for some v > 0, then for any (p,v) such that 6 = ||a — p|; = ||b — v||1, it results in

Il + 1Vl = (leopells + [1Voptlln)
= <H - ’J'opta]l> + <V - vopta]l>
Z 7_1 <P3 - P;7C> ’
leading to

(P5,C) +vllopt I + [[Voptll1) < (Pg, C) + (Il + 1 V]l1),

which implies the optimality of (L, Vopt, Ps) for (2.8), and consequently the equiv-
alence holds.

Step II. We now prove that there exists a constant v > 0 such that (2.13) holds.
Using Lemma 2.2, we know that there exists a critical 6y such that for any given

0 € (6o,0] and P}, defined in (2.12), we can find a feasible Py satisfying (Pg,1) = 6
such that

(2.14) IPs — Pplly < nld — 4]
Then

(Py —Pj,C) < (Pg —P;, C)
< [[Pg — Pyl - [IClloo
< [[Cllsenl® — 6|
(2.15) = [|Clleen(Pg — Py, 1).
On the other hand, for any feasible 8 < 6y and P} defined in (2.12), we simply have

<P(§ - P;’ C> = <P3,C> - <PZ, C>

<|Cllx -0
g
=Clloe - =——(6—6
IClloc - 5=5(6 =)
9
< |Clloo - = 0—06
S ()
(2.16) =<l d (P5—Pg,1)
. - 0o 0—790 6 0> .
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Finally, combining the inequalities (2.15) and (2.16) and taking 2y = max{, 6/(9 -
00)} - ||ICllocs we prove the inequality (2.13), and therefore the optimality of
(uopmvopt,Pz) for (28) 0

Note that A is always nonempty; we can therefore rewrite the formulation (2.8)
in a simpler form:

(2.17) Lior(a,b;C) = PEUIFSing)(P, C) +~(Jla—P1||; + b — P 1;).

3. Entropic regularization of sOT. The idea to regularize the standard OT
problem by an entropic term can be traced back to the early work by Schrodinger
[35]. This entropic regularization has been well motivated in economics for predict-
ing flows of commodities or actors in a market, in which the smoothness of such
flows can be guaranteed [1]. A recent work [15] provides a new motivation from the
computational perspective that entropic regularization defines a strongly convex pro-
gramming. Unlike the standard OT problem (2.2) which has multiple solutions, the
entropic regularized OT problem has a unique solution, which corresponds to the op-
timizer of (2.2) with maximal entropy in the limit as the regularization parameter e
vanishes. More importantly, the unique solution to the entropic regularized OT prob-
lem is simply a diagonal scaling of the matrix e~©/¢. This diagonal scaling process
can be efficiently implemented by the Sinkhorn algorithm [36, 38, 37], which has a
linear rate of convergence [19].

We now consider the entropic regularization of sOT (2.8):

(3.1) min (P, C) —eH(P) +([lulls + [[v]1)

(n,v)EAC
PeU(a—u,b—v)

or equivalently

. T
(2, _min_ (P.C)—cH(P)+(la= Pl +[b—P 1],
It is well known that the unique solution P} of (3.2) converges to the optimal so-
lution with maximal entropy within the set of all optimal solutions of the problem
(2.17) [13].

Taking K = exp(—C/e) as the Gibbs kernel, sOT problem (3.2) can be rewritten
in terms of the KL divergence as

3.3 i KL(P|K _P1 b—PT1
3.3) pedhin _ KL(PIK) +5(Ja—PLlls + | ),

or equivalently

(84) min eKL(PK)+7y]a—PLji+ 0 (P1) +9b =P L1 + 1o (PTL).
eky

3.1. Dykstra algorithm. The entropic regularized sOT (3.4) fits into a more
general form

(3.5) min By (P|K) + 1y (P) + ho(P).
PeR}*™

Here g is a given proper closed and strictly convex and differentiable function. By is
the Bregman divergence (Bregman distance) defined as

(3.6) By(P|Q) = g(P) — g(Q) — (Vg(Q),P — Q).

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.
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In addition, le and ﬁg are two proper and lower semicontinuous convex functions.
Note that the Legendre transform of g

9" (y) = max(z,y) — g(z)

is also smooth and strictly convex. In particular one has that Vg and Vg* are bijective
functions such that Vg* = (Vg)~!.
Define the Bregman proximal operator of a convex function ¢ as

(3.7) proxfg Q) = arg}r)nin B,(P|Q) + o(P).

We assume that ¢ is coercive so that proxfg (Q) is uniquely defined by strict
convexity.
The Dykstra algorithm for problem (3.5) [31] reads as follows.

Dykstra algorithm for (3.5).
Input: P® =K and A~! = A% = 0;
General step: for any kK =0,1,2,..., execute the following steps:
(3.8) P21 = prox? (Vg* {Vg(PZk) + /\2’“*1} );
h1

(39) >\2k+1 _ )\21@—1 + vg(PZk) - Vg(PQk-‘rl);

2k+2 _ By * 2k+1 2k | .
(3.10) P2+ = prox’” (Vg [Vg(P )+ A ])
(311) )\2k+2 — )\2/(7 + vg(PQk"rl) _ Vg(P2k+2).

It is shown in [31] that the sequence {P"},,>0 generated by the above Dykstra
algorithm converges to the solution of the problem (3.5).

