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ABSTRACT

As enrollments in computing courses have surged, the ratio of stu-
dents to faculty has risen at many institutions. Along with many
other large undergraduate programs, our institution has adapted to
this challenge by hiring increasing numbers of undergraduate tutors
to help students. In early computing courses, their role at our insti-
tution is primarily to help students with their programming assign-
ments. Despite our institution offering a training course for tutors,
we are concerned about the quality and nature of these student-
tutor interactions. As instruction moved online due to COVID-19,
this provided the unique opportunity to record all student-tutor
interactions (among consenting participants) for research. In order
to gain an understanding of the behaviors common in these inter-
actions, we conducted an initial qualitative analysis using open
coding followed by a quantitative analysis on those codes. Overall,
we found that students are not generally receiving the instruction
we might hope or expect from these sessions. Notably, tutors of-
ten simply give students the solution to the problem in their code
without teaching them about the process of finding and correct-
ing their own errors. These findings highlight the importance of
tutoring sessions for learning in introductory courses and motivate
remediation to make these sessions more productive.
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1 INTRODUCTION

Computing programs have seen increased enrollments, which has
led some institutions to increase the size of their tutoring programs
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to offer additional one-on-one support to students [23]. Recent
work has begun to look into the benefits of undergraduate tutoring
programs in computing. The majority of the work focuses on the
benefits of the relatability [7, 9, 32], approachability [7, 9, 28, 32]
and informality [28] of undergraduate tutors rather than on the
content of the interaction itself. However, a recent study began
to examine the content and process of student-tutor interactions
through the perspective of a single tutor [19].

Given that students generally prefer interactions with course
staff (such as tutors) over course instructors [15] and that there are
often more contact hours available with tutors than with instructors,
it is likely that the majority of the time a student seeks help, they
receive that help from a tutor. At our institution, there are often
more than ten times as many contact hours available from tutors
than from instructors, and tutor hours are heavily attended. There
is reason to be optimistic that these tutoring sessions are valuable,
given that prior work has shown that one-on-one tutoring sessions
are often successful because of the tutor’s ability to customize their
instruction to the students’ needs [1, 20, 21]. However, it is unclear
what is happening in these help sessions in computing classes and
if they are as effective as we might hope.

A deeper understanding of what is happening during these
student-tutor interactions can help identify ways to improve how
we teach our tutors and how our tutors, in turn, teach our students.
The advent of all instruction being moved online due to COVID-19
provided us with the unique opportunity to study these student-
tutor interactions directly by recording the sessions on Zoom. Our
dataset thus consists of recorded student-tutor interactions in two
courses at our university.

To analyze our videos, we used an open-coding approach to
identify and categorize what occurs during these interactions. Dur-
ing the analysis, clear categories emerged based on what can be
perceived as effective and ineffective tutoring practices. From the
quantitative analysis of these codes, clear trends emerged in the
nature of student-tutor interactions of relevance to the community.

Critically, we found that students may not be getting the in-
struction that one hopes they would receive during these sessions.
Specifically, tutors often give students the solutions to their prob-
lems without teaching them, or engaging with them in, the process
of finding and correcting their own errors. These findings highlight
the need for further research on ways to make these sessions more
productive for students.

2 RELATED WORK

To our knowledge, we are the first to analyze actual video footage
of undergraduate student-tutor interactions during regular tutoring
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hours. In this section, we briefly summarize studies on the benefits
of tutors [7, 9, 28, 32] and then describe how our work relates to the
work conducted by Markel and Guo, the study that is most relevant
to ours [19].

Prior work has examined the benefits of tutors [7, 9, 28, 32], but
little has looked at the content of the student-tutor interactions
themselves. Mirza et al. recently conducted a literature review of
research on undergraduate tutors in computing to understand the
benefits of undergraduate tutor (UT) programs and how to design
these programs [23]. Mirza et al. summarizes the benefits of having
tutors in computing programs: some of the major benefits of UT
programs are that students perform better in courses [2, 5, 8, 9,
11, 26, 27, 34], are more motivated [8, 28], have higher satisfaction
[3,4,7, 14, 22], and become better at communicating their thoughts
and ideas [7, 9, 28, 32].

