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Abstract
A worst-case complexity bound is proved for a sequential quadratic optimization
(commonly known as SQP) algorithm that has been designed for solving optimization
problems involving a stochastic objective function and deterministic nonlinear equality
constraints. Barring additional terms that arise due to the adaptivity of the mono-
tonically nonincreasing merit parameter sequence, the proved complexity bound is
comparable to that known for the stochastic gradient algorithm for unconstrained non-
convex optimization. The overall complexity bound, which accounts for the adaptivity
of the merit parameter sequence, shows that a result comparable to the unconstrained
setting (with additional logarithmic factors) holds with high probability.
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optimization · Worst-case complexity
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1 Introduction

We present a worst-case complexity analysis of an algorithm for minimizing a smooth
objective function subject to nonlinear equality constraints. (Due to the nature of
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the algorithm, this worst-case complexity analysis holds in terms of iterations, func-
tion evaluations, and derivative evaluations.) Problems of this type arise in various
important applications throughout science and engineering, including optimal con-
trol, PDE-constrained optimization, and resource allocation [3, 4, 20, 29]. However,
unlike the vast majority of the literature on equality constrained optimization, the algo-
rithm that we consider has been designed to solve problems in which the objective
function is stochastic, in the sense that it is defined by the expectation of a function
that has a random variable argument. The algorithm that we consider assumes that
evaluations of the objective function and its gradient are intractable to obtain, but that
it has access to (unbiased) stochastic gradient estimates.

A few algorithms have been proposed recently for solving problems of this type.
These approaches fall into two categories: penalty methods [9, 25, 30] (which includes
the class of augmented Lagrangian methods) and sequential quadratic optimization
(commonly known as SQP) methods [2, 23]. Penalty methods aim to solve the con-
strained optimization problem by adding a term to the objective function, weighted by
a penalty parameter, that penalizes constraint violation. Unconstrained optimization
techniques are then applied to minimize the resulting penalty function, after which
the penalty parameter may be modified and the minimization is performed again in an
iterative manner until a solution is obtained that (approximately) satisfies the original
constraints. Methods of this type perform well in some situations, but in others they
performpoorly, e.g., due to ill-conditioning and/or nonsmoothness of the subproblems.
Such methods also often suffer due to their sensitivity to the particular scheme used
for updating the penalty parameter. See [28] for further commentary on the advantages
and disadvantages of penalty methods.

In practice in both deterministic and stochastic optimization contexts, penaltymeth-
ods are frequently outperformed by SQP methods. Indeed, it is commonly accepted
in the deterministic optimization literature that a state-of-the-art algorithm is an SQP
method that chooses stepsizes based on a line search applied to a merit function. In
this deterministic setting, such an algorithm is intimately connected with applying
Newton’s method to the first-order primal-dual necessary conditions for optimality of
the problem [32].

In this paper, we present a worst-case complexity analysis of the SQP method
proposed in [2], which can be seen as an extension of an SQP method from the
deterministic to the stochastic setting. A consequence of our analysis is that, in an
idealized setting in which (i) one knows a threshold for the merit parameter below
which knowledge of the exact gradient would not lead to a merit parameter decrease in
any iteration (which, for one thing, is a threshold for themerit function to be exact [18])
and (ii) the algorithmic rule thatmight otherwisemodify themerit parameter is skipped,
the number of iterations required until themethod generates a point at which first-order
necessary conditions for optimality hold in expectation with accuracy ε ∈ (0,∞) is
O(ε−4). This is the type of result that one should expect, since this is the same bound
proved to hold for a stochastic gradient method employed to solve an unconstrained
nonconvex problem [14]. However, our analysis does not only consider this idealized
setting; we go further and prove a worst-case complexity bound for the algorithm
when the merit parameter threshold is unknown and the algorithm adaptively updates
a monotonically nonincreasing merit parameter sequence. We prove under reasonable
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assumptions that the aforementioned worst-case bound, with additional logarithmic
factors, holds with high probability. The high-probability aspect of this result arises
due to the uncertainty of the behavior of the adaptive merit parameter sequence that is
a consequence of the uncertainty due to the stochastic gradient estimates, and it does
not reflect any uncertainty of the behavior of the method during situations in which
the merit parameter sequence remains constant. A major challenge in our analysis
is accounting for the transient behavior of the adaptive merit parameter sequence in
the sense that our analysis accounts for the real possibilities that (i) different runs
of the algorithm may decrease the merit parameter by varying amounts and (ii) it is
not possible to bound the number of iterations until the merit parameter settles on
a sufficiently small value. In other words, since our loose assumptions do not allow
for one to presume that the algorithm experiences two distinct phases (e.g., one in
which—over a bounded number of iterations—themerit parameter is reduced down to
a threshold, then a second in which it remains fixed), our analysis must account for the
possibility that themerit parameter is transient through any number of iterations, which
leads to significant complications that are not present in the context of unconstrained
optimization.

To the best of our knowledge, ours is the first worst-case complexity result for
an SQP algorithm that operates in the highly stochastic regime (where one merely
presumes that the stochastic gradient estimates have bounded variance) for solving
stochastic optimization problems involving deterministic nonlinear equality con-
straints. Prior to thiswork, the onlyknowncomplexity results for stochastic constrained
optimization were for algorithms for solving problems with simple constraint sets that
enable projection-based methods [14, 16, 26] and Frank-Wolfe type methods [19].
(One exception is a complexity bound proved for the SQP algorithm proposed in [23],
although that result only holds for the idealized setting in which the algorithm has
a priori knowledge of a threshold for the merit function parameter.) After the ini-
tial release of this paper, the article [24] appeared that proposes an SQP method that
uses stochastic estimates of the objective gradient and Hessian of the Lagrangian and
computes search directions using a sketch-and-project framework. The algorithm in
that paper does not use a merit function and requires that the stepsizes remain within
prescribed intervals that are non-adaptive to the stochastic gradients. Under standard
assumptions, that algorithm offers a worst-case complexity result that is comparable
to the one we derive in this paper, as well as an asymptotic convergence rate. Our
analysis focuses a great deal on the complications that arise due to the adaptivity of
the merit parameter sequence, which essentially means that the algorithm in our con-
sideration is aiming to reduce a merit function that changes during the optimization
process. Hence, many aspects of our analysis are quite distinct from the analyses that
have been presented for stochastic gradient methods in the context of unconstrained
optimization or optimization over simple constraint sets, for which the tool for mea-
suring the progress of an algorithm—namely, the objective function itself—remains
the same throughout the optimization.
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1.1 Problem formulation

The algorithm that we consider is designed to solve problems of the form

min
x∈Rn

f (x) s.t. c(x) = 0, with f (x) = E[F(x, ω)], (1)

where f : Rn → R, c : Rn → R
m ,ω is a random variable with associated probability

space (Ω,F ,P), F : Rn × Ω → R, and E represents expectation with respect to P.
In particular, similar to [2], we make the following assumption.

Assumption 1 The objective function f : Rn → R is continuously differentiable and
bounded below by flow ∈ R and the corresponding gradient function ∇ f : Rn →
R
n is bounded and Lipschitz continuous with constant L ∈ (0,∞). The constraint

function c : R
n → R

m (where m ≤ n) and the corresponding Jacobian function
J := ∇c� : Rn → R

m×n are bounded, each gradient function ∇ci : Rn → R
n is

Lipschitz continuous with constant γi for all i ∈ {1, . . . ,m}, and the singular values
of J ≡ ∇c� are bounded below and away from zero.

Defining the Lagrangian � : Rn × R
m → R corresponding to (1) by �(x, y) :=

f (x) + c(x)�y, first-order primal-dual stationarity conditions for (1), which are nec-
essary for optimality under Assumption 1, are given by

0 =
[∇x�(x, y)
∇y�(x, y)

]
=
[∇ f (x) + ∇c(x)y

c(x)

]
. (2)

1.2 Notation

We adopt the notation that ‖·‖ denotes the �2-norm for vectors and the vector-induced
�2-norm for matrices. We denote by S

n the set of n × n dimensional real symmetric
matrices. The set of nonnegative integers is denoted as N := {0, 1, 2, . . . , }. For any
integer k ∈ N, we use [k] to denote the subset of nonnegative integers up to k, namely,
[k] := {0, . . . , k}. Correspondingly, to represent a set of vectors {v0, . . . , vk}, we
define v[k] := {v0, . . . , vk}.

Given φ : R → R and ϕ : R → [0,∞), we write φ(·) = O(ϕ(·)) to indicate that
|φ(·)| ≤ cϕ(·) for some c ∈ (0,∞). Similarly, we write φ(·) = Õ(ϕ(·)) to indicate
that |φ(·)| ≤ cϕ(·)| logc(·)| for some c ∈ (0,∞) and c ∈ (0,∞). In this manner, one
finds that O(ϕ(·)| logc(·)|) ≡ Õ(ϕ(·)) for any c ∈ (0,∞).

The algorithm that we analyze is iterative, generating in each realization a sequence
{xk}. (See Sect. 4.1 for a complete description of the stochastic process generated by
the algorithm.) We also append the iteration number to other quantities corresponding
an iteration, e.g., fk := f (xk) for all k ∈ N.

1.3 Outline

Section 2 provides a worst-case complexity result for the algorithm from [2] for
the deterministic setting, and uses this result and further commentary to provide an
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overview of our main result for the stochastic setting. Details of the algorithm for the
stochastic setting are presented in Sect. 3, followed by our main result and analysis,
which are provided in Sect. 4. Finally, we provide concluding thoughts and mention
future directions in Sect. 5.

2 Outline of main results

Our algorithm of consideration is derived fromAlgorithm 3.1 in [2], which is proposed
for the stochastic setting. As a precursor, Algorithm 2.1 was proposed in [2] for the
deterministic setting, many of the features of which are used in Algorithm 3.1 in [2]
for the stochastic setting. In Algorithm 2.1 in [2] for the deterministic setting, the kth
search direction dk ∈ R

n is computed by solving a subproblem defined by a quadratic
approximation of the objective function and an affine approximation of the constraints
using derivative information at the current iterate xk ∈ R

n . This computation also
results in a Lagrange multiplier vector yk ∈ R

m . The subsequent iterate is set by
xk+1 ← xk + αkdk , where αk ∈ (0,∞) is a stepsize determined by a procedure
to reduce the merit function φ : Rn × (0,∞) → R defined by φ(x, τ ) = τ f (x) +
‖c(x)‖1. In particular, basedonproperties of the search directiondk , a value of themerit
parameter τk ∈ (0, τk−1] is set by the algorithm, after which αk ∈ (0,∞) is computed
to ensure that φ(xk, τk) − φ(xk+1, τk) is sufficiently positive. This description of the
algorithm suffices for providing an outline of our main results; for further details about
the algorithm that we analyze, see Sect. 3.

2.1 Complexity of the deterministic algorithm

To motivate our main result for the stochastic setting, it is instructive to state a worst-
case complexity bound for the deterministic algorithm. Such a result is the following;
further details and a proof are provided in Appendix A. The approximate stationarity
conditions in (3) have been defined for consistency between the primal and dual
stationarity measures; the reason that this choice leads to such consistency is revealed
in the analysis in Appendix A.

Theorem 1 Consider Algorithm 2.1 in [2] and suppose that Assumption 1 holds along
with Assumption 2.4 from [2] (see also the similar Assumption 2 on page 8 for our
stochastic setting). Let τ−1 ∈ R>0 be the initial value of the merit parameter sequence
and let τmin ∈ (0, τ−1] be a positive lower bound for the merit parameter sequence
(the existence of which follows from Lemma 2.16 in [2]). Then, for any ε ∈ (0, 1), there
exists (κ1, κ2) ∈ R>0 × R>0 such that the algorithm reaches an iterate (xk, yk) ∈
R
n × R

m satisfying

‖gk + J�
k yk‖ ≤ ε and

√‖ck‖1 ≤ ε (3)
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in a number of iterations no more than

(
τ−1( f0 − flow) + ‖c0‖1

min{κ1, τminκ2}
)

ε−2. (4)

Theorem 1 is notable since it shows that Algorithm 2.1 in [2] has the standard
worst-case iteration, function-evaluation, and derivative-evaluation complexity for a
first-order-derivative-based algorithm for solving equality constrained optimization
problems; see [8] for a comparable complexity bound for another “short-step” algo-
rithm for solving equality constrained problems. That said, the O(ε−2) bound in
Theorem 1 is not surprising. After all, such a complexity bound is well-known for
gradient-based algorithms for solving unconstrained nonconvex optimization prob-
lems as well. Since Algorithm 2.1 in [2] and its corresponding analysis do not exploit
the use of exact higher-order derivative information, this complexity bound is on
the order of what could be expected for such a method. There are ways for achiev-
ing improved worst-case complexity if higher-order derivatives are employed in a
constrained-optimization algorithm (see, e.g., [7, 13, 17]), but the use of such higher-
order derivatives—especially in the stochastic setting—is outside of our scope.

2.2 Preview of the complexity of the stochastic algorithm

Moving to the stochastic setting, there are a few major technical hurdles that need to
be addressed, all of which relate to the adaptivity of the merit parameter sequence.
In particular, the analysis for the deterministic setting relies heavily on the facts that
(i) each step of the algorithm yields a sufficient reduction in the merit function for
the current value of the merit parameter, (ii) each such reduction in the merit function
can be tied to a first-order primal-dual stationarity measure for the current iterate,
and (iii) under Assumption 1, one can be certain of the existence of a positive lower
bound for the merit parameter sequence. This lower bound for the merit parameter is
referenced directly in the proof of theworst-case bound for the deterministic algorithm;
in particular, it is shown (see Lemma 13 and the beginning of the proof of Theorem 4)
that the improvement in the merit function from any iterate that is not ε-stationary (see
(3)) is at least proportional to min{1, τmin}ε−2, even if the current value of the merit
parameter is greater than τmin. Unfortunately, these properties of the steps and merit
parameter sequence are not certain in the stochastic setting. For example, as discussed
in [2], it is possible—even under Assumption 1—for the merit parameter sequence to
vanish or for it to eventually remain constant at a value that is not sufficiently small,
and for there to be iterations in which the expected reduction in the merit function
cannot be tied to a first-order primal-dual stationarity measure. As a result, we have
devised new analytical approaches that confront the fact that {τk} is a random process,
the ultimate behavior of which is uncertain.

To aid the reader, we provide here an overview and commentary about our ultimate
complexity bound; see Corollary 1 on page 27. Our result is proved under Assump-
tion 1 along with others that are introduced in the subsequent sections. For one thing,
as is common in SQP methods for deterministic optimization, we assume that the
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subproblem defining the search direction in each iteration is defined by a matrix that
is positive definite in the null space of the constraint Jacobian; see Assumption 2
on page 8. We also assume, as is common for stochastic gradient methods, that the
stochastic gradient estimates are unbiased with variance bounded by M ∈ (0,∞),
along with some related assumptions; see Assumption 3 on page 14. Furthermore,
our analysis conditions on the occurrence of an event that we call E (see (15)); this
event captures situations in which, over a total of kmax + 1 ∈ N iterations, the merit
parameter is reduced at most smax ∈ [kmax] times and the merit parameter is bounded
below by τmin ∈ (0,∞). Under these conditions, our main complexity result shows
that, within kmax + 1 iterations, it holds with probability 1 − δ ∈ (0, 1) that the algo-
rithm generates xk∗ ∈ R

n corresponding to which there exists an associated Lagrange
multiplier ytruek∗ ∈ R

m such that

E[‖∇ fk∗ + J�
k∗ ytruek∗ ‖2 + ‖ck∗‖1|E]

= O
(

τ−1( f0 − flow) + ‖c0‖1 + M√
kmax + 1

(5a)

+ (τ−1 − τmin)(smax log(kmax) + log(1/δ))√
kmax + 1

)
.

(5b)

This form of the result is commonly called a convergence rate since it bounds the
expected stationarity error from above by a function that decreases with the number of
iterations performed, namely, kmax + 1. This bound can be used to form a worst-case
complexity result. Specifically, the result above and Jensen’s inequality imply that,
within kmax + 1 iterations and as long as smax = O(log(kmax)) (more on this below),
it holds with probability 1 − δ that the algorithm requires at most Õ(ε−4) iterations
to generate xk∗ with corresponding ytruek∗ such that E[‖∇ fk∗ + J�

k∗ ytruek∗ ‖|E] ≤ ε and
E[√‖ck∗‖1|E] ≤ ε. The probability in this result is with respect to the distribution of
the stochastic gradients conditioned on the occurrence of the event E .

The first three quantities on the right-hand side of the convergence rate, namely, in
(5a), representing the initial objective function gap, initial constraint violation, and the
variance of the stochastic gradient estimates, mirror the presence of similar terms that
appear for comparable results for the stochastic gradient method in an unconstrained
or simple-constraint-set setting [14, 16, 26]. The final term in (5b), on the other hand,
as well as the fact that the result is stated as a high-probability result, are unique to our
setting and arise due to the adaptivity of the merit parameter sequence. If one were to
have prior knowledge of τmin, then one could set τ−1 = τmin (and disable the update
mechanism for themerit parameter in the algorithm), in which case our analysis would
show that the expected stationarity error is bounded above by (5a) (surely, not only
with high probability).

