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Abstract. We develop an analytical framework to study experimental design in two-sided
marketplaces. Many of these experiments exhibit interference, where an intervention
applied to one market participant influences the behavior of another participant. This inter-
ference leads to biased estimates of the treatment effect of the intervention. We develop a
stochastic market model and associated mean field limit to capture dynamics in such
experiments and use our model to investigate how the performance of different designs
and estimators is affected by marketplace interference effects. Platforms typically use two
common experimental designs: demand-side “customer” randomization (CR) and supply-
side “listing” randomization (LR), along with their associated estimators. We show that
good experimental design depends on market balance; in highly demand-constrained mar-
kets, CR is unbiased, whereas LR is biased; conversely, in highly supply-constrained
markets, LR is unbiased, whereas CR is biased. We also introduce and study a novel exper-
imental design based on two-sided randomization (TSR) where both customers and listings
are randomized to treatment and control. We show that appropriate choices of TSR
designs can be unbiased in both extremes of market balance while yielding relatively low
bias in intermediate regimes of market balance.
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1. Introduction
We develop a framework to study experiments (also
known as A/B tests) that two-sided platform operators
routinely employ to improve the platform. Platforms
use experiments to test many types of interventions
that affect interactions between participants in the
market; examples include features that change the
process by which buyers search for sellers or interven-
tions that alter the information the platform shares
with buyers. The goal of the experiment is to intro-
duce the intervention to some fraction of the market
and use the resulting outcomes to estimate the effect if
the intervention was introduced to the entire market.
Platforms rely on these estimated effect sizes to make
decisions about whether to launch the intervention to
the entire market.

However, in marketplace experiments, these esti-
mates are often biased because of interference between
market participants. Market participants interact and
compete with each other, and as a result, the treatment

assigned to one individual may influence the behavior
of another individual. These interactions violate the
Stable Unit Treatment Value Assumption (SUTVA)
(Imbens and Rubin 2015) that guarantees unbiased esti-
mates of the treatment effect. Previous work has shown
that the resulting bias can be quite large and at times as
large as the treatment effect itself (Blake and Coey 2014,
Fradkin 2015, Holtz et al. 2020). In this work, we model
the platform competition dynamics, investigate how
they influence the performance of different canonical
experimental designs, and also introduce novel designs
that can yield improved performance.

We are particularly motivated by marketplaces
where customers do not purchase goods but rather
book them for some amount of time. This covers a
broad array of platforms, including freelancing (e.g.,
Upwork), lodging (e.g., Airbnb and Booking.com),
and many services (tutoring, dogwalking, child care,
etc.). Although we explicitly model such a platform,
the model we describe also captures features of a
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platform where goods are bought and supply must be
replenished for future demand.

Our model consists of a fixed number of listings;
customers arrive sequentially over (continuous) time.
For example, in an online labor platform, a freelancer
offering work is a listing, and a client looking to hire a
freelancer is a customer. On a lodging site, listings in-
clude hotel rooms or private rooms, and customers
are travelers wanting to book. Naturally, an arriving
customer can only book available listings (i.e., those
not currently booked). The customer forms a consider-
ation set from the set of available listings and then, ac-
cording to a choice model, chooses which listing to
book from this set (including an outside option). Once a
listing is booked, it is occupied and becomes un-
available until the end of its occupancy time.

We focus on interventions by the platform that
change the parameters governing the choice probabil-
ity of the customer, such as those described above; we
refer to the new choice parameters as the treatment
model and the baseline as the control model.1 We as-
sume that the platform wants to use an experiment to
assess the difference between the rate at which book-
ings would occur if all choices were made according
to the treatment parameters and the corresponding
rate if all choices were made according to the control
parameters. This difference is the global treatment effect,
or GTE. In particular, we assume that the quantity of
interest is the steady-state (or long-run) GTE, that is,
the long-run average difference in rental rates.2

Most platforms employ one of two simple designs
for testing such an intervention: either customer-side ran-
domization (what we call the CR design) or listing-side
randomization (what we call the LR design). In the CR
design, customers are randomized to treatment or con-
trol. All customers in treatment make choices according
to the treatment choice model, and all customers in
control make choices according to the control choice
model. In the LR design, listings are randomized to
treatment or control, and the utility of a listing is then
determined by its treatment condition. As a result, in
the LR design, in general each arriving customer will
consider some listings in the treatment condition and
some listings in the control condition. As an example,
suppose the platform decides to test an intervention
that shows badges for certain listings. In the CR design,
all treatment customers see the badges and no control
customers see the badges. In the LR design, all custom-
ers see the badges on treated listings and do not see
them on control listings.