It has also been found that UT programs help tutors. This in-
cludes both social and cognitive benefits (e.g., improved connec-
tions with faculty [8, 12], improved appreciation and motivation for
CS [13, 24]), technical skills (improved CS knowledge [3, 8, 9, 13],
increased performance in their own coursework [13]), overall satis-
faction [24, 29], and teaching skills [4].

The prior study most relevant to this study is the work by Markel
and Guo, which has started to look at the content of student-tutor
interactions through the metacognitive self-analysis of one under-
graduate tutor [19]. The study summarizes the workflow and chal-
lenges (reading a student’s mind, emotional regulation, maintaining
student engagement, teaching vs. bug fixing, triage and prioritiza-
tion, preserving student code, and receiving real-time feedback)
that tutors face for a CS2 course [19]. Although this study begins
to look at the content of the interaction itself, it is coming from
the experience of a single tutor, and no work has looked at the
interaction itself from an outside perspective.

Our study provides insight into the nature of student-tutor in-
teractions based on actual footage of the interactions. Our work
extends the prior work of Markel and Guo by providing a broader
lens, as our footage comes from interactions between multiple tu-
tors and students in two separate courses.

3 STUDY DESIGN

Our goal with this work was to gain an understanding of what hap-
pens during student-tutor interactions and whether these interac-
tions are effective or ineffective. To do this, we asked the following
research question: What types and frequencies of behaviors
are observed during student-tutor interactions?

3.1 Course Context

We collected data during Fall 2020 in two lower-division undergrad-
uate courses at our institution, a large, public, research-intensive
institution in North America. Each course meets for 10 weeks fol-
lowed by a week of final exams. The first course is an introductory
programming course (CS1) taught in Java. The second is a computer
organization and systems programming course (CompOrg) that is
taught in C and 32-bit ARM.
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Table 1: The number of students and tutors in the courses
and the number who consented to being a part of the study.

N Consented / Total
Course | Students Tutors
CS1 | 444/ 646 28 /37
CompOrg | 223 /432 8/12

3.2 Population

Our population of students and tutors comes from the CS1 and
CompOrg courses. Students in the CS1 course are typically in their
first year at the university, and CS1 is the first or second course
a student takes in the CS department. Students in the CompOrg
course are typically in their first or second year in the department,
and CompOrg is the fourth course in the programming sequence.
In order for a student to be a participant in this study, they must
have consented to participating, they must have attended tutoring
hours (a time period where students can get individual help from
tutors), and the tutors from whom they received help must have
also consented to participating in the study and uploaded the video
for analysis.

In order to tutor for a course at our institution, the tutor has
to have already passed the course and must take a tutor training
course during their first quarter as a tutor. Our tutor training course
includes one hour of instruction and five hours of work per week.
Tutors learn how to communicate effectively with students and how
to learn from and support others. This course walks tutors through
examples of good and bad ways of interacting with students.

Tutors are often rehired to tutor for other courses: the tutors in
this study had previously tutored in the CS department an average
of 6.6 times for CS1 and 5.3 times for CompOrg . The average GPA
of the tutors for both courses was 3.8. Note that this includes all
tutors, not just those that participated in the study.

3.3 Data Collection

Students could request individual help from tutors during the desig-
nated tutoring hours that were available in each of the two courses.
During these sessions, students could ask for help with tasks such
as debugging their code and to clear up confusions about the ma-
terial covered in lecture. All instruction, including these tutoring
sessions, was held online via Zoom in Fall 2020 as an institutional
requirement in response to the COVID-19 pandemic.

All tutors in our study were required to hold tutoring hours each
week where they were available to help students with their pro-
gramming assignments and general course questions. The number
of students and tutors in each course and those who consented
to participating in the study can be seen in Table 1. Only record-
ings where both the student and tutor consented to being a part of
the research project were included in this study per our approved
human subjects protocol.

3.4 Qualitative Analysis

Students seek help in tutoring hours for multiple reasons, the main
two being (1) to get help debugging their programming assignments,
and (2) to better understand the concepts and material from lectures.
We chose to focus on videos in which students came for help with
debugging their programming assignments, as these are common.
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Analysis was performed by the first three authors of the paper.
The first two authors began the open coding phase of the analysis
to identify patterns in the interactions. There were seven rounds of
open coding where they made sure to watch a wide variety of videos
(e.g., multiple videos with the same tutor or same student). The
result of these rounds was a list of codes that we believe accurately
captures the behaviors we wished to analyze further.