When taking ¢(-) as the entropy function, the corresponding Bregman divergence
B,(P|K) = KL(P|K) becomes the KL divergence. In this case, if hy and hs in (3.5)
are of the special form as

hi(P) = hy (P1), hy(P) = hao(PT1),
then the problem (3.5) reduces to
(3.12) min KL(P[K) + 5, (P1) + ho(PT1),
which is consistent with the sOT formulation (3.4), after dividing € over all terms of
Eqn. (3.4).
In this case, the optimal solution P has the decomposition
(3.13) P = diag(u)Kdiag(v),

which is a diagonal scaling of the initial Gibbs kernel K, the same as the optimal
solution for the regularized OT problem (which corresponds to hi(z) = t{z—a}(x) and
ha(z) = tfz—p}(z) in (3.12)). Indeed, this decomposition (3.13) not only holds for
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the optimal P, but also holds for each iterate P™ generated by Dykstra’s algorithm
for KL divergence. Therefore we assume that P" = diag(u™)Kdiag(v™). Then the
Dykstra algorithm can be written in an implementable form given as follows [11].

Dykstra algorithm for KL divergence (implementable form).
Input: u® =v0 =1;
General step: for any £ =0,1,2,..., execute the following steps:

KL 2k
2k41 _ PTOXp, (KV ) 2k+1 _ 2k,
(3.14) u =—1 - ‘v =v
KV2k7 ) )
KL (3¢ T 2k+1
prox; - (K" u
(3_15) V2k+2 — ha ( )’ u2k+2 — u2k+1.
KT y2k+1

\. J

Note that in some of the literature, this implementable form of the Dykstra al-
gorithm for KL divergence is called the generalized Sinkhorn iteration for problem
(3.12).

3.2. Dykstra algorithm for entropy regularized sOT problem. The en-
tropy regularized sOT problem (3.4) is a special case of the KL divergence problem
(3.12) by taking

(3.16)
hi(P1) = %Ha — Pl + o (P1), ho(PT1) = gHb — P71y + 1o (PT1).

Indeed, hy (and hg, respectively) can be viewed as a regularization term to render
u=a—P1 (v=b—P71, respectively) as small as possible but within the range [0, a]
(and [0, b], respectively). In this case, the implementation of the Dykstra algorithm
depends on the form of the proximal operator of h;,i = 1,2 with respect to the KL
divergence, which is given in the following lemma.

LeEMMA 3.1.  Let hi(-) = 2||a; —-[l1 +¢t[,a,](-), @ = 1,2, with a; = a,ap = b; then
the proximal operator of h; with respect to the KL divergence is given as

(3.17) proxﬁL(q) = min{e'Y/eq7 a;}, i=1,2.

Proof. By definition of the proximal operator with respect to the KL divergence,
we have

PTOX( 0 s 4210,y () (@) = arg[glir]l KL(pla) + (v/€)llai — p||-
pel0,a;

If a; < q, both KL(-|q) and ||a; — -|| decrease over domain [0, a;], so the minimum is
attained at p = a;; if a; > q, taking the derivative of KL(p|q) + (v/€)||a; — p|| with
respect to p and setting it to zero, we find p = min{e?/¢q,a;}. Combining the two
cases yields the result. 0

Inserting Lemma 3.1 into the Dykstra algorithm for KL divergence, we obtain
the generalized Sinkhorn iteration for the entropy regularized sOT problem with the
regularization terms in (3.16).
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Generalized Sinkhorn algorithm for sOT
Input: u’ =v° =1;
General step: for any kK =0,1,2,..., execute the following steps:

o min{e’/*Kv?* a} . 2 a . "
(3.18) u?tt = Kvok :mln{ee]l,m}, v — 2k,
(3.19)
min eV/EKTu%*l,b . ~ b
v2ht2 — { T } = min {e <1, KTt il } , w2 = g2kt

4. sOT barycenter. Given a set {b;}/_; of unbalanced marginal densities
b; € R} and a weight A = (A1,...,Ay) € int(A;), it is of practical interest to
compute the weighted sOT barycenter of {b; }3]:1. This problem can be viewed as
the generalization of the standard Wasserstein barycenter problem studied in.

We define the sOT barycenter problem in a similar manner as that for sOT. Let
v = (v;)]—; € (RT)’ denote the blocked marginal measure, and ||v||; = > vl
We define two sets, one of which is for the feasible blocked marginal density v, and
the other is for the feasible v with minimal 1-norm:

F = {V : ||b1 —V1||1 == ||bJ—‘\/J||1, and 3 Pj EU(a,bj —Vj),
such that (P}, C) < oo for some a},

G = argmin||v||;.
veF
Then the sOT barycenter problem is defined as

J
4.1 min min Ai(P;, C).
( ) veG PJEU(a,bj—vj)j; J< J >
Similarly to the equivalence between various sOT formulations, we can show that
(4.1) is equivalent to

J
' (P 7
(42) min X (P;,C) + Vil
P;cU(a,b;—v;) j=1

for sufficiently large v. The equivalence between (4.1) and (4.2) is summarized in
Theorem 4.1.

THEOREM 4.1. Given a cost matriz C with oo-pattern Ps(C), the two formu-
lations for the sOT barycenter problems (4.1) and (4.2) are equivalent for sufficiently
large ~y.