Each of these designs are associated with natural es-
timators. In the CR design, the platform measures the
difference in the rate of bookings between treatment
and control customers; this is what we call the naive
CR estimator. In the LR design, the platform measures
the difference in the rate at which treatment and
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control listings are booked; this is what we call the na-
ive LR estimator.

To develop some intuition for the potential biases,
first consider an idealized static setting where listings
are instantly replenished upon being booked; in other
words, every arriving customer sees the full set of
original listings as available. As a result, in the CR de-
sign there is no interference between treatment and
control customers, and consequently the CR estimator
is unbiased for the true GTE. On the other hand, in
the LR design, every arriving customer considers both
treatment and control listings when choosing whether
to book, creating a linkage across listings through cus-
tomer choice. In other words, in the LR design there is
interference between treatment and control, and in
general the LR estimator will be biased for the true
GTE.

Now return to a dynamic model where the inven-
tory of listings is limited, and listings remain unavail-
able for some time after being booked. In this case, ob-
serve that, on top of the preceding discussion, there is a
dynamic linkage between customers; the set of
listings available for consideration by a customer is
dependent on the listings considered and booked by
previously arriving customers. This dynamic effect in-
troduces a new form of bias into estimation and is dis-
tinctly unique to our work. In particular, because of
this dynamic bias, in general the naive CR estimator
will be biased as well.

Our paper develops a dynamic model of two-sided
markets with inventory dynamics and uses this frame-
work to compare and contrast both the designs and
estimators above. We also introduce and study a
novel class of more general designs based on two-sided
randomization (of which the two examples above are
special cases). In more detail, our contributions and
the organization of the paper are as follows.

1.1. Benchmark Model and Formal Mean
Field Limit

Our first main contribution is to develop a general,
flexible, theoretical model to capture the dynamics
described above. In Section 3, we present a model that
yields a continuous-time Markov chain in which the
state at any given time is the number of currently
available listings of each type. In Section 4, we propose a
formal mean field analog of this continuous-time
Markov chain, by considering a limit where both the
number of listings in the system and the arrival rate of
customers grow to infinity. Scaling by the number of
listings yields a continuum mass of listings in the limit.
In the mean field model, the state at a given time is the
mass of available listings, and this mass evolves via a
system of ODEs. Using a Lyapunov argument, we
show that this system is globally asymptotically stable
and give a succinct characterization of the resulting
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asymptotic steady state of the system as the solution
to an optimization problem. We formally establish
that the mean field limit arises as the fluid limit of the
corresponding finite market model, as the market size
grows; in other words, the mean field model is a good
approximation to large markets. The mean field
model allows us to tractably analyze different estima-
tors as well as to study their biases in the large market
regime.

1.2. Designs and Estimators: Two-Sided,
Customer-Side, and Listing-Side
Randomization

In Section 5, we introduce a more general form of exper-
imental design called two-sided randomization (TSR); an
analogous idea was independently proposed recently
by Bajari et al. (2021) (see also Section 2). In a TSR de-
sign, both customers and listings are randomized to
treatment and control. However, the intervention is ap-
plied only when a treatment customer considers a treat-
ment listing; otherwise, if the customer is in control or
the listing is in control, the intervention is not seen by
the customer. (In the example above, a customer would
see the badge on a listing only if the customer was
treated and the listing was treated.) Notably, the CR
and LR designs are special cases of TSR. We also define
natural naive estimators for each design.

