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SUPERVISED OPTIMAL TRANSPORT∗

ZIXUAN CANG†, QING NIE‡, AND YANXIANG ZHAO§

Abstract. Optimal transport, a theory for optimal allocation of resources, is widely used in var-
ious fields such as astrophysics, machine learning, and imaging science. However, many applications
impose elementwise constraints on the transport plan which traditional optimal transport cannot
enforce. Here we introduce supervised optimal transport (sOT), which formulates a constrained
optimal transport problem where couplings between certain elements are prohibited according to
specific applications. sOT is proved to be equivalent to an l1 penalized optimization problem, from
which efficient algorithms are designed to solve its entropy regularized formulation. We demonstrate
the capability of sOT by comparing it to other variants and extensions of traditional optimal trans-
port in the color transfer problem. We also study the barycenter problem in sOT formulation, where
we discover and prove a unique reverse and portion selection (control) mechanism. Supervised opti-
mal transport is broadly applicable to applications in which a constrained transport plan is involved
and the original unit should be preserved by avoiding normalization.

Key words. constrained transport plan, infinity cost matrix, unnormalized marginal distribu-
tions, entropic regularization, Dykstra algorithm
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1. Introduction. Optimal transport (OT) is a powerful tool for geometrically
comparing and connecting measures. It seeks a globally optimal coupling between
two probability distributions that minimizes the total coupling cost given a predefined
finite cost [30, 24, 8, 40]. OT has been successfully applied in many fields recently,
such as astrophysics [20], machine learning [15, 3, 14], and imaging science [4, 25]. The
original OT is a linear programming problem which has a computational complexity
of O(n3) [40]. Recently, significant advancements in OT computation have been made
which enable the application of OT to large scale practical problems, for example, the
Sinkhorn algorithm [15], the Greenkhorn algorithm [2], and others [16, 22, 17, 29, 23].

However, there are limitations of OT that hinder its application to many prob-
lems, leading to several variants and extensions of OT. For example, unbalanced OT
was introduced to couple nonprobability measures and reduce noise in a transport
plan by replacing the original marginal constraints by soft divergence constraints [12,
11]. Partial OT generalizes OT to optimize the transport plan under the condition
that a given fraction of mass is transported [6, 7, 10]. From the dynamics model
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1852 ZIXUAN CANG, QING NIE, AND YANXIANG ZHAO

perspective, unnormalized OT was introduced to derive the transport dynamics be-
tween two marginals of different total mass with an external spatial-dependent or
spatiotemporal-dependent mass source [21, 26]. In summary, these OT variants re-
lax the marginal mass conservation constraint in the original OT to handle problems
where the total masses of the two marginals do not match.

Another major limitation of OT is that there are natural constraints on the trans-
port plans in many applications which cannot be handled by current OT methods. For
instance, when ground transportation is blocked after a major natural disaster, many
locations with a demand for resources cannot be safely reached by certain supply dis-
tribution locations. In the corresponding OT formulation, there should be constraints
on the transport plan, causing some entries in the transport plan to be occluded as
zero. This leads to a challenging OT problem since the total possible transported
mass becomes an unknown due to the elementwise blockages in the transport plan.

Here, we introduce supervised optimal transport (sOT), which supervises the
transport plan by enforcing a given elementwise constraint on the transport plan.
sOT optimizes both the total transported mass and the transport plan simultane-
ously. Different from the OT problems with prescribed inequality constraints [6], the
inequality constraints in sOT, arising due to the infinity entries in the cost matrix, are
implicitly determined through the optimization of the transport plan. We show that
sOT can be equivalently reformulated and linked to the unbalanced OT framework
[11]. We further extend the standard OT barycenter problem into a sOT barycenter
problem, in which an interesting and novel reverse and portion selection mechanism is
discovered. We propose several new numerical methods for entropy regularized sOT
based on Dykstra iteration.

We validate sOT and the proposed numerical algorithms in several numerical
experiments. By applying it to an important problem in imaging science, the color
transfer problem, we show the benefit and unique capability of sOT over other variants
and extensions of traditional OT. More importantly, we prove the reverse and portion
selection mechanism for the sOT barycenter problem, which is further validated in
detail by numerical examples.

2. Supervised optimal transport. In this section, we define the sOT and
derive an equivalent formulation upon which efficient algorithms are derived.

2.1. Definition of sOT. Let Rn+ (and Rn++, respectively) denote the
n-dimensional nonnegative (and positive, respectively) vector space. We define the
probability simplex (and strictly positive probability simplex, respectively) as

Σn+ =
{

a = (ai)i ∈ Rn+ :
∑
i

ai = 1
}
, Σn++ =

{
a = (ai)i ∈ Rn++ :

∑
i

ai = 1
}
.

(2.1)

The polytope of the couplings between (a,b) ∈ Rn+ × Rm+ is defined as

U(a,b) =
{
P ∈ Rn×m+ : P1 = a,PT1 = b

}
,

where PT is the transpose of P and 1 is the all-ones matrix. The dimension of 1

is determined by dimension consistency of matrix multiplication in the context. We
further define the following polyhedra:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SUPERVISED OT 1853

U(≤ a,≤ b) =
{
P ∈ Rn×m+ : P1 ≤ a,PT1 ≤ b

}
,

U(= a,≤ b) =
{
P ∈ Rn×m+ : P1 = a,PT1 ≤ b

}
.

We denote by ιC the indicator of a set C,

ιC(x) =

{
0 if x ∈ C,

∞ otherwise.

For P = (Pij) ∈ Rn×m+ , we define its entropy as

H(P) = −
∑
i,j

Pij(logPij − 1),

in which we use the convention 0 log 0 = 0. The Kullback–Leibler (KL) divergence
between P = (Pij) ∈ Rn×m+ and Q = (Qij) ∈ Rn×m++ is defined as

KL(P|Q) =
∑
i,j

Pij log

(
Pij
Qij

)
− Pij +Qij .

For two vectors u = (ui),v = (vi) of the same dimension, we denote entrywise
multiplication and division by

u� v = (uivi)i, u./v = (ui/vi)i.

For the standard Kantorovich’s OT problem with discrete marginal measures a,b ∈
Σn+, it reads

LOT(a,b; C) = min
P∈U(a,b)

〈P,C〉 =
∑
i,j

PijCij .(2.2)

In the framework of sOT, the marginal measures (a,b) ∈ Rn+×Rm+ do not necessarily
have the same sum, and we are interested in the cost matrix C = (Cij) that contains
∞ entries. The ∞-pattern of C is defined as the set [9]

P∞(C) = {(i, j) : Cij =∞, i = 1, 2, . . . , n, j = 1, 2, . . . ,m},(2.3)

of positions of C containing an infinity element. Similarly one can define the 0-pattern
of a transport plan P. By virtue of OT, the 0-pattern of the optimal plan P∗ must
contain the ∞-pattern of C, namely, P0(P∗) ⊇ P∞(C). We further define a feasible
set AC for the marginal blocked distribution (µ,ν) as follows:

AC =
{

(µ,ν) ∈ [0, a]× [0,b]
∣∣∣ ∃P ∈ U(a− µ,b− ν) such that 〈P,C〉 <∞

}
,

(2.4)

in which the inclusion (µ,ν) ∈ [0, a] × [0,b] is entrywise, namely, µi ∈ [0, ai], i =
1, 2, . . . , n, and νj ∈ [0, bj ], j = 1, 2, . . . ,m.

We define sOT as the following minimization problem:

LsOT(a,b; C) := min
(µ,ν)∈B

min
P∈U(a−µ,b−ν)

〈P,C〉,(2.5)

where B := argmin(µ,ν)∈AC
‖µ‖1 + ‖ν‖1. In other words, we aim to find the OT plan

P which transports the most marginal density (blocks the least (µ,ν)) with minimal
cost.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1854 ZIXUAN CANG, QING NIE, AND YANXIANG ZHAO

Remark 2.1. Note that when the cost matrix C contains ∞, (µ,ν) = (0,0) may
still be a feasible point in AC (and therefore in B ). For example, one can consider

C =

 1 ∞ 1

1 1 1

1 1 1

 , a =

 0.2

0.3

0.5

 , b =

 0.4

0.3

0.3

 , P =

 0.1 0 0.1

0.1 0.1 0.1

0.2 0.2 0.1

 ,
then (µ,ν) = (0,0) ∈ AC since P ∈ U(a, b) and 〈P ,C〉 is finite. In this case, sOT
reduces to the standard OT as U(a, b) is nonempty and the minimum is reached at
some optimal P ∗.

