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Abstract

Partitioning and processing of large graphs on a single ma-
chine with limited memory is a challenge. While many cus-
tom solutions for out-of-core processing have been developed,
limited work has been done on out-of-core partitioning that
can be far more memory intensive than processing. In this
paper we present the OMRGx system whose programming
interface allows the programmer to rapidly prototype ex-
isting as well as new partitioning and processing strategies
with minimal programming effort and oblivious of the graph
size. The OMRGx engine transparently implements these
strategies in an out-of-core manner while hiding the com-
plexities of managing limited memory, parallel computation,
and parallel IO from the programmer. The execution model
allows multiple partitions to be simultaneously constructed
and simultaneously processed by dividing the machine mem-
ory among the partitions. In contrast, existing systems pro-
cess partitions one at a time. Using OMRGx we developed
the first out-of-core implementation of the popular MtMetis
partitioner. OMRGx implementations of existing GridGraph
and GraphChi out-of-core processing frameworks deliver
performance better than their standalone optimized imple-
mentations. The runtimes of implementations produced by
OMRGx decrease with the number of partitions requested
and increase linearly with the graph size. Finally OMRGx
default implementation performs the best of all.
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1 Introduction

With the growing popularity of single machine analytics,
out-of-core systems (e.g., GraphChi [15], GridGraph [29],
etc.) have been developed enabling processing of graphs
that are too large to fit in available memory. The graphs
are therefore partitioned and then partition-based process-
ing is performed where partitions, that individually fit in
machine memory, are loaded one at a time and processed.
Graph partitioning is even more memory intensive. The pop-
ular multilevel graph partitioner MtMetis [9, 17] requires
4.8X~-13.8x [14] the memory that it takes to hold the origi-
nal graph as it creates many versions of the graph via graph
coarsening and uncoarsening. However, work on out-of-core
graph partitioning is quite limited - to the best of our knowl-
edge, GO [14] is the only out-of-core graph partitioner. All of
the above systems are custom systems whose development
required substantial effort.

In this paper we present the OMRGx system that enables
rapid prototyping of existing and new graph partitioning and
partition-based processing algorithms with minimal effort.
The system consists of an execution engine and a program-
ming interface. The execution engine transparently deals with
the complexities of out-of-core processing required to suc-
cessfully perform graph partitioning and processing of a
given graph no matter its size. The programming interface al-
lows partitioning and processing tasks to be expressed with
minimal programming effort oblivious of the graph size in re-
lation to machine memory size. The ease of expressing wide
variety of algorithms using our map-reduce based program-
ming interface and the highly specialized map-reduce out-of-
core engine for graphs respectively deliver programmability
and performance for partitioning and processing of large
graphs. The key aspects of this system are are as follows.

Transparent Out-of-Core Execution Engine. The out-
of-core map-reduce engine implements a novel runtime that
transparently supports management of limited memory, par-
allel mappers and reducers, and parallel IO to achieve highly
optimized implementation of partitioning and processing
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Figure 1. Comparison of PageRank Processing Times (in
Seconds) for GraphChi, GridGraph, and OMRGx on an
input UKDomain-2007 graph with over 3 billion edges.

logic provided by the user. The novel features of this engine
include the following:

e Simultaneously Creating or Processing Partitions. The
single machine resources, limited memory and parallel
threads, are distributed among the partitions allowing
all partitions to be simultaneously created or processed.
In doing a partition does not need to fully reside in
memory but rather it is streamed through the mem-
ory buffer assigned to the partition. As a consequence
the number of partitions used is not dependent upon
the memory size of the machine, the user can con-
figure OMRGx to consider any number of partitions
while dividing available memory among those parti-
tions. Parallel loading of partitions reduces overall I/O
overhead. In contrast, existing out-of-core graph pro-
cessing systems (e.g., [15]) process one partition at a
time and require that each partition fit in memory.
In-Memory and On-Disk Graph Representations. To en-
able simultaneous processing of multiple partitions,
each partition is held partially in memory and on disk.
Thus, we employ both in-memory and on-disk graph
representations as well as runtime support that trans-
forms the graph between these representations as it is
transferred between memory and disk. Runtime effi-
cient serialization and deserialization is achieved via
protocol buffers [31] and storage on disk via Infinimem
object store [12]. Moreover, protocol buffers allows use
of custom formats for the graph structure.

The benefits of above features of OMRGx translate into sig-
nificant speedups over the GraphChi and GridGraph systems
as shown in Figure 1. Moreover, the runtime of OMRGx de-
creases with the number of partitions via greater parallelism.

Graph Partitioning and Processing Programming In-
terface. Our interface allows graph partitioning and pro-
cessing logic to be easily expressed via map and reduce op-
erations. The programming is independent of the graph size
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and machine memory size. To express graphs in this pro-
gramming model, a key corresponds to a vertex (node) id
and the edges, represented by destination vertex ids, corre-
spond to the value for the key. The partitioning strategies
can be expressed easily in form of a map function. Complex
partitioning strategies like MtMetis [17] that make repeated
passes to refine partitions can implement these passes via an
additional reduce function. Given a partitioned graph, the
processing can also be easily specified by the user using a
reduce function. Multiple mappers and reducers in the engine
carry out partitioning and processing in parallel.

