
OMRGx: Programmable and Transparent Out-of-Core
Graph Partitioning and Processing

Gurneet Kaur
University of California Riverside

Riverside, USA
gkaur007@ucr.edu

Rajiv Gupta
University of California Riverside

Riverside, USA
rajivg@ucr.edu

Abstract

Partitioning and processing of large graphs on a single ma-
chine with limited memory is a challenge. While many cus-
tom solutions for out-of-core processing have been developed,
limited work has been done on out-of-core partitioning that
can be far more memory intensive than processing. In this
paper we present the OMRGx system whose programming
interface allows the programmer to rapidly prototype ex-
isting as well as new partitioning and processing strategies
with minimal programming effort and oblivious of the graph
size. The OMRGx engine transparently implements these
strategies in an out-of-core manner while hiding the com-
plexities of managing limited memory, parallel computation,
and parallel IO from the programmer. The execution model
allows multiple partitions to be simultaneously constructed
and simultaneously processed by dividing the machine mem-
ory among the partitions. In contrast, existing systems pro-
cess partitions one at a time. Using OMRGx we developed
the first out-of-core implementation of the popular MtMetis
partitioner. OMRGx implementations of existing GridGraph
and GraphChi out-of-core processing frameworks deliver
performance better than their standalone optimized imple-
mentations. The runtimes of implementations produced by
OMRGx decrease with the number of partitions requested
and increase linearly with the graph size. Finally OMRGx
default implementation performs the best of all.
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Computing platforms.
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1 Introduction

With the growing popularity of single machine analytics,
out-of-core systems (e.g., GraphChi [15], GridGraph [29],
etc.) have been developed enabling processing of graphs
that are too large to fit in available memory. The graphs
are therefore partitioned and then partition-based process-
ing is performed where partitions, that individually fit in
machine memory, are loaded one at a time and processed.
Graph partitioning is even more memory intensive. The pop-
ular multilevel graph partitioner MtMetis [9, 17] requires
4.8×–13.8× [14] the memory that it takes to hold the origi-
nal graph as it creates many versions of the graph via graph
coarsening and uncoarsening. However, work on out-of-core
graph partitioning is quite limited – to the best of our knowl-
edge, GO [14] is the only out-of-core graph partitioner. All of
the above systems are custom systems whose development
required substantial effort.

In this paper we present the OMRGx system that enables
rapid prototyping of existing and new graph partitioning and
partition-based processing algorithms with minimal effort.
The system consists of an execution engine and a program-

ming interface. The execution engine transparently deals with
the complexities of out-of-core processing required to suc-
cessfully perform graph partitioning and processing of a
given graph no matter its size. The programming interface al-
lows partitioning and processing tasks to be expressed with
minimal programming effort oblivious of the graph size in re-
lation to machine memory size. The ease of expressing wide
variety of algorithms using our map-reduce based program-
ming interface and the highly specialized map-reduce out-of-
core engine for graphs respectively deliver programmability
and performance for partitioning and processing of large
graphs. The key aspects of this system are are as follows.

Transparent Out-of-Core Execution Engine. The out-
of-core map-reduce engine implements a novel runtime that
transparently supports management of limited memory, par-
allel mappers and reducers, and parallel IO to achieve highly
optimized implementation of partitioning and processing

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1. Comparison of PageRank Processing Times (in
Seconds) for GraphChi, GridGraph, and OMRGx on an
input UKDomain-2007 graph with over 3 billion edges.

logic provided by the user. The novel features of this engine
include the following:

• Simultaneously Creating or Processing Partitions. The
single machine resources, limited memory and parallel
threads, are distributed among the partitions allowing
all partitions to be simultaneously created or processed.
In doing a partition does not need to fully reside in
memory but rather it is streamed through the mem-
ory buffer assigned to the partition. As a consequence
the number of partitions used is not dependent upon
the memory size of the machine, the user can con-
figure OMRGx to consider any number of partitions
while dividing available memory among those parti-
tions. Parallel loading of partitions reduces overall I/O
overhead. In contrast, existing out-of-core graph pro-
cessing systems (e.g., [15]) process one partition at a
time and require that each partition fit in memory.

• In-Memory and On-Disk Graph Representations. To en-
able simultaneous processing of multiple partitions,
each partition is held partially in memory and on disk.
Thus, we employ both in-memory and on-disk graph
representations as well as runtime support that trans-
forms the graph between these representations as it is
transferred between memory and disk. Runtime effi-
cient serialization and deserialization is achieved via
protocol buffers [31] and storage on disk via Infinimem
object store [12]. Moreover, protocol buffers allows use
of custom formats for the graph structure.

The benefits of above features of OMRGx translate into sig-
nificant speedups over theGraphChi andGridGraph systems
as shown in Figure 1. Moreover, the runtime of OMRGx de-
creases with the number of partitions via greater parallelism.