In the context of an adaptive merit parameter sequence, the particular form of our
complexity result depends on themagnitude of smax relative to kmax+1, i.e., the bound
on the number of times that themerit parameter is decreased relative to the total number
of iterations performed. One setting in which our result is relatively straightforward
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is when, over all realizations of the algorithm, the differences between the stochastic
gradient estimates and the true gradients are bounded deterministically, in which case
the merit parameter sequence is provably bounded below, which in turn means that
smax is bounded by a value that is independent from kmax + 1 (at least as long as
kmax is sufficiently large relative to τ−1/τmin); this follows from a deterministic lower
bound on τmin [2, Proposition 3.18] and the fact that whenever the merit parameter is
decreased, it is done so by a constant factor. Beyond this setting, for another concrete
example of a situation in which smax is guaranteed to be sufficiently small relative to
kmax, we prove in Sect. 4.5 that if the distributions of the stochastic gradient estimates
are sub-Gaussian, then with probability 1−δ one finds that smax = O(log(log( kmax

δ
))),

meaning that our proved convergence rate is not ruined by the term in (5b). There are
certainly other special cases in which similar types of relationships between smax and
kmax hold, but for our purposes we simply provide the example in Sect. 4.5.

3 Algorithm

For ease of reference, in this section we present Algorithm 3.1 from [2] (slightly
modified, as explained at the end of this section), which is designed to solve problems
of the form (1) and is our focus for the remainder of the paper. In the spirit of an SQP
method, the algorithm computes a search direction dk and Lagrange multiplier vector
yk in iteration k ∈ N by solving

min
d∈Rn

fk + g�
k d + 1

2d
�Hkd s.t. ck + Jkd = 0, (6)

where gk is a stochastic gradient estimate at xk and Hk ∈ S
n is chosen independently

from gk . Under Assumption 1 and the following Assumption 2 (that wemake through-
out the remainder of the paper), the solution of (6) can be obtained from the unique
solution of the linear system

[
Hk J�

k
Jk 0

] [
dk
yk

]
= −

[
gk
ck

]
. (7)

Assumption 2 The sequence {‖Hk‖} is bounded by κH ∈ R>0, where for all k ∈ N

the matrix Hk ∈ S
n is chosen independently from gk . In addition, there exists ζ ∈ R>0

such that, for all k ∈ N, the matrix Hk ∈ S
n has the property that u�Hku ≥ ζ‖u‖22

for all u ∈ R
n such that Jku = 0.

After computation of (dk, yk), the remainder of the kth iteration involves (i)
updating the merit parameter, (ii) updating an auxiliary parameter needed for the
stepsize computation, and (iii) computing a positive stepsize. These algorithmic com-
ponents are designed with the aim of yielding a sufficiently positive reduction in
a model of the merit function, which in turn is aimed at yielding a sufficiently
positive reduction in the merit function itself. The algorithm employs the model
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q : Rn × R+ × R
n × S

n × R
n → R defined by

q(x, τ, g, H , d) = τ( f (x) + g�d + 1
2 max{d�Hd, 0}) + ‖c(x) + J (x)d‖1,

and the reduction function Δq : Rn ×R+ ×R
n × S

n ×R
n → R, for a given d ∈ R

n

satisfying c(x) + J (x)d = 0, defined by

Δq(x, τ, g, H , d) := q(x, τ, g, H , 0) − q(x, τ, g, H , d)

= −τ
(
g�d + 1

2 max{d�Hd, 0}
)

+ ‖c(x)‖1.
(8)

Specifically, in order to ensure in iteration k that τk ≤ τk−1 and

Δq(xk, τ, gk, Hk, dk) ≥ 1
2τ max{d�

k Hkdk, 0} + σ‖ck‖1 ≥ 0 (9)

holds for all τ ≤ τk , the algorithm sets, for user-defined σ ∈ (0, 1), the value

τ trialk ←
{∞ if g�

k dk + max{d�
k Hkdk, 0} ≤ 0

(1−σ)‖ck‖1
g�
k dk+max{d�

k Hkdk ,0} otherwise,
(10)

and then sets, for some ετ ∈ (0, 1), the merit parameter value

τk ←
{

τk−1 if τk−1 ≤ τ trialk

(1 − ετ )τ
trial
k otherwise.

(11)

Then, for use in the stepsize computation (as motivated in [2]) it sets

ξ trialk ← Δq(xk, τk, gk, Hk, dk)

τk‖dk‖2 then ξk ←
{

ξk−1 if ξk−1 ≤ ξ trialk

(1 − εξ )ξ
trial
k otherwise

(12)

for some εξ ∈ (0, 1), which, for one thing, ensures ξk ≤ ξ trialk . The last component
in the kth iteration is to set the stepsize, the magnitude of which is controlled by a
prescribed sequence {βk} ⊂ (0, 1], which is employed in the following projection
interval that is used in the stepsize computation:

Projk(·) := Proj

(
·
∣∣∣∣
[

βkξkτk

τk L + Γ
,

βkξkτk

τk L + Γ
+ θβ2

k

])
,

where Proj(· | B) represents the projection operator onto the interval B ⊂ R. As in
other stochastic-gradient-based methods, the convergence properties of the method
depend on properties of {βk}, which in many analyses is considered to be a constant
or diminishing sequence. We establish our complexity result for the case of constant
{βk} with βk = O(1/

√
kmax + 1) for all k ∈ [kmax].
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Overall, the algorithm that we consider is stated as Algorithm 1. The only changes
from Algorithm 3.1 in [2] are the fixed iteration limit (kmax) and the concluding step
for producing the return value (xk∗ ). This method of sampling k∗ to produce the return
value is consistent with other approaches in the literature on complexity analyses for
algorithms for solving nonconvex optimization problems; see, e.g., [14]. It amounts to
uniform sampling over the iterates when constant {βk} is considered, as in our analysis.
Finally, we remark that Algorithm 1 presumes knowledge of Lipschitz constants for
the objective and constraint gradients, although in practice one might only estimate
these values using standard procedures [12].

Algorithm 1 Stochastic SQP Algorithm
Require: x0 ∈ R

n ; kmax ∈ N; τ−1 ∈ R>0; ετ ∈ (0, 1); εξ ∈ (0, 1);σ ∈ (0, 1); ξ−1 ∈ R>0; {βk } ⊂ (0, 1];
θ ∈ R≥0; L ∈ (0, ∞), a Lipschitz constant for ∇ f ; Γ ∈ [∑m

i=1 γi , ∞), where γi ∈ (0, ∞) is a
Lipschitz constant for ∇ci for all i ∈ [m]

1: for all k ∈ [kmax] do
2: Compute (dk , yk ) as the solution of (7)
3: if dk = 0 then
4: Set τ trialk ← ∞, τk ← τk−1, ξ

trial
k ← ∞, and ξk ← ξk−1

5: Set α̂k,init ← 1, α̃k,init ← 1, and αk ← 1
6: else (if dk �= 0)
7: Set τ trialk by (10) and τk by (11)

8: Set ξ trialk and ξk by (12)
9: Set

α̂k,init ← βkΔq(xk ,τk ,gk ,Hk ,dk )
(τk L+Γ )‖dk‖22

and α̃k,init ← α̂k,init − 4‖ck‖1
(τk L+Γ )‖dk‖22

10: Set α̂k ← Projk (̂αk,init) and α̃k ← Projk (̃αk,init), then

αk ←

⎧⎪⎨
⎪⎩

α̂k if α̂k < 1

1 if α̃k ≤ 1 ≤ α̂k

α̃k if α̃k > 1

11: end if
12: Set xk+1 ← xk + αkdk
13: end for
14: Sample k∗ ∈ [kmax], where P[k∗ = k] = βk∑kmax

k=0 βk
for all k ∈ [kmax], then return xk∗

4 Complexity analysis

We begin our complexity analysis by describing the algorithm as a stochastic process
(Sect. 4.1), then formalizing the assumptions that we make about the stochastic gradi-
ent estimates (Sect. 4.2).We then state, in some cases in a slightlymodified form, some
key lemmas from [2] that are needed for our analysis (Sect. 4.3). Our generic com-
plexity result, which has been outlined in Sect. 2, is then stated and proved (Sect. 4.4).
Consequences and extensions of our generic complexity result are then discussed for
some special cases of distributions for the stochastic gradient estimates for which our
required assumptions hold with high probability (Sect. 4.5). Finally, we conclude this
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section by outlining a form of our generic complexity result that relaxes one of our
minor simplifying assumptions (Sect. 4.6).

Similarly as for the convergence analysis in [2], our complexity analysis makes
use of orthogonal decompositions of the search directions computed by the algorithm;
in particular, for all k ∈ N, we express dk = uk + vk , where uk ∈ Null(Jk) and
vk ∈ Range(J�

k ). We note here that conditioned on the algorithm having reached xk at
iteration k, the normal component vk is deterministic, depending only on the constraint
value ck and the Jacobian Jk .

In addition to the quantities that are computed explicitly inAlgorithm1, our analysis
also refers to the quantities that would have been computed in each iteration k ∈ N,
conditioned on the event that the algorithm has reached xk as the kth iterate, if the true
gradient ∇ f (xk) is used in place of the stochastic gradient gk . These quantities are
denoted by a “true” superscript. For example, in iteration k, the true search direction
and corresponding true Lagrange multiplier estimate are the solution of the linear
system

[
Hk J�

k

Jk 0

][
d truek

ytruek

]
= −

[
∇ f (xk)

ck

]
, (13)

which may be decomposed as d truek = utruek + vk , where utruek ∈ Null(Jk) and vk ∈
Range(J�

k ). Here, we write vk (without a superscript) since the normal component of
the search direction is defined in a manner that makes it independent of the objective
gradient (estimate). Similarly, the true value of the merit parameter that would have
been computed is denoted

τ
trial,true
k ←

⎧⎨
⎩

∞ if ∇ f (xk)�d truek + max{(d truek )�Hkd truek , 0} ≤ 0
(1−σ)‖ck‖1

∇ f (xk )�d truek +max{(d truek )�Hkd truek ,0} otherwise.

This definition of τ
trial,true
k guarantees that, for any τ ≤ τ

trial,true
k , one finds

Δq(xk, τ,∇ f (xk), Hk, d
true
k ) ≥ 1

2τ max{(d truek )�Hkd
true
k , 0} + σ‖ck‖1. (14)

4.1 Stochastic process

Henceforth, for the sake of formality, we shall refer in our analysis to the stochastic
process generated by Algorithm 1. Specifically, in terms of values that are computed
by the algorithm itself, we have the stochastic process

{(Xk,Gk, Dk,Yk, Tk, Ξk,Ak)},

where, for all k ∈ N, the random variables are: the algorithm iterate Xk , stochastic
gradient estimate Gk , search direction Dk , Lagrange multiplier estimate Yk , merit
parameter Tk , ratio parameter Ξk , and stepsize Ak . For all k ∈ N, a realization of the
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corresponding element of this process has been denoted (xk, gk, dk, yk, τk, ξk, αk).
Similarly, in terms of “true” values and step decomposition values that are not com-
puted by the algorithm, but are defined for the sake of our analysis, we have the
simultaneously generated process

{(Vk,Uk, D
true
k ,U true

k ,Y true
k , T trial,true

k )},

where, for all k ∈ N, the random variables are: the normal search direction com-
ponent Vk , the tangential search direction component Uk , the true search direction
Dtrue
k , the true tangential search direction component U true

k , the true Lagrange mul-

tiplier estimate Y true
k , and the true trial merit parameter T trial,true

k . For all k ∈
N, a realization of the corresponding element of this process has been denoted
(vk, uk, d truek , utruek , ytruek , τ

trial,true
k ). Finally, for the sake of tracking the number of

merit parameter updates that occur during runs of the algorithm, we define the stochas-
tic process {Sk}, where for all k ∈ N the random variable Sk represents the number
of merit parameter decreases up to the end of the kth iteration, i.e., the number of
iterations in which Tk < Tk−1. For all k ∈ N, a realization of Sk is denoted sk .

In any run, the behavior of Algorithm 1 is dictated entirely by the initial conditions
and the sequence of stochastic gradient estimates that are generated. Let Gk denote the
σ -algebra generated by the random variables {G0, . . . ,Gk−1}, a realization of which
(along with all initial conditions of the algorithm, including X0 = x0) determines the
realizations of

{X j }kj=1 and {(Dj , Y j , T j , Ξ j ,A j , Vj ,Uj , D
true
j ,U true

j ,Y true
j , T trial,true

j , S j )}k−1
j=0.

For completeness, let G0 = σ(x0). As a result, {Gk}k≥0 is a filtration.

4.2 Assumptions

Our analysis presumes certain goodbehavior of the sequences ofmerit and ratio param-
eters that are set adaptively by the algorithm. Formally, given (kmax, smax, τmin, ξmin) ∈
N ×N ×R>0 ×R>0, our main result characterizes the worst-case behavior of Algo-
rithm 1 conditioned on the event denoted as

E := E(kmax, smax, τmin, ξmin), (15)

which we define as the event such that

– Tk ≥ τmin > 0 for all k ∈ [kmax],
– T trial,true

k ≥ τmin > 0 for all k ∈ [kmax],
– Ξk = ξmin > 0 for all k ∈ [kmax], and
– |{k ∈ [kmax] : Tk < Tk−1}| ≤ smax.

Consideration of this event as a focus for proving a worst-case complexity result for
Algorithm 1 is justifiable for the following reasons.
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– The condition in E that the ratio parameter sequence {Ξk} is constant over all
iterations is not actually essential for our analysis; rather, it is made for the sake of
simplicity. Indeed, in Sect. 4.6, we present an extension of our main result to the
setting in which this parameter sequence is not constant. Observe that, as proved
in [2, Lemma 3.5], the sequence {Ξk} is bounded below by a positive real number
whose value is deterministic, i.e., it is independent of the sequence of stochastic
gradient estimates that are generated by the algorithm. Hence, for the sake of
simplicity, we assume for now that {Ξk} is constant and leave the statement of
the more complicated version of our main result to a subsection at the end of our
analysis.

– The conditions in E pertaining to the behavior of the merit parameter sequence are
not necessarily minor, since stochasticity in the gradient estimates can cause the
merit parameter to vanish, even in settings when themerit parameter would remain
bounded below in the deterministic algorithm. That said, in Sect. 4.5, we consider
a particular setting in which the distributions of the stochastic gradient estimates
are sub-Gaussian over any run of the algorithm, in which case we show that the
merit parameter remains bounded below with high probability, meaning that our
main worst-case complexity bound—which holds with high probability due to
the adaptivity of the merit parameter sequence—remains essentially unchanged
in this setting when we do not presume upfront that the merit parameter sequence
remains bounded above a positive real number.

– The condition in E pertaining to the existence of smax is not actually an additional
requirement beyond the existence of τmin in the event. After all, by the construction
ofAlgorithm1, it follows thatwhen themerit parameter is decreased, it is decreased
by at least a constant factor, from which it follows (under the existence of τmin)
that smax exists and satisfies

smax ≤ min

{
kmax + 1,

⌈
log(τmin/τ−1)

log(1 − ετ )

⌉}
. (16)

That said, for simplicity and generality in our analysis, we define smax as a quantity
that is decoupled from the above (conservative) inequality.

In summation, while our analysis requires the existence of a lower bound for the merit
parameter sequence, and correspondingly an upper bound on the number of potential
decreases in the merit parameter, it does not presume other convenient behavior of
the merit parameter sequence. For example, our analysis does not presume that the
merit parameter sequence eventually settles on a sufficiently small value in a number
of iterations that can be bounded in a convenient manner. Rather, our analysis respects
the stochastic, transient behavior of the merit parameter sequence that one finds in the
actual behavior of the algorithm in practice. We have strived to derive a complexity
bound that, under relatively loose assumptions in the highly stochastic regime,matches
(up to logarithmic factors) in a constrained setting the results that are considered state-
of-the-art for the unconstrained setting, even though the algorithm needs to discover
for itself, in an adaptivemanner, an appropriate balance between the objective function
and constraint violation measure. Given our focus on event E , we now introduce the
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filtration defined by

Fk := Gk ∩ E for all k ∈ N, (17)

where, for all k ∈ N, we use Gk ∩ E to denote the trace σ -algebra of event E on the σ -
algebra Gk , i.e. Gk ∩E = {G∩E : G ∈ Gk}. Here and throughout the remainder of the
paper, we let Pk[·] (respectively, Ek[·]) denote probability (respectively, expectation)
conditioned on Fk , which encodes information up to the start of iteration k ∈ N, i.e.,
we define

Pk[·] := P[·|Fk] and Ek[·] := E[·|Fk].

Our analysis assumes the following about the stochastic gradient estimates. Such
an assumption, namely, that conditioned on the filtration one has that the stochastic
gradient is unbiased and has bounded variance, is common in analyses of stochastic
optimization methods.

