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Abstract
We establish lower bounds on the rank of matrices in which all but the diagonal entries lie in a
multiplicative group of small rank. Applying these bounds we show that the distance sets of finite
pointsets in R? generate high rank multiplicative groups and that multiplicative groups of small rank
cannot contain large sumsets.

1 Introduction

Bounding the rank of matrices satisfying appropriate conditions is an important topic in linear algebra.
Such bounds have various applications in divers areas of mathematics. Several examples of applications
in combinatorics and computer science appear in the following papers of the first author [2, 1]. In the
present paper we combine some of the techniques of these papers with additional number theoretic and
combinatorial tools in the derivation of lower bounds on the rank of matrices in which all but the diagonal
entries lie in a multiplicative group of small rank.

Throughout the paper all matrices considered are n x n complex matrices, unless otherwise specified.
Most of our statements hold over any algebraically closed field K, however for the sake of simplicity we
work with complex numbers. Our main result is the following theorem

Theorem 1 For any positive integers r and D there is a threshold ng = ng(r, D), such that if T is a
multiplicative subgroup of C* of rank at most r and M = (m;;) is an n xn matriz, n > ng, where m;; € I’
for every i # j and m;; ¢ T (1 < 1,5 <n), then rank(M) > D.

We describe two proofs of the theorem. The second proof is more involved however it gives a better
bound. We show that there is a ¢ > 0, such that rank(M) > (logn/r)¢. The most important ingredient
in both proofs is the Subspace Theorem for linear equations with variables from a multiplicative group by
Evertse, Schlickewei and Schmidt [12]. In addition, we use an observation from the above mentioned paper
[2] of the first author and some additional simple combinatorial arguments and tools from linear algebra.
As applications of Theorem 1 we prove that the distance sets of finite pointsets in R? generate high rank
multiplicative groups and that multiplicative groups of small rank cannot contain large sumsets.

The rest of this short paper is organized as follows. In the next section we describe the main
ingredients of the proof of the main result. Sections 3 and 4 contain two (similar) proofs of the result.
The first is a bit simpler, the second provides a better quantitative bound. Section 5 contains several
applications and the final section 6 contains some concluding remarks.
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2 The main tools

In this section we describe the results which are the building blocks of the proof of Theorem 1.

1. The Subspace Theorem of Evertse, Schlickewei and Schmidt [12]. We present the version with the
best known bound due to Amoroso and Viada [5].

Theorem 2 Given an algebraically closed field K and a multiplicative subgroup T' of K of finite
rank r in it, suppose a1, as, . ..,ay, € K*. Then the number of solutions of the equation

a1z1 +aszo + ...+ amzm = 1 (1)
with z; € I' where no subsum on the left hand side vanishes is at most
A(m ,,,) < (8m)4m4(m+mr+1) < 2rm5 log, m

for some absolute constant ¢ > 1.

We apply the key feature of the theorem, that the bound A(m,r) is a uniform bound, independent
of the coefficients in (1). The Subspace Theorem is a powerful tool, it has several important appli-
cations. For the interested reader we recommend the excellent surveys by Bilu [8] and by Bugeaud
[9]. For some combinatorial applications see the survey by Schwartz and the second author [22].

2. The following well known bound for the multicolor Ramsey numbers for complete graphs follows
from the neighborhood-chasing argument in the classical paper of Erdés and Szekeres [14].

Theorem 3 For a positive integer t let R(t,¢) denote the least integer such that any {-coloring of
the edges of the complete graph on R(t,{) vertices contains a monochromatic complete subgraph of
size t. Then R(t,0) < (%,

3. Rank of matrices with few distinct entries in the lower triangular part outside the diagonal

Theorem 4 Let A be an n X n matrix where every row has at most s distinct values under the
diagonal, and the element in the diagonal is different from the elements in the row under the
diagonal. i.e. if the i'" row is given by (ay,as,...,a;_1,a;,...a,) then [{a1,...,a;_1}| < s and
a; ¢ {a1,...,a;—1}. If the rank of A is o then

n < (Q + S) .
4
To prove the theorem, let us recall a lemma from [2] with its proof. In our second proof of Theorem
1 we describe a generalization of this lemma which enables us to avoid the Ramsey argument.