In practical applications, the cost matrix C could be sparse with respect to the
∞ entries, which most likely leads to (µ,ν) = (0,0) /∈ AC. On the other hand, AC

is nonempty as (µ,ν) = (a,b) is always an element in AC. Therefore, we expect to
find some (µ,ν) ∈ [0, a] × [0,b] with smallest l1-norm, and the associated OT plan
P∗ over U(a− µ,b− ν).

A problem related to sOT (2.5) is the partial transport problem [6], which finds
the optimal plan to transport a given fraction of mass instead of the total amount
of marginal mass. It is formulated as follows. Given marginal densities (a, b) ∈
Rn++ ×Rm++, not necessarily with the same total mass, the partial transport problem
minimizes

min
P∈U(≤a,≤b)

{〈P,C〉 : 〈P,1〉 = θ},(2.6)

in which θ is the given fraction of mass. Different from partial OT, sOT does not re-
quire a given fraction of mass to be transported and instead optimizes the transported
mass. Specifically, sOT can be rewritten as

max
θ∈[0,min(aT 1,bT 1)]

min
P∈U(≤a,≤b)

{〈P,C〉 : 〈P,1〉 = θ},(2.7)

where sOT performs an extra maximization over the transported mass θ. Note that
if the cost matrix C does not contain ∞ entries and aT1 = bT1, the reformulated
problem (2.7) degenerates to the standard OT problem (2.2) since θ can be equal to
the total mass, the largest possible value. On the other hand, if the cost matrix C
contains ∞ entries, the partial transport problem (2.6) may not be well defined for a
given fraction of mass θ since the feasible set is potentially empty. In this case, sOT
(2.7) remains wellposed as θ = 0 is always a feasible transported mass.

2.2. Equivalent sOT formulations. The sOT in the forms (2.5) or (2.7) is a
double optimization problem which is computationally challenging. Here, we recast
it to the form of a single optimization:

LsOT(a,b; C) = min
(µ,ν)∈AC

P∈U(a−µ,b−ν)

〈P,C〉+ γ(‖µ‖1 + ‖ν‖1)(2.8)

for sufficiently large γ depending on C. The equivalence between (2.5) and (2.8) is
summarized in Lemma 2.3.

To begin the proof, we need a lemma characterizing the difference between Pθ

and Pθ̄ for the maximal possible transported mass θ̄ and a mass θ smaller than but
close to θ̄.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SUPERVISED OT 1855

Lemma 2.2. Let C = {x : Ax ≤ b} be a bounded convex polyhedron where

A =
[
aT1 | · · · |aTr

]T ∈ Rr×n and b ∈ Rr. Define

θ̄ := max
x̄∈C

1T x̄, Cθ̄ = argmax
x̄∈C

1T x̄,

and

Cθ = {x ∈ C : 1Tx = θ},

for any possible value of θ that 1Tx can take. Then there exists a critical θ0 < θ̄
such that for any fixed θ ∈ (θ0, θ̄], and any x ∈ Cθ, there exists an x̄ ∈ Cθ̄ such that
‖x− x̄‖1 ≤ η|θ̄ − θ|, where η is independent of θ.

Proof. By definition, Cθ is a bounded convex polyhedron, which can be refor-
mulated as the convex hull of its extreme points:

Cθ = conv
(
x

(1)
θ , x

(2)
θ , . . . , x

(s(θ))
θ

)
in which x

(1)
θ , x

(2)
θ , . . . , x

(s(θ))
θ are all extreme points of Cθ. We denote by Jθ := {j :

aTj x
(k)
θ = bj for some 1 ≤ k ≤ s(θ)} the indices of constraints which are saturated in

at least one extreme point of Cθ. In other words, Jθ are the indices of constraints
which interact with hyperplane 1Tx = θ on C. Letting EC = {x1, . . . , xm} be the
set of extreme points of C such that C = conv(EC), we denote by Ej := {x ∈ EC :
aTj x = bj} the extreme points of C saturating the jth constraint, and EJθ = ∪j∈JθEj .

Evaluating the linear function 1Tx over EC , we know that the maximal value over
{1Tx1, . . . ,1

Txm} equals θ̄. Let the second maximal value over {1Tx1, . . . ,1
Txm}

be θ0. Note that in an extreme case where the second maximal value θ0 cannot be
attained, the maximal value θ̄ is reached in the entire C, and the conclusion of the
lemma is trivially held. So we only consider the nontrival case where the second
maximal value θ0 is attained. It is evident that EJθ is invariant for any θ ∈ (θ0, θ̄].

For any θ ∈ (θ0, θ̄), we consider the extreme points {x(j)
θ }

s(θ)
j=1 of Cθ in which

s(θ) ≡ s. As θ → θ̄, we have x
(j)
θ → x̄

(j)

θ̄
for j = 1, . . . , s. Here {x̄(j)

θ̄
}sj=1 are the

extreme points of Cθ̄, some of which might be repeatedly counted. Now for any point
x ∈ Cθ such that

x = λ1x
(1)
θ + · · ·+ λsx

(s)
θ , {λj}sj=1 ∈ Σs+,

we can take x̄ as

x̄ = λ1x̄
(1)

θ̄
+ · · ·+ λsx̄

(s)

θ̄
,

then

‖x− x̄‖1 ≤ max
1≤j≤s

‖x(j)
θ − x̄

(j)

θ̄
‖1 ≤ ‖1‖2 · max

1≤j≤s
‖x(j)

θ − x̄
(j)

θ̄
‖2.(2.9)

Now we consider the angle σj made by x̄
(j)

θ̄
− x(j)

θ and 1,

σj = arccos

〈
x̄

(j)

θ̄
− x(j)

θ ,1
〉

‖x̄(j)

θ̄
− x(j)

θ ‖2‖1‖2
.(2.10)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1856 ZIXUAN CANG, QING NIE, AND YANXIANG ZHAO

It turns out that σj cannot be π/2. Otherwise,

0 =
〈
x̄

(j)

θ̄
− x(j)

θ ,1
〉

= θ̄ − θ

implies that θ = θ̄, which is the trivial case that θ̄ is attained everywhere in C. Hence
{cosσj}sj=1 must be bounded away from 0. Then we have

cosσj‖x̄(j)

θ̄
− x(j)

θ ‖2‖1‖2 =
〈
x̄

(j)

θ̄
− x(j)

θ ,1
〉

= θ̄ − θ,

which leads to

‖x̄(j)

θ̄
− x(j)

θ ‖2 =
1

cosσj‖1‖2
(θ̄ − θ).

Combining with (2.9), we have

‖x− x̄‖1 ≤
1

min1≤j≤s cosσj
|θ̄ − θ|.

The conclusion holds by taking η = (min1≤j≤s cosσj)
−1.

Last, we show that cos σj is independent of θ, or more specifically of x
(j)
θ . To this

end, we choose an arbitrary θ̃ ∈ (θ, θ̄). Note that x
(j)
θ and x̄

(j)

θ̄
saturate the same set

of constraints since when θ → θ̄, the hyperplane 1Tx = θ does not go through any
extreme point of C (EJθ is invariant for any θ ∈ (θ0, θ̄]); therefore the point

x̃
(j)

θ̃
:=

θ̃ − θ
θ̄ − θ

x̄
(j)

θ̄
+
θ̄ − θ̃
θ̄ − θ

x
(j)
θ ,(2.11)

which saturates the same set of constraints as x
(j)
θ and x̄

(j)

θ̄
, is exactly the extreme

point of Cθ̃ that falls on the line segment between x
(j)
θ and x̄

(j)

θ̄
. Finally the linear

relation (2.11) together with the definition of σj indicates that cos σj is independent
of θ. The proof is completed. A schematic polyhedron is shown in Figure 1.

Lemma 2.3. Given a cost matrix C with ∞-pattern P∞(C), the two sOT for-
mulations (2.5) and (2.8) are equivalent for sufficiently large γ.