Demonstration of System Capabilities. We show that
OMRGx enables rapid prototyping of graph partitioning
and partition-based graph processing strategies while deliv-
ering scalable performance. We developed multiple graph
partitioners ranging from simple hash partitioner to sophis-
ticated GO [14] and MtMetis [17, 18] partitioners. We also
present default OMRGx processing algorithm while also pro-
gramming strategies proposed in GraphChi [15] and Grid-
Graph [29] out-of-core graph processing systems. The effec-
tiveness of our approach is evident from the following:

e Graph Partitioning with OMRGx: OMRGx generated
MtMetis implementation is the first out-of-core imple-
mentation of popular MtMetis [17] partitioner. This
implementation successfully partitions large graphs
while existing implementation of MtMetis fails as it
runs out of memory. We also performed rapid proto-
typing of the GO [14] partitioner using OMRGx.

e Graph Processing with OMRGx: The runtimes of im-
plementations produced by OMRGx decrease with the
number of partitions requested and increase linearly
with the graph size. OMRGx implementations of ex-
isting GridGraph [29] and GraphChi [15] out-of-core
frameworks deliver performance better than their stan-
dalone optimized implementations. OMRGx default
implementation performs the best of all.

o OMRGx Programmability: Using 573 lines of C++ code
we were able to prototype two sophisticated out-of-
core graph partitioners (GO and MtMetis) and two
well known out-of-core graph processing frameworks
(GraphChi and GridGraph).

Thus, OMRGx simultaneously delivers high-performance
and programmability for rapid prototyping.

The remainder of the paper is organized as follows. In
Section 2 we present the novel features of our out-of-core
engine, describe the programming interface and illustrate
its use in programming first simple and then complex parti-
tioning and processing algorithms. In Section 3 we present
detailed evaluation. Section 4 presents our conclusions.
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2 OMRGxXx: Programming Interface and
Out-Of-Core Execution Engine

OMRGx provides a rich programming interface that allows
programmers to remain oblivious of the need for Out-of-Core
graph handling and consequently simply express the logic of
different graph partitioning and processing schemes using
simple map and reduce functions. Based on this partitioning
and processing logic, the runtime takes care of the entire
process of handling large amounts of data in parallel using
limited memory and optimizing parallel IO operations for
transfer of data between disk and memory whenever needed.
The system, shown in Figure 2, provides programmers with
the flexibility to program different applications and strategies.
Next, we first describe OMRGx’s application programming
interface that enables graph partitioning and processing, and
then show how the system transparently handles processing
of large graphs beyond the size of main memory. Finally,
we illustrate implementation of advanced partitioning and
processing algorithms using OMRGx.

Graph Partitioning Graph Processing
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Figure 2. Overview of OMRGx Graph Partitioning and
Processing System.

2.1 The Programming Interface

The high-level interface provided by OMRGx allows pro-
grammers to express different graph partitioning strategies
and also perform partition-based graph processing. OMRGx
does not limit the user to any specific partitioner or pro-
cessing approach for large graphs. Instead it provides the
programmer with the ability to rapidly prototype new and
existing graph partitioning and processing approaches of
choice. The programmer transparently benefits from the use
of out-of-core capabilities of the system.

The set of APIs shown in Table 1 represent bulk of OM-
RGx’s programming interface. The core functions represent
the minimal set of functions a programmer must use to imple-
ment graph partitioning and/or processing. The additional
functions listed have default implementations that the user
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can rely upon. However, the user has the option of providing
custom versions of these functions when programming more
sophisticated frameworks. We will discuss and illustrate the
use of core functions in this section and in a later section
describe the usage of others.

The programmer specified map function is used to split
the input into < key — [values] > pairs. Here keys are the
vertices/nodes and values represent an edge adjacencylist
for the vertex. In order to partition graphs, we need to de-
fine a partitioning strategy which is expressed using the
setPartitionID APL This API is used to set the PID in
memory for the input key — value pair which is then passed
to the map function to store the < key —value > to the speci-
fied partition. If during the map phase, the in-memory buffer
partitions grow in size, their entire contents are written off
to disk to make room for further < key — value > pairs. The
reduce function processes all the < key — [values] > pairs in
the partitions on disk in parallel, refines them based on the
logic provided by the application programmer and emits the
final partitions. This process repeats until the entire graph is
read and processed. Note, if the refinement logic is not pro-
vided by the programmer, the default behavior is to merge
all the values for each key as < key — [values] > pairs into
in-memory buffer partitions and write these off to disk.

The graph processing algorithms tend to be iterative in
nature (e.g., PageRank). Therefore, OMRGx provides APIs
to support iterative graph processing. The APIs be foreMap,

Table 1. OMRGx APIs to implement graph partitioning and
perform partition-based graph processing.

Core Functions Provided by the Programmer

setPartitionld (unsigned PID);
map (const unsigned tid, std::string& input, unsigned PID);

reduce  (unsigned PID, const InMemoryCon-
tainer<KeyType, ValueType>& partition);

updateReducelteration (const unsigned PID);