Proof. The proof is similar to that of Lemma 2.3. Starting from an optimal
voPt — (V?pt)j for the formulation (4.1) and a corresponding optimal plan P%* =

(P?’*)J— in which § = ||b; — v{®'|y = -+ = ||b; — v*'||1, and taking any nonnegative
and feasible # < 0, if we can prove that for any plan P%* defined as
J
po — argmin{ > A(P;,C):P; e U(=a,<by),
(4.3) R
P1]l == Pj]l = a, <Pj,]l> = Q,V]},
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one has that

J B J B
(4.4) A (PO =PI C) <7 N(PT* =PI 1) for some v > 0,
j=1 j=1
then for any v = (v;); such that 8 = |[by — vi||1 = --- = ||bs — V|1, it implies that
vl = v = (v = v 1)
J —
S <P?’* - P?’*7Il>
j=1
J —
Z J’y_l Z )‘j <P?7* _ P?7*’ C> 7
j=1
leading to

J B J
I N (P C) + v < 7D A (P.C) + 41l
Jj=1 j=1

which implies the optimality of (voPt, P%*) for (4.2).

Now we prove that there exists a v > 0 such that (4.4) holds. Using Lemma 2.2
and taking the bounded convex polyhedron C to be the set of P = (P;); defined by
the constraints

P/1<b;,P; >0, j=1:/
P1=P;11, j=1:J-1,

P; >0, j=1:J,

P =0, (k1) €Pu(C), j=1:J

and

Cp = {P eC:(P,1):= i@j,n) - J@},

we know that there exists a critical fy such that for any given § € (6o, 0] and P~
defined in (4.3), we can find a feasible P? satisfying (P? 1) = J# such that

(4.5) IP? — POy < Jn|d — 6].
Then
B J
POEITC A SUNCED SPVIC S Sae)
j=1 j=1
< [Py~ Pjl - [Cll
=7
< [|IClles - ml0 — 0]
J _
(4.6) = Clles -0 YN <P?’* - Pja*,11>.
=1

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/15/22 to 157.242.56.93 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SUPERVISED OT 1863

On the other hand, for any feasible § < 6y and P%* defined in (4.3), we simply have

J B J i 5
Z /\j <P§7* - P?*’ C> = Z)\J <P§.’*7 C> — Z)‘](P?*, C
Jj=1 =1 o

<Clloc -0
0 -
= Clloe - 55 (8- )
<IClloo - = 0—0
< Clle - 5 (0 0)
— 5
0 0*
(4.7) = ICllso - 5= Ay (PSP,
055

Finally, combining the inequalities (4.6) and (4.7) and taking v = max{n, /(0 —
00)} - ||Clloo, We prove the inequality (4.4), and therefore the equivalence between two
formulations. d

Noting that the feasible set F is always nonempty, the formulation (4.2) can be
recast into the form

J J
(4.8) in > AP, C) +7 ) Ib; — P
P;cU(=a,<b;) =1 j=1

Here we replace % by v in the equivalent formulation for the sake of simple notation.

4.1. Entropic regularization of the sOT barycenter problem. In this sec-
tion, we consider the entropic regularization for the weighted sOT barycenter problem.
To this end, we introduce the following notation:

KL, (P|Q) : ZA KL(P;|Q;),

(4.9) =
where P = (P;); € (RT*™)7,Q = (Q;); € (R}A™)”,
(4.10)
hi(P) = tp(Pi1,...,P;1), D:={(p1,...,ps) € RT) :p1=--=ps},
(4.11)

<

h2(Q) = 2Ib = Q1 + 10 (Q71) == >~ (LI, = Q7 1 + 110, (QF D)),

Jj=1

(4.12)
hl(p):LD(plu"'apJ) for p:(pJ)J7

(4.13)

J
v v n
ha(a) = b =l + o (@) = 3 (LI =yl +1om,i(ay) for a= (a;)js
=1
Note that h;(P) = hi(P1),i = 1,2. With the above notation, we can formulate the
entropic regularized sOT barycenter problem as
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(4.14) min ZA ( - eH(Pj)) + ehi (P) + eha(P),

R'nxm

or equivalently in terms Of the KL divergence,

(4.15) min KLy (P|K) + h1(P) + ha(P),
Pe(R}X™)Y

where K = (K;)7_; with K; =e %/ j=1,...,J.

To solve the entropic regularized sOT barycenter problem (4.15), we adopt the
generic diagonal scaling algorithm introduced in [31] (also see [11]), in which each
iterate P has the diagonal scaling decomposition

(4.16) P™ = (PIM); = (dlag( " Kdiag(v W)) p
j
With a slight abuse of notation, we denote, consistent with P = (P;);,

u=(u,.u) € (R, v =(vi,...,vs) € (R™).

Then the diagonal scaling algorithm reads as follows.

Input: u(® =v(© =1;
General step: for any n =0,1,2,..., execute the following steps:
KLx (2n)
[proxh (KV )} A
e BT s ey
va "
KL T,,(2n)
{P ox, * (K'u )} .
(418) V§2n+2) _ 2 - j’ u§2n+2) _ u§2n+l)’ Vj
KTu; =

Note that one needs to compute the two proximal operators proxflLA and prox;,,

for hy and hg defined in (4.12)—(4.13) to implement the diagonal scaling algorlthm.
The following lemma shows that the two proximal operators for the KL divergence
can be computed in closed form. The derivation is similar to that of Proposition 5.1
in [31], so we omit the details.