Graph Partitioning and Processing Programming In-

terface. Our interface allows graph partitioning and pro-
cessing logic to be easily expressed via map and reduce op-
erations. The programming is independent of the graph size

and machine memory size. To express graphs in this pro-
gramming model, a key corresponds to a vertex (node) id
and the edges, represented by destination vertex ids, corre-
spond to the value for the key. The partitioning strategies
can be expressed easily in form of a<0? function. Complex
partitioning strategies likeMtMetis [17] that make repeated
passes to refine partitions can implement these passes via an
additional A43D24 function. Given a partitioned graph, the
processing can also be easily specified by the user using a
A43D24 function. Multiple mappers and reducers in the engine

carry out partitioning and processing in parallel.

Demonstration of System Capabilities. We show that
OMRGx enables rapid prototyping of graph partitioning
and partition-based graph processing strategies while deliv-
ering scalable performance. We developed multiple graph
partitioners ranging from simple hash partitioner to sophis-
ticated GO [14] andMtMetis [17, 18] partitioners. We also
present defaultOMRGx processing algorithm while also pro-
gramming strategies proposed in GraphChi [15] and Grid-

Graph [29] out-of-core graph processing systems. The effec-
tiveness of our approach is evident from the following:

• Graph Partitioning with OMRGx: OMRGx generated
MtMetis implementation is the first out-of-core imple-
mentation of popular MtMetis [17] partitioner. This
implementation successfully partitions large graphs
while existing implementation of MtMetis fails as it
runs out of memory. We also performed rapid proto-
typing of the GO [14] partitioner using OMRGx.

• Graph Processing with OMRGx: The runtimes of im-
plementations produced by OMRGx decrease with the
number of partitions requested and increase linearly
with the graph size. OMRGx implementations of ex-
isting GridGraph [29] and GraphChi [15] out-of-core
frameworks deliver performance better than their stan-
dalone optimized implementations. OMRGx default
implementation performs the best of all.

• OMRGx Programmability: Using 573 lines of C++ code
we were able to prototype two sophisticated out-of-
core graph partitioners (GO and MtMetis) and two
well known out-of-core graph processing frameworks
(GraphChi and GridGraph).

Thus, OMRGx simultaneously delivers high-performance
and programmability for rapid prototyping.
The remainder of the paper is organized as follows. In

Section 2 we present the novel features of our out-of-core
engine, describe the programming interface and illustrate
its use in programming first simple and then complex parti-
tioning and processing algorithms. In Section 3 we present
detailed evaluation. Section 4 presents our conclusions.
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2 OMRGx: Programming Interface and
Out-Of-Core Execution Engine

OMRGx provides a rich programming interface that allows
programmers to remain oblivious of the need for Out-of-Core
graph handling and consequently simply express the logic of
different graph partitioning and processing schemes using
simple<0? and A43D24 functions. Based on this partitioning
and processing logic, the runtime takes care of the entire
process of handling large amounts of data in parallel using
limited memory and optimizing parallel IO operations for
transfer of data between disk and memory whenever needed.
The system, shown in Figure 2, provides programmers with
the flexibility to program different applications and strategies.
Next, we first describe OMRGx’s application programming
interface that enables graph partitioning and processing, and
then show how the system transparently handles processing
of large graphs beyond the size of main memory. Finally,
we illustrate implementation of advanced partitioning and
processing algorithms using OMRGx.

Figure 2. Overview of OMRGx Graph Partitioning and
Processing System.

2.1 The Programming Interface

The high-level interface provided by OMRGx allows pro-
grammers to express different graph partitioning strategies
and also perform partition-based graph processing. OMRGx

does not limit the user to any specific partitioner or pro-
cessing approach for large graphs. Instead it provides the
programmer with the ability to rapidly prototype new and
existing graph partitioning and processing approaches of
choice. The programmer transparently benefits from the use
of out-of-core capabilities of the system.
The set of APIs shown in Table 1 represent bulk of OM-

RGx’s programming interface. The core functions represent
the minimal set of functions a programmermust use to imple-
ment graph partitioning and/or processing. The additional
functions listed have default implementations that the user

can rely upon. However, the user has the option of providing
custom versions of these functions when programming more
sophisticated frameworks. We will discuss and illustrate the
use of core functions in this section and in a later section
describe the usage of others.
The programmer specified<0? function is used to split

the input into < :4~ − [E0;D4B] > pairs. Here :4~B are the
E4AC824B/=>34B and E0;D4B represent an edge adjacencylist
for the vertex. In order to partition graphs, we need to de-
fine a partitioning strategy which is expressed using the
setPartitionID API. This API is used to set the %�� in
memory for the input :4~ − E0;D4 pair which is then passed
to the<0? function to store the < :4~−E0;D4 > to the speci-
fied partition. If during the<0? phase, the in-memory buffer
partitions grow in size, their entire contents are written off
to disk to make room for further < :4~ − E0;D4 > pairs. The
A43D24 function processes all the < :4~− [E0;D4B] > pairs in
the partitions on disk in parallel, refines them based on the
logic provided by the application programmer and emits the
final partitions. This process repeats until the entire graph is
read and processed. Note, if the refinement logic is not pro-
vided by the programmer, the default behavior is to merge
all the E0;D4B for each :4~ as < :4~ − [E0;D4B] > pairs into
in-memory buffer partitions and write these off to disk.
The graph processing algorithms tend to be iterative in

nature (e.g., PageRank). Therefore, OMRGx provides APIs
to support iterative graph processing. The APIs 14 5 >A4"0? ,

Table 1. OMRGx APIs to implement graph partitioning and
perform partition-based graph processing.