1.3. Analysis of Bias:  The Role of Market Balance
In Section 6, we study the bias of the different designs
and estimators proposed. Our main theoretical results
characterize how the bias depends on the relative vol-
umes of supply and demand in the market. In particu-
lar, in the highly demand-constrained regime (where
customers arrive slowly and/or listings replenish
quickly), the naive CR estimator becomes unbiased,
whereas the naive LR estimator is biased. On the other
hand, in the highly supply-constrained regime (where
customers arrive rapidly and/or listings replenish
slowly), we find that in fact the naive LR estimator
becomes unbiased, whereas the naive CR estimator is
biased. These findings suggest that platforms can po-
tentially reduce bias by choosing the type of experi-
ment based on knowledge of market balance.

Given the findings that CR and LR experiments of-
fer benefits in different extremes, it is natural to ask
whether good performance can be achieved in moder-
ately balanced markets by “interpolating” between
the naive CR and LR estimators. We define a naive
TSR estimator that achieves this interpolation and has
low bias in both market extremes but still has large
bias for moderate market balance. We then define
more sophisticated TSR estimators that explicitly aim
to correct for interference in regimes of moderate
market balance. These latter estimators exhibit substan-
tially improved performance in simulations. Online
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Appendix C shows that these estimators perform well
across a wide range of market parameters.

1.4. Insights from Simulations
In Section 7, we turn to simulations in the finite sys-
tem to study the variance of the estimators. The simu-
lations corroborate the theoretical findings that TSR
offers benefits with respect to bias, albeit at the cost of
moderate increases in variance. Among the TSR esti-
mators that we study, we find that those with smaller
reductions in bias have smaller increases in variance,
whereas those with larger reductions in bias have
larger increases in variance, thus revealing a tradeoff
between bias and variance for the TSR estimators.

In Section 8, we compare the TSR approach with
cluster-randomized experiments, an existing approach
that platforms utilize to reduce bias. The simulations
suggest that altough both approaches can reduce bias
when the market is tightly clustered, TSR estimators
can reduce bias in highly interconnected markets
where cluster randomized experiments cannot.

Taken together, our work sheds light on what ex-
perimental designs and associated estimators should
be used by two-sided platforms, depending on market
conditions, to alleviate the biases from interference
that arise in such contexts. We view our work as a
starting point toward a comprehensive framework for
experimental design in two-sided platforms; we dis-
cuss some directions for future work in Section 9.

2. Related Work
2.1. Stable Unit Treatment Value Assumption
The types of interference described in these experi-
ments are violations of the Stable Unit Treatment
Value Assumption (SUTVA) in causal inference
(Imbens and Rubin 2015). SUTVA requires that the
(potential outcome) observation on one unit should be
unaffected by the particular assignment of treatments
to the other units. A large number of recent works
have investigated experiment design in the presence
of interference, particularly in the context of markets
and social networks.

2.2. Interference in Marketplaces
Biases from interference can be large. Blake and Coey
(2014) empirically showed in an auction experiment
that the presence of interference among bidders caused
the estimate of the treatment effect to be wrong by
a factor of two. Fradkin (2019) found through simula-
tions that a marketplace experiment changing search
and recommendation algorithms can overestimate the
true effect by 50%. More recent work by Holtz et al.
(2020) randomized clusters of similar listings to treat-
ment or control and found that the bias due to interfer-
ence can be almost one-third of the treatment effect.
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Interestingly, Holtz et al. (2020) also found weak empir-
ical evidence that the extent of interference depends on
market balance; our paper provides strong theoretical
grounding for such a claim.

Inspired by the goal of reducing such bias, other
work has developed approaches to bias characteriza-
tion and reduction both theoretically (see, e.g., Basse
et al. 2016 in the context of auctions with budgets) as
well as via simulation (see, e.g., Holtz 2018, who ex-
plored the performance of LR designs). Our work
complements this line by developing a mathematical
framework for the study of estimation bias in dynamic
platforms. Key to our analysis is the use of a mean
field model to model both transient and steady-state
behavior of experiments. A related approach is taken
in Wager and Xu (2019), where a mean field analysis
is used to study equilibrium effects of an experimental
intervention where treatment is incrementally applied
in a marketplace (e.g., through small pricing changes).