Proof. Step I. Let (µopt,νopt) be an optimal pair of blocked measures for (2.5),
namely, the system can at most transfer the amount of mass θ̄ := ‖a − µopt‖1 =

Fig. 1. A schematic polyhedron for Lemma 2.2. The green face is the hyperplane 1T x = θ̄. The
pink plane is the hyperplane 1T x = θ. When the pink plane is close enough to the green one, the set
of extreme points EJθ is invariant. See the proof of Lemma 2.2 for the definitions of the notation.
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SUPERVISED OT 1857

‖b− νopt‖1. We denote by P∗θ̄ a corresponding OT plan. Take any nonnegative and
feasible θ < θ̄; if we can show that for a plan P∗θ defined as

P∗θ = argmin
P
{〈P,C〉 : P ∈ U(≤ a,≤ b), 〈P,1〉 = θ},(2.12)

one has that

〈P∗θ̄ −P∗θ,C〉 ≤ 2γ〈P∗θ̄ −P∗θ,1〉,(2.13)

for some γ > 0, then for any (µ,ν) such that θ = ‖a− µ‖1 = ‖b− ν‖1, it results in

‖µ‖1 + ‖ν‖1 − (‖µopt‖1 + ‖νopt‖1)

= 〈µ− µopt,1〉+ 〈ν− νopt,1〉

= 2〈P∗θ̄ −P∗θ,1〉
≥ γ−1

〈
P∗θ̄ −P∗θ,C

〉
,

leading to

〈P∗θ̄,C〉+ γ(‖opt‖1 + ‖νopt‖1) ≤ 〈P∗θ,C〉+ γ(‖‖1 + ‖ν‖1),

which implies the optimality of (µopt,νopt,P
∗
θ̄
) for (2.8), and consequently the equiv-

alence holds.
Step II. We now prove that there exists a constant γ > 0 such that (2.13) holds.

Using Lemma 2.2, we know that there exists a critical θ0 such that for any given
θ ∈ (θ0, θ̄] and P∗θ defined in (2.12), we can find a feasible Pθ̄ satisfying 〈Pθ̄,1〉 = θ̄
such that

‖Pθ̄ −P∗θ‖1 ≤ η|θ̄ − θ|.(2.14)

Then

〈P∗θ̄ −P∗θ,C〉 ≤ 〈Pθ̄ −P∗θ,C〉

≤ ‖Pθ̄ −P∗θ‖1 · ‖C‖∞
≤ ‖C‖∞η|θ̄ − θ|

= ‖C‖∞η〈P∗θ̄ −P∗θ,1〉.(2.15)

On the other hand, for any feasible θ ≤ θ0 and P∗θ defined in (2.12), we simply have

〈P∗θ̄ −P∗θ,C〉 = 〈P∗θ̄,C〉 − 〈P
∗
θ,C〉

≤ ‖C‖∞ · θ̄

= ‖C‖∞ ·
θ̄

θ̄ − θ
(θ̄ − θ)

≤ ‖C‖∞ ·
θ̄

θ̄ − θ0
(θ̄ − θ)

= ‖C‖∞ ·
θ̄

θ̄ − θ0
〈P∗θ̄ −P∗θ,1〉.(2.16)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1858 ZIXUAN CANG, QING NIE, AND YANXIANG ZHAO

Finally, combining the inequalities (2.15) and (2.16) and taking 2γ = max{η, θ̄/(θ̄ −
θ0)} · ‖C‖∞, we prove the inequality (2.13), and therefore the optimality of
(µopt,νopt,P

∗
θ̄
) for (2.8).

Note that AC is always nonempty; we can therefore rewrite the formulation (2.8)
in a simpler form:

LsOT(a,b; C) = min
P∈U(≤a,≤b)

〈P,C〉+ γ(‖a−P1‖1 + ‖b−PT1‖1).(2.17)

3. Entropic regularization of sOT. The idea to regularize the standard OT
problem by an entropic term can be traced back to the early work by Schrodinger
[35]. This entropic regularization has been well motivated in economics for predict-
ing flows of commodities or actors in a market, in which the smoothness of such
flows can be guaranteed [1]. A recent work [15] provides a new motivation from the
computational perspective that entropic regularization defines a strongly convex pro-
gramming. Unlike the standard OT problem (2.2) which has multiple solutions, the
entropic regularized OT problem has a unique solution, which corresponds to the op-
timizer of (2.2) with maximal entropy in the limit as the regularization parameter ε
vanishes. More importantly, the unique solution to the entropic regularized OT prob-
lem is simply a diagonal scaling of the matrix e−C/ε. This diagonal scaling process
can be efficiently implemented by the Sinkhorn algorithm [36, 38, 37], which has a
linear rate of convergence [19].

We now consider the entropic regularization of sOT (2.8):

min
(µ,ν)∈AC

P∈U(a−µ,b−ν)

〈P,C〉 − εH(P) + γ(‖µ‖1 + ‖ν‖1)(3.1)

or equivalently

min
P∈U(≤a,≤b)

〈P,C〉 − εH(P) + γ(‖a−P1‖1 + ‖b−PT1‖1).(3.2)

It is well known that the unique solution P∗ε of (3.2) converges to the optimal so-
lution with maximal entropy within the set of all optimal solutions of the problem
(2.17) [13].

Taking K = exp(−C/ε) as the Gibbs kernel, sOT problem (3.2) can be rewritten
in terms of the KL divergence as

min
P∈U(≤a,≤b)

εKL(P|K) + γ(‖a−P1‖1 + ‖b−PT1‖1),(3.3)

or equivalently

min
P∈Rn×m

+

εKL(P|K) + γ‖a−P1‖1 + ι[0,a](P1) + γ‖b−PT1‖1 + ι[0,b](P
T1).(3.4)

3.1. Dykstra algorithm. The entropic regularized sOT (3.4) fits into a more
general form

min
P∈Rn×m

+

Bg(P|K) + ĥ1(P) + ĥ2(P).(3.5)

Here g is a given proper closed and strictly convex and differentiable function. Bg is
the Bregman divergence (Bregman distance) defined as

Bg(P|Q) = g(P)− g(Q)− 〈∇g(Q),P−Q〉.(3.6)
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SUPERVISED OT 1859

In addition, ĥ1 and ĥ2 are two proper and lower semicontinuous convex functions.
Note that the Legendre transform of g

g∗(y) = max
x
〈x, y〉 − g(x)

is also smooth and strictly convex. In particular one has that ∇g and∇g∗ are bijective
functions such that ∇g∗ = (∇g)−1.

Define the Bregman proximal operator of a convex function φ as

prox
Bg
φ (Q) = argmin

P
Bg(P|Q) + φ(P).(3.7)

We assume that φ is coercive so that prox
Bg
φ (Q) is uniquely defined by strict

convexity.
The Dykstra algorithm for problem (3.5) [31] reads as follows.

Dykstra algorithm for (3.5).
Input: P0 = K and λ−1 = λ0 = 0;
General step: for any k = 0, 1, 2, . . . , execute the following steps:

P2k+1 = prox
Bg

ĥ1

(
∇g∗

[
∇g(P2k) + λ2k−1

])
;(3.8)

λ2k+1 = λ2k−1 +∇g(P2k)−∇g(P2k+1);(3.9)

P2k+2 = prox
Bg

ĥ2

(
∇g∗

[
∇g(P2k+1) + λ2k

])
;(3.10)

λ2k+2 = λ2k +∇g(P2k+1)−∇g(P2k+2).(3.11)

It is shown in [31] that the sequence {Pn}n≥0 generated by the above Dykstra
algorithm converges to the solution of the problem (3.5).

When taking g(·) as the entropy function, the corresponding Bregman divergence
Bg(P|K) = KL(P|K) becomes the KL divergence. In this case, if ĥ1 and ĥ2 in (3.5)
are of the special form as

ĥ1(P) = h1(P1), ĥ2(P) = h2(PT1),

then the problem (3.5) reduces to

min
P

KL(P|K) + h1(P1) + h2(PT1),(3.12)

which is consistent with the sOT formulation (3.4), after dividing ε over all terms of
Eqn. (3.4).