LEMMA 4.2. For any p = (p;); € (R")’, and hy and hy defined in (4.12)-(4.13),
one has

(4.19) [proxi<LA (p)} = pi‘l (OXRRNO) pﬁ% [PYOXFA (P)] = min {evpj, bj} .
J J

Additionally, for any P = (P;); € (R™™)7, and hy and hy defined in (4.10)(4.11),
the two proximal operators proxgLA and prOXZ(LA are related to (4.19) as
1

KLy

{proxzq“ (P]l)] '
[prOXEL*(P)} = diag P 2| Py,
J J
(4.20) .
T
[prOXKLA(P)} _ P_diag {pl"OXh MP ]l)L
h i P71 ’
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i which
P1:= (P,1,...P,;1), PT1:=(PT1,...PT1).

With the proximal operators computed in (4.19), the diagonal scaling algorithm
in a directly implementable form becomes as follows.

Input: ul® =v(© =1;

General step: for any n =0,1,2, ..., execute the following steps:
(4.21) ul™t = ﬂ j=1:J, wherea®™ = H (Kv(n)))\j
0 i - Kv(n)’ J = o &y - 4 j )
J J

b,
(4.22) Vi = min i %l i1
u;

4.2. Log-domain implementation. One drawback for the diagonal scaling
algorithm (Sinkhorn algorithm) is that it suffers from numerical overflow when the
regularization parameter € is too small compared to the entries of the cost matrix C.
This drawback is even more severe for the sOT problem as it will cause some entries
of K = e~ ©/¢ to be regarded as zero due to the numerical overflow, even though they
should not. In other words, having more zero entries in K because of the smallness
of e will change the 0-pattern of K and consequently the co-pattern of C. Therefore
it is necessary to implement the diagonal scaling algorithm for the sOT barycenter
problem in the log-domain.

Using the log-sum-exp stabilization trick for the soft-minimization, and noting
the primal-dual relation

(u(n), V(n)) — (ef(n)/67 eg(n)/e) ’

the log-domain implementation for the diagonal scaling algorithm reads as follows.

Input: £fO = g©@ = q;
General step: for any n = 0,1,2, ... execute the following steps:

fy(nﬂ) - Z Ai [6 log (e(fi(n)@ggn)fc)/e]l) - fi(n):|
(4.23) i

 Jetog (8”56 -veg) _ ],

(4.24) g§.n+1) = min {elog(bj) —elog (e“i"“)@g_i")fC)T/e]l) + ggn), /’\y}
9

forall j=1:J.

4.3. Special case in which XA € (A ). In this subsection, we point out an
important difference between the standard OT barycenter problem and the sOT one.
For the sake of simplicity, we take J = 2.
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Note that when A = (0,1), the OT barycenter problem degenerates to the stan-
dard OT problem. More precisely,

m;n ALor(a,b1) + AaLor(a,bs)
reduces to
min Lot(a, bs),
a

which leads to a = by and Py = diag(bs). Then P is determined by the standard
oT

LOT(a, b1) = Plerlr}i(gbl)a)h C>

Additionally, the entropic OT barycenter problem reduces to the entropic OT prob-
lem. In other words,

min AlLGOT (a, bl) + AQLEOT (a, bg)
reduces to

min Lgp(a, be),
a

which leads to a = % and Py, = Kdiag (Kbﬁ]l). Then P; is determined by the
entropic OT

Lor(a,by) = Ple%i(g,bﬂ eKL(P,|K).

However, such degeneration does not apply to the sOT barycenter problem,

Mn(mmthﬂ&bQ+MLwﬂmbg)#mmeﬂ&bﬂ
A1—0 a a

To elucidate the idea, we take the cost matrix C as in (5.2) with C.y = 0.3, namely,
any mass can only be transported within the distance no longer than C.. We take
y € R to be a uniform mesh over [0, 1] with A = 1/n being the mesh spacing and let
b; =1 (and by = 1, respectively) be uniform distribution on y compactly supported
over [0.1,0.3] (and [0.7,0.9], respectively). For any A = (A1, A2) € int(Aq), the sOT
barycenter a must be the uniform distribution a = 1 on y compactly supported over
[0.4,0.6]. The corresponding total cost is

A1(0.3)% 4+ X2(0.3)% = (0.3)2.

This is because any other possible transport plan will cause some mass, even only a
bit, to be transported from either b; or by to anywhere beyond [0.4, 0.6], resulting in
an infinite cost. On the other hand, when A = (0,1) € 9(Az), the sOT barycenter is
determined by

min LsOT (a, bg ) .

Since it is unrelated to Lsor(a,by), we can take a = by such that the total cost
equals zero. Hence the degeneration leads to a discontinuity for the total cost. To
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resolve this issue, we define the degenerate sOT problem for \e O(A ) as the limiting
problem when int(Aj) 3 A — A,

min S\-LS a,b;) = lim (min N Lsor(a,b; )
a ; / or( J) int(A7)3A—=A a ; / or( ])

4.4. Reverse and portion selection mechanism. We can further perform
theoretical analysis on the limiting behavior of the barycenter sOT problem. For the
sake of simplicity, we still take J = 2. Let y = (y;); € R™ be the uniform mesh over
[0,1 — h] with h = 1/n. For the rest of this section, we take n = 1000.