Lemma 5 Let B = (b; ;) be an n by n matriz of rank d, and let P(x) be an arbitrary polynomial
of degree at most k. Then the rank of the n by n matriz (P(b;;)) is at most (k;gd). If P(z) = «*
then the rank is at most (’H‘Z_l).



Proof. Let vi = (v1;)}_y, va = (v2)7_y, .-+, Va = (va;)7_; be a basis of the row-space of B.
Then the vectors (v]flj . ngj cet Ugf;)?:1a where ki, ko, ..., kg range over all non-negative integers
whose sum is at most k, span the rows of the matrix (P(b; ;)). If we have P(x) = z* then we only

have to use the exponents whose sum is exactly k. O

Proof. (of Theorem 4) Note that while Lemma 5 is stated for a single polynomial P(z), it is used
independently in every row. So, the same result holds if one applies different, degree < k, polynomials
in every row. To prove Theorem 4 let us define a polynomial for every row. For row i, if the distinct
elements under the diagonal are denoted by o, ..., ay, then define P;(z) by P;(z) = []\", (z — o).
Every polynomial has degree at most s, and the matrix, after applying the polynomials row-wise,
is a matrix with non-zero diagonal entries and zeros under the diagonal, so it has full rank. If A
had rank o then n < (‘-’zs). O

4. The rank of Hadamard products of matrices.

For two matrices A = (a;;) and B = (b;;) with the same number of rows and columns, the Hadamard
product (the element-wise product) of A and B, denoted by A e B, is the matrix A ¢ B = (a;; - b;;).
The following property of this product, mentioned by Ballantine in [7] , follows from the fact that
A e B is a submatrix of the tensor product of A and B, whose rank is the product of the ranks of
the two matrices.

Lemma 6 For any two matrices A and B of the same dimension, rank(AeB) < rank(A)-rank(B).

After collecting the main required ingredients we are ready to prove Theorem 1.

3 First proof of Theorem 1

We start with a rough outline of the proof. First we choose a subset of row vectors forming a basis, B, of
the row space of M. Adding any other row vector to the basis, there is a nontrivial linear form, A of the
vectors in B and the new row giving the zero vector. Checking the linear combinations coordinate-wise,
we are hoping to have many equations of the form like in (1). We partition the elements of the matrix
based on the subset of B which gives a zero sum in A without zero subsums. Using the Subspace Theorem
while focusing on a submatrix chosen by an appropriate application of Ramsey’s Theorem we bound the
number of distinct elements below the diagonal in each row of the submatrix. As the last step we apply
the rank bound from Theorem 4. The detailed argument follows.

Let d denote the rank of M and let B = {v1 = (v1;)]_1, va = (v2;)}_1, .-, Va = (va,;)j—1} be a
basis of the row-space of M. Without loss of generality assume this basis consists of the first d rows of M.
Ifw= (wj);‘:h is any other row of M, outside the basis, then there is a linear form, A, with coefficients
co #0,c1,cCo,...,cq such that

oW +c1vei+ ...+ ¢cqva = 0. (2)

In this vector equation let us consider the n—d — 1 equations out of the n coordinate-wise equations,
where none of the diagonal elements appears. In the i-th coordinate of the vector equation there is a
nonempty index set I C [d], so that we have an equation of the form

cow; + Z covg; =0 (3)
LelcC]d]

without any subsum adding up to zero. (Note that w; # 0 as it belongs to the multiplicative subgroup
r).



We label the matrix element w; with an element of the index set I. (We can choose, for example,
the first element of I.) In this way any non-diagonal element M;; of the matrix outside of the coordinates
of the basis receives a label ¢;; € [d]. Now we are looking for a large principal submatrix ! in which all
labels ¢;; for ¢ > j are identical.