In this case, the optimal solution P has the decomposition

P = diag(u)Kdiag(v),(3.13)

which is a diagonal scaling of the initial Gibbs kernel K, the same as the optimal
solution for the regularized OT problem (which corresponds to h1(x) = ι{x=a}(x) and
h2(x) = ι{x=b}(x) in (3.12)). Indeed, this decomposition (3.13) not only holds for
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1860 ZIXUAN CANG, QING NIE, AND YANXIANG ZHAO

the optimal P, but also holds for each iterate Pn generated by Dykstra’s algorithm
for KL divergence. Therefore we assume that Pn = diag(un)Kdiag(vn). Then the
Dykstra algorithm can be written in an implementable form given as follows [11].

Dykstra algorithm for KL divergence (implementable form).
Input: u0 = v0 = 1;
General step: for any k = 0, 1, 2, . . . , execute the following steps:

u2k+1 =
proxKL

h1

(
Kv2k

)
Kv2k

, v2k+1 = v2k;(3.14)

v2k+2 =
proxKL

h2

(
KTu2k+1

)
KTu2k+1

, u2k+2 = u2k+1.(3.15)

Note that in some of the literature, this implementable form of the Dykstra al-
gorithm for KL divergence is called the generalized Sinkhorn iteration for problem
(3.12).

3.2. Dykstra algorithm for entropy regularized sOT problem. The en-
tropy regularized sOT problem (3.4) is a special case of the KL divergence problem
(3.12) by taking

h1(P1) =
γ

ε
‖a−P1‖1 + ι[0,a](P1), h2(PT1) =

γ

ε
‖b−PT1‖1 + ι[0,b](P

T1).

(3.16)

Indeed, h1 (and h2, respectively) can be viewed as a regularization term to render
µ = a−P1 (ν = b−PT1, respectively) as small as possible but within the range [0, a]
(and [0,b], respectively). In this case, the implementation of the Dykstra algorithm
depends on the form of the proximal operator of hi, i = 1, 2 with respect to the KL
divergence, which is given in the following lemma.

Lemma 3.1. Let hi(·) = γ
ε ‖ai−·‖1 + ι[0,ai](·), i = 1, 2, with a1 = a,a2 = b; then

the proximal operator of hi with respect to the KL divergence is given as

proxKL
hi (q) = min{eγ/εq, ai}, i = 1, 2.(3.17)

Proof. By definition of the proximal operator with respect to the KL divergence,
we have

proxKL
(γ/ε)‖ai−·‖+ι[0,ai](·)

(q) = argmin
p∈[0,ai]

KL(p|q) + (γ/ε)‖ai − p‖.

If ai ≤ q, both KL(·|q) and ‖ai − ·‖ decrease over domain [0, ai], so the minimum is
attained at p = ai; if ai ≥ q, taking the derivative of KL(p|q) + (γ/ε)‖ai − p‖ with
respect to p and setting it to zero, we find p = min{eγ/εq, ai}. Combining the two
cases yields the result.

Inserting Lemma 3.1 into the Dykstra algorithm for KL divergence, we obtain
the generalized Sinkhorn iteration for the entropy regularized sOT problem with the
regularization terms in (3.16).
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SUPERVISED OT 1861

Generalized Sinkhorn algorithm for sOT
Input: u0 = v0 = 1;
General step: for any k = 0, 1, 2, . . . , execute the following steps:

u2k+1 =
min{eγ/εKv2k,a}

Kv2k
= min

{
e
γ
ε 1,

a

Kv2k

}
, v2k+1 = v2k;(3.18)

v2k+2 =
min{eγ/εKTu2k+1,b}

KTu2k+1
= min

{
e
γ
ε 1,

b

KTu2k+1

}
, u2k+2 = u2k+1.

(3.19)

4. sOT barycenter. Given a set {bj}Jj=1 of unbalanced marginal densities
bj ∈ Rm+ and a weight λ = (λ1, . . . , λJ) ∈ int(∆J), it is of practical interest to
compute the weighted sOT barycenter of {bj}Jj=1. This problem can be viewed as
the generalization of the standard Wasserstein barycenter problem studied in.

We define the sOT barycenter problem in a similar manner as that for sOT. Let
ν = (νj)

J
j=1 ∈ (Rm+ )J denote the blocked marginal measure, and ‖ν‖1 =

∑
j ‖νj‖1.

We define two sets, one of which is for the feasible blocked marginal density ν, and
the other is for the feasible ν with minimal 1-norm:

F = {ν : ‖b1 − ν1‖1 = · · · = ‖bJ − νJ‖1, and ∃ Pj ∈ U(a,bj − νj),

such that 〈Pj ,C〉 <∞ for some a},
G = argmin

ν∈F
‖ν‖1.

Then the sOT barycenter problem is defined as

min
ν∈G

min
Pj∈U(a,bj−νj)

J∑
j=1

λj〈Pj ,C〉.(4.1)

Similarly to the equivalence between various sOT formulations, we can show that
(4.1) is equivalent to

min
ν∈F

Pj∈U(a,bj−νj)

J∑
j=1

λj〈Pj ,C〉+
γ

J
‖ν‖1(4.2)

for sufficiently large γ. The equivalence between (4.1) and (4.2) is summarized in
Theorem 4.1.

Theorem 4.1. Given a cost matrix C with ∞-pattern P∞(C), the two formu-
lations for the sOT barycenter problems (4.1) and (4.2) are equivalent for sufficiently
large γ.

Proof. The proof is similar to that of Lemma 2.3. Starting from an optimal
νopt = (νopt

j )j for the formulation (4.1) and a corresponding optimal plan Pθ̄,∗ =

(Pθ̄,∗
j )j in which θ̄ = ‖b1 − νopt

1 ‖1 = · · · = ‖bJ − νopt
J ‖1, and taking any nonnegative

and feasible θ < θ̄, if we can prove that for any plan Pθ,∗ defined as

Pθ,∗ = argmin
P

{ J∑
j=1

λj〈Pj ,C〉 : Pj ∈ U(= a,≤ bj),

P11 = · · · = PJ1 = a, 〈Pj ,1〉 = θ, ∀j
}
,

(4.3)
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1862 ZIXUAN CANG, QING NIE, AND YANXIANG ZHAO

one has that

J∑
j=1

λj〈Pθ̄,∗
j −Pθ,∗

j ,C〉 ≤ γ
J∑
j=1

λj〈Pθ̄,∗
j −Pθ,∗

j ,1〉 for some γ > 0,(4.4)

then for any ν = (νj)j such that θ = ‖b1 − ν1‖1 = · · · = ‖bJ − νJ‖1, it implies that

‖ν‖1 − ‖νopt‖1 = 〈ν− νopt,1〉

= J
J∑
j=1

λj

〈
Pθ̄,∗
j −Pθ,∗

j ,1
〉

≥ Jγ−1
J∑
j=1

λj

〈
Pθ̄,∗
j −Pθ,∗

j ,C
〉
,

leading to

J
J∑
j=1

λj

〈
Pθ̄,∗
j ,C

〉
+ γ‖νopt‖1 ≤ J

J∑
j=1

λj

〈
Pθ,∗
j ,C

〉
+ γ‖ν‖1,

which implies the optimality of (νopt,Pθ̄,∗) for (4.2).
Now we prove that there exists a γ > 0 such that (4.4) holds. Using Lemma 2.2

and taking the bounded convex polyhedron C to be the set of P = (Pj)j defined by
the constraints 

PT
j 1 ≤ bj ,Pj ≥ 0, j = 1 : J,

Pj1 = Pj+11, j = 1 : J − 1,

Pj ≥ 0, j = 1 : J,

(Pj)kl = 0, (k, l) ∈ P∞(C), j = 1 : J,

and

Cθ =

{
P ∈ C : 〈P,1〉 :=

J∑
j=1

〈Pj ,1〉 = Jθ

}
,

we know that there exists a critical θ0 such that for any given θ ∈ (θ0, θ̄] and Pθ,∗

defined in (4.3), we can find a feasible Pθ̄ satisfying 〈Pθ̄,1〉 = Jθ̄ such that

‖Pθ̄ −Pθ,∗‖1 ≤ Jη|θ̄ − θ|.(4.5)