Once we identified our coding scheme, we worked together to
assign codes to parts of the interactions. We iteratively improved
our codes by independently coding videos, followed by comparing
our coding to identify errors in reliability. After two rounds of
comparison, our third author began coding with no background
knowledge aside from the code descriptions to test the reliability
of our codes on someone who had not been a part of their creation.
This round was used to determine the reliability of our ratings.
All three authors watched the same six videos. Our inter-rater
reliability for this round was 87.9%.

Having established reliability among the coders, we conducted
the coding used in this study. We had a total of 718 videos of student-
tutor interactions for CS1 and 184 videos for CompOrg. As we were
unable to analyze all the videos due to the time required, we chose
to pick a subset of videos for the analysis. We suspected that there
might be variance in interactions based on the different tutors and
students so we elected to randomly sample three videos per tutor. If
a video was not about debugging (e.g., getting help with the course
concepts), we skipped the video and randomly selected another.
This occurred 18 times (21.4% of the time) for CS1 and 4 times (16.7%
of the time) for CompOrg. For CS1, our analysis included 28 tutors
which would result in a total of 84 videos; however two tutors only
had two videos on debugging available, so the total number was 82.
For CompOrg this included 8 tutors (24 videos).

3.5 Quantitative Analysis

Once we completed coding the videos, we examined the frequency
at which each code appeared in the student-tutor interactions. We
will report the quantitative analysis as the number and percentage
of interactions of the videos analyzed.

4 RESULTS

Our process consisted of three separate steps conducted in different
phases of the analysis: (1) identifying the codes, (2) collecting data
on the frequency at which those codes appeared, and (3) under-
standing why these results may be meaningful to the community,
including how the code may relate to effective (or ineffective) tutor-
ing practices. To help with the readability of this section, we have
organized our results by code, such that we will describe the code
itself, how frequently it occurred, and implications of that finding.

4.1 Reason for attending tutoring hours

We coded the students’ reasons for attending tutoring hours as
either C1.a. Compile error, C1.b. Runtime error, C1.c. Logic error, when
running the code produces the wrong result, or C1.d. Other. In the
case of “other”, the coders wrote out the reason for the interaction.
For inter-rater reliability, the exact reasons were compared. Some
such examples of the “other” category include, but are not limited
to: trying to understand the syntax of the programming language
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or having issues running their program on their computer. Students
may have sought help for multiple reasons.

We found that for CS1, the most common reason students at-
tended tutoring hours was to get help with a logic error in their
code (53.7% of the time). This was followed by having compile er-
rors (25.6% of the time). In the CompOrg course, logic errors were
also the most common issue for students to come for help (54.2% of
the time). Interestingly, no students in the CompOrg course sought
help with compile errors, but this is likely due to CompOrg being a
later course in the introductory sequence where students already
have a fair amount of experience addressing compiler errors.

The results can be seen in Table 2. We see that in CS1, students
come to tutoring hours for runtime errors 6.0% of the time whereas
in CompOrg this happens 29.2% of the time. This may simply be
due to the large number of students attending for compile errors
in CS1, meaning they didn’t get to the point of having any run-
time errors, but we also suspect that students in CompOrg needed
more help with runtime errors because of challenges with memory
management in C (e.g., segmentation faults).

Table 2: Reasons students attended tutoring hours.

CS1 CompOrg

Reason for attending | N % | N %
Cl.a. Compile Error | 21 | 25.6% | 0 | 0.0%
C1.b. Runtime Error | 5| 6.0% | 7 | 29.2%
Cl.c. Logic Error | 44 | 53.7% | 13 | 54.2%

C1.d. Other | 16 | 19.5% 31 125%

Table 3: Whether students explained their code and problem
and whether the tutor asked them to.