The lower triangular submatrix of the labels (with zeros in the diagonal), can be viewed as the edge
coloring of a complete graph on n — d vertices with at most d colors. By Theorem 3 there is a principal
submatrix of M, denoted U, of size at least

log (n —d)
dlogd

In U, every element under the diagonal has the same label, £ € [d] . Before we can apply the Subspace
Theorem, we need one additional step, as follows. Divide every element w; of U that belongs to column
number j of the original matrix M by c,vg;, where ¢, is the coefficient of vy in the expression (3). (Note
that cove; # 0 as no subsum in (3) is 0). The modified submatrix obtained this way from U is denoted by
U’. Tts rank is at most d, as it is obtained from U (whose rank is at most d) by first dividing every column
j by a constant vz, and then by dividing every row by a constant c,. Note also that after dividing the
column number j by vy;, all non-diagonal elements of the column belong to the multiplicative subgroup I
while the diagonal element is not in I'. Therefore, even after dividing the row by ¢y, the diagonal element
stays different from the non-diagonal ones in the row. Consider the entries under the diagonal in U’. If
u is a row vector of U’ then there are coeflicients ag, a1, ..., aq such that if u; is a coordinate under the
diagonal, then there is an index set J C [d] \ £ such that

apgl; + Zajvji = 1, (4)
=

and no subsum on the left side is zero. We partition the coordinate-wise equations for the selected u into
no more than 297! classes based on the subset J C [d]. Every non-diagonal element in row u satisfies
the equation (4) for some index set J. By Theorem 2 we know that for |J| > 1 there are no more than
A(|J| + 1,7) nontrivial solutions for the linear equation in (4) with wu;, v;; in the multiplicative subgroup
T, therefore row u contains no more than 2= A(d,r) distinct entries under the diagonal. (If J = ) then
there is only one solution to (4).) Applying Theorem 4 we conclude that since the rank of M is d then

lOg (’I’L — d) < d+ 2d71A(d5 T) < 2rd6 log,. d
dlogd d - ’

with some absolute constant ¢ > 0. Therefore, if n is sufficiently large then
loglogn < rd".

This completes the proof of Theorem 1. O

The quantitative bound we get from the proof is quite weak. It would be very interesting to get
better bounds even for cases where the rank of the multiplicative group is very small, for example when
all non-diagonal elements are powers of two. In the next section we improve the bound by avoiding the
application of Ramsey’s Theorem. The proof is similar though slightly more complicated, and gives a
better bound.

1An m x m matrix, P, is an m X m principal submatrix of an n x n matrix, A, if P is obtained from A by removing any
n —m rows and the same n —m columns [18].



4 An improved bound

The reason we had to apply Ramsey’s Theorem (Theorem 3) in the proof of Theorem 1 is that in a
row w, while all coordinate entries satisfy equation (2), it might be that there is a zero subsum with
w;, so the Subspace Theorem is not directly applicable. We have thus selected a principal submatrix
where the entries had the same label, enabling us to apply the Subspace Theorem. In order to improve
the quantitative estimate we replace the application of Ramsey’s Theorem by a linear algebra argument
based on Lemma 6. This enables us to record all the required information without the consideration of
small submatrices of M. We need the following extension of Lemma 5.

4.1 Rank under pointwise application of multivariate polynomials

Let z; = (21, 2i2, - - -, Zin), 1 < @ < 7, be r vectors over a field F', and let Q(z1, 22, ..., 2,) be a multivariate
polynomial in F|xy,x,...2,]. The vector u = Q(z1,22,...,2,) is the vector u = (uy, ua, ..., uy) defined
by u; = Q(z15, 225, - - -, 2rj). Thus w is obtained by applying the polynomial @ to the vectors v; coordinate-
wise.

Theorem 7 Let Ay, As, ..., A, be r matrices over a field F, where each A; has n columns, and let d; be
the rank of A;. Let A be a matriz with n columns in which every row u is Qu(21,22,. .., 2y) where z; is
some row of the matriz A; and Qy 1is some polynomial in F|x1,xa,...,x,.|. If the degree of each of the
polynomials Qy in x; is at most k;, then the rank of A is at most

ﬁ (kz + di)
o\ di .
Proof. If r =1 the result is proved in Lemma 5 following the argument in [2]). Therefore, if B; is the
matrix whose rows are all vectors of the form Q(v;) with v; being a row of 4; and @ being a polynomial

in {1,z,22%,..., 2%} then the rank of B; is at most (k’;d"). By Lemma 6 the linear space spanned by all
Hadamard products of one vector from each B; has dimension at most