Core Functions Provided by the Programmer

setPartitionId (unsigned PID);

map (const unsigned tid, std::string& input, unsigned PID);

reduce (unsigned PID, const InMemoryCon-
tainer<KeyType, ValueType>& partition);

updateReduceIteration (const unsigned PID);

Additional FunctionsWithDefault Implementations

diskReadPartition (unsigned PID, unsigned count);

diskWritePartition (unsigned PID, unsigned count, InMem-
oryContainer<KeyType, ValueType>& partition);

beforeMap (unsigned tid);

a�erMap (unsigned tid);

beforeReduce (unsigned PID);

a�erReduce (unsigned PID);

setIterations ();
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Figure 3. PageRank algorithm using Hash partitioner
programmed in OMRGx.

05 C4A"0? , 14 5 >A4'43D24 , and 05 C4A'43D24 are used to set
and clear graph related structures. During each iteration
A43D24 operation is performed. The D?30C4'43D24�C4A0C8>=
API is used to update the computation data structures to
prepare for the next iteration. It also checks the termination
condition if one is provided by the programmer. Alterna-
tively, the user can decide to run the algorithm for a fixed
number of iterations specified using the B4C�C4A0C8>=B API.

For the iterative algorithms, the entire graph is read from
or written off to disk multiple times causing processing
that propagates and updates values from one iteration to
next. To support the iterative processing, OMRGx internally
uses 38B:'403%0AC8C8>= and 38B:,A8C4%0AC8C8>= functions
to read/write from/to disk. The programmers also have the
choice to read/write the entire partition or a part of it based
on their implementation. Therefore, the programmers also
have the access to38B:'403%0AC8C8>= and38B:,A8C4%0AC8C8>=

functions as extended APIs which they can directly call in
their programs.
To illustrate the use of graph partitioning and process-

ing APIs, Figure 3 shows the implementation of PageRank

in OMRGx using a Hash partitioner. The Hash partitioner,
as shown, is a simple partitioner that hashes vertices into
different partitions (using setPartitionId API) based on
their keys during the<0? phase and calculates the PageR-
ank of each vertex within the partition during the A43D24
phase. During<0? phase, vertex :4~ and all its correspond-
ing edges E0;D4 are written off to buffers in memory in the
form of < :4~ − E0;D4 > pairs. Here the incoming vertex
edge 5 A>< is stored along with the other information like its
BA2 , A0=: , =D< − > 5 − =486ℎ1>AB etc. This incoming vertex
along with its key C> is written to in memory buffer based
on the specified %�� . All edges corresponding to each key C>
are aggregated as < C> − [�364)~?4] > pairs in their PIDs.
During the A43D24 phase, all the edges corresponding to

each vertex within a %�� are merged together by the reducer
and made available in the ?0AC8C8>=. Therefore, for each key
C> , its A0=: is calculated based on its previous rank which is
stored as its attribute along with its neighbor edges 5 A><. It
then updates this new A0=: for all of the neighbors of key C> .
Once the entire partition is processed, theD?30C4'43D24�C4A
API increments the number of iterations for the PageRank
algorithm until it finally converges, thereby, writing the final
partition using the 05 C4A'43D24 API. Note that, one iteration
of a PageRank is said to be completed when the entire graph
is read from disk and processed in memory to update the
rank for each vertex. Asmentioned earlierOMRGx internally
uses its 38B:,A8C4%0AC8C8>= API to propagate the updated
values for the next iteration. The entire process of reading
and writing graphs from disk in parallel and optimized IO
operations is oblivious to the application programmer. The
users have the flexibility to program any kind of partitioning
and processing framework.
While OMRGx can be used to express wide variety of

graph partitioning and processing algorithms, its powerful
out-of-core capabilities combined with its simple architec-
ture makes it a self-contained system in its default state.
In default state OMRGx uses hash partitioning and default
graph representations. Application programmers can simply
express the partitioning logic using the<0? API and express
the PageRank logic using the A43D24 API to output the final
:4~ − [E0;D4B] pairs.

2.2 Transparent Out-Of-Core Engine

OMRGx provides a runtime that manages all the complexi-
ties associated with out-of-core processing transparently to
the programmer. The runtime manages the memory avail-
able to carry out partitioning and processing of large graphs.
The two key features of this runtime are as follows.

• First, OMRGx uses the available memory to form mul-
tiple memory buffers that are used by multiple threads
to simultaneously create or process partitions.