CS1 CompOrg
N[ %|N] %

Student explains their problem
Student did not explain | 49 | 61.0% | 13 | 54.2%
C2.a. Student explained | 32 | 39.0% | 11 | 45.8%
C2.b. Tutor asked student | 4 | 4.9% | 4 | 16.7%

Student explains their code

Student did not explain | 46 | 57.3% | 8 | 33.3%
C3.a. Student explained | 35 | 42.7% | 16 | 66.7%
C3.b. Tutor asked student | 5| 6.1% | 3 | 12.5%
Student explains both | 18 | 22.0% | 9 | 37.5%
Student explains neither | 32 | 39.0% | 6 | 25.0%

4.2

We coded whether or not students explained their reason for at-
tending tutoring hours (C2.a. Student explained their problem) and
if, at any point, they explained what they think their code is doing
(C3.a. Student explained their code). We also coded whether or not
the tutor prompted the student to do either of those two things if
the student did not do it on their own (C2.b. Tutor asked student to
explain their problem, C3.b. Tutor asked student to explain their code).
The results can be seen in Table 3. If a tutor asked a student to ex-
plain their problem or code, that means the student also explained
their problem or code, so both codes are used (C2.a/b or C3.a/b).
We are concerned to find that in more than half of the inter-
actions in CS1 (61.0%) and in CompOrg (54.2%), students neither

Students Engagement
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explained their problem nor did the tutor ask them to explain their
problem. Similarly, there were a number of students who never
offered, nor were asked, to explain their code. Each of these ele-
ments seem important for a successful tutoring session, as tutors
are taught that they need to engage with the student to under-
stand where the student’s difficulties might lie. By having students
explain their problems and code, tutors can better identify any
misconceptions held by the student to help take corrective action.
Without that engagement with the students, tutors may be making
assumptions about what the students do and do not understand.

Table 4: Reasons for compiling and running the students’
code during the interaction.

CS1 CompOrg

N % | N %

Code was compiled and run | 44 | 53.7% | 12 | 50.0%
C4.a. To see the error occur | 10 | 12.2% | 3 | 12.5%
C4.b. To see the output | 12 | 14.6% | 4 | 16.7%
C4.c.Todebug | 3| 37% | 2| 83%

C4.d. To see if it works | 30 | 36.6% | 6 | 25.0%

4.3 Compiling and running the code

We coded whether or not code was compiled and run during the
interaction and why it was run. This included C4.a. To see the error
occur, C4.b. To show the output, C4.c. To debug (e.g., using gdb or
print statements), and C4.d. To see if it works. The results can be seen
in Table 4. Similarly, we coded whether or not any error messages
or output were present (at all) during the interaction (C4.e. Looked
at error message or output during the interaction). In this case, the
code may not have been compiled and run during the interaction
itself, but the student and tutor looked at error messages or output
that had already been created by the student.

As these interactions are focused on helping students fix their
programming assignments and debugging them, we would hope to
see the students’ code being compiled and run in every interaction.
We found that in approximately half of the cases for both courses,
no code was compiled and run during the interaction (see Table 4).
This is concerning as all of these student-tutor interactions were
focused on helping students debug their code. It is surprising and
unfortunate to see that the code is run to debug in only 3.7% of the
interactions for CS1 and only 8.3% in CompOrg.

Overall, we see that error messages or output were looked at
(C4.e.) in 62.2% of the cases for CS1 and 50.0% of the cases for Com-
pOrg. There are seven cases for CS1 and one for CompOrg in which
error messages or output were looked at during the interaction
but no code was compiled and run. This means the error messages
or output was generated before the interaction. This is important
as sometimes the student has not run their code since their last
change, and it can lead to looking at outdated information and to
trying to solve a problem that no longer exists.

4.4 Debugging

We coded whether or not the tutor helped the student debug during
the interaction (C5.a. Tutor helped Student Debug). This includes the
tutor asking a student to add print statements or tracing through
the code, and running code to see the output. We separately coded
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whether or not the tutor said anything about the process of debug-
ging during the interaction (C5.b. Tutor mentioned debugging). We
assigned this code only when the tutor explicitly talked about the
process of debugging. It is possible for a tutor to have helped a
student debug without mentioning debugging (C5.a but not C5.b).
For example, if the tutor said "let’s try to figure out what is wrong
with your program. To do that, let’s put in a print statement..." then
we did not assign C5.b. The word debugging is not used, but the
tutor was clearly teaching the student the process of debugging.
The results can be seen in Table 5.