2.3. Interference in Social Networks
A bulk of the literature in experimental design with
interference considers an interference that arises
through some underlying social network; for example,
Manski (2013) studied the identification of treatment
responses under interference, Ugander et al. (2013) in-
troduced a graph cluster-based randomization scheme
and analyzed the bias and variance of the design, and
many other papers, including Saveski et al. (2017),
Athey et al. (2018), and Basse et al. (2019), focused on
estimating the spillover effects created by interference.
In particular, Zigler and Papadogeorgou (2018) and
Pouget-Abadie et al. (2019) considered interference on
a bipartite network, which is closer to a two-sided
marketplace setting. In general, this line of work con-
siders a fixed interference pattern (social network)
over time. Our work is distinct because the interfer-
ence caused by supply and demand competition is en-
dogenous to the experiment and dynamically evolv-
ing over time.

2.4. Other Experimental Designs
In practice, platforms currently mitigate the effects
of interference through either clustering techniques
that change the unit of observation to reduce spill-
overs among them (see, e.g., Chamandy 2016), similar
to some of the works mentioned above (see, e.g.,
Ugander et al. 2013 and Holtz 2018), or by switchback
testing (Sneider et al. 2019), in which the treatment is
turned on and off over time. Both cause a substantial
increase in estimation variance due to a reduction in
effective sample size, and thus the naive CR and LR
designs remain popular workhorses in the platform
experimentation toolkit. In addition to these broad
classes of experiments, other work has also introduced
modified experiment designs for specific types of

Johari et al.: Experimental Design in Two-Sided Platforms
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interventions, such as Ha-Thuc et al. (2020), for rank-
ing experiments.

2.5. Two-Sided Randomization
Finally, a closely related paper is Bajari et al. (2021).
Independent of our own work, here the authors pro-
posed a more general multiple randomized design, of
which TSR is a special case. They focused on a static
model and provided an elegant and complete statisti-
cal analysis under a local interference assumption. By
contrast, we focus on a dynamic platform model with
market-wide interference patterns and on a mean field
analysis of bias.

3. A  Markov Chain Model of
Platform Dynamics

In this section, we first introduce the basic dynamic
platform model that we study in this paper with a fi-
nite number N  of listings. In the next section, we de-
scribe a formal mean field limit of the model inspired
by the regime where N  → ∞. This mean field limit
model then serves as the framework within which we
study the bias of different experimental designs and
associated estimators in the remainder of the paper.

We consider a two-sided platform where we refer
to the supply side as listings and the demand side as
customers. Customers arrive over time, and at the time
of arrival the customer forms a consideration set from
the set of available listings in the market and then de-
cides whether to book one of them. If the customer
books, then the selected listing is occupied for a ran-
dom length of time, during which it is unavailable to
other customers. At the end of this booking, the listing
again becomes available for use to other customers.

The formal details of our model are as follows.

3.1. Time
The system evolves in continuous time t ≥  0.

3.2. L ist ings
The system consists of a fixed number N  of listings.
We refer to “the N’th system” as the instantiation of
our model with N  listings present. We use a super-
script “N” to denote quantities in the N’th system
where appropriate.

We allow for heterogeneity in the listings. Each list-
ing ℓ has a type θℓ � Θ, where Θ is a finite set (the
listing type space). Note that, in general, the type may
encode both observable and unobservable covariates;
in particular, our analysis does not presume that the
platform is completely informed about the type of
each listing. For example, in a lodging site, θℓ may en-
code observed characteristics of a house, such as the
number of bedrooms, but also characteristics that are
unobserved by the platform because they may be
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difficult or impossible to measure. Let m(N)(θ) denote
the total number of listings of type θ in the N’th sys-
tem. For each θ � Θ, we assume that limN→∞m(N)(θ)=
N   ρ(θ) >  0. Note that θρ(θ)  1.