To begin with, we define a cumulative sum inequality as follows. For any two
vectors u,v € R™ we say u is cumulatively less than or equal to v and denote by
u <c v if they satisfy

k k n n
(4.25) ZujSZvj,kzlzn—l; and Zujzz:vj.
j=1 j=1 j=1 j=1

u is strictly cumulatively less than v and we denote u <¢ v if at least one inequality
in (4.25) is strict for £ = 1:n — 1. We denote u =¢ v if all the inequalities in (4.25)
are equality. It is clear that u =¢ v if and only if u = v.

Let T* be a periodic shift operator for any periodic function f(x) over [0, 1) such
that (T f)(z) = f(z—t). We take two nonnegative periodic functions by (z), ba(z) over
[0, 1) with compact support [0, 0.2] and let them satisfy the cumulative sum inequality

(4.26) bilyno,0.2] <c b2lyno,0.2-

We define two marginal distributions by and bs as

(4.27) by = (T%"b1(2))ly, bz = (T""ba(x))ly-
The cost matrix C is taken as

(4.28) C,; =

lyi —y; > if Jys — y;] < 0.3,
0 if [y; —y;1 > 0.3.

In the following lemma, we characterize the marginal distributions which are of the
same amount of mass as b; and by and can be completely transported to by and by
given the cost matrix C in (4.28).

LEMMA 4.3.  Given marginal distributions by and by as in (4.27), a marginal
distribution a can be completely transported to both by and by if and only if

(4.29) a=(T"a(@))l,

in which a(x) is a nonnegative periodic function over [0,1) with compact support
[0,0.2] and satisfies

(4.30) b1(®)lyn0,0.2) <c a(®)lynjo,0.2) <c b2(2)|yno,0.2)-

Proof. We only consider the case for Py. That for Py is similar.

First, we show that if the cumulative sum inequality (4.30) holds, then there
exists some plan Py to transport a completely to bs. Here we use the northwest
corner rule [32] to construct such a plan Py. If Py completely transports a to ba,
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then all the entries not in the submatrix Q = P2(401 : 600, 701 : 900) € R200%200 myst,
be 0 due to the compact support of a and by. Besides, since the entries of C are oo
when |y; —y;| > 0.3, the strict upper triangular entries of Q must also be 0. Now we
apply the northwest corner rule to determine the lower triangular (including diagonal)
entries of Q. More precisely, the rule starts by giving the highest possible value to
Q11 = (P2)401,701 by setting it to min{(a)4o1, (b2)701}. At each step, the entry (P2);;
is chosen to saturate either the ith row constraint or the jth column constraint, or
both if possible. The indices 7, j are then updated as follows: ¢ is incremented in the
first case, j is in the second, and both 7 and j are in the third case. The rule proceeds
until (P2)e00,000 receives a value. On the other hand, using the second half of the
cumulative sum inequality (4.30), we have that each diagonal entry Qg of Q must
be chosen to saturate the corresponding row constraint or both the row and column
constraints, but it cannot saturate only the corresponding column constraint. Since
the total mass of a is equal to that of by, the possible excessive mount of mass due
to the row saturation is eventually transported by the last row of Q. Hence mass is
completely transported.

Second, we show that if the cumulative sum inequality (4.30) is violated, then
no plan Py can completely transport a to bs. Let k be the smallest integer to break
(4.30),

k

(4.31) Za(yj) > ba(y;)-

Jj=1 Jj=

Assume there exists a plan Py which transports a completely to by. We still denote
Q = P, (401 : 600, 701 : 900). Due to the compact support of a, by and the co entries
in C, the nonzero entries of Py can only lie in the lower triangular half (including the
diagonal) of Q. Consider the submatrix Qr = Q(1 : k,1 : k). On one hand, since a
is completely transported, we have

Qk:]l = [a(y1)7 B a(yk)]Ta QZ]I < [bQ(yl)> B b2<yk)]T'
However, 37, (Qi1); = X, 5 (Qu)iy = 32, (QF1); leads to 37, aly;) < 325 ba(yy),
causing a contradiction to inequality (4.31). |
Then we have the following result regarding the sOT barycenter of b; and bs.

THEOREM 4.4. Let by and by be defined as in (4.27) with by and by satisfying
(4.26). Given cost matriz C defined in (4.28), we have

2

4.32 li . AL b.:C) | = (T4

( ) (Al,Azl)Ig(l,O) argzrimn Jz:; J or(a, 72 ) ( 2)|y7
2

4.33 li i AL b.:O) | = (T%4p)I...

(4.33) (/\1,/\21)][2(0,1) argmin Z ;Lsor(a,b;; C) ( Dly

Jj=1

Proof. We only prove the case for (A1, A2) — (0,1). The other case is similar. By
virtue of Lemmas 4.1 and 4.3, all the candidates for the sOT barycenter of by, by are
in the form of (4.29) with condition (4.30) satisfied. We denote by S, the collection
of all these candidates.