Then

J∑
j=1

λj

〈
Pθ̄,∗
j −Pθ,∗

j ,C
〉
≤

J∑
j=1

λj

〈
Pθ̄
j −Pθ,∗

j ,C
〉

≤ 1

J
‖Pθ̄ −P∗θ‖1 · ‖C‖∞

≤ ‖C‖∞ · η|θ̄ − θ|

= ‖C‖∞ · η
J∑
j=1

λj

〈
Pθ̄,∗
j −Pθ,∗

j ,1
〉
.(4.6)
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SUPERVISED OT 1863

On the other hand, for any feasible θ ≤ θ0 and Pθ,∗ defined in (4.3), we simply have

J∑
j=1

λj

〈
Pθ̄,∗
j −Pθ,∗

j ,C
〉

=
J∑
j=1

λj〈Pθ̄,∗
j ,C〉 −

J∑
j=1

λj〈Pθ,∗
j ,C〉

≤ ‖C‖∞ · θ̄

= ‖C‖∞ ·
θ̄

θ̄ − θ
(θ̄ − θ)

≤ ‖C‖∞ ·
θ̄

θ̄ − θ0
(θ̄ − θ)

= ‖C‖∞ ·
θ̄

θ̄ − θ0

J∑
j=1

λj

〈
Pθ̄,∗
j −Pθ,∗

j ,1
〉
.(4.7)

Finally, combining the inequalities (4.6) and (4.7) and taking γ = max{η, θ̄/(θ̄ −
θ0)} · ‖C‖∞, we prove the inequality (4.4), and therefore the equivalence between two
formulations.

Noting that the feasible set F is always nonempty, the formulation (4.2) can be
recast into the form

min
(Pj ,a)

Pj∈U(=a,≤bj)

J∑
j=1

λj〈Pj ,C〉+ γ

J∑
j=1

‖bj −PT
j 1‖1.(4.8)

Here we replace γ
J by γ in the equivalent formulation for the sake of simple notation.

4.1. Entropic regularization of the sOT barycenter problem. In this sec-
tion, we consider the entropic regularization for the weighted sOT barycenter problem.
To this end, we introduce the following notation:

KLλ(P|Q) :=
J∑
j=1

λjKL(Pj |Qj),

where P = (Pj)j ∈ (Rn×m+ )J ,Q = (Qj)j ∈ (Rn×m++ )J ,

(4.9)

ĥ1(P) = ιD(P11, . . . ,PJ1), D :=
{

(p1, . . . ,pJ) ∈ (Rm+ )J : p1 = · · · = pJ
}
,

(4.10)

ĥ2(Q) =
γ

ε
‖b−QT1‖1 + ι[0,b](Q

T1) :=

J∑
j=1

(γ
ε
‖bj −QT

j 1‖1 + ι[0,bj ](Q
T
j 1)

)
,

(4.11)

h1(p) = ιD(p1, . . . ,pJ) for p = (pj)j,
(4.12)

h2(q) =
γ

ε
‖b− q‖1 + ι[0,b](q) =

J∑
j=1

(γ
ε
‖bj − qj‖1 + ι[0,bj ](qj)

)
for q = (qj)

n
j=1.

(4.13)

Note that ĥi(P) = hi(P1), i = 1, 2. With the above notation, we can formulate the
entropic regularized sOT barycenter problem as
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1864 ZIXUAN CANG, QING NIE, AND YANXIANG ZHAO

min
P∈(Rn×m

+ )J

J∑
j=1

λj

(
〈Pj ,C〉 − εH(Pj)

)
+ εĥ1(P) + εĥ2(P),(4.14)

or equivalently in terms of the KL divergence,

min
P∈(Rn×m

+ )J
KLλ(P|K) + ĥ1(P) + ĥ2(P),(4.15)

where K = (Kj)
J
j=1 with Kj = e−C/ε, j = 1, . . . , J .

To solve the entropic regularized sOT barycenter problem (4.15), we adopt the
generic diagonal scaling algorithm introduced in [31] (also see [11]), in which each
iterate P has the diagonal scaling decomposition

P(n) = (P
(n)
j )j =

(
diag(u

(n)
j )Kdiag(v

(n)
j )
)
j
.(4.16)

With a slight abuse of notation, we denote, consistent with P = (Pj)j ,

u = (u1, . . . ,uJ) ∈ (Rn)J , v = (v1, . . . ,vJ) ∈ (Rm)J .

Then the diagonal scaling algorithm reads as follows.

Input: u(0) = v(0) = 1;
General step: for any n = 0, 1, 2, . . . , execute the following steps:

u
(2n+1)
j =

[
proxKLλ

h1

(
Kv(2n)

)]
j

Kv
(2n)
j

, v
(2n+1)
j = v

(2n)
j , ∀j;(4.17)

v
(2n+2)
j =

[
proxKLλ

h2

(
KTu(2n)

)]
j

KTu
(2n)
j

, u
(2n+2)
j = u

(2n+1)
j , ∀j.(4.18)

Note that one needs to compute the two proximal operators proxKLλ
h1

and proxKLλ
h2

for h1 and h2 defined in (4.12)–(4.13) to implement the diagonal scaling algorithm.
The following lemma shows that the two proximal operators for the KL divergence
can be computed in closed form. The derivation is similar to that of Proposition 5.1
in [31], so we omit the details.

Lemma 4.2. For any p = (pj)j ∈ (Rn)J , and h1 and h2 defined in (4.12)–(4.13),
one has [

proxKLλ
h1

(
p
)]
j

= pλ1
1 � · · · � pλJJ ,

[
proxKLλ

h2

(
p
)]
j

= min
{
e

γ
λjεpj ,bj

}
.(4.19)

Additionally, for any P = (Pj)j ∈ (Rn×m)J , and ĥ1 and ĥ2 defined in (4.10)–(4.11),
the two proximal operators proxKLλ

ĥ1
and proxKLλ

ĥ2
are related to (4.19) as

[
proxKLλ

ĥ1
(P)
]
j

= diag


[
proxKLλ

h1

(
P1
)]
j

Pj1

Pj ,

[
proxKLλ

ĥ2
(P)
]
j

= Pjdiag


[
proxKLλ

h2

(
PT1

)]
j

PT
j 1

 ,

(4.20)
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SUPERVISED OT 1865

in which

P1 := (P11, . . .PJ1), PT1 := (PT
1 1, . . .P

T
J 1).

With the proximal operators computed in (4.19), the diagonal scaling algorithm
in a directly implementable form becomes as follows.

Input: u(0) = v(0) = 1;
General step: for any n = 0, 1, 2, . . . , execute the following steps:

u
(n+1)
j =

a(n)

Kv
(n)
j

, j = 1 : J, where a(n) =
∏
j

(
Kv

(n)
j

)λj
,(4.21)

v
(n+1)
j = min

{
bj

KTu
(n)
j

, e
γ
λjε

}
, j = 1 : J.(4.22)

4.2. Log-domain implementation. One drawback for the diagonal scaling
algorithm (Sinkhorn algorithm) is that it suffers from numerical overflow when the
regularization parameter ε is too small compared to the entries of the cost matrix C.
This drawback is even more severe for the sOT problem as it will cause some entries
of K = e−C/ε to be regarded as zero due to the numerical overflow, even though they
should not. In other words, having more zero entries in K because of the smallness
of ε will change the 0-pattern of K and consequently the ∞-pattern of C. Therefore
it is necessary to implement the diagonal scaling algorithm for the sOT barycenter
problem in the log-domain.

Using the log-sum-exp stabilization trick for the soft-minimization, and noting
the primal-dual relation

(u(n),v(n)) =
(
ef

(n)/ε, eg
(n)/ε

)
,

the log-domain implementation for the diagonal scaling algorithm reads as follows.

Input: f (0) = g(0) = 0;
General step: for any n = 0, 1, 2, . . . execute the following steps:

f
(n+1)
j =

∑
i

λi

[
ε log

(
e(f

(n)
i ⊕g(n)

i −C)/ε1
)
− f

(n)
i

]
−
[
ε log

(
e(f

(n)
j ⊕g(n)

j −C)/ε1
)
− f

(n)
j

]
,

(4.23)

g
(n+1)
j = min

{
ε log(bj)− ε log

(
e(f

(n+1)
j ⊕g(n)

j −C)T /ε1
)

+ g
(n)
j ,

γ

λj

}
(4.24)

for all j = 1 : J .