3.3. State Description
At each time t, each listing ℓ can be either available or
occupied (i.e., occupied by a customer who previously
booked it). The system state at time t in the N’th sys-
tem is described by s ( N )   (σ(N)(θ)), where σ(N)(θ) de-
notes the number of listings of type θ available in the
system at time t. Let S(N)  θσ

(N)(θ) be the total
number of listings available at time t. In our subse-
quent development, we develop a model that makes

s ( N )  a continuous-time Markov process.

3.4. Customers
Customers arrive to the platform sequentially and de-
cide whether to book and, if so, which listing to book.
Each customer j has a type γ  � Γ, where Γ  is a finite set
(the customer type space) that represents customer het-
erogeneity. As with listings, the type may encode both
observable and unobservable covariates, and again,
our analysis does not presume that the platform is
completely informed about the type of each customer.
Customers of type γ  arrive according to a Poisson pro-
cess of rate λ(N) ; these processes are independent
across types. Let λ(N)  γλ

(N ) be the total arrival rate of

customers. Let Tj  denote the arrival time of the j’th
customer.

We assume that limN→∞λ(N)=N  λ  >  0; that is, the
arrival rate of customers grows proportionally with
the number of listings when we take the large market
limit. Furthermore, we assume that, for each γ  � Γ, we
have limN→∞λ(N)=λ(N)  φγ >  0. Note that γφγ   1.

3.5. Consideration Sets
In practice, when customers arrive to a platform, they
typically form a consideration set of possible listings to
book; the initial formation of the consideration set may
depend on various aspects of the search and recommen-
dation algorithms employed by the platform. To sim-
plify the model, we capture this process by assuming
that, on arrival, each listing of type θ that is available at
time t is included in the arriving customer’s consider-
ation set independently with probability αγ(θ) >  0 for a
customer of type γ. For example, αγ(θ) can capture the
possibility that the platform’s search ranking is more
likely to highlight available listings of type θ that are
more attractive for a customer of type γ, making these
listings more likely to be part of the customer’s consider-
ation set; this effect is made clear via our choice model
presented below. After the consideration set is formed, a

7073

choice model is then applied to the consideration set to
determine whether a booking (if any) is made.

Formally, the customer choice process unfolds as
follows. Suppose that customer j arrives at time Tj.

For each listing ℓ, let Cjℓ  0 if the listing is unavailable
at Tj. Otherwise, if listing ℓ is available, then let Cjℓ  1
with probability αγ (θℓ), and let Cjℓ  0 with probabil-

ity 1 −  αγ (θℓ), independently of all other randomness.
Then the consideration set of customer j is {ℓ : Cjℓ  1}.
Our theoretical results in this paper are developed

with this model of consideration set formation. How-
ever, other models of consideration set formation are
also reasonable. As one example, customers might
sample a consideration set of a fixed size, regardless
of the total number of listings available. We explore
such a consideration set model through simulations in
Online Appendix C and show that similar insights
hold.

3.6. Customer Choice
Customers choose at most one listing to book and can
choose not to book at all. We assume that customers
have a utility for each listing that depends on both
customer and listing types; a type γ  customer has util-
ity vγ(θ) >  0 for a type θ listing. Let qjℓ denote the
probability that arriving customer j of type γ j  books
listing ℓ of type θℓ.

In this paper, we assume that customers make choices
according to the well-known multinomial logit choice
model. In particular, given the realization of Cj , we have

Cjℓvγ (θℓ)
jℓ (N) +  N1 Cjℓ  vγj 

(θℓ )

Here, (N) >  0 is the value of the outside option for type γ
customers in the N’th system. The probability that
customer j does not book any listing at all grows with
(N). We let the outside option scale with N; this is mo-
tivated by the observation that in practical settings the
probability that a customer does not book should re-
main bounded away from zero even for very large
systems. In particular, we assume that limN→∞

(N)= N
γ  >  0.

We note that this specification of choice model, al-
though it relies on the multinomial logit model, can be
quite flexible because we allow for arbitrary heteroge-
neity of listings and customers.