In the limit (A1, A2) — (0,1), A1 Lsor(a, b1) becomes zero. We only need to seek
an optimal a* in S, to minimize Lsor(a,bs). Pick any a >¢ by, and let k be the
smallest integer such that
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k k
(4.34)

a(y;) > ) br(y;)-

J

Since 377 a(y;) = >_7_; bi(y;), there must be some integer I > k such that a(y;) <
b1(y1). Let P} be an OT plan for Lsor(a, bs), and let (P}); be a nonzero entry on
the kth row. Then for a sufficiently small € > 0, changing (P%)r; — (Pk)r — € and
(P)ki — (P%)ki+ € causes a cost reduction. Therefore a is not the optimal candidate
in S, unless a =¢ by, that is, a = by. 0

Remark 4.5. In the standard OT barycenter problem, we have

2
argmin AiLor(a,b;; C) | = by,
ga Z jLor(a,b;; C) 1

lim
(A1,22)—(1,0) =
Jj=1

(4.35)
2
lim argmin NiLor(a,b;;C) | = bs.
O ha) s (0,1) ga ; iLor(a,b;; C) 2
However, the sOT barycenter problem, without considering the periodic translation
of by and bs, gives exactly opposite results as shown in Theorem 4.4. We call the
limits (4.32) and (4.33) a reverse and portion selection mechanism.

5. Numerical results. In this section, we will present several numerical exper-
iments to validate the proposed sOT problem. Note that in Lemmas 2.2 and 2.3, we
only prove the existence of A for the equivalence between the double minimization for-
mulation (2.5) and the single minimization formulation (2.8), but there is no explicit
evaluation of «. For the numerical simulations, we will decide the value of + by the
following procedure: taking several values of v = 71,72, ... in ascending order and
running the Dykstra solver for each value +;, until the total transported mass (P, 1)
becomes unchanged (within a certain accuracy) at some +y;, then we choose v; to be
the value of v in the simulations.

Figure 2 shows an example for this procedure. In this test, we take C as the
truncated L? distance defined in (5.2) with C.,; = 0.5. The two marginal densities a
and b are given as follows:

1 _ (z-0.2)2
(5.1) a=5(e 01z~ 4 0.001

b= (55" +0.001
= — 12 .
, D e o1 +

hZN[0,1]

with h = ﬁ. We take v = 0,0.1,0.2,0.5,100. For each value of 7, we calculate

(P,1). We note that when v = 0.5 or larger, (P, 1) remains unchanged. Thereby we
take v = 0.5.

hZN[0,1]

5.1. Effect of € (regulator weight) for entropy regularized sOT. In our
first example, the two marginal densities are taken as one-dimensional (1D) discretized
Gaussian distribution:

z-0.2)2
a 1 (e_( 0-0122) +0.001)

~ 92D D

1 z—0.8)2
b= — (e_( T 0.001)

hZN[0,1] hZN[0,1]

with h = 555. D is a normalization constant such that [|al|; = { and |[b||; = 1. The

cost matrix C = (C;;) € R?00%200 g taken as
|l‘i — $j|2 lf |JJ, — l‘jl S Ccut,

(5.2) Cij =
0 if |z; — x| > Ceus
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y=0, > P;=0.006

0.05

0.00

y=0.1, > P;=0.019

0.05

0.00

y=02, >P;=0.184

0.05

0.00 L A

y=0.5, > P;j=0.465

0.05

0.00

y=100, > P;=0.465
0.05 | |
0.00{ —— . = |

0.0 0.2 0.4 0.6 0.8 1.0

F1c. 2. The schematic for taking the value of v. We take several values of v in ascending
order, run the Dykstra algorithm, and evaluate the total transported mass (P, 1) until it becomes
unchanged within a certain accuracy. In this simulation, we take e = 0.01. Note that when v = 0,
there is still a tiny mass transported, which is due to the approximation of entry regularization.

Fic. 3. The sOT solutions for various € as € — 0. The blue region indicates the transported part
of a. The dark red region indicates the transported part of b, and the light red region corresponds to
the blocked part of b.

with cutoff = 0.7. The value of v is taken to be v = 2. By taking various values of
e =1,0.5,0.1,0.05,0.025 in Figure 3, we test the generalized Sinkhorn algorithm with
hi and ho taken in the form of (3.16). For all values of €, a is completely transported.
For the transported part of b, namely, the row sum P71 of the optimal plan P,
it spreads widely over the support of b, with more mass in the region closer to the
support of a. As € becomes smaller, more mass is moved to the left half of the support
of b.
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| cutoff =0.25

| cutoff =0.35

N — —
cutoff = 0.5
ooz 4
o001 1
o
cutoff = 0.5
ooz i
001 B
o

Fic. 4. The sOT solutions for various cutoff values. The dark blue region indicates the trans-
ported part of a, and the light blue is for the blocked part of a. The dark red region indicates the
transported part of b, and the light red region corresponds to the blocked part of b.

5.2. Effect of C.u for entropy regularized sOT. In the second example,
we test the effect of oo entries in the cost matrix C. In particular, we construct C as
in (5.2) but take various cutoff values Ce,; = 0.25,0.35,0.50,0.55,10. The marginal
densities a and b are 1D Gaussian distributions in (5.1). Note that in this example,

we take ||a]l; = ||b||1 such that when there is no oo entry in C, the sOT problem
reduces to the standard balanced OT problem. We fix ¢ = 0.05 and v = 2 in this
example.