Additional Functions With Default Implementations

diskReadPartition (unsigned PID, unsigned count);

diskWritePartition (unsigned PID, unsigned count, InMem-
oryContainer<KeyType, ValueType>& partition);

beforeMap (unsigned tid);
afterMap (unsigned tid);
beforeReduce (unsigned PID);
afterReduce (unsigned PID);

setlterations ();
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template <typename KeyType, typename ValueType>
class Hash : public MapReduce<KeyType,ValueType> {
unsigned setPartitionId(const unsigned tid,
const KeyType& key){
return hashKey (getkey(key));
}

void* map(const unsigned tid,
std::string& input, unsigned PID){
std::stringstream inputStream(input);
std::string token;
inputStream >> to >> from;

foreach(to, from) /* Key to and Value from */
EdgeType e;
e.src = from; e.dst = to;
e.rank = e.vRank = 1.0/nvertices;
e.numNeighbors = from.size();
writeToBuffer(to, e, PID);
}

void* reduce(unsigned PID, InMemoryContainer<KeyType,
ValueType>& partition) {
double sum = 0.0;
done = true; // TermCondition = true
foreach(vertex v: partition)(
if (v->numNeighbors > 0)
sum += (v->rank / v->numNeighbors);
double old = v->rank;
v->rank = (DAMPING FACTOR * sum) +
(1 - DAMPING FACTOR);
foreach(neighbor n) { n->vRank = v->rank; }
if (fabs(old - v->rank) > TOLERANCE)
done = false;
}
}

void* updateReducelter(const unsigned tid) {
if (done) return;
++iteration; }

b

Figure 3. PageRank algorithm using Hash partitioner
programmed in OMRGx.

afterMap, beforeReduce, and afterReduce are used to set
and clear graph related structures. During each iteration
reduce operation is performed. The updateReducelteration
API is used to update the computation data structures to
prepare for the next iteration. It also checks the termination
condition if one is provided by the programmer. Alterna-
tively, the user can decide to run the algorithm for a fixed
number of iterations specified using the setIterations APL

For the iterative algorithms, the entire graph is read from
or written off to disk multiple times causing processing
that propagates and updates values from one iteration to
next. To support the iterative processing, OMRGx internally
uses diskReadPartition and diskWritePartition functions
to read/write from/to disk. The programmers also have the
choice to read/write the entire partition or a part of it based
on their implementation. Therefore, the programmers also
have the access to diskReadPartition and diskWritePartition
functions as extended APIs which they can directly call in
their programs.

To illustrate the use of graph partitioning and process-
ing APIs, Figure 3 shows the implementation of PageRank
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in OMRGx using a Hash partitioner. The Hash partitioner,
as shown, is a simple partitioner that hashes vertices into
different partitions (using setPartitionId API) based on
their keys during the map phase and calculates the PageR-
ank of each vertex within the partition during the reduce
phase. During map phase, vertex key and all its correspond-
ing edges value are written off to buffers in memory in the
form of < key — value > pairs. Here the incoming vertex
edge from is stored along with the other information like its
src, rank, num — of — neighbors etc. This incoming vertex
along with its key to is written to in memory buffer based
on the specified PID. All edges corresponding to each key to
are aggregated as < to — [EdgeType] > pairs in their PIDs.

During the reduce phase, all the edges corresponding to
each vertex within a PID are merged together by the reducer
and made available in the partition. Therefore, for each key
to, its rank is calculated based on its previous rank which is
stored as its attribute along with its neighbor edges from. It
then updates this new rank for all of the neighbors of key to.
Once the entire partition is processed, the updateReducelter
API increments the number of iterations for the PageRank
algorithm until it finally converges, thereby, writing the final
partition using the afterReduce APl Note that, one iteration
of a PageRank is said to be completed when the entire graph
is read from disk and processed in memory to update the
rank for each vertex. As mentioned earlier OMRGx internally
uses its diskWritePartition API to propagate the updated
values for the next iteration. The entire process of reading
and writing graphs from disk in parallel and optimized IO
operations is oblivious to the application programmer. The
users have the flexibility to program any kind of partitioning
and processing framework.

While OMRGx can be used to express wide variety of
graph partitioning and processing algorithms, its powerful
out-of-core capabilities combined with its simple architec-
ture makes it a self-contained system in its default state.
In default state OMRGx uses hash partitioning and default
graph representations. Application programmers can simply
express the partitioning logic using the map API and express
the PageRank logic using the reduce API to output the final
key — [values] pairs.

2.2 Transparent Out-Of-Core Engine

OMRGx provides a runtime that manages all the complexi-
ties associated with out-of-core processing transparently to
the programmer. The runtime manages the memory avail-
able to carry out partitioning and processing of large graphs.
The two key features of this runtime are as follows.

e First, OMRGx uses the available memory to form mul-
tiple memory buffers that are used by multiple threads
to simultaneously create or process partitions.

e Second, it uses a novel strategy for representing multi-
ple partitions in memory and on disk while seamlessly
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moving them between memory and disk giving the
illusion of entire graph being available in memory.

Together, the above two features enable exploitation of par-
allelism in computation and IO while allowing partitioning
and processing tasks to proceed for large graphs on a limited
memory machine.

As shown earlier, the logic is specified by the user via set-
Partitionld, map, and reduce functions. While setPartitionld
assigns partition ids to graph entities, map and reduce func-
tions are used to perform tasks in parallel via creation of
mapper and reducer threads as shown in Figure 4. The run()
method initializes the engine and initiates the threads.

Each mapper thread owns a row of in-memory buffers,
one buffer per partition, as shown in Figure 5 (left half). A
mapper thread maps the vertex key along with its EdgeType
value based on its partitionID to an appropriate buffer in
its row. Each key (node) can hold a list of values (edges);
thus, multiple < key — EdgeType > pairs with the same key
are aggregated as < key — [EdgeType] > pairs as shown
in Figure 6. Once the in-memory buffer reaches its capacity,
its contents are emptied to disk as a batch of contiguous
records. As mentioned earlier, the contents within each batch
are serialized as RecordType. At the end of map phase, any
given key will be present in some or all of the batches with
the same color and the entire graph is partitioned and stored
on disk as shown in Figure 5 (right view).