For later reference, we define

qj(θ)  E qjℓ , (2)
ℓ:θℓθ

where the expectation is over the randomness in Cj .
With this definition, qj(θ) is the probability that cus-
tomer j books an available listing of type θ, where the
probability is computed prior to realization of the con-
sideration set.
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3.7. Dynamics: A  Continuous-Time Markov Chain
The system evolves as follows. Initially, all listings are
available.3 Every time a customer arrives, the choice
process described above unfolds. An occupied listing
remains occupied, independent of all other random-
ness, for an exponential time that is allowed to de-
pend on the type of the listing.4 More formally, let
τ  >  0, and for each type θ define ν(θ) such that, once
booked, a listing of this type will remain occupied for
an exponential time with parameter τν(θ). We over-
load notation and define τ(θ)  τν(θ). Once this time
expires, the listing returns to being available.

When fixing n  (ν(θ),θ � Θ) and all system param-
eters except for τ, increasing τ  will make the system
less supply constrained, and decreasing τ  will make
the system more supply constrained while preserving
the relative occupancy times of each listing type.

Our preceding specification turns s ( N )       into a
continuous-time Markov process on a finite state
space S(N)  { s  : 0 ≤  σ(θ) ≤  m(N)(θ), �θ}. We now de-
scribe the transition rates of this Markov process. For
a state s  � S(N) , σ(θ) represents the number of avail-
able listings of type θ.

There are only two types of transitions possible. Ei-
ther (i) a listing that is currently occupied becomes
available, or (ii) a customer arrives and books a listing
that is currently available. (If a customer arrives but
does not book anything, the state of the system is un-
changed.) Let e denote the unit basis vector in the di-
rection θ, that is, eθ(θ)  1, and eθ(θ)  0 for θ ≠  θ. The
rate of the first type of transition is

R ( s , s +  eθ)  (m(N)(θ) − σ(θ))τ(θ), (3)

since there are m(N)(θ) − σ(θ) booked listings of type θ,
and each remains occupied for an exponential time with
mean 1=τ(θ) independent of all other randomness.

The second type of transition requires some more
steps to formulate. In principle, our choice model sug-
gests that both the identity of the arriving guest and
individual listings affect system dynamics; however,
our state description tracks only the aggregate num-
ber of listings of each type available at each time t.
The key here is that our entire specification depends
on customers only through their type and depends on
listings only through their type.

Formally, suppose a customer j of type γ j   γ  arrives to

find the system in state s .  For each θ let Dγ (θ | s )  be a
binomial (σ(θ),αγ(θ)) random variable independently
across θ. Recall that for each available listing ℓ, each Cjℓ is
a Bernoulli(αγ(θl)) random variable. Recalling qj(θ) as
defined in (2), it is straightforward to check that

qj(θ)  rγ(θ | s ) ¢ E  (N) +

D γ (  

Dγ(θ

v

| s)v
γ

(θ) 
: (4)
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In other words, the probability that an arriving cus-
tomer of type γ  books a listing of type θ when the
state is s  is given by rγ(θ | s ) ,  and this probability de-
pends on the past history only through the state s  (en-
suring that the Markov property holds).

With this definition at hand, for states s  with
σ(θ) >  0, the rate of the second type of transition is

R ( s , s −  eθ)  λ(N)rγ(θ | s ) : (5)
γ

Note that the resulting Markov chain is irreducible
since customers have positive probability of sampling
into and booking from their consideration set, and ev-
ery listing in the consideration set has a positive prob-
ability of being booked.

3.8. Steady State
Because the Markov process defined above is irreduc-
ible on a finite state space, there is a unique steady-
state distribution π(N) on S(N) for the process.

4. A  Mean Field Model of
Platform Dynamics

The continuous-time Markov process described in the
preceding section is challenging to analyze directly
because the customers’ choices and consideration sets
induce complex dynamics. Instead, to make progress,
we consider a formal mean field limit motivated by the
regime where N  → ∞, in which the evolution of the
system becomes deterministic. We first present a for-
mal mean field analog of the Markov process intro-
duced in the previous section and provide intuition
for its derivation. We then formally prove that the se-
quence of Markov processes converges to this mean
field model as N  → ∞. The mean field model provides
tractable expressions in the large market regime for
the different estimators we consider, allowing us to
study and compare their bias.