Assumption 3 There exists M ∈ R>0 such that, for all k ∈ [kmax], one finds

Ek[Gk] = ∇ f (Xk) and Ek[‖Gk − ∇ f (Xk)‖22] ≤ M . (18)

In addition, there exists Mτ ∈ R>0 such that, for all k ∈ [kmax], one finds

either Pk[∇ f (Xk)
�(Dk − Dtrue

k ) < 0, Tk < Tk−1] = 0 or (19a)

Ek[‖Gk − ∇ f (Xk)‖2|∇ f (Xk)
�(Dk − Dtrue

k ) < 0, Tk < Tk−1] ≤ Mτ . (19b)

Observe that (19b) follows from (18) if there exists p ∈ (0, 1] such that, for any
k ∈ [kmax] with Pk[∇ f (Xk)

�(Dk − Dtrue
k ) < 0, Tk < Tk−1] > 0, one finds

Pk[∇ f (Xk)
�(Dk − Dtrue

k ) < 0, Tk < Tk−1] ≥ p.

After all, in this setting with Zk representing the event that∇ f (Xk)
�(Dk −Dtrue

k ) < 0
and Tk < Tk−1, and Zc

k representing the complement of Zk , one finds along with
Jensen’s inequality that

√
M ≥ Ek[‖Gk − ∇ f (Xk)‖2]

= Pk[Zk] · Ek[‖Gk − ∇ f (Xk)‖2|Zk] + Pk[Zc
k ] · Ek[‖Gk − ∇ f (Xk)‖2|Zc

k ]
≥ p · Ek[‖Gk − ∇ f (Xk)‖2|Zk],

so (19b) holds with Mτ = √
M/p. Such a p exists, for example, when the objective

of (1) is a finite sum of N terms and each stochastic gradient estimate is computed as
a so-called mini-batch estimate through the uniform (random) selection of b indices,
in which case the above holds with p = b/N .

We make one additional assumption for our analysis, namely, the following.
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Assumption 4 There exists pτ ∈ (0, 1] such that, for all k ∈ [kmax], one finds

Pk[G�
k Dk + max{D�

k HkDk, 0}
≥ ∇ f (Xk)

�Dtrue
k + max{(Dtrue

k )�HkD
true
k , 0}] ≥ pτ .

Similar to [2, Proposition 3.16], Assumption 4 allows us to prove that, with high
probability, the number of iterations in which Tk > T trial,true

k is not too large. In [2,
Example 3.17], it was shown that the inequality in this assumption holds with pτ = 1

2
when, conditioned on having reached a realized iterate xk , the stochastic gradient Gk

has a Gaussian distribution. We show in Sect. 4.5 that this result can be extended to
other settings as well.

4.3 Properties of algorithm 1

In this section,we state keypreliminary results from [2] that are needed for our analysis.
It is important to note that these results are written in [2] in the context of conditioning,
for all k ∈ N, on a particular realization of the algorithmup to the beginning of iteration
k, which is different from our setting in which we condition onFk . That said, one finds
that these results from [2] carry over, with nearly the same line of arguments, to our
setting. After all, for any random variable X that is Fk-measurable and any random
variable Y with E[|Y |] < ∞ and E[|XY |] < ∞, [15, Theorem 4.1.14] states that

E[XY |Fk] = XE[Y |Fk]. (20)

This property, combined with the arguments found in [2], is sufficient to prove the
results of this section, so we state them without proof.

By [2, Lemma 2.10], there exists κuv ∈ R>0 such that, for all k ∈ [kmax], if
‖U true

k ‖2 ≥ κuv‖Vk‖2, then 1
2 (D

true
k )�HkDtrue

k ≥ 1
4ζ‖U true

k ‖2, where ζ is defined in
Assumption 2. Correspondingly, let us define

Ψk :=
{

‖U true
k ‖2 + ‖c(Xk)‖ if ‖U true

k ‖2 ≥ κuv‖Vk‖2
‖c(Xk)‖ otherwise.

The following Lemmas 1 and 2 show that there exists a common quantity that both
bounds from above the squared-norm of the true search direction plus the constraint
violation and bounds from below the reduction in the model of the merit function.
Essentially, the combination of these results shows that the search direction offers
sufficient decrease relative to its norm. Here, Lemma 1 is stated using a different
norm for c(Xk) than in [2, Lemma 2.11]. The result holds in the same manner (with
a different value for κΨ ) due to the norm equivalence between ‖ · ‖ and ‖ · ‖1 in R

m .
We state the result in this manner for consistency with the measure used in our final
results.
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Lemma 1 ([2, Lemma 2.11]) Let Assumptions 1 and 2 hold. Then, there exists κΨ ∈
R>0 such that, for all k ∈ [kmax], the true search direction and constraint violation
satisfy ‖Dtrue

k ‖2 + ‖c(Xk)‖1 ≤ (κΨ + 1)Ψk .

Lemma 2 ([2, Lemma 2.12]) Let Assumptions 1 and 2 hold. Then, there exists κq ∈
R>0 such that, for all k ∈ [kmax] and T ∈ R>0 with T ≤ T trial,true

k , one finds
Δq(Xk, T ,∇ f (Xk), Hk, Dtrue

k ) ≥ κqT Ψk .

The next lemma shows that the reduction in the merit function is at least a reduc-
tion in the model of the merit function defined with respect to the true gradient and
true search direction, except for two terms that may be attributed to the noise in
the stochastic gradient estimates. Observe that the requirement in the lemma that
βkΞkTk/(Tk L + Γ ) ∈ (0, 1] for all k ∈ [kmax] can be enforced in practice, despite
the fact that {Ξk} and {Tk} evolve randomly. After all, since {Ξk} and {Tk} are mono-
tonically nonincreasing, one need only choose β ∈ R>0 sufficiently small such that
βξ−1τ−1/(τ−1L + Γ ) ∈ (0, 1] to find that βk = β for all k ∈ [kmax] satisfies the
requirement.

Lemma 3 ([2, Lemma 3.7]) Let Assumptions 1 and 2 hold and suppose that
βkΞkTk/(Tk L + Γ ) ∈ (0, 1] for all k ∈ [kmax]. Then, for all k ∈ [kmax], one finds

φ(Xk + Ak Dk, Tk) − φ(Xk, Tk) ≤ −AkΔq(Xk, Tk,∇ f (Xk), Hk, D
true
k )

+ 1
2AkβkΔq(Xk, Tk,Gk, Hk, Dk)

+ AkTk∇ f (Xk)
�(Dk − Dtrue

k ).

(21)

The next two lemmas bound (in expectation) differences and products between
stochastic and true quantities. These bounds are critical in the analysis.

Lemma 4 Let Assumptions 1, 2, and 3 hold. Then, for all k ∈ [kmax], it follows
that Ek[Dk] = Dtrue

k , Ek[Uk] = Utrue
k , and Ek[Yk] = Y true

k . Moreover, there exists
κg ∈ R>0 and κd ∈ R>0 such that, for all k ∈ [kmax], one finds

‖∇ f (Xk)‖ ≤ κg,

‖Dtrue
k ‖ ≤ κd‖∇ f (Xk)‖ ≤ κdκg,

Ek[‖Dk − Dtrue
k ‖] ≤ κdEk[‖Gk − ∇ f (Xk)‖] ≤ κd

√
M, and

Ek[‖Dk − Dtrue
k ‖|∇ f (Xk)

�(Dk − Dtrue
k ) < 0, Tk < Tk−1] ≤ κdMτ .

Proof Except for the last inequality, the result follows from the assumptions and (the
proof of) [2, Lemma 3.8]. As for the last inequality, observe as in [2, Lemma 3.8] that
‖Dk − Dtrue

k ‖ ≤ κd‖Gk − ∇ f (Xk)‖, which with (19) gives

Ek[‖Dk − Dtrue
k ‖|∇ f (Xk)

�(Dk − Dtrue
k ) < 0, Tk < Tk−1]

≤ κdEk[‖Gk − ∇ f (Xk)‖|∇ f (Xk)
�(Dk − Dtrue

k ) < 0, Tk < Tk−1] ≤ κdMτ ,

as desired. ��
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Lemma 5 ([2, Lemma 3.9]) Let Assumptions 1, 2, and 3 hold. Then, for all k ∈ [kmax],
it follows that

∇ f (Xk)
�Dtrue

k ≥ Ek[G�
k Dk] ≥ ∇ f (Xk)

�Dtrue
k − ζ−1M

and Ek[D�
k HkDk] ≥ (Dtrue

k )�HkD
true
k .

4.4 Complexity result

In this section, we present our main complexity results.We derive our results in largely
the same manner as the global convergence result in [2], but with two major changes
that stem from the need to characterize the behavior of the algorithm in the context
of an adaptive merit parameter sequence. At a high level, the two modifications are as
follows:

1. We derive, in Lemma 6, an upper bound for the last term in (21), the derivation
of which is complicated by the fact that, conditioned on Fk , this term is the prod-
uct of three correlated random variables: Ak , Tk , and ∇ f (Xk)

�(Dk − Dtrue
k ). A

critical aspect of our derived bound is that we isolate a term for the event when
∇ f (Xk)

�(Dk − Dtrue
k ) < 0 and Tk < Tk−1, since this happens to be an event

that complicates subsequent aspects of our analysis. In Lemma 9, we prove a high-
probability bound on the sum of the probabilities of the occurrences of this event
over a run of the algorithm.

2. A critical aspect of the analysis in [2] for the deterministic setting is that one can
always tie the reduction in themodel of themerit function to a first-order stationarity
error measure (with respect to the constrained optimization problem) due to the
fact that T trial,true

k ≥ Tk for all k ∈ N. Unfortunately, however, this inequality is not
guaranteed to hold in the stochastic setting, which is problematic for our purposes
in this paper. To account for this issue, we define an auxiliary sequence { ˆTk} (not
generated by the algorithm) such that T̂k := min{Tk, T trial,true

k } for all k ∈ [kmax].
In Lemmas 7 and 8, we analyze behaviors of the algorithm with respect to this
auxiliary sequence, and in Lemma 9 we provide a high-probability bound on the
total number of iterations in which T trial,true

k < Tk may occur. (More precisely,
Lemma 9 considers a superset of the iterations in which this bound may occur,
which serves our purposes just as well.)

The first few results in this section consider properties of algorithmic quantities
conditioned on Fk . Conditioned on Fk , let us define three events:

– Ek,1, the event that ∇ f (Xk)
�(Dk − Dtrue

k ) ≥ 0;
– Ek,2, the event that ∇ f (Xk)

�(Dk − Dtrue
k ) < 0 and Tk = Tk−1; and

– Ek,3, the event that ∇ f (Xk)
�(Dk − Dtrue

k ) < 0 and Tk < Tk−1.

We now derive an upper bound on the final term in (21). In the following lemma,
we use, given k ∈ [kmax], the stepsize values

α<
min,k := βkξminτmin

τminL + Γ
, A=

min,k := βkξminTk−1

Tk−1L + Γ
,

and Amax,k := A=
min,k + θβ2

k .

(22)
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The first value here represents a lower bound on the smallest stepsize that may be
computed in the event that Tk < Tk−1, whereas the second value is the smallest
stepsize that may be computed in the event that Tk = Tk−1; it is easily verified that
α<
min,k < A=

min,k . Hence,Amax,k represents an upper bound on the largest stepsize that
may be computed.

Lemma 6 Suppose that Assumptions 1, 2, and 3 hold, and let κd ∈ R>0 be defined
by Lemma 4. Then, for all k ∈ [kmax], and with the stepsizes (α<

min,k,A=
min,k,Amax,k)

defined as in (22), one finds that

Ek[AkTk∇ f (Xk)
�(Dk − Dtrue

k )]
≤ (Amax,kTk−1 − α<

min,kτmin)κgκdMτPk[Ek,3] + θβ2
k Tk−1κgκd

√
M .

Proof Consider arbitrary k ∈ [kmax], and for ease of exposition, let us denote Ek, j =
Ek[∇ f (Xk)

�(Dk−Dtrue
k )|Ek, j ] for all j ∈ {1, 2, 3}. By the Law of Total Expectation,

the fact that 0 < τmin ≤ Tk ≤ Tk−1 under E , (20), and the definitions ofα<
min,k ,A=

min,k ,
and Amax,k , one finds that

Ek[AkTk∇ f (Xk)
�(Dk − Dtrue

k )]
= Ek[AkTk∇ f (Xk)

�(Dk − Dtrue
k )|Ek,1]Pk[Ek,1]

+ Ek[AkTk∇ f (Xk)
�(Dk − Dtrue

k )|Ek,2]Pk[Ek,2]
+ Ek[AkTk∇ f (Xk)

�(Dk − Dtrue
k )|Ek,3]Pk[Ek,3]

≤ Amax,kTk−1Ek,1Pk[Ek,1] + A=
min,kTk−1Ek,2Pk[Ek,2]

+ α<
min,kτminEk,3Pk[Ek,3].

Using this inequality, the Law of Total Expectation, (20), and Lemma 4 (Ek[Dk] =
Dtrue
k ), one obtains three upper bounds by adding and subtracting like terms:

Ek[AkTk∇ f (Xk)
�(Dk − Dtrue

k )]
≤ Amax,kTk−1Ek,1Pk[Ek,1] + Amax,kTk−1Ek,2Pk[Ek,2]

− θβ2
k Tk−1Ek,2Pk[Ek,2]

+ Amax,kTk−1Ek,3Pk[Ek,3] + (α<
min,kτmin − Amax,kTk−1)Ek,3Pk[Ek,3]

= −θβ2
k Tk−1Ek,2Pk[Ek,2] + (α<

min,kτmin − Amax,kTk−1)Ek,3Pk[Ek,3]
and Ek[AkTk∇ f (Xk)

�(Dk − Dtrue
k )]

≤ A=
min,kTk−1Ek,1Pk[Ek,1] + θβ2

k Tk−1Ek,1Pk[Ek,1]
+ A=

min,kTk−1Ek,2Pk[Ek,2]
+ A=

min,kTk−1Ek,3Pk[Ek,3] + (α<
min,kτmin − A=

min,kTk−1)Ek,3Pk[Ek,3]
= θβ2

k Tk−1Ek,1Pk[Ek,1] + (α<
min,kτmin − A=

min,kTk−1)Ek,3Pk[Ek,3]
and Ek[AkTk∇ f (Xk)

�(Dk − Dtrue
k )]

≤ α<
min,kτminEk,1Pk[Ek,1] + (Amax,kTk−1 − α<

min,kτmin)Ek,1Pk[Ek,1]
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+ α<
min,kτminEk,2Pk[Ek,2] + (A=

min,kTk−1 − α<
min,kτmin)Ek,2Pk[Ek,2]

+ α<
min,kτminEk,3Pk[Ek,3]

= (Amax,kTk−1 − α<
min,kτmin)Ek,1Pk[Ek,1]

+ (A=
min,kTk−1 − α<

min,kτmin)Ek,2Pk[Ek,2].

From averaging these upper bounds And the definition of Amax,k , one obtains

Ek[AkTk∇ f (Xk)
�(Dk − Dtrue

k )]
≤ 1

3 ((A
=
min,k + 2θβ2

k )Tk−1 − α<
min,kτmin)Ek,1Pk[Ek,1]

+ 1
3 ((A

=
min,k − θβ2

k )Tk−1 − α<
min,kτmin)Ek,2Pk[Ek,2]

+ 1
3 (2α

<
min,kτmin − (2A=

min,k + θβ2
k )Tk−1)Ek,3Pk[Ek,3]

= 1
3 ((A

=
min,k + 2θβ2

k )Tk−1 − α<
min,kτmin)(Ek,1Pk[Ek,1] + Ek,2Pk[Ek,2])

− θβ2
k Tk−1Ek,2Pk[Ek,2]

− 1
3 ((2A

=
min,k + θβ2

k )Tk−1 − 2α<
min,kτmin)Ek,3Pk[Ek,3]. (23)

This bound can be rewritten as follows. By the Law of Total Expectation, Lemma 4,
and ∇ f (Xk) ∈ Fk , one finds that

Ek,1Pk[Ek,1] + Ek,2Pk[Ek,2]
= Ek[∇ f (Xk)

�(Dk − Dtrue
k )] − Ek,3Pk[Ek,3] = −Ek,3Pk[Ek,3], (24)

and along with Lemma 4 one finds that

−Ek,2Pk[Ek,2] = −Ek[∇ f (Xk)
�(Dk − Dtrue

k )|Ek,2]Pk[Ek,2]
≤ Ek[‖∇ f (Xk)‖‖Dk − Dtrue

k ‖|Ek,2]Pk[Ek,2]
= Ek[‖∇ f (Xk)‖‖Dk − Dtrue

k ‖]
− Ek[‖∇ f (Xk)‖‖Dk − Dtrue

k ‖|Ek,1]Pk[Ek,1]
− Ek[‖∇ f (Xk)‖‖Dk − Dtrue

k ‖|Ek,3]Pk[Ek,3]
≤ Ek[‖∇ f (Xk)‖‖Dk − Dtrue

k ‖]
≤ κgEk[‖Dk − Dtrue

k ‖] ≤ κgκd
√
M . (25)

In addition, Lemma 4 also yields that

−Ek,3Pk[Ek,3] = −Ek[∇ f (Xk)
�(Dk − Dtrue

k )|Ek,3]Pk[Ek,3]
≤ Ek[‖∇ f (Xk)‖‖Dk − Dtrue

k ‖|Ek,3]Pk[Ek,3]
≤ κgκdMτPk[Ek,3]. (26)

Combining (23), (24), (25), and (26), the desired result follows. ��
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Now, for all k ∈ [kmax], let us define

T̂k := min{Tk, T trial,true
k }. (27)

Lemma 7 Suppose that Assumptions 1, 2, and 3 hold and let κd ∈ R>0 be defined by
Lemma 4. Then, for all k ∈ [kmax], one finds that

Ek[Δq(Xk, T̂k,Gk, Hk, Dk)]
≤ Ek[Δq(Xk, T̂k,∇ f (Xk), Hk, D

true
k )] + 1

2 (Tk−1 + τmin)ζ
−1M

+ (Tk−1 − τmin)(κd
√
M(2κg + √

M) + κHκ2
d (M + 3

2κ
2
g )).