During the reduce phase, the engine initiates the reducer
threads based on the number of partitions (k) of the graph
to be produced. Each reducer thread independently oper-
ates on batches with the same color. This means, threads
during the reduce phase own batches with the same color
which correspond to an entire partition of a graph. Each
thread reads as much from each batch within its assigned
partition, deserializes the RecordType into its corresponding
< key — EdgeType > pair and also merges the EdgeType
split across batches within the same partition for each
key. This in-memory partition which contains a portion of
its on-disk partition is then used to run the user specified
processing logic using the reduce API as shown in Figure 6.
A single iteration of graph is complete when each on-disk

int main(int argc, char** argv)
{
Hash<IdType, EdgeType> hs;

std::cout << "Usage: " << argv[0] << " <folderpath>
<nmappers> <nreducers> <graphSize> <topK> <optional -
nvertices> <optional - iterations> <optional - partition
output prefix>" << std::endl;

hs.setInput(folderPath);
hs.setMappers (nmappers) ;
hs.setReducers (nreducers);

hs.run();

return 0;

}

Figure 4. OMRGx Engine’s main method.
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partition is read in its entirety and processed in memory.
Due to iterative nature of PageRank, the reduce phase will
go through more such iterations until convergence.

Note if the entire graph fits in memory, then all the <
key — EdgeType > pairs represent all values for their cor-
responding keys and hence, can be directly sent to reducer
where processing logic is applied.

When the input graph is read from disk, it is stored in a
partitioned form in memory buffers. The initial partitioning
logic is expressed in the map API along with specifying the
partitioning scheme using the setPartitionId API. When
memory buffers are filled to the capacity, their contents are
serialized into batch of contiguous records using the cus-
tom format defined by users in Protocol Buffers and written
to disk (using the Infinimem object store) to empty mem-
ory space for further processing. OMRGx internally uses
diskWritePartition API to store the partitions from mem-
ory buffers to disk and provides seamless memory to its users.
When the entire input graph is read, all its contents are orga-
nized on disk as partitions of input graph. It is important to
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message EdgeType{
required uint64
required uint64

optional double
optional double
optional uint64

}

message RecordType {
required uint64 key = 1;
repeated EdgeType values

2;
}

Figure 7. Customized attributes for PageRank Algorithm
expressed using Protocol Buffers.

note that if memory buffers are large enough to accommo-
date all the partitions in memory then their contents are not
written to disk and the graph processing is also fully carried
out in memory. Only the final partitions are written to disk.

The key — value record is defined using protocol buffers.
For example, Figure 7 shows the custom EdgeType value
which contains the information like source, destination, num-
ber of neighbors, rank etc for each vertex. This EgdeType
along with the key is passed to the engine when creating
the object of the class Hash and calling the methods to pass
input to the engine within the main method in Figure 4. The
key — EdgeType pair is further serialized as RecordType by
the engine when storing these records on disk.

To parallelize the IO for graph partitioning and processing,
we use t threads that read from disk in parallel and create k
partitions in parallel. To ensure that the t threads do not have
to synchronize with each other when updating the buffers,
each buffer is subdivided into ¢ sub-buffers, one for each
thread. This leads to the organization of the graph as shown
in Figure 5 where the number of in-memory buffers is ¢ X k;
t represents all the rows and k represents all the columns.
Corresponding to each of t X k buffers, the disk contains a
series of batches that are written to disk when the buffers
are emptied.

For a simple Hash partitioner, each partition is read in
parallel by its k assigned threads. All threads, in parallel,
load as much of the partitioned subgraph of their assigned
partition to their respective in memory buffer. The graph
processing logic is then applied to the loaded subgraphs in
memory. This process continues until the graph processing
(e.g. PageRank) logic is applied to the entire graph. OMRGx
internally uses diskReadPartition and diskWritePartition
APIs to provide seamless memory managing experience to its
users. For sophisticated graph partitioners like GO, MtMetis
which also perform the graph refinement step after the initial
partitioning, the refinement logic is applied to the subgraphs
fetched in memory before carrying out graph processing.
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Some of the partitioning algorithms like MtMetis further
perform coarsening and uncoarsening steps to refine the
graph. disReadPartition and diskWritePartition APIs make
it easier to fetch and store the coarsened subgraphs from/to
disk to avoid running out of memory. Our experiments show
the implementation of MtMetis using OMRGx API which
can even process larger graphs which are not processed by
the original standalone implementation of MtMetis. Once
the graph processing algorithm runs through all the parti-
tions and updates are applied to all the vertices, the output
is written to disk.

The records expressed using Protocol Buffers provide effi-
cient serialization and deserialization. In addition to that, we
define custom records based on their processing logic mak-
ing it extremely easier to express wide variety of algorithms
which require different number and types of attributes. These
attributes are then stored as serialized records on disk. Figure
7 illustrates how different attributes needed by PageRank
algorithm are expressed using Protocol Buffers. When read-
ing the records from disk, they are deserialized into these
different attributes and processed to get useful information.