Figure 4 presents the solutions of the sSOT problem with different values of cutoff
parameter. When C.,y =0.25 is small, the majority of the mass is blocked; only a
tiny amount on the supports of a and b within the separation of 0.25 is allowed
to transport. When the Cp,4 becomes larger (fewer oo entries in C), more mass is
transported from the right corner of the support of a to the left corner of the support of
b. When cutoff becomes large enough, for instance, C.y; = 10, all entries of C become
finite, and the sOT problem degenerates to the standard balanced OT problem, in
which all mass in a is completely transported to b.

5.3. The effect of C.y; on weighted sOT barycenter problem. In this
example, two unequal densities by, by € R?%° are taken as the discretization of

1 1 _ (z=0.8)2
b, = i (X[O.l,O.S] + 0001) , by = D (6 012 + 0001)
1 hZN[0,1] 2

RZN[0,1]

over a uniform mesh {z; = jh}?goo with h = 555. The constants Dy, Dy are taken

such that ||by[l; = 1.0 and ||bs|[; = 1.2. The cost matrix C = (C;;) € R200%200 jg
taken as in (5.2) with various cutoff values. The value of « is taken to be v = 2. For
each cutoff value, three pairs of weights (A1, A2) = (0.9,0.1),(0.5,0.5),(0.1,0.9) are
considered. Figure 5 depicts the numerical simulations for C¢, = 1.00, 0.50, 0.40,
0.30, 0.28, 0.26, 0.24, 0.22, 0.20, from top left, top middle, top right, to bottom right.
In each plot, the opaque light blue (and red, respectively) represents the density by
(and b, respectively), the transparent dark blue (and red, respectively) represents
the transported mass of by (and bs, respectively), and the transparent yellow is the
weighted sOT barycenter.
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Fi1G. 5. The weighted sOT barycentric solutions for (bi,b2) for warious values of Ceut
and weights (A1,X2). From top left, top middle, top right, to bottom right, with Cecu =
1.00, 0.50,0.40,0.30,0.28,0.26, 0.24,0.22,0.20, respectively, each subfigure consists of three cases with
(A1, A2) = (0.9,0.1),(0.5,0.5), (0.1,0.9).

For a large C.y; = 1.00 in the top left subfigure, when A; is close to 1, the sOT
barycenter a is close to b;. However, by is only partially transported as the mass
of by is more than that of b;. When A; approaches 0, the sOT barycenter becomes
close to partially transported bo. This is similar to the standard barycentric problem,
except that each density b; may be only partially transported.

For a small C.y; = 0.50 in the top middle subfigure, when A; is close to 1, the
sOT barycenter a, compactly supported near the compact domain of by, is surprisingly
similar to by (up to a translational shift). On the contrary, when )\ is close to 0, the
sOT barycenter a, compactly supported near the compact domain of by, resembles
b1, up to a translational shift.

When taking further small value C.t = 0.24 as in the bottom left subfigure, each
density b; is only allowed to transport within the distance = 0.24. Hence for any pair
(A1, A2), the sOT barycenter a can only be compactly supported in between by and
by. Besides, without considering the translational shift, a is valued closely to the
transported by when A\; — 1, while a is valued closely to b; when A\; — 0. The sOT
barycenter solution in the bottom right subfigure for C.,; = 0.20 is similar to that for
Ceut = 0.24, except that more mass is blocked for b; and bs.

In Figure 6, we further present the resemblance phase diagram between the sOT
barycenter a and the marginal distribution by on the A;-Cpy plane (the left subfigure),
and similarly that between a and b on the Ag-Cpys plane (the right subfigure). Here
the resemblance between a and b; is defined as

ming<x<200 ||b; — circshift(a, k)2

Resem(a, b;) := ji=1,2,

ming<x<200 ||b1 - CiI‘CShift(bQ, k‘)HQ’
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F1G. 6. The resemblance between the sOT barycenter a and the marginal distributions by, ba.
When Ceyut is small, it shows the reverse and portion selection mechanism as indicated by the limits
in Theorem 4.4. When Ceyt increases, the mechanism gradually changes back to normal as the
standard OT barycenter problem.

in which circshift is a circular shift operator. The smaller the resemblance value,
the greater the resemblance between the two densities. If Resem(x,y) = 0, thenx =y
up to a translational shift. It is evident that when C¢,; is small, the resemblance of
the sOT barycenter a to by (and ba, respectively) as (A1, A2) — (1,0) (and (A1, A2) —
(0,1), respectively) is reversed, compared to the standard OT barycenter problem in
which a resembles b; when A\; = 1, and a resembles by when Ay = 1. On the other
hand, as the value of C.,; increases, the reverse effect is lessened. When C,+ becomes
sufficiently large such that C contains no oo entries, the sOT barycenter problem
degenerates to the standard OT barycenter problem, and the reverse mechanism turns
back to normal.