Proof By the definition of Δq in (8), one has that

Ek[Δq(Xk, T̂k,Gk, Hk, Dk)]
= Ek[−T̂k(G�

k Dk + 1
2 max{D�

k HkDk, 0}) + ‖c(Xk)‖1]
= Ek[−T̂k(G�

k Dk − ∇ f (Xk)
�Dtrue

k + 1
2 max{D�

k HkDk, 0}
− 1

2 max{(Dtrue
k )�HkD

true
k , 0})]

+ Ek[−T̂k(∇ f (Xk)
�Dtrue

k + 1
2 max{(Dtrue

k )�HkD
true
k , 0}) + ‖c(Xk)‖1]

= Ek[T̂k(∇ f (Xk)
�Dtrue

k − G�
k Dk + 1

2 max{(Dtrue
k )�HkD

true
k , 0}

− 1
2 max{D�

k HkDk, 0})] + Ek[Δq(Xk, T̂k,∇ f (Xk), Hk, D
true
k )]. (28)

Now, for simplicity of notation, define

Qk := ∇ f (Xk)
�Dtrue

k − G�
k Dk

+ 1
2 max{(Dtrue

k )�HkD
true
k , 0} − 1

2 max{D�
k HkDk, 0}.

Let EQ denote the event that Qk ≥ 0 occurs and let Ec
Q denote the event that Qk < 0

occurs. By the Law of Total Expectation and (20), one has that

Ek[T̂k Qk] = Ek[T̂k Qk |EQ]Pk[EQ] + Ek[T̂k Qk |Ec
Q]Pk[Ec

Q]
≤ Tk−1Ek[Qk |EQ]Pk[EQ] + τminEk[Qk |Ec

Q]Pk[Ec
Q].

Therefore, by the Law of Total Probability, Lemma 5, (20), Jensen’s inequality, and
convexity of max{·, 0}, it follows that

Ek[T̂k Qk] ≤ Tk−1Ek[Qk |EQ]Pk[EQ] + Tk−1Ek[Qk |Ec
Q]Pk[Ec

Q]
+ (τmin − Tk−1)Ek[Qk |Ec

Q]Pk[Ec
Q]

= Tk−1Ek[Qk] + (τmin − Tk−1)Ek[Qk |Ec
Q]Pk[Ec

Q]
= Tk−1(∇ f (Xk)

�Dtrue
k − Ek[G�

k Dk]
+ 1

2 max{(Dtrue
k )�HkD

true
k , 0} − 1

2Ek[max{D�
k HkDk, 0}])
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+ (τmin − Tk−1)Ek[Qk |Ec
Q]Pk[Ec

Q]
≤ Tk−1ζ

−1M + (τmin − Tk−1)Ek[Qk |Ec
Q]Pk[Ec

Q],

and by similar reasoning one finds that

Ek[T̂k Qk] ≤ τminEk[Qk |EQ]Pk[EQ] + τminEk[Qk |Ec
Q]Pk[Ec

Q]
+ (Tk−1 − τmin)Ek[Qk |EQ]Pk[EQ]

= τminEk[Qk] + (Tk−1 − τmin)Ek[Qk |EQ]Pk[EQ]
≤ τminζ

−1M + (Tk−1 − τmin)Ek[Qk |EQ]Pk[EQ].

Averaging these two upper bounds, one finds that

Ek[T̂k Qk] ≤ 1
2 (Tk−1 + τmin)ζ

−1M + 1
2 (Tk−1 − τmin)Ek[Qk |EQ]Pk[EQ]

+ 1
2 (τmin − Tk−1)Ek[Qk |Ec

Q]Pk[Ec
Q]. (29)

Our goal now is to bound the latter two terms in (29). Toward this end, observe that by
the triangle and Cauchy-Schwarz inequalities, the proof of Lemma 4, Assumption 3,
(20), Jensen’s inequality, and concavity of the square root over R≥0,

Ek[|∇ f (Xk)
�Dtrue

k − G�
k Dk |]

≤ Ek[|∇ f (Xk)
�Dtrue

k − G�
k D

true
k |] + Ek[|G�

k D
true
k − G�

k Dk |]
≤ ‖Dtrue

k ‖Ek[‖∇ f (Xk) − Gk‖] + Ek[‖Gk‖‖Dtrue
k − Dk‖]

≤ κdκg

√
Ek[‖∇ f (Xk) − Gk‖2] + κdEk[‖Gk‖‖∇ f (Xk) − Gk‖]

≤ κdκg

√
Ek[‖∇ f (Xk) − Gk‖2]

+ κdEk[(‖Gk − ∇ f (Xk)‖ + ‖∇ f (Xk)‖)‖∇ f (Xk) − Gk‖]
≤ κdκg

√
M + κd(M + κg

√
M) = κd

√
M(2κg + √

M). (30)

In addition, by the Cauchy-Schwarz inequality, the proof of Lemma 4, Assumption 3,
(20), and since ‖a‖2 ≤ 2(‖a − b‖2 + ‖b‖2) for any (a, b) ∈ R

n × R
n ,

Ek

[∣∣∣ 12 max{(Dtrue
k )�HkD

true
k , 0} − 1

2 max{D�
k HkDk, 0}

∣∣∣]

≤ | 12 max{(Dtrue
k )�HkD

true
k , 0}| + Ek

[∣∣∣ 12 max{D�
k HkDk, 0}

∣∣∣]

≤ 1
2‖Hk‖‖Dtrue

k ‖2 + 1
2‖Hk‖Ek[‖Dk‖2]

≤ 1
2‖Hk‖‖Dtrue

k ‖2 + 1
2κ

2
d‖Hk‖Ek[‖Gk‖2]

≤ 1
2‖Hk‖‖Dtrue

k ‖2 + κ2
d‖Hk‖Ek[‖Gk − ∇ f (Xk)‖2 + ‖∇ f (Xk)‖2]

≤ 1
2κHκ2

dκ2
g + κHκ2

d (M + κ2
g ) = κHκ2

d (M + 3
2κ

2
g ). (31)
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By the Law of Total Expectation, (30), and (31), it follows that

Ek[Qk |EQ]Pk[EQ] = Ek[|Qk ||EQ]Pk[EQ]
= Ek[|Qk |] − Ek[|Qk ||Ec

Q]Pk[Ec
Q]

≤ κd
√
M(2κg + √

M) + κHκ2
d (M + 3

2κ
2
g ),

and by a similar argument, one finds that

−Ek[Qk |Ec
Q]Pk[Ec

Q] = Ek[|Qk ||Ec
Q]Pk[Ec

Q]
= Ek[|Qk |] − Ek[|Qk ||EQ]Pk[EQ]
≤ κd

√
M(2κg + √

M) + κHκ2
d

(
M + 3

2κ
2
g

)
.

The conclusion follows by combining these equations, (28), and (29). ��
Our next lemma bounds differences between expected reductions in the model of

the merit function that account for cases when T̂k < Tk .
Lemma 8 Let Assumptions 1, 2, and 3 hold and let κd ∈ R>0 be defined by Lemma 4.
Then, for all k ∈ [kmax], with (α<

min,k,A=
min,k,Amax,k) defined as in (22) and T̂k defined

in (27), one finds that

Ek[AkΔq(Xk, T̂k,∇ f (Xk), Hk, D
true
k )] − Ek[AkΔq(Xk, Tk,∇ f (Xk), Hk, D

true
k )]

≤ (Amax,kTk−1 − α<
min,kτmin)κdκ

2
g (1 + 1

2κHκd)

and

Ek[AkΔq(Xk, Tk,Gk, Hk, Dk)] − Ek[AkΔq(Xk, T̂k,Gk, Hk, Dk)]
≤ (Amax,kTk−1 − α<

min,kτmin)κd(2 + κHκd)(M + κ2
g ).

Proof Under the stated assumptions and definitions, one finds that

Ak(Tk − T̂k) = AkTk − Ak T̂k ≤ Amax,kTk−1 − α<
min,kτmin.

Hence, under the stated assumptions, it follows from the stated lemma and definitions,
along with the definition of Δq in (8) and equation (20), that

Ek[AkΔq(Xk, T̂k,∇ f (Xk), Hk, D
true
k )] − Ek[AkΔq(Xk, Tk,∇ f (Xk), Hk, D

true
k )]

= Ek[Ak(Tk − T̂k)(∇ f (Xk)
�Dtrue

k + 1
2 max{(Dtrue

k )�HkD
true
k , 0})]

≤ (Amax,kTk−1 − α<
min,kτmin)|∇ f (Xk)

�Dtrue
k + 1

2 max{(Dtrue
k )�HkD

true
k , 0}|

≤ (Amax,kTk−1 − α<
min,kτmin)(κdκ

2
g + 1

2κHκ2
dκ2

g ),

and, along with ‖a‖2 ≤ 2(‖a − b‖2 + ‖b‖2) for any (a, b) ∈ R
n × R

n , one finds

Ek[AkΔq(Xk, Tk,Gk, Hk, Dk)] − Ek[AkΔq(Xk, T̂k,Gk, Hk, Dk)]
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= Ek[Ak(T̂k − Tk)(G�
k Dk + 1

2 max{D�
k HkDk, 0})]

≤ (Amax,kTk−1 − α<
min,kτmin)Ek[|G�

k Dk + 1
2 max{D�

k HkDk, 0}|]
≤ (Amax,kTk−1 − α<

min,kτmin)(κd + 1
2κ

2
dκH )Ek[‖Gk‖2]

≤ (Amax,kTk−1 − α<
min,kτmin)(κd + 1

2κ
2
dκH )(2(M + κ2

g )),

which together are the desired conclusions. ��
Our next lemma is a critical element of our analysis. For any s ∈ N and δ ∈ (0, 1),

let

δ̂ := δ∑max{smax−1,0}
j=0

(kmax
j

) (32)

and

�(s, δ̂) := s + log(1/δ̂) +
√
log(1/δ̂)2 + 2s log(1/δ̂). (33)

This lemma provides a bound on two quantities with high probability, the first of
which is the sum of the probabilities of the occurrences of event Ek,3 over the run of
the algorithm.

The following lemma also provides a bound on the cardinality of the random index
set,

Kτ :=
{
k ∈ [kmax] : T trial,true

k < Tk−1

}
. (34)

By the manner in which {Tk}, {T trial,true
k }, and {T̂k} are defined, this set is always a

superset of the iterations in which T̂k < Tk ; hence, by bounding the cardinality of
(34), one bounds the cardinality of the set of iterations in which T̂k < Tk , which is
needed for our main theorem. The reason that we consider the set Kτ in (34) is the
fact that the event T trial,true

k < Tk−1 and its complement are members of Fk ; in other
words, the occurrence of the event defined by this inequality does not depend on Gk .

Lemma 9 Suppose Assumptions 1, 2, and 3 hold. Then, for any δ ∈ (0, 1),

P

[
kmax∑
k=0

Pk[Ek,3] ≤ �(smax, δ̂) + 1

∣∣∣∣E
]

≥ 1 − δ. (35)

In addition, suppose Assumption 4 holds as well. Then, for any δ ∈ (0, 1), (35) holds
and

P

[
|Kτ | ≤

⌈
�(smax, δ̂) + 1

pτ

⌉ ∣∣∣∣E
]

≥ 1 − δ. (36)
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Proof This result is proved in Appendix B. ��
Our proof of Lemma 9 uses a novel tree structure for analyzing the behavior of

the adaptive merit parameter sequence in the context of an algorithm for solving
constrained stochastic optimization problems; see also [1, Appendix B] for the use of
such a tree structure in a different context. Startingwith the initialization at a root node,
each subsequent level of the tree captures different sets of realizations of the algorithm
in terms of the number of decreases of the merit parameter and the probability that the
parameterwill be decreased further in the next iteration. The leaves of the tree represent
either bad situations when the sum of the probabilities that the merit parameter could
decrease exceeds a critical threshold (defined with respect to the function � defined
in (33)) or good situations in which this sum remains below the threshold and the
maximum number of merit parameter decreases has occurred and/or the iteration limit
has been reached. Essentially, in this manner, bad situations are when the algorithm
repeatedly has a high probability of decreasing the merit parameter, but does not do so
a sufficient number of times. The proof of Lemma 9 ultimately relies on applications
of Chernoff’s bound—employed with respect to independent random variables that
are defined carefully with respect to the non-independent random variables in the
stochastic process defined by the algorithm—to show that the probability is small that
the algorithm ends at a bad leaf node.

We are now prepared to prove a convergence rate result.

Theorem 2 Suppose Assumptions 1, 2, 3, and 4 hold, let smax ∈ N \ {0}, let κd ∈ R>0
be defined by Lemma 4, define

Amin := ξminτmin

τminL + Γ
and Amax := ξ−1τ−1

τ−1L + Γ
,

suppose that βk = β for all k ∈ [kmax] where

β := γ√
kmax + 1

for some γ ∈
(
0,

min{1, Amin}
Amax + θ

]
, (37)

define

M := 1
4 (Amax + θβ)(τ−1 + τmin)ζ

−1M

+ 1
2 (Amax + θβ)(τ−1 − τmin)(κd

√
M(2κg + √

M) + κHκ2
d (M + 3

2κ
2
g ))

+ θτ−1κgκd
√
M

κE3 := ((Amax + θβ)τ−1 − Aminτmin)κgκdMτ ,

κΔq,1 := ((Amax + θβ)τ−1 − Aminτmin)κdκ
2
g (1 + 1

2κHκd) and

κΔq,2 := ((Amax + θβ)τ−1 − Aminτmin)κd(1 + 1
2κHκd)(M + κ2

g ),

and, for all k ∈ [kmax], let T̂k be defined as in (27). Then, for any δ ∈ (0, 1), it follows
with K ∗ having a discrete uniform distribution over [kmax] and δ̂ and � defined as in
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(32) and (33) that, with probability at least 1 − δ,

E[Δq(XK ∗ , T̂K ∗ ,∇ f (XK ∗), HK ∗ , Dtrue
K ∗ )|E]

≤ 2

(
τ−1( f0 − fmin) + ‖c0‖1 + Mγ 2 + κE3γ (�(smax, δ̂) + 1)/

√
kmax + 1

Aminγ
√
kmax + 1

)

+ 2(κΔq,1γ + κΔq,2γ
2/

√
kmax + 1)

Aminγ (kmax + 1)

⌈
�(smax, δ̂) + 1

pτ

⌉
. (38)

Proof First, consider arbitrary k ∈ [kmax]. By Lemmas 3 and 6 and equation (20), one
has that

Ek[φ(Xk + Ak Dk, Tk)] − Ek[φ(Xk, Tk)]
≤ Ek[−AkΔq(Xk, Tk,∇ f (Xk), Hk, D

true
k ) + 1

2AkβΔq(Xk, Tk,Gk, Hk, Dk)

+ AkTk∇ f (Xk)
�(Dk − Dtrue

k )]
≤ Ek[−AkΔq(Xk, Tk,∇ f (Xk), Hk, D

true
k ) + 1

2AkβΔq(Xk, Tk,Gk, Hk, Dk)]
+ (Amax,kTk−1 − α<

min,kτmin)κgκdMτPk[Ek,3] + θβ2Tk−1κgκd
√
M . (39)

Our next aim is to prove that, roughly speaking, one in fact finds that

Ek[φ(Xk + Ak Dk, Tk)] − Ek[φ(Xk, Tk)]
≤ − 1

2 AminβEk[Δq(Xk, T̂k,∇ f (Xk), Hk, D
true
k )] + “noise.” (40)

Such a bound does not follow directly from (39) since the first term on the right-hand
side in (39) involves a model reduction with respect to Tk (which cannot be tied to
a stationarity measure), whereas the first term on the right-hand side of the bound in
(40) involves a model reduction with respect to T̂k (which can be tied to a stationarity
measure). Toward the aim of proving a bound of the form in (40), first observe that it
follows with Lemma 7 that

Ek[−AkΔq(Xk, T̂k,∇ f (Xk), Hk, D
true
k ) + 1

2AkβΔq(Xk, T̂k,Gk, Hk, Dk)]
+ (Amax,kTk−1 − α<

min,kτmin)κgκdMτPk[Ek,3] + θβ2Tk−1κgκd
√
M

≤ −AminβEk[Δq(Xk, T̂k,∇ f (Xk), Hk, D
true
k )]

+ 1
2 (Amaxβ + θβ2)βEk[Δq(Xk, T̂k,Gk, Hk, Dk)]

+ ((Amaxβ + θβ2)Tk−1 − Aminβτmin)κgκdMτPk[Ek,3] + θβ2Tk−1κgκd
√
M

≤ −(Amin − 1
2 (Amax + θβ)β)βEk[Δq(Xk, T̂k,∇ f (Xk), Hk, D

true
k )]

+ 1
4 (Amax + θβ)β2(Tk−1 + τmin)ζ

−1M

+ 1
2 (Amax + θβ)β2(Tk−1 − τmin)(κd

√
M(2κg + √

M) + κHκ2
d (M + 3

2κ
2
g ))

+ ((Amax + θβ)Tk−1 − Aminτmin)βκgκdMτPk[Ek,3] + θβ2Tk−1κgκd
√
M
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≤ − 1
2 AminβEk[Δq(Xk, T̂k,∇ f (Xk), Hk, D

true
k )]

+ κE3βPk[Ek,3] + Mβ2, (41)

where the final inequality follows due to the fact that (Amax + θβ)β ≤ Amin holds by
the definitions of β, γ , Amin, and Amax.