. k; +d;

Every row of A lies in this linear space, implying the desired result. O

4.2 A modified proof of Theorem 1

Let M = (m;;) be a matrix satisfying the assumptions of Theorem 1, let d denote its rank, and assume,
as before, that the first d rows of M form a basis of its row-space. Denote these rows by

{vi = (v1,5)j=1,va = (v2,5)7=1, - Va = (Vaj)j=1 }-

Define d matrices My, Ms, ..., My, each having n — d rows and n — d columns, as follows. For each
1 < ¢ < d the matrix M, has its rows and columns indexed by the integers j satisfying d < j < n.
The element M;(i,j) is defined as m;;/v,;. Thus the column with index j of M, is obtained from the
corresponding column of the matrix obtained from M by deleting its first d rows, by dividing all elements
of this column by vg; = m¢;. Note that each my; is nonzero, as it belongs to the multiplicative subgroup
T'. Tt is clear that the rank of each matrix M, is at most d, which is the rank of M. We next define d
matrices Ay, A, ..., Ag of the same dimension as the matrices My, where each row of A, is a multiple
of the corresponding row of My, as follows. Let w be an arbitrary row of the original matrix M which is
not among the first d rows v;. Then w satisfies an equation of the form (2). If ¢, # 0 then the row of Ay



corresponding to w is obtained from the corresponding row of M, by dividing it by ¢,. Otherwise (that
is, if ¢, = 0) let this row equal the corresponding row of M, as it is. It is clear that the rank of each of
the matrices A, is at most d.

We next define for each row w and each index £ a set Sy ¢ of at most 2¢71A(d, r) elements so that
the following holds.

1. For every row w the diagonal coordinate of it in each of the matrices A, does not belong to Sy ¢.

2. For every row w and every non-diagonal element of it there exists at least one index ¢ so that it
belongs to the set Sy ¢.

The sets Sy ¢ are defined using the Subspace Theorem, by repeating the arguments in the previous
proof of the theorem. Indeed, each non-diagonal coordinate w; of w for ¢ > d satisfies an equation of the
form (3) without any subsum adding up to zero. For each such coordinate there is at least one index £ so
that ¢, # 0. We partition the coordinates according to the specific subset of indices I (which contains £)
and use the Subspace Theorem to conclude that the total number of distinct values of coordinates in the
row with this set of indices I is at most A(d,r). The union, over all 2¢~! such subsets, of all these sets of
values, is the set Sw ¢. It is clear that it satisfies property (2) above. In addition, each diagonal element
of every matrix M, differs from all non-diagonal elements in the same row, as the non-diagonal elements
lie in the group I' whereas the diagonal ones do not. Therefore each diagonal element of every matrix Ay
differs from all non-diagonal elements of this matrix in the same row, implying that property (1) holds
as well.

Finally we define, for each row w, the following polynomial

d
Qw(z1,22,...,2q9) = H H (¢ — 8).

=1 SESw,z

In the notation of Theorem 7, Qw (21, Z2, - - - , Z4 ), where z, is the row corresponding to w in the matrix Ay,
is a vector whose only nonzero coordinate is in the diagonal. By Theorem 7 the rank of the (n—d) x (n—d)

d—1 d
matrix consisting of all these rows, which is n — d, is at most (d+2 dA(d’T)) . Therefore

d—1 d
n—d< <d+2 dA(dv 7")) < 2rd7logcd

for some absolute constant ¢ > 1. It follows that for sufficiently large n, logn < rd® implying that
d > (1En)L/8,
This completes the proof of the theorem with the improved bound. O

5 Applications

5.1 Sumsets in multiplicative groups

The Subspace Theorem has been used in Additive Combinatorics in problems related to the Sum-
Product problem, showing the “incompatibility” of multiplicative and additive structures. Such applica-
tions started with the paper of Chang [10] where she proved that sets with small product set have large
sumsets. For a finite set, A C C, the sumset is defined as {A+ A} = {a+b: a,b € A}. The difference
set and product set are defined in the same way, one considers the pairwise differences and products.
Roche-Newton and Zhelezov [21] proved that multiplicative subgroups I' C C* with small rank cannot
contain large difference sets. It is a direct corollary of Lemma 2.1 in [21] that there is a function f(x)
such that if rank(T') < r and {A— A} C T then |A| < f(r). In their proof they also applied the Subspace



Theorem. Here we prove a similar statement for {A 4+ A}. The arguments used in [21] could be modified
to prove Theorem 9, here we give a simple proof as an illustration on how to use an extension of Theorem
1.