• Second, it uses a novel strategy for representing multi-
ple partitions in memory and on disk while seamlessly
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moving them between memory and disk giving the
illusion of entire graph being available in memory.

Together, the above two features enable exploitation of par-
allelism in computation and IO while allowing partitioning
and processing tasks to proceed for large graphs on a limited
memory machine.

As shown earlier, the logic is specified by the user via set-
PartitionId, map, and reduce functions. While setPartitionId
assigns partition ids to graph entities, map and reduce func-
tions are used to perform tasks in parallel via creation of
mapper and reducer threads as shown in Figure 4. The run()
method initializes the engine and initiates the threads.
Each mapper thread owns a row of in-memory buffers,

one buffer per partition, as shown in Figure 5 (left half). A
mapper thread maps the vertex :4~ along with its �364)~?4
value based on its ?0AC8C8>=�� to an appropriate buffer in
its row. Each :4~ (node) can hold a list of values (edges);
thus, multiple < :4~ − �364)~?4 > pairs with the same key
are aggregated as < :4~ − [�364)~?4] > pairs as shown
in Figure 6. Once the in-memory buffer reaches its capacity,
its contents are emptied to disk as a batch of contiguous
records. As mentioned earlier, the contents within each batch
are serialized as '42>A3)~?4 . At the end of<0? phase, any
given :4~ will be present in some or all of the batches with
the same color and the entire graph is partitioned and stored
on disk as shown in Figure 5 (right view).

During the A43D24 phase, the engine initiates the A43D24A
threads based on the number of partitions (:) of the graph
to be produced. Each A43D24A thread independently oper-
ates on batches with the same color. This means, CℎA403B
during the A43D24 phase own batches with the same color
which correspond to an entire partition of a graph. Each
thread reads as much from each batch within its assigned
partition, deserializes the '42>A3)~?4 into its corresponding
< :4~ − �364)~?4 > pair and also merges the �364)~?4

split across batches within the same partition for each

:4~. This in-memory partition which contains a portion of
its on-disk partition is then used to run the user specified
processing logic using the A43D24 API as shown in Figure 6.
A single iteration of graph is complete when each on-disk

Figure 4. OMRGx Engine’s main method.

Figure 5. Organizing Memory into Buffers and Disk Usage.

partition is read in its entirety and processed in memory.
Due to iterative nature of PageRank, the A43D24 phase will
go through more such iterations until convergence.
Note if the entire graph fits in memory, then all the <

:4~ − �364)~?4 > pairs represent all values for their cor-
responding keys and hence, can be directly sent to reducer
where processing logic is applied.

When the input graph is read from disk, it is stored in a
partitioned form in memory buffers. The initial partitioning
logic is expressed in the<0? API along with specifying the
partitioning scheme using the setPartitionId API. When
memory buffers are filled to the capacity, their contents are
serialized into batch of contiguous records using the cus-
tom format defined by users in Protocol Buffers and written
to disk (using the Infinimem object store) to empty mem-
ory space for further processing. OMRGx internally uses
38B:,A8C4%0AC8C8>= API to store the partitions from mem-
ory buffers to disk and provides seamless memory to its users.
When the entire input graph is read, all its contents are orga-
nized on disk as partitions of input graph. It is important to

Figure 6. Organization of a Graph as Partitions In Memory.
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Figure 7. Customized attributes for PageRank Algorithm
expressed using Protocol Buffers.

note that if memory buffers are large enough to accommo-
date all the partitions in memory then their contents are not
written to disk and the graph processing is also fully carried
out in memory. Only the final partitions are written to disk.
The :4~ − E0;D4 record is defined using protocol buffers.

For example, Figure 7 shows the custom �364)~?4 value
which contains the information like source, destination, num-
ber of neighbors, rank etc for each vertex. This �634)~?4
along with the :4~ is passed to the engine when creating
the object of the class �0Bℎ and calling the methods to pass
input to the engine within the main method in Figure 4. The
:4~ − �364)~?4 pair is further serialized as '42>A3)~?4 by
the engine when storing these records on disk.

To parallelize the IO for graph partitioning and processing,
we use C threads that read from disk in parallel and create :
partitions in parallel. To ensure that the t threads do not have
to synchronize with each other when updating the buffers,
each buffer is subdivided into C sub-buffers, one for each
thread. This leads to the organization of the graph as shown
in Figure 5 where the number of in-memory buffers is C × : ;
C represents all the rows and : represents all the columns.
Corresponding to each of C × : buffers, the disk contains a
series of batches that are written to disk when the buffers
are emptied.
For a simple Hash partitioner, each partition is read in

parallel by its : assigned threads. All threads, in parallel,
load as much of the partitioned subgraph of their assigned
partition to their respective in memory buffer. The graph
processing logic is then applied to the loaded subgraphs in
memory. This process continues until the graph processing
(e.g. PageRank) logic is applied to the entire graph. OMRGx

internally uses 38B:'403%0AC8C8>= and 38B:,A8C4%0AC8C8>=

APIs to provide seamless memorymanaging experience to its
users. For sophisticated graph partitioners like GO,MtMetis

which also perform the graph refinement step after the initial
partitioning, the refinement logic is applied to the subgraphs
fetched in memory before carrying out graph processing.