The mean field model we study consists of a contin-
uum unit mass of listings. The total mass of listings of
type θ in the system is ρ(θ) >  0 (recall that ρ(θ)  1).
We represent the state at time t by st  (s(θ),θ � Θ);
st(θ) represents the mass of listings of type θ available
at time t. The state space for this model is

S   {s : 0 ≤  s(θ) ≤  ρ(θ)}: (6)

We first present the intuition behind our mean field
model. Consider a state s � S  with s(θ) >  0 for all θ.
We view this state as analogous to a state s  ≈  Ns in
the N’th system. We consider the system dynamics de-
fined by (3)−(5). Note that the rate at which occupied
listings of type θ become available is (m(N)(θ)
−σ(θ))τ(θ), from (3). If we divide by N, then this rate
becomes (ρ(θ) − s(θ))τ(θ), as N  → ∞. On the other
hand, note that for large N, if Dγ (θ | s )  is binomial
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(σ(θ),αγ(θ)), then Dγ (θ | s ) = N  concentrates on αγ

(θ)s(θ). Thus the choice probability rγ(θ | s )  is approxi-
mately

αγ(θ)vγ(θ)s(θ)
γ

γ  +      θ αγ(θ)vγ(θ)s(θ)

(Here we use the fact that (N)=N → γ  as N  → ∞.) This
is the mean field multinomial logit choice model for
our system. In the finite model, the rate at which
listings of type θ become occupied is λ(N)rγ(θ | s ) ,
from (5). If we divide by N, this rate becomes
λ φ pγ(θ | s), as N  → ∞.

Inspired by the preceding observations, we define
the following system of differential equations for the
evolution of st:

dt
st(θ)  (ρ(θ) − st(θ))τ(θ) −  λφγpγ(θ | st), θ � Θ:

(8)

This is our formal mean field model. In the remainder
of this section, we first show that this system has a
unique solution for any initial condition. Then, we
characterize the behavior of the system. By construct-
ing an appropriate Lyapunov function, we show that
the mean field model has a unique limit point to
which all trajectories converge (regardless of initial
condition). This limit point is the unique steady state
of the mean field limit. Finally, we prove that the se-
quence of Markov processes indeed converges to this
mean field model (in an appropriate sense). Hence,
the mean field model provides a close approximation
to the evolution of large finite markets.

4.1. Existence and Uniqueness of Mean
Field Trajectory

First, we show the straightforward result that the sys-
tem of ODEs defined in (8) possesses a unique solu-
tion. This follows by an elementary application of the
Picard-Lindelof theorem from the theory of differen-
tial equations. The proof is in Online Appendix A.

Proposition 1. Fix an initial state s � S . The system (8)
has a unique solution {st : t ≥  0} satisfying 0 ≤  st(θ) ≤
ρ(θ) and for all t and θ, and s0  s.

4.2. Existence and Uniqueness of Mean Field
Steady State

Now, we characterize the behavior of the mean field
limit. We show that the system of ODEs in (8) has a
unique limit point, to which all trajectories converge
regardless of the initial condition. We refer to this as
the steady state of the mean field system. We prove the
result via the use of a convex optimization problem;
the objective function of this problem is a Lyapunov
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function for the mean field dynamics that guarantees
global asymptotic stability of the steady state.

Formally, we have the following result. The proof is
in Online Appendix A.

Theorem 1. There exists a unique steady state s� � S  for
(8), that is, a unique vector s� � S  solving the following sys-
tem of equations:

(ρ(θ) −  s�(θ))τ(θ)  λ  
γ  

φγpγ(θ | s�), θ � Θ: (9)

This limit point has the property that 0 <  s�(θ) <  ρ(θ)
for all θ; that is, it is in the interior of S . Furthermore,
this limit point is globally asymptotically stable; that
is, all trajectories of (8) converge to s�, as t → ∞, for
any initial condition s0 � S .