We see that debugging is not mentioned and the tutor does not
help the student actively debug their code in 79.3% of the cases
for CS1 and in 79.2% of the cases for CompOrg. This suggests that
debugging is not occurring during student-tutor interactions that
should be focused on debugging. In many interactions, tutors debug
students’ code without including students in the debugging process,
or they simply give the student the solution to their problem (e.g.,
the tutor looks over the student’s code and finds the bug without
talking to the student). We do however recognize that in some
cases, a fix may be easy or a tutor may walk the student through an
example and then end the interaction by telling the student to try
to fix their problem (and debug) on their own, so it is not inherently
bad for an interaction to have debugging neither mentioned nor
performed, although we would expect to see it in the majority of
interactions. This is a problem, as previous work has identified
that lower-performing students are often unable to resolve their
debugging issues [18]. Novice debuggers must apply many new
skills simultaneously, such as understanding the intended operation
of the program versus the execution of the actual program, general
programming expertise, and knowledge of bugs and debugging
methods [10]. However, novices’ ability to use these skills is, at
best, fragile, causing many to find it difficult and thus need help [25].

Table 5: Whether or not debugging was mentioned or per-
formed during the student-tutor interaction.

CS1 CompOrg

Debugging | N % | N %

C5.a. Tutor helped student debug | 13 | 15.9% | 1| 4.2%
C5.b. Tutor mentioned debugging 11.0% | 4 | 16.7%
Both 5 6.1% 0 0.0%

Neither | 65 | 79.3% | 19 | 79.2%

4.5 Asking questions

We coded whether or not a tutor asked the student any questions
during the interaction and what types of questions were asked. The
types of questions included Cé.a. Clarifying Questions, such as ask-
ing students to rephrase something they said or asking something
about the code such as “Did you say that you tried x y z?” or “Is
that an equals sign there or a minus sign?,” C6.b. Guiding Questions,
questions that are aimed at guiding students to the answer such as
“What should be the return type for this method? And what type is
your method currently returning?” or “Can you tell me what you
know about the == operator? How have we used it in the past?”
Cé.c. Asking questions to test whether the student understood the
tutor’s explanation, and C6.d. Asking a student if they understand,
potentially ineffective questions such as “x means y, right?” or “You
understand that right?” The results can be seen in Table 6.
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We find that in approximately one fifth of the interactions for
both courses, the tutor does not ask the student a single question.
We find similar percentages of the types of questions asked for each
of the categories except for questions checking students’ under-
standing where we see this happening in only 5% of the interactions
for CS1 and in 25% of the interactions for CompOrg.

These are concerning numbers as without a dialogue, it is diffi-
cult to see how the tutor is engaging the student or adapting the
tutoring to the student’s understanding. Prior studies have shown
the importance of tutors asking guiding questions during tutoring
sessions [6, 17].

Table 6: Whether or not questions were asked during the in-
teraction and what types of questions were asked, if any.

CS1 CompOrg

Types of Questions | N % | N %

Asked question(s) | 68 | 82.9% | 20 | 83.3%

No questions were asked | 14 | 17.1% | 4 | 16.7%

Cé6.a. Guiding | 26 | 31.7% 9| 37.5%

C6.b. Clarifying | 53 | 64.6% | 15 | 62.5%

Cé.c. Checking understanding | 4 | 4.9% | 6 | 25.0%
C6.d. Ask if understands - yes/no | 25 | 30.5% | 10 | 41.7%

Table 7: The number of interactions where students left with
the solution to their problem and whether the student fig-
ured out the solution or the tutor told them.

CS1 CompOrg

N % | N %

C7. Left with the answer | 67 | 81.7% | 20 | 83.3%

C7.a. Student figured out solution | 20 | 24.4% | 5| 20.8%
C7.b. Tutor gave the solution | 53 | 64.6% | 15 | 62.5%

4.6 Leaving with the Solution

We coded whether or not the student left with the solution to their
problem (C7. Student leaves with the solution). If the student left
with the solution, we kept track of whether the student figured out
the solution to their problem (C7.a. Student figured out the solution),
or the tutor explicitly gave the student the solution to their problem
(C7.b. Tutor gave student the solution), (e.g., “Change the condition
in the for loop from i <= arrlength to i < arrlength and that should
fix it”). The results can be seen in Table 7.