Some of the partitioning algorithms like MtMetis further
perform coarsening and uncoarsening steps to refine the
graph.38B'403%0AC8C8>= and38B:,A8C4%0AC8C8>= APIs make
it easier to fetch and store the coarsened subgraphs from/to
disk to avoid running out of memory. Our experiments show
the implementation of MtMetis using OMRGx API which
can even process larger graphs which are not processed by
the original standalone implementation of MtMetis. Once
the graph processing algorithm runs through all the parti-
tions and updates are applied to all the vertices, the output
is written to disk.

The records expressed using Protocol Buffers provide effi-
cient serialization and deserialization. In addition to that, we
define custom records based on their processing logic mak-
ing it extremely easier to express wide variety of algorithms
which require different number and types of attributes. These
attributes are then stored as serialized records on disk. Figure
7 illustrates how different attributes needed by PageRank

algorithm are expressed using Protocol Buffers. When read-
ing the records from disk, they are deserialized into these
different attributes and processed to get useful information.

2.3 Complex Partitioning & Processing Algorithms

Next we use OMRGx to program complex partitioning and
processing algorithms including GO in Figure 8, MtMetis in
Figure 9, GridGraph in Figure 10, and GraphChi in Figure
11a. The GO andMtMetis partitioners being sophisticated
graph partitioners, refine the partitions during the A43D24
phase and hence perform additional processing. Once all
the partitions are read from disk and refined during the
A43D24 phase, the final partitions are available at the end
which can be used for further processing by the graph algo-
rithms. SinceMtMetis employsmultilevel graph partitioning
strategy where a graph is transformed into a sequence of
smaller graphs during the coarsening phase. The partitioning
phase generates the initial partitioning of the coarsest graph.
The uncoarsening phase refines the partitions produced and
projects them to their finer level graph and all the way to the
original graph. Figure 9 shows the ease of programmingmul-

tilevel algorithm using the simple APIs provided by OMRGx.
If the input graph is large,MtMetis stores all its coarsened
graphs on disk using OMRGx’s 38B:,A8C4%0AC8C8>= API by
specifying the count for the < :4~−E0;D4 > pairs to be stored
on disk. During the uncoarsening phase, it simply reads the
finer level graphs using the 38B:'403%0AC8C8>= API provided
by OMRGx, thus, utilizing the disk space to avoid running
out-of-memory. Similarly, GO performs the refinement step
by computing the gains of the vertices across different parti-
tions using Kernighan-Lin algorithm [11]. GridGraph uses a
2-level hierarchical strategy to produce refined partitions.
For implementing the graph processing systems such as

GraphChi [15] that uses the shard representation to process
large datasets, users have the flexibility to use different data
structures to store the shards which are then processed in
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Figure 8. GO programmed in OMRGx.

Figure 9. MtMetis programmed in OMRGx.

Figure 10. GridGraph programmed in OMRGx.

parallel by the OMRGx system. Figure 11 illustrates how
we can define simple C++ BCAD2CB to capture the intervals
of each shard and to store GraphChi meta data. In addition
to the simplicity of programming GraphChi, OMRGx also
provide users with the option to program their custom parti-
tioners to partition the input data first and then process them
using GraphChi based data structures. Similar to our simple
Hash partitioner, GraphChi implements the<0? phase by
specifying the < :4~ − �364)~?4 > pairs. Along with that
it also stores the interval information for each shard. It is
important to note that in this case each partition (PID) is con-
sidered as a separate shard. During the A43D24 phase, parallel

(a) map and reduce for GraphChi.

(b) Structures used to store the shard information in GraphChi.

(c) Structures defined to store meta data.

Figure 11. GraphChi in OMRGx.

reducer threads fetch records from their respective on-disk
partitions using 38B:'403%0AC8C8>= API into in-memory par-
titions which act as a memory shard using which we build
a subgraph and create GraphChi meta data for that shard.
Once we have all the information about all the shards loaded
in memory, we fetch the sliding shards and update each ver-
tex within that shard. The updated shard is written to its
on-disk partition using 38B:,A8C4%0AC8C8>= API.

3 Evaluation

OMRGx is implemented in C++ (compiled with gcc version
8) and can be used to partition large graphs and perform
partition-based graph processing. Therefore to evaluate OM-

RGx we consider a number of partitioning and processing
strategies. The detailed evaluation demonstrates OMRGx’s
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programmability, performance scalability, and its favorable
performance in comparison with handcoded custom systems.
Following graph partitioning algorithms and partition-based
graph processing frameworks are considered.