In the last step of the proof we only used that the diagonal elements are different from the other
elements in that row (or only those under the diagonal, in the first proof). The only step where we
changed a diagonal entry (without changing the other elements of the row in the same way) was when
we multiplied every element of column j by v[jl. Therefore in the theorem we can replace the condition
that diagonal elements are not from I' by a weaker one.

Definition 8 An n x n matriz with elements {aij};szl satisfies the rectangle condition if for any i <
Jj # k indices ajjai # ajrai;.

Theorem 9 For any positive integers r and D there is a threshold ng = ng(r, D), such that if T is a
multiplicative subgroup of C* of rank at most r and M = (m;;) is an n xn matriz, n > ng, where m;; € I'
for every i # j and M satisfies the rectangle condition, then rank(M) > D.

Corollary 10 There is a function f(z) such that if rank(T') <r and {A+ A} CT then |A| < f(r).

Proof. If the elements of A are denoted by {a1,...,a,} then we define a matrix M by m, ; = a; + a;.
The rank of M is at most two. All we have to check is that M satisfies the rectangle condition. The
equation (z + z)(y + z) = (x + 2)(y + =) only has a solution when y = = or z = z, but these numbers are
distinct. O

5.2 Multiplicative groups generated by distance sets

As another application of Theorem 1 we prove that the distance sets of finite pointsets in R? generate
high rank multiplicative groups.

Theorem 11 For any positive integers r,d there is a bound N = N(r,d), such that if T is a multiplicative
subgroup of R* of rank at most v and there are n points in R? where the pairwise distances are from T
for every pair of points then n < N.

Proof. Suppose that there are T points in R%, {p;,...,pr}. Let us consider the T'x T matrix, A, where
the d0; ; entry is the square of the the distance between p; and p;. The diagonal of A contains zeros only,
and the other entries are positive real numbers. The entries are images of a quadratic polynomial with 2d
variables, and the rank of the matrix is at most d + 2, since it can be written as the linear combination

of d + 2 rank one matrices.
d

A=X® 23" XY(k)+Y®.
k=1

Here every entry in the i-th row of X(®) is the sum of the squares of coordinates of p; and every entry
in the j-th column of Y? contains the sum of squares of the coordinates of g;. In the {7, j} position
of XY (k) we have the product of the k-th coordinates of p;, and g¢;. Since all diagonal elements are 0,
Theorem 1 implies that if the rank of the multiplicative group generated by the non-diagonal elements
of the matrix is at most r then the (matrix) rank of A is at least as (log T/r)'/8, which is larger than
d + 2 for large enough T. O

5.3 Integral distances

By Theorem 11 if all distances determined by a set of more than N(r,d) points in R¢ are integers then
there are at least r + 1 distinct primes that divide at least one of these distances. Here, however, we



can prove a stronger result, with a much better bound. Before stating and proving it we include a brief
discussion of some of the background about sets determining integer distances, which are sometimes called
integral pointsets.

In 1945 Anning and Erdés proved in [6] (see also in [13]) that if in a set of points in the plane all
pairwise distances are integers then the pointset is finite, or all points are on a line. They asked if there are
arbitrarily large integral pointsets in the plane with no three on a line and no four on a circle. The problem
is still widely open, the best construction is due to Kreisel and Kurz [15], who found seven points using
computer search. Another related question is the Erdés-Ulam conjecture, that there are no everywhere
dense pointsets in the plane such that all pairwise distances are rational. This is also open although
there are works showing that the existence of such sets would contradict the Bombieri-Lang conjecture
[27, 23, 4] and the abc conjecture as well [20]. In the plane the diameter of large integral pointsets should
be large [24, 16, 3], but not much is known about the structure of such sets. For dimension d > 2, Nozaki
proved that an n-element integral pointset has diameter at least n'/¢ [19]. As an application of our results
and techniques here (with a much simpler proof and an improved bound that holds in this case) we show
that for any integral pointset of n points in R? and any prime p smaller than n'/(¢+1) | the pointset must
determine a distance divisible by p.