Let us nowcombine (39) and (41) to prove a boundof the form in (40) by considering
two complementary events. In particular, let Ek,τ be the event that T trial,true

k < Tk−1

and let Ec
k,τ be the event that T trial,true

k ≥ Tk−1. Observe that Ek,τ and Ec
k,τ only

depend on the history of the algorithm prior to iteration k and thus the σ -algebras
generated by Ek,τ and Ec

k,τ are included in Fk . Therefore, by [15, Theorem 4.1.13],
for any random variable Z , we have

Ek[Z |Ek,τ ] = Ek[Ek[Z ]|Ek,τ ] and Ek[Z |Ec
k,τ ] = Ek[Ek[Z ]|Ec

k,τ ]. (42)

Hence, we can use Lemma 7—and Lemma 8 as well, which is used below—even if
one conditions on the occurrence of Ek,τ or of Ec

k,τ . Let us now consider Ec
k,τ and

Ek,τ in turn. Conditioning on Ec
k,τ , one finds from (39), (41), (42), and the fact that

T trial,true
k ≥ Tk−1 ≥ Tk = T̂k (by (27)) in Ec

k,τ that

Ek[φ(Xk + Ak Dk, Tk)|Ec
k,τ ] − Ek[φ(Xk, Tk)|Ec

k,τ ]
= Ek[Ek[φ(Xk + Ak Dk, Tk) − φ(Xk, Tk)]|Ec

k,τ ]
≤ Ek[−AkΔq(Xk, Tk,∇ f (Xk), Hk, D

true
k )

+ 1
2AkβΔq(Xk, Tk,Gk, Hk, Dk)|Ec

k,τ ]
+ (Amax,kTk−1 − α<

min,kτmin)κgκdMτPk[Ek,3|Ec
k,τ ] + θβ2Tk−1κgκd

√
M

= Ek[−AkΔq(Xk, T̂k,∇ f (Xk), Hk, D
true
k )

+ 1
2AkβΔq(Xk, T̂k,Gk, Hk, Dk)|Ec

k,τ ]
+ (Amax,kTk−1 − α<

min,kτmin)κgκdMτPk[Ek,3|Ec
k,τ ] + θβ2Tk−1κgκd

√
M

≤ − 1
2 AminβEk[Δq(Xk, T̂k,∇ f (Xk), Hk, D

true
k )|Ec

k,τ ]
+ κE3βPk[Ek,3|Ec

k,τ ] + Mβ2.

On the other hand, one finds from (39), (41), (42), and Lemma 8 that

Ek[φ(Xk + Ak Dk, Tk)|Ek,τ ] − Ek[φ(Xk, Tk)|Ek,τ ]
≤ Ek[−AkΔq(Xk, Tk,∇ f (Xk), Hk, D

true
k )

+ 1
2AkβΔq(Xk, Tk,Gk, Hk, Dk)|Ek,τ ]

+ Ek[−AkΔq(Xk, T̂k,∇ f (Xk), Hk, D
true
k )

+ 1
2AkβΔq(Xk, T̂k,Gk, Hk, Dk)|Ek,τ ]

− Ek[−AkΔq(Xk, T̂k,∇ f (Xk), Hk, D
true
k )
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+ 1
2AkβΔq(Xk, T̂k,Gk, Hk, Dk)|Ek,τ ]

+ (Amax,kTk−1 − α<
min,kτmin)κgκdMτPk[Ek,3|Ek,τ ]

+ θβ2Tk−1κgκd
√
M

≤ Ek[−AkΔq(Xk, Tk,∇ f (Xk), Hk, D
true
k )

+ 1
2AkβΔq(Xk, Tk,Gk, Hk, Dk)|Ek,τ ]

− 1
2 AminβEk[Δq(Xk, T̂k,∇ f (Xk), Hk, D

true
k )|Ek,τ ]

− Ek[−AkΔq(Xk, T̂k,∇ f (Xk), Hk, D
true
k )

+ 1
2AkβΔq(Xk, T̂k,Gk, Hk, Dk)|Ek,τ ]

+ κE3βPk[Ek,3|Ek,τ ] + Mβ2

≤ − 1
2 AminβEk[Δq(Xk, T̂k,∇ f (Xk), Hk, D

true
k )|Ek,τ ]

+ (Amax,kTk−1 − α<
min,kτmin)κdκ

2
g (1 + 1

2κHκd)

+ 1
2 (Amax,kTk−1 − α<

min,kτmin)κd(2 + κHκd)(M + κ2
g )β

+ κE3βPk[Ek,3|Ek,τ ] + Mβ2

≤ − 1
2 AminβEk[Δq(Xk, T̂k,∇ f (Xk), Hk, D

true
k )|Ek,τ ]

+ κE3βPk[Ek,3|Ek,τ ] + Mβ2 + κΔq,1β + κΔq,2β
2.

Hence, by the laws of total probability and expectation, one finds that

Ek[φ(Xk + Ak Dk, Tk)] − Ek[φ(Xk, Tk)]
= (Ek[φ(Xk + Ak Dk, Tk)|Ek,τ ] − Ek[φ(Xk, Tk)|Ek,τ ])Pk[Ek,τ ]

+ (Ek[φ(Xk + Ak Dk, Tk)|Ec
k,τ ] − Ek[φ(Xk, Tk)|Ec

k,τ ])Pk[Ec
k,τ ]

≤ − 1
2 AminβEk[Δq(Xk, T̂k,∇ f (Xk), Hk, D

true
k )]

+ κE3βPk[Ek,3] + Mβ2 + (κΔq,1β + κΔq,2β
2)Pk[Ek,τ ].

Summing this inequality for all k ∈ [kmax] yields

kmax∑
k=0

(Ek[φ(Xk + Ak Dk, Tk)] − Ek[φ(Xk, Tk)])

≤
kmax∑
k=0

(− 1
2 AminβEk[Δq(Xk, T̂k,∇ f (Xk), Hk, D

true
k )])

+
kmax∑
k=0

(κE3βPk[Ek,3] + (κΔq,1β + κΔq,2β
2)Pk[Ek,τ ]) + (kmax + 1)Mβ2.
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Next, by Lemma 9, it follows that, with probability at least 1 − δ, one finds

kmax∑
k=0

(Ek[φ(Xk + Ak Dk, Tk)] − Ek[φ(Xk, Tk)])

≤ − 1
2 Aminβ

kmax∑
k=0

Ek[Δq(Xk, T̂k,∇ f (Xk), Hk, D
true
k )] + κE3β(�(smax, δ̂) + 1)

+ (κΔq,1β + κΔq,2β
2)

⌈
�(smax, δ̂) + 1

pτ

⌉
+ (kmax + 1)Mβ2.

Taking the total expectation (conditioned on E) of the above inequality,

kmax∑
k=0

(E[φ(Xk + Ak Dk, Tk)|E] − E[φ(Xk, Tk)|E])

≤ − 1
2 Aminβ

kmax∑
k=0

E[Δq(Xk, T̂k,∇ f (Xk), Hk, D
true
k )|E] + κE3β(�(smax, δ̂) + 1)

+ (κΔq,1β + κΔq,2β
2)

⌈
�(smax, δ̂) + 1

pτ

⌉
+ (kmax + 1)Mβ2. (43)

The left-hand side of this inequality satisfies

kmax∑
k=0

(E[φ(Xk + Ak Dk, Tk)|E] − E[φ(Xk, Tk)|E])

=
kmax∑
k=0

(
E[Tk( f (Xk + Ak Dk) − fmin) + ‖c(Xk + Ak Dk)‖1|E]

− E[Tk( f (Xk) − fmin) + ‖c(Xk)‖1|E]
)

. (44)

Since {Tk} is a non-decreasing sequence and f (Xk) ≥ fmin, one finds

−E[Tk( f (Xk) − fmin) + ‖c(Xk)‖1|E] ≥ −E[Tk−1( f (Xk) − fmin) + ‖c(Xk)‖1|E].

Thus, from (44), it follows that

kmax∑
k=0

(E[φ(Xk + Ak Dk, Tk)|E] − E[φ(Xk, Tk)|E])

≥ E[Tkmax( f (Xkmax+1) − fmin) + ‖c(Xkmax+1)‖1|E] − τ−1( f0 − fmin) − ‖c0‖1
≥ −τ−1( f0 − fmin) − ‖c0‖1.
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Combining this with (43) and dividing by Amin
∑kmax

k=0 β, one obtains that

β∑kmax
k=0 β

kmax∑
k=0

E[Δq(Xk, T̂k,∇ f (Xk), Hk, D
true
k )|E]

≤ 2

(
τ−1( f0 − fmin) + ‖c0‖1 + (kmax + 1)Mβ2 + κE3β(�(smax, δ̂) + 1)

Amin
∑kmax

k=0 β

)

+ 2(κΔq,1β + κΔq,2β
2)

Amin
∑kmax

k=0 β

⌈
�(smax, δ̂) + 1

pτ

⌉
.

Hence, by the definitions of K ∗ and β, the desired conclusion follows. ��
The following corollary translates the result of the preceding theorem to a result

pertaining to a stationary measure of (1); recall (2).

Corollary 1 Under the assumptions, conditions, and definitions of Theorem 2, it holds
with probability at least 1 − δ ∈ (0, 1) that

E

[
‖∇ f (XK ∗) + J (XK ∗)�Y true

K ∗ ‖2
κ2
H

+ ‖c(XK ∗)‖1
∣∣∣∣E
]

≤ 2(κΨ + 1)

(
τ−1( f0 − fmin) + ‖c0‖1 + Mγ 2

κqτminAminγ
√
kmax + 1

)

+ 2(κΨ + 1)

(
κE3γ (�(smax, δ̂) + 1)

κqτminAminγ
√
kmax + 1

)

+ (κΨ + 1)

(
2(κΔq,1γ + κΔq,2γ

2/
√
kmax + 1)

κqτminAminγ (kmax + 1)

)⌈
�(smax, δ̂) + 1

pτ

⌉
.

Hence, the complexity bound described in Sect.2.2 (see (5)) holds.

Proof The result follows by Lemma 1, Lemma 2, Theorem 2, and (13), which implies
that ‖∇ f (XK ∗) + J (XK ∗)�Y true

K ∗ ‖ = ‖Hk∗ Dtrue
K ∗ ‖ ≤ κH‖Dtrue

K ∗ ‖. The worst-case
complexity bound in Sect. 2.2 follows by combining this result with the definitions of
κE3 , κΔq,1, κΔq,2, and Lemma 21 in Appendix C. ��

This result, as well as that of Theorem 2, is proven under the assumption that
smax ≥ 1. When smax = 0, this result simplifies to a deterministic complexity bound
with the terms dependent on smax and δ omitted. Under the condition smax = 0, the
proof follows by noting that Pk[Ek,3] = Pk[Ek,τ ] = 0 for all k ∈ [kmax] (where Ek,τ

is defined in the proof of Theorem 2) along with a similar argument to the proof of
Theorem 2.

Again, we remark that this result, when viewed in terms of the squared norm of
the gradient of the Lagrangian, matches the worst-case complexity of the stochastic
gradient method for the unconstrained setting [14].
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4.5 Complexity result for symmetric sub-Gaussian distributions

In this section, we show that if each stochastic gradient is unbiased with a symmetric,
sub-Gaussian distribution and (for simplicity) the ratio parameter sequence remains
constant, then the conditions involved in Assumptions 3 and 4 and the event E in (15)
occur with high probability. Specifically, this is shown under Assumptions 1, 2, and
Assumption 5 below, where it is important to note that Assumption 5 conditions on
elements of Gk , not Fk . Overall, our analysis in this section shows that if one makes
Assumptions 1, 2, and Assumption 5, then one can be assured that the conditions
required forAssumptions 3 and 4 and the event E occurwith high probability, meaning
that if, in turn, one makes Assumptions 3 and 4 and assumes that E occurs, then our
main results of the prior subsection hold.

Assumption 5 There exists M ∈ R>0 such that, for all k ∈ [kmax],

E[Gk |Gk] = ∇ f (Xk)

and E[exp(‖Gk − ∇ f (Xk)‖2/M)|Gk] ≤ exp(1), (45)

and the random vectors Gk − ∇ f (Xk) and ∇ f (Xk) − Gk have equal distributions.
Finally, for all k ∈ [kmax], the ratio parameter Ξk satisfies Ξk = ξmin.

Our first lemma shows that, under Assumptions 1, 2, and 5, an inequality of the
form in Assumption 4 holds.

Lemma 10 Under Assumptions 1, 2, and 5, it follows for all k ∈ [kmax] that

P[G�
k Dk + max{D�

k Hk Dk , 0} ≥ ∇ f (Xk)
�Dtrue

k + max{(Dtrue
k )�HkD

true
k , 0}|Gk ] ≥ 1

2 .

Proof Consider arbitrary k ∈ [kmax]. Let Zk be a basis for the null space of J (Xk),
which under Assumption 1 is a matrix in R

n×(n−m). Then, let Wk ∈ R
n−m be such

that Uk = ZkWk , and let W true
k ∈ R

n−m be such that U true
k = ZkW true

k . By (7),
ZkWk = −Zk(Z�

k Hk Zk)
−1Z�

k (Gk + HkVk), so that

G�
k Dk + D�

k HkDk

= V�
k H1/2

k (I − H1/2
k Zk(Z

�
k Hk Zk)

−1Z�
k H1/2

k )(H−1/2
k Gk + H1/2

k Vk)

and similarly

∇ f (Xk)
�Dtrue

k + (Dtrue
k )�HkD

true
k

= V�
k H1/2

k (I − H1/2
k Zk(Z

�
k Hk Zk)

−1Z�
k H1/2

k )(H−1/2
k ∇ f (Xk) + H1/2

k Vk).

Hence, when conditioned on Gk , the random variables

G�
k Dk + max{D�

k HkDk, 0} − ∇ f (Xk)
�Dtrue

k − max{(Dtrue
k )�HkD

true
k , 0}

= V�
k H1/2

k (I − H1/2
k Zk(Z

�
k Hk Zk)

−1Z�
k H1/2

k )(H−1/2
k (Gk − ∇ f (Xk)))
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and

∇ f (Xk)
�Dtrue

k + max{(Dtrue
k )�HkD

true
k , 0} − G�

k Dk − max{D�
k HkDk, 0}

= V�
k H1/2

k (I − H1/2
k Zk(Z

�
k Hk Zk)

−1Z�
k H1/2

k )(H−1/2
k (∇ f (Xk) − Gk))

are equivalent in distribution by Assumption 5. Therefore,

P[G�
k Dk + max{D�

k HkDk, 0} − ∇ f (Xk)
�Dtrue

k

− max{(Dtrue
k )�HkD

true
k , 0} ≥ 0|Gk]

= P[∇ f (Xk)
�Dtrue

k + max{(Dtrue
k )�HkD

true
k , 0}

− G�
k Dk − max{D�

k HkDk, 0} ≥ 0|Gk]

and

1 = P[G�
k Dk + max{D�

k HkDk, 0} − ∇ f (Xk)
�Dtrue

k

− max{(Dtrue
k )�HkD

true
k , 0} ≥ 0|Gk]

+ P[∇ f (Xk)
�Dtrue

k + max{(Dtrue
k )�HkD

true
k , 0}

− G�
k Dk − max{D�

k HkDk, 0} ≥ 0|Gk]
− P[∇ f (Xk)

�Dtrue
k + max{(Dtrue

k )�HkD
true
k , 0}

− G�
k Dk − max{D�

k HkDk, 0} = 0|Gk],

which combined leads to the desired conclusion. ��
Next, we state a result based on well-known properties of sub-Gaussian random

variables. This lemma follows in the same manner as [21, Lemma 5].

Lemma 11 Suppose Assumption 5 holds. Then, for any δ ∈ (0, 1),

P

[
max

k∈[kmax]
‖Gk − ∇ f (Xk)‖ ≤

√
M

(
1 + log

(
kmax + 1

δ

))]
≥ 1 − δ.

We conclude by showing that, under Assumptions 1, 2, and 5, the conditions
involved in Assumption 3 and E occur with high probability.