• Graph Partitioning inOMRGx:OMRGx-Hash,OMRGx-

GO, andOMRGx-Mt correspond to theHash,GO, and
MtMetis partitioners implemented using OMRGx. We
also implemented OMRGx-GC and OMRGx-GG that
correspond to partitioning algorithms that produce
partitioned representations used by GraphChi [15]
and GridGraph [29] out-of-core frameworks.

• Graph Processing in OMRGx: OMRGx-D, OMRGx-GC,
and OMRGx-GG correspond to the default, GraphChi,
and GridGraph processing implementations carried
out using OMRGx. We compare these with GraphChi-

S and GridGraph-S that refer to standalone custom
implementations of GraphChi and GridGraph.

All the experiments were performed on a machine with
32 cores (2 sockets, each with 16 cores) with Intel Xeon
Processor E5-2683 v4 processors, 425GB memory, 1TB SATA
Drives, and running CentOS Linux 7. The four input graph
datasets used in the experiments are listed in Table 2 – they
range from medium sized graphs - OK, WK with around
120"−378" edges to large sized graphs - TW, UK consisting
of 1, 202" − 3, 407" edges. UK is the largest graph needing
55GB of disk space. To ensure that out-of-core features were
exercised, each run was given less memory that was needed
to hold the entire graph.

3.1 Programmability and Versatility of OMRGx

Prototyping complex graph partitioning and processing al-
gorithms using OMRGx’s programming interface is quite
straightforward as the user can be oblivious of the graph size,
memory size, and out-of-core complexities. The programmer
may simply need to providemap and reduce functions which
encode the custom logic and data structures that may be
needed while the processing engine takes care of the rest.

Table 3 quantifies the programming effort for implement-
ing various partitioning approaches using OMRGx in terms
of the lines of C++ code written by the programmer for
various partitioning and processing approaches.

A simple hash partitioner can be implementedwith a fewer
lines of code. It is implemented with around 10 lines of code
in OMRGx and is also provided as the default partitioner
in OMRGx. While the hash partitioner does not refine the
partitions, the OMRGx-GO partitioner refines the partitions
during the A43D24 phase requiring additional coding. While
the standalone version of GO [14] is implemented using
around 1300 lines of code, only 176 lines of code are needed
to implementOMRGx-GO. This is becauseOMRGx’s engine
does all the heavy lifting. The standalone implementation of
MtMetis [17] uses around 22,489 lines of code to implement
themultilevel coarsening and uncoarsening algorithms – this

Table 2. Input Graphs: Orkut (OK), Wikipedia-eng (WK),
Twitter-WWW (TW), and UKdomain-2007 (UK).

G Vertices Edges Graph Size | � |

| + | | � | | � | + | + | | + |

OK 3,072,441 117,185,083 120.3 million 38.1

WK 12,150,976 378,142,420 390.3 million 31.1

TW 41,652,230 1,202,513,195 1,244.2 million 28.9

UK 105,153,952 3,301,876,564 3,407.0 million 31.4

Table 3. Programmer written Lines of Code (LoC) for
various partitioning and processing algorithms in OMRGx.

Partitioning OMRGx

Algorithm User LoC

OMRGx-Hash 10

OMRGx-GO 176

OMRGx-MtMetis 200

OMRGx-GraphChi 40

OMRGx-GridGraph 32

Processing OMRGx

Algorithm User LoC

OMRGx-Default 29

OMRGx-GraphChi 83

OMRGx-GridGraph 42

implementation is not an out-of-core implementation and
hence runs out of memory for large graphs. On the other

hand, OMRGx-MtMetis was implemented using 200

lines of code and it is the first out-of-core implemen-

tation of MtMetis that reliably works for large graphs

on a single machine.

Implementing OMRGx-GraphChi was relatively easy and
took 123 (40+83) lines of code including code for loading
memory with corresponding sliding shards, building sub-
graph they represent in memory, and processing the sub-
graph to run %064'0=: algorithm. On the other hand, the
standalone implementation of GraphChi [15] is done with
around 1323 lines of code – this is the engine that processes
the shards. The extra lines of code for preprocessing the
shards, building subgraphs and meta data are not included.
Similarly OMRGx-GridGraph implementation took 74 lines
of code for both partitioning and processing.OMRGx-Default

is the default processing provided by OMRGx which uses a
hash partitioner to partition the vertex-edge pairs based on
their vertex ID and runs PageRank on the partitioned graph.
It is implemented using only 29 lines of code.
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Table 4. Scalability of PARTITIONING Algorithms Implemented via OMRGx w.r.t Input Graph Size for 8 partitions.

Input Total OMRGx- OMRGx- OMRGx- OMRGx- OMRGx-

Graphs Edges Hash GO MtMetis GraphChi GridGraph

OK 117,185,083 16s 34s 55s 15.9s 36.6s

WK 3x 3.5x 3.6x 2.7x 3.5x 2.4x

TW 10x 14x 15x 18x 14.7x 9.8x

UK 28x 32x 19.5x 15x 37.5x 26.5x
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Figure 12. Graph PARTITIONING times (in seconds) using different partitioning schemes implemented in OMRGx.