2.3 Complex Partitioning & Processing Algorithms

Next we use OMRGx to program complex partitioning and
processing algorithms including GO in Figure 8, MtMetis in
Figure 9, GridGraph in Figure 10, and GraphChi in Figure
11a. The GO and MtMetis partitioners being sophisticated
graph partitioners, refine the partitions during the reduce
phase and hence perform additional processing. Once all
the partitions are read from disk and refined during the
reduce phase, the final partitions are available at the end
which can be used for further processing by the graph algo-
rithms. Since MtMetis employs multilevel graph partitioning
strategy where a graph is transformed into a sequence of
smaller graphs during the coarsening phase. The partitioning
phase generates the initial partitioning of the coarsest graph.
The uncoarsening phase refines the partitions produced and
projects them to their finer level graph and all the way to the
original graph. Figure 9 shows the ease of programming mul-
tilevel algorithm using the simple APIs provided by OMRGx.
If the input graph is large, MtMetis stores all its coarsened
graphs on disk using OMRGx’s diskWritePartition API by
specifying the count for the < key—value > pairs to be stored
on disk. During the uncoarsening phase, it simply reads the
finer level graphs using the diskReadPartition API provided
by OMRGx, thus, utilizing the disk space to avoid running
out-of-memory. Similarly, GO performs the refinement step
by computing the gains of the vertices across different parti-
tions using Kernighan-Lin algorithm [11]. GridGraph uses a
2-level hierarchical strategy to produce refined partitions.
For implementing the graph processing systems such as
GraphChi [15] that uses the shard representation to process
large datasets, users have the flexibility to use different data
structures to store the shards which are then processed in
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template <typename KeyType, typename ValueType> template <typename KeyType, typename ValueType>
class Go : public MapReduce<KeyType, ValueType> { class GraphChi : public MapReduce<KeyType, ValueType>
void* reduce(unsigned PID, InMemoryContainer<KeyType, {

void* map(const unsigned tid,
std::string& input, unsigned PID){
...... // same as Figure 3

ValueType>& partition){
/* Refine this Partition wrt others */

foreach(PID, PIDi){ /* Compute Edgecuts */ /* Add shard’s interval info */
ComputeBEdgeCut (PID, PIDi, partition); IntervalInfo[tid$this->getParts()].ubEdgeCount =
/* Compute Gain using KL Algorithm */ edgeCounter;
ComputeGain(PID, PIDi, partition) ¥ . X
void* reduce(unsigned PID,
¥ InMemoryContainer<KeyType, ValueType>& partition){
} /* Process shard: vs = vertex shard PID = Memory Shard*/
15 /* Initialize subgraph for memory shard */
buildGCD(PID); // GCD = GraphChi Data
Figure 8. GO programmed in OMRGx. /* Fetch sliding shards */
for(i=0; i<nShards; i++)
vs[i].diskReadPartition(.,.,.);
template <typename KeyType, typename ValueType> /* update vertex in shard */
class MtMetis : public MapReduce<KeyType, ValueType> double sum = 0.0;
{ done = true; // termination condition
void* reduce(unsigned PID, InMemoryContainer<KeyType, foreach(v in subgraph)
ValueType>& partition){ /* update rank same as Figure 3 */
coarsened_graph = coarsen(PID, partition); }
diskWritePartition(PID, count, InMemoryContainer<KeyType, ¥
ValueType>& coarsened graph);
init_partition(PID, coarsest graph); (a) map and reduce for GraphChi.

foreach(coarsened_graph) {
refine_partition(PID, coarsened graph);

/* Reads records specified by count */ typedef struct _ intervallInfo
finer graph = diskReadPartition(PID, count); {
} unsigned lbEdgeCount; /* lower bound edge count */
}_} unsigned ubEdgeCount; /* upper bound edge count */
5
. . . i . * *
Flgure 9. MtMetis programmed in OMRGx. uns:l.gned 1bIndex; /* lower bound vertex */
unsigned ubIndex; /* upper bound vertex */
template <typename KeyType, typename ValueType> } IntervallInfo;

class GridGraph : public MapReduce<KeyType, ValueType>
{

unsigned setPartitionId(unsigned PID const KeyTypes key) (b) Structures used to store the shard information in GraphChi.
{return -1;}
void* map(const unsigned tid, std::string& input, unsigned PID){

std::stringstream inputStream(input); typedef struct intervalLengths
std::string token; -
inputStream >> to >> from; {

unsigned startEdgeIndex;
foreach(to, from){

/* create edgeblock partitioning based on destination vertex */ unsz'.gned endEdgeIndex’
bufferId = hashKey(from[i] % this->getParts(); unsigned length;
writeToBuffer(to, from, PID); } IntervalLengths;

}
}

IntervallLengths **gcd; /* GraphChiData */

void* reduce(unsigned PID,
InMemoryContainer<KeyType, ValueType>& partition){
/* create access sequence within each active partition */
foreach(to : partition){

foreach(from : partition) Figure 11. GraphChi in OMRGx.

/* Apply Updates on to vertices using PageRank Algorithm */

}
),) reducer threads fetch records from their respective on-disk
partitions using diskReadPartition API into in-memory par-

titions which act as a memory shard using which we build
parallel by the OMRGx system. Figure 11 illustrates how a subgraph and create GraphChi meta data for that shard.

(c) Structures defined to store meta data.