4.3. Special case in which λ ∈ ∂(∆J). In this subsection, we point out an
important difference between the standard OT barycenter problem and the sOT one.
For the sake of simplicity, we take J = 2.
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1866 ZIXUAN CANG, QING NIE, AND YANXIANG ZHAO

Note that when λ = (0, 1), the OT barycenter problem degenerates to the stan-
dard OT problem. More precisely,

min
a
λ1LOT(a,b1) + λ2LOT(a,b2)

reduces to

min
a
LOT(a,b2),

which leads to a = b2 and P2 = diag(b2). Then P1 is determined by the standard
OT

LOT(a,b1) = min
P1∈U(a,b1)

〈P1,C〉.

Additionally, the entropic OT barycenter problem reduces to the entropic OT prob-
lem. In other words,

min
a
λ1L

ε
OT(a,b1) + λ2L

ε
OT(a,b2)

reduces to

min
a
LεOT(a,b2),

which leads to a = Kb2

KT 1
and P2 = Kdiag

(
b2

KT 1

)
. Then P1 is determined by the

entropic OT

LεOT(a,b1) = min
P1∈U(a,b1)

εKL(P1|K).

However, such degeneration does not apply to the sOT barycenter problem,

lim
λ1→0

(
min
a
λ1LsOT(a,b1) + λ2LsOT(a,b2)

)
6= min

a
LsOT(a,b2).

To elucidate the idea, we take the cost matrix C as in (5.2) with Ccut = 0.3, namely,
any mass can only be transported within the distance no longer than Ccut. We take
y ∈ Rn+1 to be a uniform mesh over [0, 1] with h = 1/n being the mesh spacing and let
b1 = 1 (and b2 = 1, respectively) be uniform distribution on y compactly supported
over [0.1, 0.3] (and [0.7, 0.9], respectively). For any λ = (λ1, λ2) ∈ int(∆2), the sOT
barycenter a must be the uniform distribution a = 1 on y compactly supported over
[0.4, 0.6]. The corresponding total cost is

λ1(0.3)2 + λ2(0.3)2 = (0.3)2.

This is because any other possible transport plan will cause some mass, even only a
bit, to be transported from either b1 or b2 to anywhere beyond [0.4, 0.6], resulting in
an infinite cost. On the other hand, when λ = (0, 1) ∈ ∂(∆2), the sOT barycenter is
determined by

min
a
LsOT(a,b2).

Since it is unrelated to LsOT(a,b1), we can take a = b2 such that the total cost
equals zero. Hence the degeneration leads to a discontinuity for the total cost. To
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SUPERVISED OT 1867

resolve this issue, we define the degenerate sOT problem for λ̃ ∈ ∂(∆J) as the limiting
problem when int(∆J) 3 λ→ λ̃,

min
a

∑
j

λ̃jLsOT(a,bj) := lim
int(∆J )3λ→λ̃

(
min
a

∑
j

λjLsOT(a,bj)
)
.

4.4. Reverse and portion selection mechanism. We can further perform
theoretical analysis on the limiting behavior of the barycenter sOT problem. For the
sake of simplicity, we still take J = 2. Let y = (yi)i ∈ Rn be the uniform mesh over
[0, 1− h] with h = 1/n. For the rest of this section, we take n = 1000.

To begin with, we define a cumulative sum inequality as follows. For any two
vectors u,v ∈ Rn, we say u is cumulatively less than or equal to v and denote by
u ≤C v if they satisfy

k∑
j=1

uj ≤
k∑
j=1

vj , k = 1 : n− 1; and
n∑
j=1

uj =
n∑
j=1

vj .(4.25)

u is strictly cumulatively less than v and we denote u <C v if at least one inequality
in (4.25) is strict for k = 1 : n− 1. We denote u =C v if all the inequalities in (4.25)
are equality. It is clear that u =C v if and only if u = v.

Let T t be a periodic shift operator for any periodic function f(x) over [0, 1) such
that (T tf)(x) = f(x−t). We take two nonnegative periodic functions b1(x), b2(x) over
[0, 1) with compact support [0, 0.2] and let them satisfy the cumulative sum inequality

b1|y∩[0,0.2] ≤C b2|y∩[0,0.2].(4.26)

We define two marginal distributions b1 and b2 as

b1 = (T 0.1b1(x))|y, b2 = (T 0.7b2(x))|y.(4.27)

The cost matrix C is taken as

Cij =

{
|yi − yj |2 if |yi − yj | ≤ 0.3,

∞ if |yi − yj | > 0.3.
(4.28)

In the following lemma, we characterize the marginal distributions which are of the
same amount of mass as b1 and b2 and can be completely transported to b1 and b2

given the cost matrix C in (4.28).

Lemma 4.3. Given marginal distributions b1 and b2 as in (4.27), a marginal
distribution a can be completely transported to both b1 and b2 if and only if

a = (T 0.4a(x))|y(4.29)

in which a(x) is a nonnegative periodic function over [0, 1) with compact support
[0, 0.2] and satisfies

b1(x)|y∩[0,0.2] ≤C a(x)|y∩[0,0.2] ≤C b2(x)|y∩[0,0.2].(4.30)

Proof. We only consider the case for P2. That for P1 is similar.
First, we show that if the cumulative sum inequality (4.30) holds, then there

exists some plan P2 to transport a completely to b2. Here we use the northwest
corner rule [32] to construct such a plan P2. If P2 completely transports a to b2,
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1868 ZIXUAN CANG, QING NIE, AND YANXIANG ZHAO

then all the entries not in the submatrix Q = P2(401 : 600, 701 : 900) ∈ R200×200 must
be 0 due to the compact support of a and b2. Besides, since the entries of C are ∞
when |yi−yj | > 0.3, the strict upper triangular entries of Q must also be 0. Now we
apply the northwest corner rule to determine the lower triangular (including diagonal)
entries of Q. More precisely, the rule starts by giving the highest possible value to
Q11 = (P2)401,701 by setting it to min{(a)401, (b2)701}. At each step, the entry (P2)ij
is chosen to saturate either the ith row constraint or the jth column constraint, or
both if possible. The indices i, j are then updated as follows: i is incremented in the
first case, j is in the second, and both i and j are in the third case. The rule proceeds
until (P2)600,900 receives a value. On the other hand, using the second half of the
cumulative sum inequality (4.30), we have that each diagonal entry Qkk of Q must
be chosen to saturate the corresponding row constraint or both the row and column
constraints, but it cannot saturate only the corresponding column constraint. Since
the total mass of a is equal to that of b2, the possible excessive mount of mass due
to the row saturation is eventually transported by the last row of Q. Hence mass is
completely transported.

Second, we show that if the cumulative sum inequality (4.30) is violated, then
no plan P2 can completely transport a to b2. Let k be the smallest integer to break
(4.30),

k∑
j=1

a(yj) >

k∑
j=1

b2(yj).(4.31)

Assume there exists a plan P2 which transports a completely to b2. We still denote
Q = P2(401 : 600, 701 : 900). Due to the compact support of a,b2 and the ∞ entries
in C, the nonzero entries of P2 can only lie in the lower triangular half (including the
diagonal) of Q. Consider the submatrix Qk = Q(1 : k, 1 : k). On one hand, since a
is completely transported, we have

Qk1 = [a(y1), . . . , a(yk)]T , QT
k 1 ≤ [b2(y1), . . . ,b2(yk)]T .

However,
∑
i(Qk1)i =

∑
i,j(Qk)ij =

∑
j(Q

T
k 1)j leads to

∑k
j=1 a(yj) ≤

∑k
j=1 b2(yj),

causing a contradiction to inequality (4.31).

Then we have the following result regarding the sOT barycenter of b1 and b2.

Theorem 4.4. Let b1 and b2 be defined as in (4.27) with b1 and b2 satisfying
(4.26). Given cost matrix C defined in (4.28), we have

lim
(λ1,λ2)→(1,0)

argmin
a

 2∑
j=1

λjLsOT(a,bj ; C)

 = (T 0.4b2)|y,(4.32)

lim
(λ1,λ2)→(0,1)

argmin
a

 2∑
j=1

λjLsOT(a,bj ; C)

 = (T 0.4b1)|y.(4.33)

Proof. We only prove the case for (λ1, λ2)→ (0, 1). The other case is similar. By
virtue of Lemmas 4.1 and 4.3, all the candidates for the sOT barycenter of b1,b2 are
in the form of (4.29) with condition (4.30) satisfied. We denote by Sa the collection
of all these candidates.