Theorem 12 For any positive integer d and any prime p there is a threshold, T = T(d,p) < (Zi‘f) +1
such that any set of more than T points in R? in which all squares of pairwise distances are integers,
determines a distance divisible by p.

Note that the theorem is not an empty statement, there are arbitrarily large sets with integer
distances. Even in the plane one can find large sets on a circle such that all pairwise distances are integers
(see [25] for some constructions).

Proof. (of Theorem 12) If p is the smallest prime that does not divide any of the distances then apply
the polynomial 2P~! to every entry of the matrix of the squares of distances. This keeps all diagonal
elements 0, and changes every non-diagonal entry, d;;, to dfj_l = 1( mod p). The rank of this matrix
over Zjy, is at least T — 1, showing that

d+1+p—-1 _ p+d STo1.
p—1 d+1

Here we applied the slightly better bound from Lemma 5, using that zP~! is a special polynomial. g

If all distances are integers, then the entries of the matrix in the proof above are squares, so we can
. p—1 . —1 I .
apply the polynomial 2 instead of 2P~ giving the following stronger result.

Theorem 13 For any positive integer d and any prime p there is a threshold,

p—1
T/——T/d])< 2 +1

such that any set of more than T' points in R in which all pairwise distances are integers, determines a
distance divisible by p.
6 Concluding remarks and open problems

e Both proofs given here for Theorem 1 provide weak quantitative bounds, and it will be interesting
to improve them and in particular to decide whether or not for any fixed r the best possible value of
no(r, D) in the theorem is polynomial in D. As mentioned in Section 3, even the very special case of



determining the minimum possible rank of an n by n matrix in which all non-diagonal elements are
powers of 2, and all diagonal elements are not, is intriguing. By (a very special case of) Theorem
1 (with r = 1) this minimum tends to infinity with n, but the lower bound obtained is probably
very far from being tight. The following example shows that this minimum is at most O(n'/3). Put
m = 3%+ 1, let P = P§ be the space of all vectors of length d over F3 and let z be an additional
point. Let F' be the collection of all planes in P, that is, all the 2-dimensional affine subspaces,
and let F’ be the collection of all sets L U {z} where L € F. Note that each member of F’ is of
cardinality 9+ 1 = 10. The intersection of every pair of distinct members of F' is either empty, or a
point, or a one-dimensional line, and therefore the cardinality of each such intersection lies in the
set {0,1,3}. It follows that the cardinality of the intersection of every pair of distinct members of
F’ is in the set {1,2,4}, that is, it is a power of 2. The Gram matrix of the characteristic vectors
of the elements of F’ is an |F'| by |F’| matrix in which all diagonal elements are 10 and every
non-diagonal element is a power of 2. The rank of this matrix is clearly at most m = 3% 4+ 1 and its

_ 39HE-nE?-3) _ Q(m3).

. . ’
S1ze 1S |F m =

e Even for rank r = 0, where the non-diagonal entries of the matrix are roots of unity, the bound
provided by Theorem 1 is weak. The following simple example shows that the minimum possible
rank of an n by n matrix with roots of unity in all non-diagonal entries but not in the diagonal can
be at most O(y/n). Put n = ('), let J be the n by n all 1 matrix, and let G' be the Gram matrix
of the characteristic vectors of all subsets of cardinality 2 of [m] = {1,2,...,m}. Then 2G — J has
rank at most m (as the rows of J are spanned by those of G), all its diagonal entries are 3, and
all non-diagonal entries are either 1 or —1, which are roots of unity. Note that for roots of unity of
order 2 the ©(y/n) bound is tight by Theorem 4, as there are only 2 such roots.

e It is known that the bound given by Theorem 2 can be improved for several special cases, like S-unit
equations, see, e.g., [11]. Here we present a simple argument relevant to the first remark above.