Figure 10. GridGraph programmed in OMRGx.

we can define simple C++ structs to capture the intervals Once we have all the information about all the shards loaded
of each shard and to store GraphChi meta data. In addition in memory, we fetch the sliding shards and update each ver-
to the simplicity of programming GraphChi, OMRGx also tex within that shard. The updated shard is written to its
provide users with the option to program their custom parti- on-disk partition using diskWritePartition APL

tioners to partition the input data first and then process them .

using GraphChi based data structures. Similar to our simple 3 Evaluation

Hash partitioner, GraphChi implements the map phase by OMRGx is implemented in C++ (compiled with gcc version
specifying the < key — EdgeType > pairs. Along with that 8) and can be used to partition large graphs and perform
it also stores the interval information for each shard. It is partition-based graph processing. Therefore to evaluate OM-
important to note that in this case each partition (PID) is con- RGx we consider a number of partitioning and processing
sidered as a separate shard. During the reduce phase, parallel strategies. The detailed evaluation demonstrates OMRGx’s
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programmability, performance scalability, and its favorable
performance in comparison with handcoded custom systems.
Following graph partitioning algorithms and partition-based
graph processing frameworks are considered.

o Graph Partitioning in OMRGx: OMRGx-Hash, OMRGx-
GO, and OMRGx-Mt correspond to the Hash, GO, and
MtMetis partitioners implemented using OMRGx. We
also implemented OMRGx-GC and OMRGx-GG that
correspond to partitioning algorithms that produce
partitioned representations used by GraphChi [15]
and GridGraph [29] out-of-core frameworks.

Graph Processing in OMRGx: OMRGx-D, OMRGx-GC,
and OMRGx-GG correspond to the default, GraphChi,
and GridGraph processing implementations carried
out using OMRGx. We compare these with GraphChi-
S and GridGraph-S that refer to standalone custom
implementations of GraphChi and GridGraph.

All the experiments were performed on a machine with
32 cores (2 sockets, each with 16 cores) with Intel Xeon
Processor E5-2683 v4 processors, 425GB memory, 1TB SATA
Drives, and running CentOS Linux 7. The four input graph
datasets used in the experiments are listed in Table 2 - they
range from medium sized graphs - OK, WK with around
120M —378M edges to large sized graphs - TW, UK consisting
of 1,202M — 3,407M edges. UK is the largest graph needing
55GB of disk space. To ensure that out-of-core features were
exercised, each run was given less memory that was needed
to hold the entire graph.

3.1 Programmability and Versatility of OMRGx
Prototyping complex graph partitioning and processing al-
gorithms using OMRGx’s programming interface is quite
straightforward as the user can be oblivious of the graph size,
memory size, and out-of-core complexities. The programmer
may simply need to provide map and reduce functions which
encode the custom logic and data structures that may be
needed while the processing engine takes care of the rest.

Table 3 quantifies the programming effort for implement-
ing various partitioning approaches using OMRGx in terms
of the lines of C++ code written by the programmer for
various partitioning and processing approaches.

A simple hash partitioner can be implemented with a fewer
lines of code. It is implemented with around 10 lines of code
in OMRGx and is also provided as the default partitioner
in OMRGx. While the hash partitioner does not refine the
partitions, the OMRGx-GO partitioner refines the partitions
during the reduce phase requiring additional coding. While
the standalone version of GO [14] is implemented using
around 1300 lines of code, only 176 lines of code are needed
to implement OMRGx-GO. This is because OMRGx’s engine
does all the heavy lifting. The standalone implementation of
MtMetis [17] uses around 22,489 lines of code to implement
the multilevel coarsening and uncoarsening algorithms — this
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Table 2. Input Graphs: Orkut (OK), Wikipedia-eng (WK),
Twitter-WWW (TW), and UKdomain-2007 (UK).

G | Vertices Edges Graph Size | |E|
|V | E| |EI+|VI]IV]

OK 3,072,441 | 117,185,083 | 120.3 million | 38.1
WK | 12,150,976 | 378,142,420 | 390.3 million | 31.1
TW | 41,652,230 | 1,202,513,195 | 1,244.2 million | 28.9
UK | 105,153,952 | 3,301,876,564 | 3,407.0 million | 31.4

Table 3. Programmer written Lines of Code (LoC) for
various partitioning and processing algorithms in OMRGx.

Partitioning OMRGx
Algorithm User LoC
OMRGx-Hash 10
OMRGx-GO 176
OMRGx-MtMetis 200
OMRGx-GraphChi 40
OMRGx-GridGraph 32
Processing OMRGx
Algorithm User LoC
OMRGx-Default 29
OMRGx-GraphChi 83
OMRGx-GridGraph 42

implementation is not an out-of-core implementation and
hence runs out of memory for large graphs. On the other
hand, OMRGx-MtMetis was implemented using 200
lines of code and it is the first out-of-core implemen-
tation of MtMetis that reliably works for large graphs
on a single machine.

Implementing OMRGx-GraphChi was relatively easy and
took 123 (40+83) lines of code including code for loading
memory with corresponding sliding shards, building sub-
graph they represent in memory, and processing the sub-
graph to run PageRank algorithm. On the other hand, the
standalone implementation of GraphChi [15] is done with
around 1323 lines of code - this is the engine that processes
the shards. The extra lines of code for preprocessing the
shards, building subgraphs and meta data are not included.
Similarly OMRGx-GridGraph implementation took 74 lines
of code for both partitioning and processing. OMRGx-Default
is the default processing provided by OMRGx which uses a
hash partitioner to partition the vertex-edge pairs based on
their vertex ID and runs PageRank on the partitioned graph.
It is implemented using only 29 lines of code.
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Table 4. Scalability of PARTITIONING Algorithms Implemented via OMRGx w.r.t Input Graph Size for 8 partitions.