In the limit (λ1, λ2)→ (0, 1), λ1LsOT(a,b1) becomes zero. We only need to seek
an optimal a∗ in Sa to minimize LsOT(a,b2). Pick any a ≥C b1, and let k be the
smallest integer such that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

12
/1

5/
22

 to
 1

57
.2

42
.5

6.
93

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



SUPERVISED OT 1869

k∑
j=1

a(yj) >
k∑
j=1

b1(yj).(4.34)

Since
∑n
j=1 a(yj) =

∑n
j=1 b1(yj), there must be some integer l > k such that a(yl) <

b1(yl). Let P∗a be an OT plan for LsOT(a,b2), and let (P∗a)ki be a nonzero entry on
the kth row. Then for a sufficiently small ε > 0, changing (P∗a)ki → (P∗a)ki − ε and
(P∗a)kl → (P∗a)kl+ ε causes a cost reduction. Therefore a is not the optimal candidate
in Sa unless a =C b1, that is, a = b1.

Remark 4.5. In the standard OT barycenter problem, we have

lim
(λ1,λ2)→(1,0)

argmin
a

 2∑
j=1

λjLOT(a,bj ; C)

 = b1,

lim
(λ1,λ2)→(0,1)

argmin
a

 2∑
j=1

λjLOT(a,bj ; C)

 = b2.

(4.35)

However, the sOT barycenter problem, without considering the periodic translation
of b1 and b2, gives exactly opposite results as shown in Theorem 4.4. We call the
limits (4.32) and (4.33) a reverse and portion selection mechanism.

5. Numerical results. In this section, we will present several numerical exper-
iments to validate the proposed sOT problem. Note that in Lemmas 2.2 and 2.3, we
only prove the existence of λ for the equivalence between the double minimization for-
mulation (2.5) and the single minimization formulation (2.8), but there is no explicit
evaluation of γ. For the numerical simulations, we will decide the value of γ by the
following procedure: taking several values of γ = γ1, γ2, . . . in ascending order and
running the Dykstra solver for each value γi, until the total transported mass 〈P,1〉
becomes unchanged (within a certain accuracy) at some γj , then we choose γj to be
the value of γ in the simulations.

Figure 2 shows an example for this procedure. In this test, we take C as the
truncated L2 distance defined in (5.2) with Ccut = 0.5. The two marginal densities a
and b are given as follows:

a =
1

D

(
e−

(x−0.2)2

0.12 + 0.001

) ∣∣∣∣
hZ∩[0,1]

, b =
1

D

(
e−

(x−0.8)2

0.12 + 0.001

) ∣∣∣∣
hZ∩[0,1]

(5.1)

with h = 1
200 . We take γ = 0, 0.1, 0.2, 0.5, 100. For each value of γ, we calculate

〈P,1〉. We note that when γ = 0.5 or larger, 〈P,1〉 remains unchanged. Thereby we
take γ = 0.5.

5.1. Effect of ε (regulator weight) for entropy regularized sOT. In our
first example, the two marginal densities are taken as one-dimensional (1D) discretized
Gaussian distribution:

a =
1

2D

(
e−

(x−0.2)2

0.12 + 0.001

) ∣∣∣∣
hZ∩[0,1]

, b =
1

D

(
e−

(x−0.8)2

0.12 + 0.001

) ∣∣∣∣
hZ∩[0,1]

with h = 1
200 . D is a normalization constant such that ‖a‖1 = 1

2 and ‖b‖1 = 1. The
cost matrix C = (Cij) ∈ R200×200 is taken as

Cij =

|xi − xj |
2 if |xi − xj | ≤ Ccut,

∞ if |xi − xj | > Ccut

(5.2)
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1870 ZIXUAN CANG, QING NIE, AND YANXIANG ZHAO

Fig. 2. The schematic for taking the value of γ. We take several values of γ in ascending
order, run the Dykstra algorithm, and evaluate the total transported mass 〈P,1〉 until it becomes
unchanged within a certain accuracy. In this simulation, we take ε = 0.01. Note that when γ = 0,
there is still a tiny mass transported, which is due to the approximation of entry regularization.

Fig. 3. The sOT solutions for various ε as ε→ 0. The blue region indicates the transported part
of a. The dark red region indicates the transported part of b, and the light red region corresponds to
the blocked part of b.

with cutoff = 0.7. The value of γ is taken to be γ = 2. By taking various values of
ε = 1, 0.5, 0.1, 0.05, 0.025 in Figure 3, we test the generalized Sinkhorn algorithm with
h1 and h2 taken in the form of (3.16). For all values of ε, a is completely transported.
For the transported part of b, namely, the row sum PT1 of the optimal plan P,
it spreads widely over the support of b, with more mass in the region closer to the
support of a. As ε becomes smaller, more mass is moved to the left half of the support
of b.
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SUPERVISED OT 1871

Fig. 4. The sOT solutions for various cutoff values. The dark blue region indicates the trans-
ported part of a, and the light blue is for the blocked part of a. The dark red region indicates the
transported part of b, and the light red region corresponds to the blocked part of b.

5.2. Effect of Ccut for entropy regularized sOT. In the second example,
we test the effect of ∞ entries in the cost matrix C. In particular, we construct C as
in (5.2) but take various cutoff values Ccut = 0.25, 0.35, 0.50, 0.55, 10. The marginal
densities a and b are 1D Gaussian distributions in (5.1). Note that in this example,
we take ‖a‖1 = ‖b‖1 such that when there is no ∞ entry in C, the sOT problem
reduces to the standard balanced OT problem. We fix ε = 0.05 and γ = 2 in this
example.

Figure 4 presents the solutions of the sOT problem with different values of cutoff
parameter. When Ccut = 0.25 is small, the majority of the mass is blocked; only a
tiny amount on the supports of a and b within the separation of 0.25 is allowed
to transport. When the Ccut becomes larger (fewer ∞ entries in C), more mass is
transported from the right corner of the support of a to the left corner of the support of
b. When cutoff becomes large enough, for instance, Ccut = 10, all entries of C become
finite, and the sOT problem degenerates to the standard balanced OT problem, in
which all mass in a is completely transported to b.

5.3. The effect of Ccut on weighted sOT barycenter problem. In this
example, two unequal densities b1,b2 ∈ R200 are taken as the discretization of

b1 =
1

D1

(
χ[0.1,0.3] + 0.001

) ∣∣∣∣
hZ∩[0,1]

, b2 =
1

D2

(
e−

(x−0.8)2

0.12 + 0.001

) ∣∣∣∣
hZ∩[0,1]

over a uniform mesh {xj = jh}200
j=0 with h = 1

200 . The constants D1, D2 are taken
such that ‖b1‖1 = 1.0 and ‖b2‖1 = 1.2. The cost matrix C = (Cij) ∈ R200×200 is
taken as in (5.2) with various cutoff values. The value of γ is taken to be γ = 2. For
each cutoff value, three pairs of weights (λ1, λ2) = (0.9, 0.1), (0.5, 0.5), (0.1, 0.9) are
considered. Figure 5 depicts the numerical simulations for Ccut = 1.00, 0.50, 0.40,
0.30, 0.28, 0.26, 0.24, 0.22, 0.20, from top left, top middle, top right, to bottom right.
In each plot, the opaque light blue (and red, respectively) represents the density b1

(and b2, respectively), the transparent dark blue (and red, respectively) represents
the transported mass of b1 (and b2, respectively), and the transparent yellow is the
weighted sOT barycenter.
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1872 ZIXUAN CANG, QING NIE, AND YANXIANG ZHAO

Fig. 5. The weighted sOT barycentric solutions for (b1,b2) for various values of Ccut

and weights (λ1, λ2). From top left, top middle, top right, to bottom right, with Ccut =
1.00, 0.50, 0.40, 0.30, 0.28, 0.26, 0.24, 0.22, 0.20, respectively, each subfigure consists of three cases with
(λ1, λ2) = (0.9, 0.1), (0.5, 0.5), (0.1, 0.9).