Lemma 12 Suppose that Assumptions 1, 2, and 5 hold, let κv ∈ R>0 be such that
max{‖Vk‖2, ‖Vk‖22} ≤ κv‖c(Xk)‖2 for all k ∈ N (whose existence follows from
Assumption 1 and [2, Lemma 2.9]), let κc be an upper bound for ‖c(Xk)‖2 for all
k ∈ N (whose existence follows from Assumption 1), and define

κτmin := κv

(
κg +

√
M

(
1 + log

(
kmax + 1

δ

))
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+ κH

ζ

(√
M

(
1 + log

(
kmax + 1

δ

))
+ κg + ζ + κHκvκc

))
.

Then, for any δ ∈ (0, 1), it follows with probability at least 1 − δ that the conditions
in Assumption 3 and event E hold with

Mτ =
√
M

(
1 + log

(
kmax + 1

δ

))
, τmin = (1 − σ)(1 − ετ )

κτmin

,

and smax = min

⎧⎨
⎩kmax + 1,

⎡
⎢⎢⎢
log

(
τ−1κτmin

(1−σ)(1−ετ )

)

log
(

1
1−ετ

)
⎤
⎥⎥⎥
⎫⎬
⎭ .

Proof ByLemma 11, the event considered in that lemma holdswith probability at least
1 − δ. Hence, for the purposes of this proof, suppose that event holds. By Jensen’s
inequality, convexity of exp(·), and (45), it follows that

E[‖Gk − ∇ f (xk)‖2|Gk] ≤ M .

In addition, it follows from the event in Lemma 11 that (19) holds with Mτ as stated in
the lemma. This accounts for Assumption 3. Now consider event E . First, it follows
from the arguments of [2, Lemma2.15 and 2.16] combinedwith the event in Lemma11
that Tk ≥ τmin and T trial,true

k ≥ τmin for all k ∈ [kmax] for τmin as stated in the lemma.
Second, it follows from the stated value of τmin and (16) that |{k ∈ [kmax] : Tk <

Tk−1}| ≤ smax for smax as stated in the lemma. Finally, the desired behavior of {Ξk}
follows from Assumption 5. ��

4.6 Adaptive ratio parameter

In this section, we state a convergence rate result, which can be translated to a worst-
case complexity result, that relaxes the definition of the event E considered in prior
sections. In particular, we remove the assumption that Ξk = ξmin ∈ (0,∞) for all
k ∈ [kmax]. Importantly, it has been proved in [2, Lemma3.5] that, under our remaining
assumptions, there still exists ξmin ∈ (0,∞) such that Ξk ≥ ξmin for all k ∈ [kmax].
Therefore, by the manner in which the ratio parameter sequence is set, it follows that
there exists a maximum number of k ∈ [kmax] such that Ξk < Ξk−1. Denoting this
limit as rmax ∈ N, it follows (for the same reasons as the bound for smax in (16)) that

rmax ≤ min

{
kmax + 1,

⌈
log(ξmin/ξ−1)

log(1 − εξ )

⌉}
.

To formalize our new assumption, we define

Eξ := E(kmax, smax, rmax, τmin, ξmin)
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as the event such that

– Tk ≥ τmin > 0 for all k ∈ [kmax],
– T trial,true

k ≥ τmin > 0 for all k ∈ [kmax],
– Ξk ≥ ξmin > 0 for all k ∈ [kmax],
– |{k ∈ [kmax] : Tk < Tk−1}| ≤ smax, and
– |{k ∈ [kmax] : Ξk < Ξk−1}| ≤ rmax.

Since {Ξk} is bounded below deterministically, this event is identical to the event E
defined in (15), except that one may have ξ−1 > ξmin.

For the purposes of this section, redefining

Pk[·] := P[·|Eξ ,Gk] and Ek[·] := P[·|Eξ ,Gk],

our analysis of this case considers the following replacement of Assumption 3. Like
in Assumption 3, the latter part of the assumption only needs to involve probabilities
and expectations conditioned on the event that one or the other parameter decreases,
i.e., Tk < Tk−1 and/or Ξk < Ξk−1.

Assumption 6 There exists M ∈ R>0 such that, for all k ∈ [kmax],

Ek[Gk] = ∇ f (Xk) and Ek[‖Gk − ∇ f (Xk)‖22] ≤ M .

In addition, there exist (M1, M2, M3) ∈ R
3
>0 such that, for all k ∈ [kmax],

either Pk[∇ f (Xk)
�(Dk − Dtrue

k )) < 0, Tk < Tk−1, Ξk = Ξk−1] = 0

or Ek[‖Gk − ∇ f (Xk)‖|∇ f (Xk)
�(Dk − Dtrue

k )) < 0, Tk < Tk−1,

Ξk = Ξk−1] ≤ M1;
either Pk[∇ f (Xk)

�(Dk − Dtrue
k )) < 0, Tk = Tk−1, Ξk < Ξk−1] = 0

or Ek[‖Gk − ∇ f (Xk)‖|∇ f (Xk)
�(Dk − Dtrue

k )) < 0, Tk = Tk−1,

Ξk < Ξk−1] ≤ M2;
and either Pk[∇ f (Xk)

�(Dk − Dtrue
k )) < 0, Tk < Tk−1, Ξk < Ξk−1] = 0

or Ek[‖Gk − ∇ f (Xk)‖|∇ f (Xk)
�(Dk − Dtrue

k )) < 0, Tk < Tk−1,

Ξk < Ξk−1] ≤ M3.

We claim that this assumption holds with high probability under Assumption 5
(without the assumption thatΞk = ξmin for all k ∈ [kmax]), a result that can be derived
by modification of the techniques used in Sect. 4.5.

The complexity analysis for this case follows by essentially the same arguments as
those used to derive a complexity result under Assumption 3. A slight modification of
Lemma 6 is needed to include the three events related to the sign of ∇ f (xk)�(Dk −
Dtrue
k ) that appear in Assumption 6 (as opposed to the one in Assumption 3), which

yields a result in terms of the probabilities of these three events. Then, a slightly
modified Lemma 9 and the union bound can be applied two additional times to derive
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a complexity result. Since the analysis is a similar, but tedious extension of the results
in Sect. 4.4, we simply state the extension of (5) to this case without proof.

Theorem 3 Suppose that Assumptions 1, 2, 4, and 6 hold and consider arbitrary
δ ∈ (0, 1). Then, within kmax +1 iterations, it holds with probability at least 1−δ that
the algorithm generates xk∗ ∈ R

n corresponding to which there exists an associated
Lagrange multiplier ytruek∗ ∈ R

m such that

E[‖∇ fk∗ + J�
k∗ ytruek∗ ‖2 + ‖ck∗‖|Eξ ]

= O
(

τ−1( f0 − flow) + ‖c0‖1 + M√
kmax + 1

+ (τ−1ξ−1 − τminξmin)((smax + rmax) log(kmax) + log(1/δ))√
kmax + 1

)
.

5 Conclusion

Weproved aworst-case complexity bound (in terms of iterations, function evaluations,
and (stochastic) derivative evaluations) for the stochastic sequential quadratic opti-
mization method for solving optimization problems involving a stochastic objective
function and deterministic equality constraints proposed in [2]. While key to the prac-
tical performance of the algorithm, the adaptivity of the merit parameter introduced
a number of theoretical challenges to overcome. Under mostly standard assumptions,
we proved that, with high probability, a measure of primal-dual stationarity decays
at a rate of k−4 (ignoring log factors), which translates into a worst-case complexity
bound on par with the stochastic gradient method in the unconstrained setting.

While our analytical approach has been developed for an SQP method that uses an
�1-norm exact merit function, it may be applicable to a wide variety of algorithmic
frameworks for constrained stochastic optimization. For example, our approach may
be modified to apply to methods that adaptively update critical parameters at each
iteration, such as adaptive penalty methods [5, 6, 22], adaptive augmented Lagrangian
methods [11], adaptive barrier methods [27], and penalty-interior point methods [10].
In addition, many constrained optimization algorithms generate (often unconstrained)
subproblems defined by an auxiliary parameter sequence that is updated dynamically
based off of the solution to the previous subproblem. Algorithms of this type include
penalty methods, augmented Lagrangian methods, and interior point methods [28]. In
cases when the objective is stochastic, this auxiliary sequence would also be a random
process, in which case analyzing the behavior of such a process would be paramount
to proving a complexity result for such a method. We believe that the techniques that
we have devised for this paper are broadly applicable and foundational for performing
complexity analyses of deterministically constrained stochastic optimizationmethods.

Funding Funding was provided by National Science Foundation (Grant Nos. 2030859, CCF-2008484) and
Office of Naval Research (Grant No. N00014-21-1-2532).
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A Proof of Theorem 1 (Deterministic Algorithm Complexity)

In this appendix, we prove Theorem 1, which states a worst-case complexity bound
for Algorithm 2.1 of [2]. We refer to quantities defined and employed in the analysis
in [2]. In particular, in this appendix, for all k ∈ N, we suppose that gk = ∇ f (xk)
and dk = uk + vk with uk ∈ Null(Jk) and vk ∈ Range(J�

k ) is the search direction
computed by solving the SQP subproblem with gk = ∇ f (xk). As seen in [2], the
convergence properties of Algorithm 2.1 in that paper are driven by reductions in a
model of the merit function in each iteration. Our first lemma proves a useful lower
bound for such a reduction.

Lemma 13 Define (κuv, κH , κv, τmin, ζ, σ ) ∈ (0,∞)5 × (0, 1) as in [2] and let

κ̂ := min

{
1,

1

(1 + κuv)κvκ
2
H

}
and κ̃ := 1

4ζκuvκvκ̂. (46)

Then, for any ε ∈ (0, 1), if ‖gk + J�
k yk‖ > ε and/or

√‖ck‖1 > ε, then

Δq(xk, τk, gk, Hk, dk) ≥ min
{
σ κ̂, τminκ̃

}
ε2. (47)

Proof Consider arbitrary (ε, k) ∈ (0, 1) × N such that ‖gk + J�
k yk‖ > ε and/or√‖ck‖1 > ε. Let us consider two cases. First, suppose that ‖ck‖1 > κ̂ε2. Then, by [2,

equation (2.9)],

Δq(xk, τk, gk, Hk, dk) ≥ 1
2τk max{d�

k Hkdk, 0} + σ‖ck‖1 ≥ σ‖ck‖1 ≥ σ κ̂ε2,

which implies (47), as desired. Second, suppose that ‖ck‖1 ≤ κ̂ε2 ≤ ε2, which by
the definition of (ε, k) implies that ‖gk + J�

k yk‖ > ε. It follows from this fact that
‖dk‖ > ε/κH ; indeed, if ‖dk‖ ≤ ε/κH , then by [2, equation (2.6) andAssumption 2.4]
one would find

‖gk + J�
k yk‖ = ‖Hkdk‖ ≤ κH‖dk‖ ≤ ε,

which is a contradiction. Hence, ‖dk‖ > ε/κH , and by [2, Lemma 2.9], it follows that
‖vk‖2 ≤ κv‖ck‖ ≤ κv‖ck‖1 ≤ κvκ̂ε2, which combined shows that

ε2/κ2
H < ‖dk‖2 = ‖uk‖2 + ‖vk‖2 ≤ ‖uk‖2 + κvκ̂ε2.

From this fact and the definition of κ̂ , it follows that

‖uk‖2 >
ε2

κ2
H

− κvκ̂ε2 ≥ ε2

κ2
H

(
1 − 1

(1 + κuv)

)

= κuvε
2

(1 + κuv)κ
2
H

≥ κuvκvκ̂ε2 ≥ κuv‖vk‖2,
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which along with [2, Lemma 2.10] implies d�
k Hkdk ≥ 1

2ζ‖uk‖2 ≥ 1
2ζκuvκvκ̂ε2.

Thus,

Δq(xk, τk, gk, Hk, dk) ≥ 1
2τk max{d�

k Hkdk, 0} + σ‖ck‖1 ≥ 1
4τminζκuvκvκ̂ε2,

which implies (47), as desired. ��
We now prove Theorem 1, further details of which are provided in the statement

below.

Theorem 4 Define (τ−1, flow, αmin, τmin, η, σ ) ∈ (0,∞)4 × (0, 1)2 as in [2] and
(κ̂, κ̃) ∈ (0, 1] × (0,∞) as in (46). Then, for any ε ∈ (0, 1), Theorem 1 holds with
(4) given by

K ε :=
(

τ−1( f0 − flow) + ‖c0‖1
ηαmin min{σ κ̂, τminκ̃}

)
ε−2.

Proof To derive a contradiction, suppose (3) does not hold for all k ∈ {0, . . . , K ε}.
Then, along with Lemma 13 and [2, equation (2.10) and Lemma 2.17], it follows for
all such k that

φ(xk + αkdk, τk) − φ(xk, τk) ≤ −ηαkΔq(xk, τk, gk, Hk, dk)

≤ −ηαmin min{σ κ̂, τminκ̃}ε2.

By the definition of φ, this means for all such k that

τk fk+1 + ‖ck+1‖1 ≤ τk fk + ‖ck‖1 − ηαmin min{σ κ̂, τminκ̃}ε2.

Summing this inequality for all k ∈ {0, . . . , K ε}, one can deduce that

‖cK ε+1‖1 − ‖c0‖1 + τK ε
fK ε+1 − τ0 f0 +

K ε∑
k=1

fk(τk−1 − τk)

≤ −(K ε + 1)ηαmin min{σ κ̂, τminκ̃}ε2.

Since {τk} is monotonically nonincreasing, ‖cK ε+1‖1 ≥ 0, and fk ≥ flow for all
k ∈ N,

−‖c0‖1 + τK ε
flow − τ0 f0 + flow(τ0 − τK ε

) ≤ −(K ε + 1)ηαmin min{σ κ̂, τminκ̃}ε2.

Rearranging this inequality, one arrives at the conclusion that

K ε + 1 ≤
(

τ0( f0 − flow) + ‖c0‖1
ηαmin min{σ κ̂, τminκ̃}

)
ε−2 ≤

(
τ−1( f0 − flow) + ‖c0‖1
ηαmin min{σ κ̂, τminκ̃}

)
ε−2 ≡ K ε,

which is a contradiction. Therefore, one arrives at the desired conclusion that Algo-
rithm 2.1 yields an iterate satisfying (3) in at most K ε iterations. ��
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B Proofs of Lemma 9

In this appendix, we prove Lemma 9. Toward this end, we prove for any δ ∈ (0, 1)
with δ̂ as defined in (32) and �(smax, δ̂) as defined in (33), one finds

P

[
kmax∑
k=0

P[Tk < Tk−1|Fk] ≤ �(smax, δ̂) + 1

∣∣∣∣E
]

≥ 1 − δ. (48)

We build to this result, ultimately proved as Theorem 5, with a series of preliminary
lemmas.

As our first preliminary result, we state a particular form of Chernoff’s bound [31]
in the following lemma, which will prove instrumental in deriving (48).

Lemma 14 For any k ∈ N, let {Y0, . . . ,Yk} be independent Bernoulli random vari-
ables. Then, for any s ∈ N and δ̄ ∈ (0, 1), it follows that

μ :=
k∑
j=0

P[Y j = 1] ≥ �(s, δ̄) �⇒ P

⎡
⎣ k∑

j=0

Y j ≤ s

⎤
⎦ ≤ δ̄. (49)

Proof Suppose that μ ≥ �(s, δ̄). By the multiplicative form of Chernoff’s bound, it
follows for ρ := 1 − s/μ (which is in the interval (0, 1) by (49)) that

P

⎡
⎣ k∑

j=0

Y j ≤ s

⎤
⎦ ≤ e− 1

2μρ2 = e− 1
2μ(1−s/μ)2

.

Hence, to prove the result, all that remains is to show that e− 1
2μ(1−s/μ)2 ≤ δ̄, i.e., that

− 1
2μ(1 − s/μ)2 ≤ log(δ̄). Using log(δ̄) = − log(1/δ̄), this inequality is equivalent

to

0 ≤ 1
2μ(1 − s/μ)2 − log(1/δ̄) = 1

2μ(μ − s)2 − log(1/δ̄),

which holds if and only if μ2 − 2μ(s + log(1/δ̄)) + s2 ≥ 0. Viewing the left-hand
side of this inequality as a convex quadratic function inμ, one finds that the inequality
holds as long as μ is greater than or equal to the positive root of the quadratic, i.e.,

s + log(1/δ̄) +
√

(s + log(1/δ̄))2 − s2 = s + log(1/δ̄) +
√
log(1/δ̄)2 + 2s log(1/δ̄).

This holds since μ ≥ �(s, δ̄); hence, the result is proved. ��
Now, we turn our attention to proving (48). For any realization of a run of the

algorithm up to iteration k ∈ [kmax], let wk denote the number of times that the merit
parameter has been decreased up to the beginning of iteration k and let pk denote the
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probability that the merit parameter is decreased during iteration k. The signature of
a realization up to iteration k ∈ N is (p0, . . . , pk, w0, . . . , wk), which encodes all of
the pertinent information regarding the behavior of the merit parameter sequence up
to the start of iteration k.