In 82.9% of the interactions for CS1, students left with the solu-
tion to their problem, and in 83.3% of the interactions for CompOrg.
Leaving with the solution to their problem is not inherently bad or
good. The tutoring hours are meant to help students get unstuck
and allow them to continue moving forward on their assignments,
but they are not necessarily meant to give students the solution to
their problem. Unfortunately we see that in over 60% of the inter-
actions for both courses, the tutor explicitly gives the student the
solution to their problem. This means the student did not figure
out the solution themself and was not guided to the solution but
told the solution. This (C7.b) even occurs in cases where the tutor
guides the student to the solution and then explicitly gives them
the answer at the end rather than asking them to figure it out.

In a study on the differences in study habits of lower and higher-
performing students, Liao et al. found that once lower-performing
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students get their code to work, they often move on without un-
derstanding why. The study also found concerning behaviors such
as students not being able to explain their code at all, having as-
sembled their code from bits and pieces they got from the course
staff and friends [18]. As such, it’s important to assist and guide
students through debugging but not simply give away the answer.

4.7 Examples

We coded whether the tutor walked the student through any exam-
ples during the interaction (C8. Tutor attempts to draw a picture or
trace through an example). This could be anything from drawing a
memory diagram to tracing through the program with the student.
This happened in 19 interactions (23.2%) for CS1 and 14 interactions
(58.3%) for CompOrg. We hypothesize the larger number of exam-
ples in the CompOrg course is due to the large number of students
that come to tutoring hours in CS1 for compile errors. There is not
much to draw from a missing bracket, but for a runtime or logic
error, there is more room for an explanation, although we do not
believe this accounts for the near doubling in explanations that we
see. Perhaps tutors in CS1 view the mistakes in the course as more
basic and not requiring of diagrams, whereas they are more will-
ing to provide diagrams in CompOrg for what they view as more
challenging concepts (e.g., pointers, dynamic memory allocation).

4.8 Taking control of the students’ screen

We coded whether or not the tutor took control of the student’s
screen during the interaction (C9.a. Tutor takes control of screen). The
tutor might do this for multiple reasons, including to gain the ability
to scroll through the code on their own or to highlight sections of
code. We also kept track of whether or not the tutor typed in the
student’s code while they had control (C9.b. Tutor types on student’s
screen). In CS1, tutors took control of the students’ screen in six
interactions (7.3%) and typed on the students computer in four
interactions (4.9%) . We saw no occurrences of this in CompOrg.

4.9 Commanding or interrupting the student

One code marked whether or not the tutor commanded (told) the
student exactly what to type or what to do (C10. Tutor commands
student). This does not include asking the student to add in print
statements for debugging or pointing out a mistake a student made
while typing. This code occurred in 13 interactions (15.9%) for CS1
and 1 (4.2%) for CompOrg . We did not expect this as tutors are
taught not to do this during the tutor training course as it removes
students from the decision process.

Another code recorded whether or not the tutor interrupted the
student during the interaction (C11. Tutor interrupts the student).
This does not include accidental interruptions such as accidentally
speaking over one another. It included things such as interrupting
a student saying, “No, no, no!” Interruptions happened in 20 inter-
actions (24.4%) for CS1 and 4 interactions (16.7%) for CompOrg. We
hoped to see no such interactions occurring, as previous work has
found that students learn better with a polite tutor [33].

5 DISCUSSION

Our findings suggest that tutors are giving students the solutions
to their problems and are often not teaching students the process of
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finding and correcting their own errors. In this section, we discuss
possible explanations for our findings and subsequent implications.
Tutor Training: The quality of tutor interactions was quite sur-
prising given that our institution requires all first-time tutors to
take a specific tutor training course. This course is intended to
prepare and support first-time tutors in the computer science de-
partment and directly instructs tutors to do the opposite of what we
commonly observed: we teach tutors to not give students answers
but to help teach students the debugging process. In general, tutor
training programs have been found to increase positive feedback
from course instructors, increase tutor critical observations, and
improve faculty-student interactions [12]. Our findings suggest that
these programs, when implemented, may not be enough to support
our tutors and train them properly.

