Complete minors and average degree — a short proof
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Abstract

We provide a short and self-contained proof of the classical result of Kostochka and of Thomason,
ensuring that every graph of average degree d has a complete minor of order Q(d/+/logd).

Let G = (V, E) be a graph with |E|/|V| > d. How large a complete minor are we guaranteed to find
in G7 This classical question, closely related to the famed Hadwiger’s conjecture, has been thoroughly
studied over the last half a century. It is quite easy to see the answer is at least logarithmic in d. Mader
[3] proved it is of order at least d/logd. The right order of magnitude was established independently
by Kostochka [1, 2] and by Thomason [4] to be d/+/logd, its tightness follows by considering random
graphs. Finally, Thomason found in [5] the asymptotic value of this extremal function.

Here we provide a short and self-contained proof of the celebrated Kostochka—Thomason bound.

Theorem 1. Let G = (V, E) be a graph with |E|/|V| > d, where d is a sufficiently large integer. Then

. . d .
G contains a minor of the complete graph on at least Tovind vertices.

The constant 1/10 in the above statement is inferior to the best constant 3.13. .. found by Thoma-
son [5] (yet is better than the constants in [1, 2]); we did not make any serious attempt to optimize
it in our arguments. The main point here is to give a short proof of the tight Q(d/+/logd) bound for
this classical extremal problem.

Throughout the proof we assume, whenever this is needed, that the parameters n and d are
sufficiently large. To simplify the presentation we omit all floor and ceiling signs in several places.
For a graph G = (V, E), its minimum degree is denoted by §(G), and for v € V' we use Ng(v) for the
external neighborhood of v in G.

We need the following lemma proven by simple probabilistic arguments.

Lemma 2. Let H = (V, E) be a graph on at most n vertices with §(H) > n/6. Let t <n/vInn, and
let Ay, ..., Ay CV with|A;] < ne~vVinn/3 foralll < j <t. Then thereis B CV of size |B| < 3.1VInn
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such that B dominates all but at most ne~ V"3 yertices of V., B \NA; #0 forall j =1,...,t, and
the induced subgraph G[B] has at most siz connected components.

Proof. Set s = 3.1v/Inn and choose s vertices of V' independently at random with repetitions. Let B
be the set of chosen vertices. Observe that for every vertex v € V,

Pr[Nw)NnB=10] < <1_d;v)) ge_# <e /6.

Hence the expected number of vertices not dominated by B is at most ne */¢ < ne=3-1vinn/6

ne~VInn/2 “and by Markov’s inequality, it is at most ne~V""/3 with probability exceeding 1 /2 (with
room to spare). Also, since |V'| > 6(H) > n/6, for every subset A;,
PT[B - A]] = <‘|AJ">S < (6’A]’>s < 65675\/1nn/3 _ 66(\/@)673.111171,/3 < l ]
C v <

n n

Therefore the probability that B\ A; # @ for all j is at least 1 —t/n > 1 —1/vInn.

We now argue about the number of connected components in G[B]. Writing B = (v; ..., vs), for
1 <4 < s let o; be the random variable counting the number of indices 1 < j # 7 < s for which v;
is a neighbor of v;. Conditioning on v;, we see that x; is distributed as a binomial random variable
with parameters s — 1 and d(v;)/|V| > 1/6. Hence invoking the standard Chernoff-type bound on
the lower tail of the binomial distribution, we derive that Prlz; < s/7] < e=©()
bound over all 1 < ¢ < s, we conclude that with probability 1 — o(1), we have z; > s/7 for all i.
Finally, observe that since s <« \/m , with probability 1 — o(1) there are no repetitions in B, and
hence d(v;, B) = x; > s/7 for all 1 < i < s. But then all connected components of G[B] are of size

. Applying the union

exceeding s/7, and therefore G[B] has at most six connected components.

Combining the above three estimates, the desired result follows. O

Proof of Theorem 1. Let G' = (V', E’) be a minor of G such that |E’'| > d|V’| and |V'| + |F’| is
minimal. If an edge e of G’ is contained in ¢ triangles then contracting e gives a minor of G with one
vertex and t + 1 edges less. By the minimality of G’ we have t + 1 > d, implying ¢t > d. Hence for
every edge e = (u,v) € E(G"), the vertex u is connected by an edge of G’ to at least d neighbors of v.
The minimality of G’ also implies |E’| = d|V’|, hence G’ has a vertex v of degree at most 2d. Let H
be the subgraph of G’ induced by Ng/(v). Then H has at most 2d vertices and minimum degree at
least d. Obviously a minor of H is a minor of G as well.

We now argue that H contains a d/3-connected subgraph Hy with 6(Hp) > 2d/3. If H itself is d/3-
connected this holds for H; = H. Otherwise there is a partition V(H) = AU BU S, where A, B # (),
|S| < d/3, and H has no edges between A and B. Assume without loss of generality |A| < |B|. Then
|A| < d, and since §(H) > d, every vertex v € A has at least 2d/3 neighbors in A, implying that every
pair of vertices of A has at least d/3 common neighbors in A. Hence the induced subgraph H; := H[A]
is d/3-connected, has at most 2d vertices and satisfies d(H;) > 2d/3.

Set ¢ = 1 and repeat the following iteration d/lO\/m times. Let H; = (V;, E;) C Hj be the current
graph, and suppose Ai,...,A;_1 are subsets of V; of cardinalities |4;] < 2de—Vn(2d)/3 (representing



the non-neighbors of the previously found branch sets B; in V). We assume (and justify it later) that
H; is connected and has §(H;) > d/3. Then the diameter of H; is at most 14, as on any shortest path
P = (vg,v1,...) in H; the vertices at positions divisible by three have pairwise disjoint neighborhoods.
Since |V (H;)|/6(H;) < 6, the number of such neighborhoods is at most 5, and therefore any shortest
path has at most 15 vertices. Applying Lemma 2 with H := H;, n:=2d, t:=i—1, and Ay,..., A;_1
(for the initial step @ = 1 there are no A;’s to plug into Lemma 2 — which of course does not hinder its
application) we get a subset B; of cardinality |B;| < 3.1y/In(2d) as promised by the lemma. We now
turn B; into a connected set by adding few vertices of H; if necessary. Recall that H;[B;] has at most
six connected components. Connecting one of them by shortest paths in H; to all others and recalling
that H; has diameter at most 14, we conclude that by appending to B; all the vertices of these paths
we make it connected by adding to it at most 13 - 5 = 65 vertices. Altogether we obtain a connected
subset B; of cardinality |B;| < (3.1 4 o(1))+/In(2d), dominating all but at most 2de=VICD/3 vertices
of V; and having a vertex outside every A; (these properties are preserved under vertex addition when
making B; into a connected subset) — meaning connected to every previous B;. We now update
Vigr == Vi = By, A; :=Vip1 — Np,(B;), and Aj := A; N Vigq, 7 =1,...,i— 1, and finally increment
i:=1+1, set H; := H[V;], and proceed to the next iteration. The total number of vertices deleted in
all iterations satisfies:

| Ui Bi| < - (3.14+0(1))y/In(2d) < g,

d
~ 10vInd
and since we started with the d/3-connected graph Hy with 6(H1) > 2d/3, we indeed have that at
each iteration the graph H; is connected and has §(H;) > d/3.
After having completed all d/10v/Ind iterations, we get a family of d/ 10v/Ind branch sets B;, all
connected, and with an edge of H; between every pair of branch sets. Hence they form a complete

minor of order d/10vInd as promised. O
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