Overall we observe that in 573 lines of code we were

able to prototype two sophisticated out-of-core graph

partitioners (OMRGx-GO and OMRGx-MtMetis) and

two well known out-of-core processing frameworks

(OMRGx-GraphChi and OMRGx-GridGraph). More-

over, OMRGx-MtMetis is the first out-of-core imple-

mentation of MtMetis.

3.2 Performance of OMRGx-generated Graph

Partitioners

Next, we study the scalability of five different graph parti-
tioning algorithms developed using OMRGx. First, we fix
the number of partitions to 8 (i.e., : = 8) and see how per-
formance scales with increasing graph size. Second, we vary
the number of partitions from 2 to 32 to study the sensitivity
of performance of partitioning algorithms to : .
Table 4 shows that the cost of partitioning increases in

proportion to the increase in input graph size. We use num-
ber of edges as a proxy for graph size. As we can see, the
number of edges inWK, TW, and UK are 3×, and 10×, 28×
relative to the number of edges in OK. When we examine

the performance, we see similar trend. For example, UK is
28× bigger than OK while its partitioning time ranges from
15× to 37.5× that of OK across five different partitioners
developed using OMRGx. It is also worth noting that the

performance of OMRGx-MtMetis partitioner scales

very well according to graph size and this is the first

known out-of-core implementation of MtMetis graph

partitioner. Finally, all the graph partitioners were able to
process all the input graphs successfully.

Now let us consider the sensitivity of runtime performance
to the number of partitions produced. Figure 12 shows the
performance of all five partitioners generated using OMRGx

when number of partitions is varied from 2 to 32. We ob-

serve a trend that applies to most of the partitioners, as

: increases from 2 to 32, the partitioning time for any

given partitioner reduces. This is entirely due to OMRGx

execution model that allows partitions to be construced in
parallel, in particular, to create : partitions OMRGx uses :
threads. Therefore, as we increase : from 2 to 32, greater
amount of parallelism is exploited and the time for construct-
ing partitions reduces.
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The execution times of different partitioners relative to
each other are as expected. The cost of partitioning using
OMRGx-Hash, OMRGx-GG (GG-GridGraph), and OMRGx-

GC (GC-GraphChi) are reasonably small. The OMRGx-GC

takes a bit more time because of the time spent on building
the shard representation that is greater in size than a simple
adjacency list representation. The most expensive partition-
ers areOMRGx-GO andOMRGx-Mt (MtMetis) because both
perform partition refinement using the KL-algorithm [11].
However, OMRGx-Mt is significantly more expensive than
OMRGx-GO due to graph coarsening and uncoarsening that

is used which requires multiple versions of the graph to be
created, stored, and refined. In other words, OMRGx-Mt

performs multilevel refinement while OMRGx-GO performs
singlelevel refinement.
Finally, note that very limited work has been carried out

on out-of-core graph partitioning. WhileMtMetis is a pop-
ular single machine partitioner, it runs out of memory for
large graphs. On the other hand, with modest effort, using
OMRGx we have generated performant implementations
of five different graph partitioners that successfully handle
large graphs while delivering good runtime performance.

Table 5. Scalability of Graph PROCESSING Frameworks implemented via OMRGx vs. Standalone GraphChi [15] and
GridGraph [29] systems. Runtimes are for PageRank and 8-partitioning of input graphs normalized w.r.t OK.

Input Total OMRGx- OMRGx- GraphChi- OMRGx- GridGraph-

Graph Edges Default GraphChi Standalone GridGraph Standalone

OK 117,185,083 18.5s 22.9s 41.1s 4.8s 13s

WK 3x 3.4x 3.3x 2.6x 2.5x 3.5x

TW 10x 13.8x 14x 14.4x 9.6x 5.6x

UK 28x 32x 26x 34x 23.5x 25.9x
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Figure 13. Comparison of PageRank PROCESSING Times (in Seconds) for standalone implementations of GraphChi-S and
GridGraph-S with their corresponding and default implementations in OMRGx.
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Figure 14. Benefit of Processing Partitions in Parallel in OMRGxMemory Available for Buffers is Half the Graph Size.
All times are normalized with respect to total time taken by OMRGx with k=8 and 25 iterations.

3.3 Performance of OMRGx-generated Graph

Processing Frameworks

Next, we compare the runtime performance of standalone
GraphChi [15] and GridGraph [29] frameworks with their
corresponding implementations that were created usingOM-

RGx. We also compare the performance of these implemen-
tations with the OMRGx-Default version. For comparing
the graph processing runtime costs, we ran the PageRank
algorithm on all four input graphs using all of the above
five implementations. All of the above implementations are
synchronous; thus, they perform the same work in each it-
eration. We ran all versions for first few iterations as for
PageRank the initial iterations are the most expensive.

Table 5 studies the scalability of all implementations with
respect to the input graph size using 8 partitions. Here the
runtimes of the all the systems are normalized w.r.t OK.
While the UK graph size is 28× the size of OK, the runtimes
of different versions for UK are 25.9× to 34× that of runtimes
for OK. In other words the processing times increase less
proportionally to the graph size indicating good scalability.