Input Total OMRGx- | OMRGx- | OMRGx- | OMRGx- OMRGx-

Graphs Edges Hash GO MtMetis | GraphChi | GridGraph

OK 117,185,083 16s 34s 55s 15.9s 36.6s

WK 3x 3.5x 3.6x 2.7x 3.5x 2.4x

™ 10x 14x 15x 18x 14.7x 9.8x

UK 28x 32x 19.5x 15x 37.5x 26.5x
OK WK

B OMRGx-Hash [ OMRGx-GO
100

OMRGx-Mt [ OMRGx-GG [ OMRGx-GC

75

50

Time (seconds)
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8 16 24 32
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0
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Figure 12. Graph PARTITIONING times (in seconds) using different partitioning schemes implemented in OMRGx.

Overall we observe that in 573 lines of code we were
able to prototype two sophisticated out-of-core graph
partitioners (OMRGx-GO and OMRGx-MtMetis) and
two well known out-of-core processing frameworks
(OMRGx-GraphChi and OMRGx-GridGraph). More-
over, OMRGx-MtMetis is the first out-of-core imple-
mentation of MtMetis.

3.2 Performance of OMRGx-generated Graph
Partitioners

Next, we study the scalability of five different graph parti-
tioning algorithms developed using OMRGx. First, we fix
the number of partitions to 8 (i.e., k = 8) and see how per-
formance scales with increasing graph size. Second, we vary
the number of partitions from 2 to 32 to study the sensitivity
of performance of partitioning algorithms to k.

Table 4 shows that the cost of partitioning increases in
proportion to the increase in input graph size. We use num-
ber of edges as a proxy for graph size. As we can see, the
number of edges in WK, TW, and UK are 3%, and 10X, 28%
relative to the number of edges in OK. When we examine
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the performance, we see similar trend. For example, UK is
28x bigger than OK while its partitioning time ranges from
15X to 37.5% that of OK across five different partitioners
developed using OMRGx. It is also worth noting that the
performance of OMRGx-MtMetis partitioner scales
very well according to graph size and this is the first
known out-of-core implementation of MtMetis graph
partitioner. Finally, all the graph partitioners were able to
process all the input graphs successfully.

Now let us consider the sensitivity of runtime performance
to the number of partitions produced. Figure 12 shows the
performance of all five partitioners generated using OMRGx
when number of partitions is varied from 2 to 32. We ob-
serve a trend that applies to most of the partitioners, as
k increases from 2 to 32, the partitioning time for any
given partitioner reduces. This is entirely due to OMRGx
execution model that allows partitions to be construced in
parallel, in particular, to create k partitions OMRGx uses k
threads. Therefore, as we increase k from 2 to 32, greater
amount of parallelism is exploited and the time for construct-
ing partitions reduces.
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The execution times of different partitioners relative to
each other are as expected. The cost of partitioning using
OMRGx-Hash, OMRGx-GG (GG-GridGraph), and OMRGx-
GC (GC-GraphChi) are reasonably small. The OMRGx-GC
takes a bit more time because of the time spent on building
the shard representation that is greater in size than a simple
adjacency list representation. The most expensive partition-
ers are OMRGx-GO and OMRGx-Mt (MtMetis) because both
perform partition refinement using the KL-algorithm [11].
However, OMRGx-Mt is significantly more expensive than
OMRGx-GO due to graph coarsening and uncoarsening that

Gurneet Kaur and Rajiv Gupta

is used which requires multiple versions of the graph to be
created, stored, and refined. In other words, OMRGx-Mt
performs multilevel refinement while OMRGx-GO performs
singlelevel refinement.

Finally, note that very limited work has been carried out
on out-of-core graph partitioning. While MtMetis is a pop-
ular single machine partitioner, it runs out of memory for
large graphs. On the other hand, with modest effort, using
OMRGx we have generated performant implementations
of five different graph partitioners that successfully handle
large graphs while delivering good runtime performance.

Table 5. Scalability of Graph PROCESSING Frameworks implemented via OMRGx vs. Standalone GraphChi [15] and
GridGraph [29] systems. Runtimes are for PageRank and 8-partitioning of input graphs normalized w.r.t OK.

Input Total OMRGx- || OMRGx- | GraphChi- OMRGx- | GridGraph-
Graph Edges Default | GraphChi | Standalone || GridGraph | Standalone
OK 117,185,083 18.5s 22.9s 41.1s 4.8s 13s
WK 3x 3.4x 3.3x 2.6x 2.5x 3.5x
™ 10x 13.8x 14x 14.4x 9.6x 5.6x
UK 28x 32x 26x 34x 23.5x 25.9x
OK WK
B OMRGx-GC [ GraphChi-S OMRGx-GG @ OMRGx-GC B GraphChi-S OMRGx-GG
B GridGraph-S [ OMRGx-Default B GridGraph-S [ OMRGx-Default
25 200
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Figure 13. Comparison of PageRank PROCESSING Times (in Seconds) for standalone implementations of GraphChi-S and
GridGraph-S with their corresponding and default implementations in OMRGx.
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Figure 14. Benefit of Processing Partitions in Parallel in OMRGx Memory Available for Buffers is Half the Graph Size.
All times are normalized with respect to total time taken by OMRGx with k=8 and 25 iterations.