One could imagine using all possible signatures to define a tree whereby each
node contains a subset of all realizations of the algorithm. To construct such tree,
one could first consider the root node, which could be denoted by Ñ (p0, w0), where
p0 is uniquely defined by the starting conditions of our algorithm and w0 = 0. All
realizations of our algorithm follow the same initialization, so p0 and w0 would be
in the signature of every realization. Now, one could define a node Ñ (p[k], w[k])
at depth k ∈ [kmax] (where the root node has a depth of 0) in the tree as the set
of all realizations of our algorithm for which the signature of the realization up to
iteration k is (p0, . . . , pk, w0, . . . , wk). One could then define the edges in the tree by
connecting nodes at adjacent levels, where node Ñ (p[k], w[k]) is connected to node
Ñ ( p̄[k], pk+1, w[k], wk+1) for any pk+1 ∈ [0, 1] and wk+1 ∈ {wk, wk + 1}.

Unfortunately, the construction described in the previous paragraph may lead to
nodes in the tree representing realizations with probability zero occurrence. In order
to remedy this, we instead construct a tree where the nodes contain all realizations
whose probability signatures fall within specified intervals. To define such intervals,
consider arbitrary B ∈ N \ {0} and let us restrict the sequence of values p[k] used to
define our nodes as those with

p[k] = (p0, . . . , pk) ∈ {0, 1
B , . . . , B−1

B

}k+1
. (50)

For p ∈ {0, 1/B, . . . , (B − 1)/B}, these define the open probability intervals ι(p)
given by

ι(p) =
{[

p, p + 1
B

)
if p ∈ {0, 1

B , . . . , B−2
B

}
,[ B−1

B , 1
]

if p = B−1
B .

Now, we can construct our tree as follows. As before, first consider the root node,
which we denote by N (p0, w0), where p0 ∈ {0, 1/B, . . . , (B − 1)/B} is uniquely
defined by the starting conditions of our algorithm so that P[T0 < τ−1|F0] ∈ ι(p0)
and w0 = 0. All realizations of our algorithm follow the same initialization, so with
p̄0 = P[T0 < τ−1|F0] one finds that p̄0 ∈ ι(p0) and w0 are in the signature of
every realization. We define a node N (p[k], w[k]) at depth k ∈ [kmax] as the set
of all realizations for which the signature of the realization at iteration k exactly
matches w[k] and has probabilities that fall within the intervals defined by p[k]; i.e.,
a realization with signature (p[k], w[k]) is a member of N (p[k], w[k]) if and only if,
for all j ∈ [k], one finds that p j ∈ ι(p j ). The edges in the tree connect nodes in
adjacent levels, where N (p[k], w[k]) is connected to N (p[k], pk+1, w[k], wk+1) for
any pk+1 ∈ {0, 1/B, . . . , (B − 1)/B} and wk+1 ∈ {wk, wk + 1}.
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Notationally, since the behavior of the algorithm up to iteration k ∈ N is determined
by the initial conditions and stochastic gradients in G[k−1], we write

G[k−1] ∈ N (p[k], w[k])

to denote the event that the signature of the algorithm up to k is a member of
N (p[k], w[k]). The initial condition, denoted for consistency as G[−1] ∈ N (p0, w0),
occurs with probability one. Based on the description above, the nodes of our tree
satisfy: For any node at a depth of k ≥ 2, the event G[k−1] ∈ N (p[k], w[k]) occurs if
and only if

P[Tk < Tk−1|Fk] ∈ ι(pk),

Sk−1 :=
k−1∑
i=0

I[Ti < Ti−1] = wk,

and G[k−2] ∈ N (p[k−1], w[k−1]),

(51)

where I[·] denotes the indicator function of any given event.
Let us now define certain important sets of nodes in the tree. First, let

Lgood :=
{
N (p[k], w[k]) :

(
k∑

i=0

pi ≤ �(smax, δ̂) + 1

)
∧ (wk = smax ∨ k = kmax)

}

be the set of nodes at which the sum of the elements of p[k] is sufficiently small and
either wk has reached smax or k has reached kmax. A node in this set is of interest
since, due to the iteration and/or merit parameter decrease limit having been reached,
the probability is zero that a certain “bad” event can occur over all realizations with
signatures that are members of the node; see Lemma 15 on page 38. Second, let

Lbad :=
{
N (p[k], w[k]) :

k∑
i=0

pi > �(smax, δ̂) + 1

}

be the nodes in the complement of Lgood at which the sum of the elements of p[k] has
exceeded the threshold �(smax, δ̂) + 1. A node in this set is of interest since, due to
this threshold having been exceeded, all realizations with signatures that are members
of this node correspond to poor behavior of the algorithm (and there is no need to
consider the behavior of the algorithm beyond this point). Going forward, we restrict
attention to the tree defined by the root node and all paths from the root node that
terminate at a node contained in Lgood ∪ Lbad. It is clear from this restriction and the
definitions of Lgood and Lbad that this tree is finite with the elements of Lgood ∪ Lbad
being leaves.

Let us now define relationships between nodes. The parent of a node is defined as

P(N (p[k], w[k])) = N (p[k−1], w[k−1]).
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On the other hand, the children of node N (p[k], w[k]) are defined as

C(N (p[k], w[k])) =
{

{N (p[k], pk+1, w[k], wk+1)} if N (p[k], w[k]) /∈ Lgood ∪ Lbad

∅ otherwise.

This ensures that paths down the tree terminate at nodes inLgood∪Lbad, making these
nodes the leaves of the tree. For convenience in the remainder of our discussions, let
C(∅) = ∅.

We define the height of node N (p[k], w[k]) as the length of the longest path from
N (p[k], w[k]) to a leaf node, i.e., the height is denoted as

h(N (p[k], w[k])) :=
(
min{ j ∈ N \ {0} : C j (N (p[k], w[k])) = ∅}

)
− 1,

where C j (N (p[k], w[k])) is shorthand for applying the mapping C(·) consecutively j
times. From this definition, h(N (p[k], w[k])) = 0 for all N (p[k], w[k]) ∈ Lgood∪Lbad.

Next, let us define two more sets of nodes that will be useful later. Let
Cdec(N (p[k], w[k])) denote the set of children of N (p[k], w[k]) such that the merit
parameter decreases and letCc

dec(N (p[k], w[k])) denote set of children of N (p[k], w[k])
such that it does not decrease, so

Cdec(N (p[k], w[k])) := {N (p[k], pk+1, w[k], wk+1) :
(N (p[k], pk+1, w[k], wk+1) ∈ C(N (p[k], w[k])))
∧ (wk+1 = wk + 1)} (52)

and

Cc
dec(N (p[k], w[k])) := {N (p[k], pk+1, w[k], wk+1) :

(N (p[k], pk+1, w[k], wk+1) ∈ C(N (p[k], w[k])))
∧ (wk+1 = wk)}. (53)

Finally, let us define the event Ebad,B as the event that for some j ∈ [kmax] one
finds

⎛
⎝ j∑

i=0

P[Ti < Ti−1|Fi ] > �(smax, δ̂) + kmax+1
B + 1

⎞
⎠ . (54)

With respect to our goal of proving (48), the event Ebad,B is of interest since it is the
event that the given probabilities accumulated up to iteration j ∈ [kmax] (and beyond)
exceed the threshold found in (48) plus a factor that is inversely proportional to B.

Let us now prove some properties of the leaf nodes.

Lemma 15 For any k ∈ [kmax] and (p[k], w[k]) with N (p[k], w[k]) ∈ Lgood, one finds

P[G[k−1] ∈ N (p[k], w[k]) ∧ Ebad,B |E] = 0.
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On the other hand, for all k ∈ [kmax] and (p[k], w[k]) with N (p[k], w[k]) ∈ Lbad, one
finds

P[G[k−1] ∈ N (p[k], w[k]) ∧ Ebad,B |E]

≤ δ̂

k∏
i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]
.

Proof Consider an arbitrary index k ∈ [kmax] and an arbitrary pair (p[k], w[k]) such
that N (p[k], w[k]) ∈ Lgood. By the definition of Lgood, it follows that

k∑
i=0

pi ≤ �(smax, δ̂) + 1. (55)

Since the maximum depth of a node is kmax and the gap between the discrete values
in (50) is 1

B , it follows along with (55) that

P

[
k∑

i=0

P[Ti < Ti−1|Fi ] > �(smax, δ̂) + kmax+1
B + 1

∣∣∣E,G[k−1] ∈ N (p[k], w[k])
]

≤ P

[
k∑

i=0

(
pi + 1

B

)
> �(smax, δ̂) + kmax+1

B + 1
∣∣∣E,G[k−1] ∈ N (p[k], w[k])

]

≤ P

[
�(smax, δ̂) + k+1

B + 1 > �(smax, δ̂) + kmax+1
B + 1

∣∣∣E,G[k−1] ∈ N (p[k], w[k])
]

= 0.

Therefore, for any j ∈ {1, . . . , k}, one finds from conditional probability that

P
[
54 holds ∧ G[ j−1] ∈ N (p[ j], w[ j])|E

]

= P

⎡
⎣ j∑

i=0

P[Ti < Ti−1|Fi ] > �(smax, δ̂) + kmax+1
B + 1

∣∣∣E,G[ j−1] ∈ N (p[ j], w[ j])

⎤
⎦

· P [G[ j−1] ∈ N (p[ j], w[ j])|E
] = 0.

In addition, (54) cannot hold for j = 0 since �(smax, δ̂)+1 > 1. Hence, along with the
conclusion above, it follows that Ebad,B does not occur when a signature up to iteration
j ∈ {1, . . . , k} falls into a node along any path from the root node to N (p[k], w[k]).
Now, by the definition of Lgood, at least one of wk = smax or k = kmax holds. Let us
consider each case in turn. If k = kmax, then it follows by the preceding arguments
that

P

[
kmax∑
i=0

P[Ti < Ti−1|Fi ] ≤ �(smax, δ̂) + kmax+1
B + 1

∣∣∣E,G[k−1] ∈ N (p[k], w[k])
]

= 1.
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Otherwise, if wk = smax, then it follows by the definition of the event E that P[Ti <

Ti−1|Fi ] = 0 for all i ∈ {k, . . . , kmax}, and therefore the equation above again follows.
Overall, it follows that P[G[k−1] ∈ N (p[k], w[k−1]) ∧ Ebad,B |E] = 0, as desired.

Next, we remark that

P[G[−1] ∈ N (p0, w0) ∧ Ebad,B |E] = 0

since

P[T0 < τ−1|F0] ≤ p0 + 1

B
< �(smax, δ̂) + kmax + 1

B
+ 1.

Thus, consider arbitrary k ∈ N \ {0} and (p[k], w[k]) with N (p[k], w[k]) ∈ Lbad. One
finds

P[G[k−1] ∈ N (p[k], w[k]) ∧ Ebad,B |E]
= P[Ebad,B |E,G[k−1] ∈ N (p[k], w[k])] · P[G[k−1] ∈ N (p[k], w[k])|E]
≤ P[G[k−1] ∈ N (p[k], w[k])|E].

Hence, using the initial condition that G[−1] ∈ N (p0, w0), it follows that

P[G[k−1] ∈ N (p[k], w[k]) ∧ Ebad,B |E]
≤ P[G[k−1] ∈ N (p[k], w[k])|E] = P

[
51 holds

∣∣E]
= P

[
P[Tk < Tk−1|Fk ] ∈ ι(pk)

∣∣E, Sk−1 = wk ,G[k−2] ∈ N (p[k−1], w[k−1])
]

· P [Sk−1 = wk ∧ G[k−2] ∈ N (p[k−1], w[k−1])
∣∣E]

= P
[
P[Tk < Tk−1|Fk ] ∈ ι(pk)

∣∣E, Sk−1 = wk ,G[k−2] ∈ N (p[k−1], w[k−1])
]

· P [Sk−1 = wk
∣∣E,G[k−2] ∈ N (p[k−1], w[k−1])

]
P
[
G[k−2] ∈ N (p[k−1], w[k−1])

∣∣E]
= P[G−1 ∈ N (p0, w0)]

·
k∏

i=1

(
P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]

· P [Si−1 = wi
∣∣E,G[i−2] ∈ N (p[i−1], w[i−1])

] )

=
k∏

i=1

(
P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]

· P [Si−1 = wi
∣∣E,G[i−2] ∈ N (p[i−1], w[i−1])

] )
. (56)

Our goal is to bound (56). Toward this end, define

Idec := {i ∈ {1, . . . , k} : wi = wi−1 + 1} and Ic
dec := {i ∈ {1, . . . , k} : wi = wi−1},

which by the definition of w[k] form a partition of {1, . . . , k}. For any i ∈ Idec,

P[Si−1 = wi |E,G[i−2] ∈ N (p[i−1], w[i−1])]
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= P[Ti−1 < Ti−2|E,G[i−2] ∈ N (p[i−1], w[i−1])] ≤ pi−1 + 1
B .

On the other hand, for any i ∈ Ic
dec,

P[Si−1 = wi |E,G[i−2] ∈ N (p[i−1], w[i−1])]
= P[Ti−1 = Ti−2|E,G[i−2] ∈ N (p[i−1], w[i−1])]
= 1 − P[Ti−1 < Ti−2|E,G[i−2] ∈ N (p[i−1], w[i−1])] ≤ 1 − pi−1.

Thus, it follows that the latter term in (56) satisfies

k∏
i=1

P[Si−1 = wi |E,G[i−2] ∈ N (p[i−1], w[i−1])]

≤
⎛
⎝ ∏

i∈Idec
(pi−1 + 1

B )

⎞
⎠
⎛
⎝ ∏

i∈Ic
dec

(1 − pi−1)

⎞
⎠ .

Now let us bound this term. By the definition of Lbad, one finds that

k∑
i=0

pi > �(smax, δ̂) + 1 �⇒
k−1∑
i=0

pi > �(smax, δ̂). (57)

In addition, by the definition of smax, it follows that wk ≤ smax for all k ∈ [kmax],
from which it follows that |Idec| ≤ smax. Now, let {Z0, . . . , Zk−1} be independent
Bernoulli random variables such that, for all i ∈ {0, . . . , k − 1}, one has

P[Zi = 1] =
{
pi + 1

B if i + 1 ∈ Idec
pi if i + 1 ∈ Ic

dec.

By (57), it follows from the definition of these random variables that
∑k−1

i=0 P[Zi =
1] ≥ �(smax, δ̂). Then, it follows by Lemma 14 and the preceding argument that

∏
i∈Idec

(
pi−1 + 1

B

) ∏
i∈Ic

dec

(1 − pi−1)

= P
[
(Zi−1 = 1 for all i ∈ Idec) ∧ (Zi−1 = 0for all i ∈ Ic

dec)
]

= P

[(
k−1∑
i=0

Zi ≤ smax

)
∧ (Zi−1 = 1 for all i ∈ Idec) ∧ (Zi−1 = 0 for all i ∈ Ic

dec)

]

≤ P

[
k−1∑
i=0

Zi ≤ smax

]
≤ δ̂.

Combining this with (56), the desired conclusion follows. ��

123



F. E. Curtis et al.

Next, we present a lemma about nodes in the sets defined in (52) and (53). The
lemma essentially states that a certain probability of interest, defined as the product of
probabilities along a path to a child node, can be reduced to a product of probabilities
to the child’s parent node by partitioning the childen into those at which a merit
parameter decrease has occurred and children at which a merit parameter decrease has
not occurred.

Lemma 16 For all k ∈ [kmax] and (p[k], w[k]), one finds that
∑

{(pk+1,wk+1):N (p[k+1],w[k+1])∈Cdec(N (p[k],w[k]))}
k+1∏
i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]

=
k∏

i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]

and, similarly, one finds that

∑
{(pk+1,wk+1):N (p[k+1],w[k+1])∈Cc

dec(N (p[k],w[k]))}
k+1∏
i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]

=
k∏

i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]
,

where by the definitions of Cdec and Cc
dec it follows that the value of wk+1 in the sum

in the former equation is one greater than the value of wk+1 in the sum in the latter
equation.

Proof One finds that

∑
{(pk+1,wk+1):N (p[k+1],w[k+1])∈Cdec(N (p[k],w[k]))}

k+1∏
i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]

=
k∏

i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]

·
∑

{(pk+1,wk+1):N (p[k+1],w[k+1])∈Cdec(N (p[k],w[k]))}
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P
[
P[Tk+1 < Tk |Fk+1] ∈ ι(pk+1)

∣∣E, Sk = wk+1,G[k−1] ∈ N (p[k], w[k])
]
.

The desired conclusion follows since, by the definition of Cdec(N (p[k], w[k])), all
elements in the latter sum have Sk = wk+1 = wk + 1, meaning that the sum is
exhaustive over all possible outcomes with the same conditions, and hence the sum
is 1.

The proof of the second desired conclusion follows in the same manner with Cc
dec

in place of Cdec and Sk = wk+1 = wk in place of Sk = wk+1 = wk + 1. ��
Next,wederive a result for certain nodes containing realizationswithwk = smax−1.

Lemma 17 For any k ∈ [kmax] and (p[k], w[k]) such that wk = smax − 1 and
N (p[k], w[k]) /∈ Lgood, it follows that

P[G[k−1] ∈ N (p[k], w[k]) ∧ Ebad,B |E]

≤ δ̂

k∏
i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]
.