We also studied the sensitivity of processing times to num-
ber of partitions. The runtimes for all the systems, OMRGx-
generated and standalone systems, are shown in Figure 13
as number of partitions is varied from 2 to 32. We observe

that the processing runtimes of any given approach using
OMRGx is less insensitive to number of partitions, though
runtimes for : > 2 are typically lower than for : = 2. We also
observe that OMRGx generated implementations are supe-
rior to standalone implementations. In other words,OMRGx-

GC and OMRGx-GG perform better than well-tuned and
hand-optimized GraphChi-S and GridGraph-S systems. This
is due to the parallel processing of all partitions by OMRGx

based systems as opposed to standalone systems that process
one partition at a time. It should be noted that GridGraph-
S performance is significantly superior to GraphChi-S and
the same is true for their corresponding OMRGx-GG and
OMRGx-GC. We also observe that OMRGx-Default im-

plementation that is essentially based upon the simple

default hash partitioning performs the best overall. It
is substantially faster than both OMRGx-GC and OMRGx-

GG as well as stand alone implementations of GraphChi and
GridGraph.
As mentioned earlier, OMRGx benefits from processing

multiple partitions in parallel. In order to show the bene-
fit achieved by processing partitions in parallel, we ran 25

iterations of PageRank and compared the processing time
for running a single partition with running 8 partitions in
parallel. Figure 14 shows how the normalized cumulative
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execution time grows with iteration count – in each of these
runs we provided memory equal to half the size of the input
graph. As expected, the runtime shows a significant improve-
ment in overall execution time (around 9×) when processing
multiple partitions in parallel. This experiment also explains
the reason for the faster execution times forOMRGx-GC and
OMRGx-GGwhen compared to standalone implementations
of GraphChi and GridGraph that process one partition at a
time. Both OMRGx-GC and OMRGx-GG benefit from the
loading and processing of partitions in parallel by the OM-

RGx execution engine and hence achieve speedups over the
standalone implementations of GraphChi and GridGraph.

4 Related Work

OMRGx is a general system that can be used for prototyping
new and old strategies for partitioning and processing. It
is the only out-of-core graph partitioning and processing
system that simultaneously constructs and simultaneously
processes multiple partitions. This is why the implementa-
tions of existing strategies in OMRGx deliver higher perfor-
mance than their standalone implementations [14, 15, 29] as
it hides the I/O times by processing partitions in parallel. It is
well known that out-of-core systems spend vast majority of
their time on disk I/O. Therefore, much of the speedups we
have demonstrated are due to parallel I/O, i.e. simultaneous
loading of multiple partitions.
APIs extensions to MapReduce- Mapreduce by itself does

not provide any support for graph partitioning or process-
ing. Our APIs extend the MapReduce system [13] to allow
prototyping of graph partitioning and processing strategies.
Graph Partitioning- OMRGx enables prototyping of out-

of-core graph partitioning techniques that have highmemory
demands (e.g., METIS [9] requires memory several times
the size of the graph). In our prior work we developed the
GO [14] out-of-core partitioner. The approach taken there
has been incorporated in OMRGx so that not only GO, but
any other out-of-core graph partitioner can be transparently
programmed using OMRGx.
Graph Processing- Existing out-of-core systems [15, 29]

make fundamental assumption that only one partition at
a time will be processed, and all threads will process that
partition in parallel. The partitions are created so each one
will fit in available memory. OMRGx does not have that lim-
itation. It is designed to handle multiple buffers of fixed size
that cannot hold the entire partition, but rather stream each
partition through its buffer. This approach allowsOMRGx to
simultaneously process different partitions. It is important
to note that since OMRGx derives speedups via streaming
of edges from multiple partitions in parallel, a standalone
system such as X-Stream [21] that also streams edges may
have performance comparable to its prototype developed via
OMRGx.

5 Conclusions

In this paper we presented a Map-Reduce based out-of-core
system with a programming interface using which the user
can rapidly prototype variety of graph partitioning and graph
processing frameworks. The complexities of limited mem-
ory management, parallel computation, and parallel I/O are
hidden from the user allowing programming to be carried
out oblivious to the relative sizes of the graph and machine
memory. Our evaluation showed thatOMRGx derived imple-
mentations of existing frameworks, namely GraphChi and
GridGraph, outperform their corresponding hand coded and
optimized implementations. This is because OMRGx ability
to simultaneously create and simultaneously processes all
partitions. UsingOMRGxwe created the first out-of-core im-
plementation of the popular MtMetis [17] graph partitioner.
Finally, using 573 lines of C++ code we were able to proto-
type two sophisticated out-of-core graph partitioners (GO
andMtMetis) and two well known out-of-core processing
frameworks (GraphChi and GridGraph). Moreover, OMRGx

generatedMtMetis implementation is the first out-of-core
implementation of popular MtMetis [17].
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