5.4. Color transfer. Finally, we apply sOT to an important class of image
processing problem, the color transfer problem. Specifically, color transfer imposes
the color of a target image to an input image so that the output image has the same
pattern and geometry as the input image but with the color palette from the target
image. This can be viewed as transferring the histogram of pixels in the 3D color space
of an image to another [33] which OT is powerful at. Direct application of conventional
OT causes issues, and several OT based algorithms have been introduced to resolve
these drawbacks. For example, adding regularization helps increase the robustness
and eliminates outliers [18, 34]. Another issue is that transferring the entire color
palette that is very different from the input image results in unrealistic looks. Fixing
the amount of transferred mass a priori can help mitigate this issue but with the
need of deciding a scale for each application case [7]. With sOT, we are able to
directly control the similarity of transferred color by setting a distance threshold of
transferred color in the color space. As a result, we control the color palette similarity
of the output and the input image.

For an image, we represent the n pixels as a point cloud X € R"*3 in the 3D color
space (the RGB space). Given two images represented by X € R"*3 (input image)
and Y € R™*3 (target image), the color transfer problem is formulated as coupling
two uniform distributions a € R” and b € R with the cost matrix C € R?*"™ where
Cij = || Xi = Yj||3. In sOT, we use a modified cost matrix C such that C;; = C;; for
Cij < Ceu and C_’ij = oo otherwise. When dealing with large images, a subsampling
and upsampling is often implemented to improve efficiency [18]. We first obtain
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Source image  Target image Supervised OT EMD Sinkhorn Unbalanced
cutoff=0.05 cutoff=0.7 cutoff=0.2 reg=0.01

cutoff=0.01 cutoff=0.05 cutoff=0.1

Fia. 7. The color transfer problem where the color palette of the target image is to be transferred
to the source image and the output image keeps the geometry of the source image. The results of sOT
with different cutoffs in the color space, earth mover’s distance, entropy regularized OT (Sinkhorn),
and unbalanced OT are shown.

subsampled images X® and Y® using the resize function from the PIL package [39]
with the ANTTALIAS option. The OT map P® between the subsampled images is
then determined by the sOT algorithm. The output image X°" € R"*3 with the
transferred color palette is constructed such that

(5.3) X" = (PY®)ng)/a) + X (1 - ZP?V(i),j/a?\/'(i)) - Xy + X
J

where N (7) is the index of the pixel in the subsampled image X*® that is the closest
(in color space) to pixel ¢ in the input image, and aﬁv(i) is the source distribution of
the subsampled image. The color difference between the input and output images is
determined by the color difference due to color transfer in the subsampled input and
output images. We take v = 2 in this example.

The numerical results demonstrate that when the color palettes of the input and
target images are considerably distant, applying color transfer produces unrealistic
output images (Figure 7). In contrast, with the supervised cost matrix in sOT,
the amount of transferred color can be controlled, producing more realistic output
images (Figure 7). When the cutoff value in sOT equals infinity, the output image
will converge to the result of regularized OT or earth mover’s distance depending on
whether entropy regularization was used.
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6. Conclusion and discussion. In this work, we introduce the supervised opti-
mal transport problem where the cost matrix C can have oo entries and the co-pattern
of C supervises and controls the transport plans. Also, the source and target distribu-
tions need not be normalized in SOT. These properties make sOT a method generally
applicable to a large class of transportation problems where application-specific con-
straints are to be imposed on the transport plan and the original units are to be
preserved for the original distributions. To apply sOT on large-scale real problems,
we develop a fast numerical solver for sOT based on the Dykstra algorithm. We
also extend the OT barycenter problem into a supervised one in the setup of sOT.
By considering the sOT barycenter for two distributions (by, bs), a new reverse and
portion selection mechanism is discovered, giving the barycenter a opposite to that
of the standard OT barycenter problem when the weight approaches the boundary of
the unit simplex. The properties and effects of different parameter values of sOT are
illustrated numerically with toy examples. We also demonstrate the reverse behavior
of the sOT barycenter in an extensive numerical example. In an important problem
in imaging science, we compare sOT to several other OT variants to demonstrate its
unique utility of supervising the transport plan.

This work can be extended in several ways in the future. For example, a super-
vised Gromov—Wasserstein OT analogous to sOT can be developed and will enable
the integration of multiple subsamples of the same system without known intersample
correspondence.

In the current work, the formulations (2.8) and (2.17) are obtained from the
discrete OT setting. Introducing the entropy regularization terms in (3.4), the optimal
plan P, has a diagonal rescaling form, such that the Dykstra algorithm (Sinkhorn
type) can be applied to improve the numerical efficiency significantly. On the other
hand, it is also of practical interest to find an efficient solver for the sOT problem
without entropy regularizaion. Inspired by [28], we may link (2.8) and (2.17) with the
dynamical OT (Benamou-Breiner type [5]) formulation. Discrete sOT formulations
(2.8) and (2.17) work for any “ground metric” C. On the other hand, if the metric C
is homogeneous of degree one such as L' metric C = (||z; — y;/1):j, the original OT
problem can be reformulated as a minimal flux minimization problem [27]. Motivated
by this, it is also interesting to consider, when taking some degree-one homogeneous
metric C in (2.17) with a certain oo-pattern, whether there exists a minimal flux
formulation for the sOT problem. Then we can apply well-established efficient solvers
for L' minimization problems to sOT provided that it can be reformulated as a
minimal flux problem. Such a potential dynamical formulation for the sOT problem
can be used to seek optimal transportation paths with constraints in applications such
as continent movement in geology.
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