(58)

Proof By the supposition that N (p[k], w[k]) /∈ Lgood, it follows that any (p[k], w[k])
with h(N (p[k], w[k])) = 0 has N (p[k], w[k]) ∈ Lbad, in which case the desired con-
clusion follows from Lemma 15. With this base case being established, we now prove
the result by induction. Suppose that the result holds for all (p[k], w[k]) such that
wk = smax − 1, N (p[k], w[k]) /∈ Lgood, and h(N (p[k], w[k])) ≤ j for some j ∈ N.
Our goal is to show that the same statement holds with j replaced by j+1. For this pur-
pose, consider arbitrary (p[k], w[k]) such that wk = smax − 1, N (p[k], w[k]) /∈ Lgood,
and h(N (p[k], w[k])) = j + 1. Observe that by the definition of the child operators C ,
Cdec, and Cc

dec, it follows that

P[G[k−1] ∈ N (p[k], w[k]) ∧ Ebad,B |E]
=

∑
{(pk+1,wk+1):N (p[k+1],w[k+1])∈C(N (p[k],w[k]))}

P[G[k] ∈ N (p[k+1], w[k+1]) ∧ Ebad,B |E]

=
∑

{(pk+1,wk+1):N (p[k+1],w[k+1])∈Cdec(N (p[k],w[k]))}
P[G[k] ∈ N (p[k+1], w[k+1]) ∧ Ebad,B |E]

+
∑

{(pk+1,wk+1):N (p[k+1],w[k+1])∈Cc
dec(N (p[k],w[k]))}

P[G[k] ∈ N (p[k+1], w[k+1]) ∧ Ebad,B |E].

Since wk = smax − 1, it follows from the definition of Cdec that for any (pk+1, wk+1)

with N (p[k+1], w[k+1]) ∈ Cdec(N (p[k], w[k])), one finds that wk+1 = wk +1 = smax.
By the definition of smax, this implies that P[Tk+1 < Tk |Fk+1] = 0, so pk+1 = 0.
In addition, since N (p[k], w[k]) /∈ Lbad since C(N (p[k], w[k])) �= ∅, it follows that∑k+1

i=0 pk+1 ≤ �(smax, δ̂) + 1, meaning N (p[k+1], w[k+1]) ∈ Lgood. Consequently,
from above and Lemma 15, one finds

P[G[k−1] ∈ N (p[k], w[k]) ∧ Ebad,B |E]
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=
∑

{(pk+1,wk+1):N (p[k+1],w[k+1])∈Cc
dec(N (p[k],w[k]))}

P[G[k] ∈ N (p[k+1], w[k+1]) ∧ Ebad,B |E].

Since h(N (p[k], w[k]) = j + 1, it follows that h(N (p[k+1], w[k+1])) ≤ j for any
(p[k+1], w[k+1]) with h(N (p[k+1], w[k+1])) ∈ Cc

dec(N (p[k], w[k])). Therefore, by the
induction hypothesis and the result of Lemma 16, it follows that

P[G[k−1] ∈ N (p[k], w[k]) ∧ Ebad,B |E]
=

∑
{(pk+1,wk+1):N (p[k+1],w[k+1])∈Cc

dec(N (p[k],w[k]))}

δ̂

k+1∏
i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]

≤ δ̂

k∏
i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]
,

which completes the proof. ��
Using the preceding lemma as a base case, we now perform induction on the

difference smax − wk to prove a similar result for arbitrary smax.

Lemma 18 For any k ∈ [kmax] and (p[k], w[k]) with N (p[k], w[k]) /∈ Lgood, it follows
that

P[G[k−1] ∈ N (p[k], w[k]) ∧ Ebad,B |E]

≤ δ̂ ·
min{smax−wk−1,h(N (p[k],w[k]))}∑

j=0

(
h(N (p[k], w[k]))

j

)

·
k∏

i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]
.

Proof For all (p[k], w[k]) such that N (p[k], w[k]) /∈ Lgood and h(N (p[k], w[k])) = 0, it
follows that N (p[k], w[k]) ∈ Lbad. The result holds in this case according to Lemma 15

since one finds that
∑min{smax−wk−1,h(N (p[k],w[k]))}

j=0

(h(N (p[k],w[k]))
j

) = (0
0

) = 1. On the
other hand, for all (p[k], w[k]) such that N (p[k], w[k]) /∈ Lgood and smax −wk = 1, the
result follows fromLemma17.Hence, to prove the remainder of the result by induction,
one may assume that it holds for all (p[k], w[k]) such that N (p[k], w[k]) /∈ Lgood,
h(N (p[k], w[k])) ≤ t for some t ∈ N, and smax−wk = r for some r ∈ N\{0}, and show
that it holds for all (p[k], w[k]) such that N (p[k], w[k]) /∈ Lgood, h(N (p[k], w[k])) =
t + 1, and smax − wk = r . (Notice that the base cases above show that the result holds
for t = 0 and any r ∈ N \ {0}, as well as for any t ∈ N and r = 1. Hence, one may
complete the induction over the index pairs by showing that if it holds for (t, r), then
it holds for (t + 1, r), as claimed above.)
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Consider arbitrary (p[k], w[k]) such that N (p[k], w[k]) /∈ Lgood, h(N (p[k], w[k])) =
t + 1, and smax − wk = r . By the definitions of C , Cdec, and Cc

dec, it follows that

P[G[k−1] ∈ N (p[k], w[k]) ∧ Ebad,B |E]
=

∑
{(p[k+1],w[k+1]):N (p[k+1],w[k+1])∈C(N (p[k],w[k]))}

P[G[k] ∈ N (p[k+1], w[k+1]) ∧ Ebad,B |E]

=
∑

{(p[k+1],w[k+1]):N (p[k+1],w[k+1])∈Cdec(N (p[k],w[k]))}
P[G[k] ∈ N (p[k+1], w[k+1]) ∧ Ebad,B |E]

+
∑

{(p[k+1],w[k+1]):N (p[k+1],w[k+1])∈Cc
dec(N (p[k],w[k]))}

P[G[k] ∈ N (p[k+1], w[k+1]) ∧ Ebad,B |E].

Further by the definition of Cdec, it follows that wk+1 = wk + 1 (thus smax − wk+1 =
r −1) for all terms in the former sum on the right-hand side, whereas by the definition
of Cc

dec it follows that wk+1 = wk (thus smax − wk+1 = r ) for all terms in the latter
sum on the right-hand side. Moreover, from h(N (p[k], w[k])) = t + 1, it follows
that h(N (p[k+1], w[k+1])) ≤ t for all terms on the right-hand side. Therefore, by the
induction hypothesis, it follows that

P[G[k−1] ∈ N (p[k], w[k]) ∧ Ebad,B |E]

≤
∑

{(p[k+1],w[k+1]):N (p[k+1],w[k+1])∈Cdec(N (p[k],w[k]))}
δ̂

min{r−2,t}∑
j=0

(
t

j

)

·
k+1∏
i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]

+
∑

{(p[k+1],w[k+1]):N (p[k+1],w[k+1])∈Cc
dec(N (p[k],w[k]))}

δ̂

min{r−1,t}∑
j=0

(
t

j

)

·
k+1∏
i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−2])
]
,

which by Lemma 16 implies that

P[G[k−1] ∈ N (p[k], w[k]) ∧ Ebad,B |E]

≤ δ̂

⎛
⎝min{r−2,t}∑

j=0

(
t

j

)
+

min{r−1,t}∑
j=0

(
t

j

)⎞⎠

·
k∏

i=1

P
[
P[Ti < Ti−1|Fi ] ∈ ι(pi )

∣∣E, Si−1 = wi ,G[i−2] ∈ N (p[i−1], w[i−1])
]
.

(59)
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To complete the proof, we need only consider two cases on the relationship between
t and r . First, if t ≤ r − 2, then Pascal’s rule implies that

min{r−2,t}∑
j=0

(
t

j

)
+

min{r−1,t}∑
j=0

(
t

j

)
= 2

t∑
j=0

(
t

j

)

=
(
t

t

)
+
(
t

0

)
+

t∑
j=1

((
t

j

)
+
(

t

j − 1

))

=
(
t + 1

t + 1

)
+
(
t + 1

0

)
+

t∑
j=1

(
t + 1

j

)

=
t+1∑
j=0

(
t + 1

j

)
=

h(Np[k],w[k] )∑
j=0

(
h(Np[k],w[k])

j

)
.

Since t ≤ r − 2, it follows that h(Np[k],w[k]) = t + 1 ≤ r − 1 = smax −wk − 1, which
combined with (59) proves the result in this case. Second, if t > r − 2, then similarly

min{r−2,t}∑
j=0

(
t

j

)
+

min{r−1,t}∑
j=0

(
t

j

)
=

r−2∑
j=0

(
t

j

)
+

r−1∑
j=0

(
t

j

)

=
(
t

0

)
+

r−1∑
j=1

((
t

j

)
+
(

t

j − 1

))

=
(
t + 1

0

)
+

r−1∑
j=1

(
t + 1

j

)

=
r−1∑
j=0

(
t + 1

j

)
=

smax−wk−1∑
j=0

(
h(Np[k],w[k])

j

)
.

Since t > r − 2, h(Np[k],w[k]) = t + 1 > r − 1 = smax − wk−1 − 1, which combined
with (59) proves the result for this case as well. ��

We now prove our first main result of this section.

Theorem 5 For any δ ∈ (0, 1) with δ̂ as defined in (32) and �(smax, δ̂) as defined in
(33), one finds that (48) holds.

Proof First, consider the case where smax = 0. Then, by the definition of smax,

P[Tk < Tk−1|Fk] = 0,

for all k = [kmax], so the result holds trivially.
Now, let smax ∈ N \ {0}. By construction of our tree and the definitions of Lgood

and Lbad, one finds that h(N (p0, w0)) ≤ kmax. In addition, by the definition of smax,
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smax − 1 < kmax, so min{smax − w0 − 1, h(N (p0, w0))} = smax − 1 ≥ 0. Consider
arbitrary B ∈ N \ {0} (see (54)). By Lemma 18 and (32),

P[Ebad,B |E] = P[G[−1] ∈ N (p0, w0) ∧ Ebad,B |E] ≤ δ̂

min{smax−1,kmax}∑
j=0

(
kmax

j

)
= δ.

Therefore, by the definition of Ebad,B (see (54)), it follows that

P

[
kmax∑
k=0

P[Tk < Tk−1|Fk] ≤ �(smax, δ̂) + kmax+1
B + 1

∣∣∣∣E
]

≥ 1 − δ.

Now, let us define the event Egood,B for B ∈ N\{0} as the event that

kmax∑
k=0

P[Tk < Tk−1|Fk] ≤ �(smax, δ̂) + kmax+1
B + 1.

One sees that Egood,B ⊇ Egood,B+1 for all such B. Therefore, by the properties of a
decreasing sequence of events (see, for example [31, Section 1.5]), it follows that

P

[
kmax∑
k=0

P[Tk < Tk−1|Fk] ≤ �(smax, δ̂) + 1

∣∣∣∣E
]

= P

[
lim
B→∞

(
kmax∑
k=0

P[Tk < Tk−1|Fk] ≤ �(smax, δ̂) + kmax + 1

B
+ 1

) ∣∣∣∣E
]

= lim
B→∞P

[
kmax∑
k=0

P[Tk < Tk−1|Fk] ≤ �(smax, δ̂) + kmax + 1

B
+ 1

∣∣∣∣E
]

≥ 1 − δ,

as desired. ��
Next, we present some preliminary results that are required to prove the second

statement of Lemma 9. Recall the random index set Kτ defined in (34). Our next
lemma shows a property about any iteration k ∈ [kmax] in which k ∈ Kτ .

Lemma 19 Let Assumption 4 hold. Then, one finds that

P[Tk < Tk−1|Fk, k ∈ Kτ ] ≥ pτ .

Proof In any iteration where T trial,true
k < Tk−1, it follows that T trial,true

k < ∞, so

T trial,true
k = (1 − σ)‖c(Xk)‖1

∇ f (Xk)�Dtrue
k + max{(Dtrue

k )�HkDtrue
k , 0}
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and thus

(1 − σ)‖c(Xk)‖1 < (∇ f (Xk)
�Dtrue

k + max{(Dtrue
k )�HkD

true
k , 0})Tk−1.

By the definition of Tk , if

G�
k Dk + max{D�

k HkDk, 0} ≥ ∇ f (Xk)
�Dtrue

k + max{(Dtrue
k )�HkD

true
k , 0}

in an iteration such that T trial,true
k < Tk−1, then

(1 − σ)‖c(Xk)‖1 < (G�
k Dk + max{D�

k HkDk, 0})Tk−1,

meaning that Tk < Tk−1. Observe that the event k ∈ Kτ only depends on the history
of the algorithm prior to iteration k and thus the σ -algebra generated by k ∈ Kτ is
included in Fk . Therefore, by [15, Theorem 4.1.13], for any random variable Z , we
have

Ek[Z |k ∈ Kτ ] = Ek[Ek[Z ]|k ∈ Kτ ].

Therefore, with 1(Ẽ) denoting the indicator of event Ẽ , it follows from Assumption 4
that

Pk[Tk < Tk−1|k ∈ Kτ ]
≥ Ek[1(G�

k Dk + max{D�
k HkDk, 0} ≥ ∇ f (Xk)

�Dtrue
k

+ max{(Dtrue
k )�HkD

true
k , 0})|k ∈ Kτ ]

= Ek[Ek[1(G�
k Dk + max{D�

k HkDk, 0} ≥ ∇ f (Xk)
�Dtrue

k

+ max{(Dtrue
k )�HkD

true
k , 0})]|k ∈ Kτ ]

= Ek[Pk[G�
k Dk + max{D�

k HkDk, 0} ≥ ∇ f (Xk)
�Dtrue

k

+ max{(Dtrue
k )�HkD

true
k , 0}]|k ∈ Kτ ]

≥ Ek[pτ |k ∈ Kτ ] = pτ ,

as desired. ��
The previous lemma guarantees that in any iteration in which T trial,true

k < Tk−1, the
probability is at least pτ that the merit parameter decreases. By the scheme for setting
Tk ,

Pk[T trial,true
k < Tk |T trial,true

k ≥ Tk−1] = 0, (60)

so onemust have T trial,true
k < Tk−1 in any iteration when T̂k < Tk . Thus, we can obtain

a bound on the number of iterations at which T trial,true
k < Tk by bounding the number

of iterations at which T trial,true
k < Tk−1. Now we prove a result relating |Kτ | to the

probabilities of decreasing the merit parameter over all iterations.
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Lemma 20 One finds that

kmax∑
k=0

Pk[Tk < Tk−1] ≥ |Kτ |pτ .

Proof By the law of total probability,

kmax∑
k=0

Pk[Tk < Tk−1]

=
kmax∑
k=0

Pk[Tk < Tk−1|k ∈ Kτ ]Pk[k ∈ Kτ ] + Pk[Tk < Tk−1|k ∈ Kc
τ ]Pk[k ∈ Kc

τ ]

≥
kmax∑
k=0

Pk[Tk < Tk−1|k ∈ Kτ ]Pk[k ∈ Kτ ].

Now, similar to the previous lemma, we note that k ∈ Kτ only depends on the history
of the algorithm prior to iteration k. Denoting the indicator of the event k ∈ Kτ as
1(k ∈ Kτ ), it follows by Lemma 19 that

kmax∑
k=0

Pk[Tk < Tk−1|k ∈ Kτ ]Pk[k ∈ Kτ ] ≥ pτ

kmax∑
k=0

Ek[1(k ∈ Kτ )]

= pτ

kmax∑
k=0

1(k ∈ Kτ )

= pτ |Kτ | ,

where the second to last equality follows by 1(k ∈ Kτ ) ∈ Fk . ��

Now, we are prepared to prove Lemma 9.

Proof (Lemma 9) For the first statement, observe that, for any k ∈ [kmax], by the
defintion of Ek,3, the event Tk < Tk−1 must occur whenever Ek,3 occurs. Therefore,
for any k ∈ [kmax], one finds

P[Tk < Tk−1|Fk] ≥ P[Ek,3|Fk].

Equation (35) then follows directly from Theorem 5.
Now, consider the second statement of Lemma 9. The proof follows by combining

Theorem 5 and Lemma 20 with the preceeding argument. ��
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C Lemma Required for the Proof of Corollary 1

This appendix provides the following lemma, which shows that the order notation
result in (5a) and (5b) holds, as required in the proof of Corollary 1.

Lemma 21 Let δ ∈ (0, 1), δ̂ be defined in (32), smax ∈ N \ {0} and �(smax, δ̂) be
defined in (33). Then,

�(smax, δ̂) = O (smax log(kmax) + log(1/δ)) .

Proof Since smax ∈ N \ {0}, it follows that
max{smax−1,0}∑

j=0

(
kmax

j

)
=

smax−1∑
j=0

(kmax)!
j !(kmax − j)! ≤

smax−1∑
j=0

(kmax)!
(kmax − j)!

= 1 +
smax−1∑
j=1

kmax∏
i=kmax+1− j

i ≤ 1 +
smax−1∑
j=1

(kmax)
j

≤ smax(kmax)
smax−1.

Then, by the definitions of �(smax, δ̂) and δ̂, it follows that

�(smax, δ̂) = O
(
smax + log(1/δ̂)

)
= O (smax + log(smax) + (smax − 1) log(kmax) + log(1/δ))

= O (smax log(kmax) + log(1/δ)) ,

as desired. ��
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