For a large Ccut = 1.00 in the top left subfigure, when λ1 is close to 1, the sOT
barycenter a is close to b1. However, b2 is only partially transported as the mass
of b2 is more than that of b1. When λ1 approaches 0, the sOT barycenter becomes
close to partially transported b2. This is similar to the standard barycentric problem,
except that each density bj may be only partially transported.

For a small Ccut = 0.50 in the top middle subfigure, when λ1 is close to 1, the
sOT barycenter a, compactly supported near the compact domain of b1, is surprisingly
similar to b2 (up to a translational shift). On the contrary, when λ1 is close to 0, the
sOT barycenter a, compactly supported near the compact domain of b2, resembles
b1, up to a translational shift.

When taking further small value Ccut = 0.24 as in the bottom left subfigure, each
density bj is only allowed to transport within the distance = 0.24. Hence for any pair
(λ1, λ2), the sOT barycenter a can only be compactly supported in between b1 and
b2. Besides, without considering the translational shift, a is valued closely to the
transported b2 when λ1 → 1, while a is valued closely to b1 when λ1 → 0. The sOT
barycenter solution in the bottom right subfigure for Ccut = 0.20 is similar to that for
Ccut = 0.24, except that more mass is blocked for b1 and b2.

In Figure 6, we further present the resemblance phase diagram between the sOT
barycenter a and the marginal distribution b1 on the λ1-Ccut plane (the left subfigure),
and similarly that between a and b2 on the λ2-Ccut plane (the right subfigure). Here
the resemblance between a and bj is defined as

Resem(a,bj) :=
min0≤k≤200 ‖bj − circshift(a, k)‖2

min0≤k≤200 ‖b1 − circshift(b2, k)‖2
, j = 1, 2,
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SUPERVISED OT 1873

Fig. 6. The resemblance between the sOT barycenter a and the marginal distributions b1,b2.
When Ccut is small, it shows the reverse and portion selection mechanism as indicated by the limits
in Theorem 4.4. When Ccut increases, the mechanism gradually changes back to normal as the
standard OT barycenter problem.

in which circshift is a circular shift operator. The smaller the resemblance value,
the greater the resemblance between the two densities. If Resem(x, y) = 0, then x = y
up to a translational shift. It is evident that when Ccut is small, the resemblance of
the sOT barycenter a to b1 (and b2, respectively) as (λ1, λ2)→ (1, 0) (and (λ1, λ2)→
(0, 1), respectively) is reversed, compared to the standard OT barycenter problem in
which a resembles b1 when λ1 = 1, and a resembles b2 when λ2 = 1. On the other
hand, as the value of Ccut increases, the reverse effect is lessened. When Ccut becomes
sufficiently large such that C contains no ∞ entries, the sOT barycenter problem
degenerates to the standard OT barycenter problem, and the reverse mechanism turns
back to normal.

5.4. Color transfer. Finally, we apply sOT to an important class of image
processing problem, the color transfer problem. Specifically, color transfer imposes
the color of a target image to an input image so that the output image has the same
pattern and geometry as the input image but with the color palette from the target
image. This can be viewed as transferring the histogram of pixels in the 3D color space
of an image to another [33] which OT is powerful at. Direct application of conventional
OT causes issues, and several OT based algorithms have been introduced to resolve
these drawbacks. For example, adding regularization helps increase the robustness
and eliminates outliers [18, 34]. Another issue is that transferring the entire color
palette that is very different from the input image results in unrealistic looks. Fixing
the amount of transferred mass a priori can help mitigate this issue but with the
need of deciding a scale for each application case [7]. With sOT, we are able to
directly control the similarity of transferred color by setting a distance threshold of
transferred color in the color space. As a result, we control the color palette similarity
of the output and the input image.

For an image, we represent the n pixels as a point cloud X ∈ Rn×3 in the 3D color
space (the RGB space). Given two images represented by X ∈ Rn×3 (input image)
and Y ∈ Rm×3 (target image), the color transfer problem is formulated as coupling
two uniform distributions a ∈ Rn+ and b ∈ Rm+ with the cost matrix C ∈ Rn×m+ where
Cij = ‖Xi − Yj‖22. In sOT, we use a modified cost matrix C̄ such that C̄ij = Cij for
Cij ≤ Ccut and C̄ij = ∞ otherwise. When dealing with large images, a subsampling
and upsampling is often implemented to improve efficiency [18]. We first obtain
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Fig. 7. The color transfer problem where the color palette of the target image is to be transferred
to the source image and the output image keeps the geometry of the source image. The results of sOT
with different cutoffs in the color space, earth mover’s distance, entropy regularized OT (Sinkhorn),
and unbalanced OT are shown.

subsampled images Xs and Ys using the resize function from the PIL package [39]
with the ANTIALIAS option. The OT map Ps between the subsampled images is
then determined by the sOT algorithm. The output image Xout ∈ Rn×3 with the
transferred color palette is constructed such that

Xout
i = (PsYs)N(i)/a

s
N(i) + Xs

N(i)(1−
∑
j

Ps
N(i),j/a

s
N(i))−Xs

N(i) + Xi,(5.3)

where N(i) is the index of the pixel in the subsampled image Xs that is the closest
(in color space) to pixel i in the input image, and as

N(i) is the source distribution of
the subsampled image. The color difference between the input and output images is
determined by the color difference due to color transfer in the subsampled input and
output images. We take γ = 2 in this example.

The numerical results demonstrate that when the color palettes of the input and
target images are considerably distant, applying color transfer produces unrealistic
output images (Figure 7). In contrast, with the supervised cost matrix in sOT,
the amount of transferred color can be controlled, producing more realistic output
images (Figure 7). When the cutoff value in sOT equals infinity, the output image
will converge to the result of regularized OT or earth mover’s distance depending on
whether entropy regularization was used.
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6. Conclusion and discussion. In this work, we introduce the supervised opti-
mal transport problem where the cost matrix C can have∞ entries and the∞-pattern
of C supervises and controls the transport plans. Also, the source and target distribu-
tions need not be normalized in sOT. These properties make sOT a method generally
applicable to a large class of transportation problems where application-specific con-
straints are to be imposed on the transport plan and the original units are to be
preserved for the original distributions. To apply sOT on large-scale real problems,
we develop a fast numerical solver for sOT based on the Dykstra algorithm. We
also extend the OT barycenter problem into a supervised one in the setup of sOT.
By considering the sOT barycenter for two distributions (b1,b2), a new reverse and
portion selection mechanism is discovered, giving the barycenter a opposite to that
of the standard OT barycenter problem when the weight approaches the boundary of
the unit simplex. The properties and effects of different parameter values of sOT are
illustrated numerically with toy examples. We also demonstrate the reverse behavior
of the sOT barycenter in an extensive numerical example. In an important problem
in imaging science, we compare sOT to several other OT variants to demonstrate its
unique utility of supervising the transport plan.

This work can be extended in several ways in the future. For example, a super-
vised Gromov–Wasserstein OT analogous to sOT can be developed and will enable
the integration of multiple subsamples of the same system without known intersample
correspondence.

In the current work, the formulations (2.8) and (2.17) are obtained from the
discrete OT setting. Introducing the entropy regularization terms in (3.4), the optimal
plan Pε has a diagonal rescaling form, such that the Dykstra algorithm (Sinkhorn
type) can be applied to improve the numerical efficiency significantly. On the other
hand, it is also of practical interest to find an efficient solver for the sOT problem
without entropy regularizaion. Inspired by [28], we may link (2.8) and (2.17) with the
dynamical OT (Benamou–Breiner type [5]) formulation. Discrete sOT formulations
(2.8) and (2.17) work for any “ground metric” C. On the other hand, if the metric C
is homogeneous of degree one such as L1 metric C = (‖xi − yj‖1)ij , the original OT
problem can be reformulated as a minimal flux minimization problem [27]. Motivated
by this, it is also interesting to consider, when taking some degree-one homogeneous
metric C in (2.17) with a certain ∞-pattern, whether there exists a minimal flux
formulation for the sOT problem. Then we can apply well-established efficient solvers
for L1 minimization problems to sOT provided that it can be reformulated as a
minimal flux problem. Such a potential dynamical formulation for the sOT problem
can be used to seek optimal transportation paths with constraints in applications such
as continent movement in geology.
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