3.3 Performance of OMRGx-generated Graph
Processing Frameworks

Next, we compare the runtime performance of standalone
GraphChi [15] and GridGraph [29] frameworks with their
corresponding implementations that were created using OM-
RGx. We also compare the performance of these implemen-
tations with the OMRGx-Default version. For comparing
the graph processing runtime costs, we ran the PageRank
algorithm on all four input graphs using all of the above
five implementations. All of the above implementations are
synchronous; thus, they perform the same work in each it-
eration. We ran all versions for first few iterations as for
PageRank the initial iterations are the most expensive.
Table 5 studies the scalability of all implementations with
respect to the input graph size using 8 partitions. Here the
runtimes of the all the systems are normalized w.r.t OK.
While the UK graph size is 28X the size of OK, the runtimes
of different versions for UK are 25.9% to 34x that of runtimes
for OK. In other words the processing times increase less
proportionally to the graph size indicating good scalability.
We also studied the sensitivity of processing times to num-
ber of partitions. The runtimes for all the systems, OMRGx-
generated and standalone systems, are shown in Figure 13
as number of partitions is varied from 2 to 32. We observe
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that the processing runtimes of any given approach using
OMRGx is less insensitive to number of partitions, though
runtimes for k > 2 are typically lower than for k = 2. We also
observe that OMRGx generated implementations are supe-
rior to standalone implementations. In other words, OMRGx-
GC and OMRGx-GG perform better than well-tuned and
hand-optimized GraphChi-S and GridGraph-S systems. This
is due to the parallel processing of all partitions by OMRGx
based systems as opposed to standalone systems that process
one partition at a time. It should be noted that GridGraph-
S performance is significantly superior to GraphChi-S and
the same is true for their corresponding OMRGx-GG and
OMRGx-GC. We also observe that OMRGx-Default im-
plementation that is essentially based upon the simple
default hash partitioning performs the best overall. It
is substantially faster than both OMRGx-GC and OMRGx-
GG as well as stand alone implementations of GraphChi and
GridGraph.

As mentioned earlier, OMRGx benefits from processing
multiple partitions in parallel. In order to show the bene-
fit achieved by processing partitions in parallel, we ran 25
iterations of PageRank and compared the processing time
for running a single partition with running 8 partitions in
parallel. Figure 14 shows how the normalized cumulative
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execution time grows with iteration count — in each of these
runs we provided memory equal to half the size of the input
graph. As expected, the runtime shows a significant improve-
ment in overall execution time (around 9X) when processing
multiple partitions in parallel. This experiment also explains
the reason for the faster execution times for OMRGx-GC and
OMRGx-GG when compared to standalone implementations
of GraphChi and GridGraph that process one partition at a
time. Both OMRGx-GC and OMRGx-GG benefit from the
loading and processing of partitions in parallel by the OM-
RGx execution engine and hence achieve speedups over the
standalone implementations of GraphChi and GridGraph.

4 Related Work

OMRGx is a general system that can be used for prototyping
new and old strategies for partitioning and processing. It
is the only out-of-core graph partitioning and processing
system that simultaneously constructs and simultaneously
processes multiple partitions. This is why the implementa-
tions of existing strategies in OMRGx deliver higher perfor-
mance than their standalone implementations [14, 15, 29] as
it hides the I/O times by processing partitions in parallel. It is
well known that out-of-core systems spend vast majority of
their time on disk I/O. Therefore, much of the speedups we
have demonstrated are due to parallel I/O, i.e. simultaneous
loading of multiple partitions.

APIs extensions to MapReduce- Mapreduce by itself does
not provide any support for graph partitioning or process-
ing. Our APIs extend the MapReduce system [13] to allow
prototyping of graph partitioning and processing strategies.

Graph Partitioning- OMRGx enables prototyping of out-
of-core graph partitioning techniques that have high memory
demands (e.g., METIS [9] requires memory several times
the size of the graph). In our prior work we developed the
GO [14] out-of-core partitioner. The approach taken there
has been incorporated in OMRGx so that not only GO, but
any other out-of-core graph partitioner can be transparently
programmed using OMRGx.

Graph Processing- Existing out-of-core systems [15, 29]
make fundamental assumption that only one partition at
a time will be processed, and all threads will process that
partition in parallel. The partitions are created so each one
will fit in available memory. OMRGx does not have that lim-
itation. It is designed to handle multiple buffers of fixed size
that cannot hold the entire partition, but rather stream each
partition through its buffer. This approach allows OMRGx to
simultaneously process different partitions. It is important
to note that since OMRGx derives speedups via streaming
of edges from multiple partitions in parallel, a standalone
system such as X-Stream [21] that also streams edges may
have performance comparable to its prototype developed via
OMRGx.

Gurneet Kaur and Rajiv Gupta

5 Conclusions

In this paper we presented a Map-Reduce based out-of-core
system with a programming interface using which the user
can rapidly prototype variety of graph partitioning and graph
processing frameworks. The complexities of limited mem-
ory management, parallel computation, and parallel I/O are
hidden from the user allowing programming to be carried
out oblivious to the relative sizes of the graph and machine
memory. Our evaluation showed that OMRGx derived imple-
mentations of existing frameworks, namely GraphChi and
GridGraph, outperform their corresponding hand coded and
optimized implementations. This is because OMRGx ability
to simultaneously create and simultaneously processes all
partitions. Using OMRGx we created the first out-of-core im-
plementation of the popular MtMetis [17] graph partitioner.
Finally, using 573 lines of C++ code we were able to proto-
type two sophisticated out-of-core graph partitioners (GO
and MtMetis) and two well known out-of-core processing
frameworks (GraphChi and GridGraph). Moreover, OMRGx
generated MtMetis implementation is the first out-of-core
implementation of popular MtMetis [17].
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