Proposition 14 Suppose ay,az,...,a, € N. Then the number of distinct 2 solutions (s1,...,Sm)
of the equation

a121 + asz9 + ...+ amizm =0 (5)

in which all s; are powers of 2, where no subsum on the left hand side vanishes, is at most

[125(2i = 3).

Proof. We can clearly assume that all a;-s are odd. Therefore in any solution (s1, $2,. .., Sm) the
smallest power of 2 should appear at least twice, since otherwise the sum would be nonzero modulo
this power of 2. Therefore two of the variables, say s;, s;, are equal and they can be combined to a
single variable z;;, replacing the sum a;2; +a;z; by (a; +a;)zi; = ai; - 9bij 25, where b;; is the largest
power of 2 dividing a; 4+ a;. This is an equation of the same kind with m — 1 variables, and we can
repeat the argument until we are left with an equation of 2 variables which clearly has only one
solution. This reduction can be uniquely represented by a binary tree where the leafs are labeled
by the coefficients a;. The number of unordered complete binary trees with m labeled endpoints is
[T7%,(2i — 3) (see in [26]), giving the required upper bound on the number of distinct solutions of
(5). O

To see that the bound above is not too far from being tight note that the equation

Z21—29—23—...— 2m =0

2two solutions are distinct if one is not a multiple of the other



7

has (m — 1)!/2 distinct solutions (s1, sa, ..., S;,) with no vanishing subsum. Indeed (s2, 83, ..., Sm)
can be any permutation of the numbers 1,1,2,4,...,2™ 2, giving a solution with s; = 2™,

The statement of Theorem 11 holds if we only assume that the squares of the pairwise distances
between pairs of points belong to the multiplicative group I'. This clearly follows from the proof.
Similarly the statement of Theorem 12 holds if we merely assume that the squares of the distances
are integers.

Theorem 12 can be extended to prime powers. That is, every prime power ¢ = p* divides some
square of a distance determined by any set of more than (QZiTl) points in R? in which all squares
of distances between pairs are integers. The proof follows that of Theorem 12, the only difference
is that instead of the polynomial £P~! we use here the polynomial (2:%) By the theorem of Lucas
[17] the value of this polynomial is not 0 modulo p if and only if z is divisible by ¢. Therefore,
if no square distance is divisible by ¢ then after applying the above polynomial to every entry of
the matrix of square distances we get a matrix of full rank modulo p, implying the desired result.
This, together with Ramsey’s Theorem, also implies that for every integer k£ and every d there is
some Ty = Ty(k,d) so that any set of at least Ty points in R? in which all square distances are
integral determines a square distance divisible by k. To prove it write k as a product k = q1q2 - - - ¢»
of powers of distinct primes and apply induction on 7. For » = 1 this is the result above for prime
powers. For > 1, by Ramsey’s Theorem and the result for one prime power, any sufficiently large
set of points with all square distances integral contains a large subset in which all square distances
are divisible by ¢;. We can now apply induction to this subset to get in it a pair of points with
square distance divisible by g¢2q3 - - - ¢, completing the proof. The estimate for Ty here, unlike in
the prime power case, is likely to be very far from being tight.

The assertion of Theorem 11 can be extended to more general polynomials, including, for example,
the /5, distance raised to the power 2r for every even integer 2r. More generally, for any fixed
polynomial P(z) = P(z1,..,2q) which vanishes at zero, and any set of points S = {z1,29,..., 2N}
in R, if N is sufficiently large as a function of r, d and the degree of the polynomial P, then not
all the values P(z; — x;) for distinct 4,j can lie in a multiplicative group of rank at most r. A
similar extension of Theorem 12 exists as well. The proofs follow the ones of the above theorems,
by considering the N by N matrix Mp(S) = (m;;) defined by m;; = P(z; — z;).

Our final remark, which may well be mentioned somewhere, is that by applying Theorem 4 to the

matrix of squares of distances between pairs of points it follows that for any sequence p1,ps,...,pr
of T > (dﬁgs) distinct points in R?, there is a point p; determining more than s distinct distances

from the previous ones.
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