Tutor Motivations and Challenges: We believe there are many
factors that may lead tutors to give students solutions to problems
rather than help them learn the process of solving their problems.
A couple of factors we believe may be impacting these interactions
include (1) tutors are also undergraduate students and therefore are
tutoring their peers and, in some cases, their friends, which may
make it more difficult to not give away the answer as they want
to be liked by their peers, and (2) tutors often have many students
waiting for help at once, in some cases over 60 students in the queue
at a given time. This may lead them to rush through important
steps in students’ learning. Moreover, the study by Markel and Guo
suggests that tutors face many challenges, some of which are even
harder during online interactions, such as reading students’ minds,
emotional regulation, maintaining student engagement, teaching
versus bug fixing, triage and prioritization, and preserving student
code [19]. This is a daunting task for any teacher, but especially
for an undergraduate who is tutoring their peers. Although our
analysis did not have access to wait queue data for each session,
future analysis could look to see if pressures from wait queues
change tutor behavior.

5.1 Implications

Although students frequently leave these interactions with the
solution to their present problems, we have to ask: what is the
cost of not being taught to solve these problems on their own?
We believe it may be giving students temporary relief but at the
expense of possible long-term understanding. Recent research in
computing has shown that students have not mastered the content
instructors expect them to have learned in prior courses [16, 30, 31].
These student-tutor interactions may be a part of the reason we
see students far along in the computing curriculum without the
mastery of prior knowledge that we expect.

As mentioned in Section 4, previous work by Liao et al. that
looked at the differences in behaviors in lower and higher-perform-
ing students found that once lower-performing students have the
solution to their programming assignments, they move on without
understanding why it works. Lower-performing students also often
have code that is a mixture of code they got from the course in-
structional staff and their friends [18]. In our work, we did see cases
of students starting their interactions with the tutors by saying
things such as "The last tutor told me..." where they blame their
error on the last student-tutor interaction while providing very
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little evidence (or none) on what they have tried on their own since
working with the previous tutor.

When students are just given the solution to their problem and
not taught how to debug on their own, we fear this may lead to
an over-reliance on tutors and denies the student an opportunity
to help correct erroneous mental models. This begs the question,
do tutors have the correct mental models themselves? Do tutors
understand that just giving students the solutions to their problems
may not be effective? It would not be surprising if these tutors were
also tutored similarly when they took the course and therefore
believe that giving students the solution to their problem, without
teaching them the process of finding and correcting their own
errors, is a reasonable way to tutor. Future research on this topic
should examine the reasons why tutors are behaving in this manner.

5.2 Limitations

Just as this is a unique situation that has allowed us to obtain video
recordings of the student-tutor interactions, there are limitations
to the study. One such limitation is that by recording the inter-
action, students and/or tutors may have acted differently due to
the knowledge that they were being recorded. In addition, with all
instruction online due to COVID-19, these interactions reflect the
behaviors during a period of remote instruction and may not reflect
these interactions when instruction is in person, and this is just
examining student-tutor interactions at one institution.

Another limitation is that we were only able to include videos
where both the tutor and student consented and where the tutor
remembered to record and upload the videos. It is possible that
tutors only uploaded videos that they may have deemed as good
or acceptable. Although, if tutors were only selecting what they
deemed were high-quality, that would imply that the tutoring ses-
sions overall were less effective than what we observed.

6 CONCLUSION

In this study, we present an analysis of recorded student-tutor inter-
actions where the student needed help debugging. The analysis is
based on a series of codes that were developed using open-coding.
The codes were designed to capture behaviors identified in the
videos that may be reflective of effective (or ineffective) tutoring
practices. We found that a concerningly large number of tutoring
sessions result in the tutor giving away the answer (64.6% for CS1
and 62.5% for CompOrg) and an unfortunately small number of
tutoring sessions teach the process of debugging (15.9% for CS1 and
4.2% for CompOrg). These students who seek out help are losing
the opportunity to learn about the debugging process and to apply
that process to find the present bug in their program. Moreover,
such interactions may create a cycle of dependency where students
become over-reliant on tutors to solve their debugging problems.
Future work should examine reasons why these behaviors are com-
mon in tutors, the impact these behaviors have on student learning,
and ways to improve the quality of student-tutor interactions.
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