The limit point s� is the unique solution to the fol-
lowing optimization problem:

 minimize W(s)¢ λγ log γ  + αγ(θ)vγ(θ)s(θ)

−τ(θ)ρ(θ)log s(θ) + τ(θ)s(θ) θ θ

(10)

subject to 0 ≤  s(θ) ≤  ρ(θ), θ � Θ: (11)

The function W appearing in the proposition state-
ment is not convex; our proof proceeds by first noting
that it suffices to restrict attention to s such that s(θ) >  0
for all θ, then making the transformation y(θ)
log(s(θ)). The objective function redefined in terms of
these transformed variables is strictly convex, and this
allows us to establish the desired result.

4.3. Convergence to the Mean Field Limit
Finally, we formally describe the sense in which our
system converges to the system in (8). We first move
from analyzing the number of listings available in the
N’th system to analyzing the proportion of listings
available. To this end, define the normalized process
Y(N) , where

Y(N)(θ)  σ(N)(θ)=N, θ � Θ:

Note that, under this definition, Y (N)      is also a
continuous-time Markov process with dynamics in-
duced by the dynamics of s( N ) ;  in particular, the chain
Y (N) has the same transition rates as s( N ) ,  but incre-
ments are of size 1=N. The following theorem estab-
lishes the convergence of Y(N) to the solution of the
ODE described in (8) as N  → ∞.

Theorem 2. Assume that (N)=N → for all γ  and
λ(N) =N → λ  for all γ  as N  → ∞. Fix s � S  and assume
that Y (N) is deterministic, with Y(N)(θ) → s(θ) for all θ.
Let st denote the unique solution to the system defined in
(8), with initial condition s0  s.
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Then for all δ >  0 and for all times u >  0,

P sup ||Y(N) −  st||> δ  O : (12)
0≤t≤u

The proof for this result relies on an application of
Kurtz’s Theorem for the convergence of pure jump
Markov processes; full details are in Online Appendix
A. We note that this result holds for any sequence of
initial conditions Y (N) , as long as the proportion of
available listings at time t 0 converges to a constant
vector s, as N  → ∞; furthermore, the vector s can be
any (feasible) initial state in the mean field model.

We now utilize the mean field model to study ex-
perimental designs and interference.

5. Experiments: Designs and Estimators
In this section, we leverage the framework developed
in the previous section to undertake a study of experi-
mental designs a platform might employ to test inter-
ventions in the marketplace. For simplicity, we focus
on interventions that change the choice probability of
one or more types of customers for one or more types
of listings, and we assume that the platform is inter-
ested in estimating the resulting rate at which book-
ings take place. However, we believe that the same
approach we employ here can be applied to study
other types of interventions and platform objectives as
well.

Formally, the platform’s goal is to design experi-
ments with associated estimators to assess the perfor-
mance of the intervention (the treatment) relative to
the status quo (the control). In particular, the platform
is interested in determining the steady-state rate of
booking when the entire market is in the treatment
condition (i.e., global treatment) compared with the
steady-state rate of booking, when the entire market is
in the control condition (i.e., global control). We refer to
the difference of these two rates as the global treatment
effect (GTE). We focus on these steady-state quantities
since a platform is typically interested in the long-run
effect of an intervention.

Two types of canonical experimental designs are
typically employed in practice: listing-side randomiza-
tion (denoted LR) and customer-side randomization (de-
noted CR). In the former design, listings are random-
ized to treatment or control; in the latter design,
customers are randomized to treatment or control.
Each design also has an associated natural “naive” es-
timator of booking rates, that is, a (scaled) difference
in means estimators for the two groups. As we dis-
cuss, these estimators will typically be biased due to
interference effects.

The LR and CR designs are special cases of a novel,
more general two-sided randomization (TSR) design
that we introduce in this work, where both listings
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and customers are randomized to treatment and
control simultaneously. As we discuss, this type of ex-
periment can be combined with design and analysis
techniques to reduce bias. On the design side, TSR de-
signs allow us to construct experiments that interpo-
late between LR and CR designs in such a way that
bias is reduced. On the analysis side, TSR designs al-
low us to observe different competition effects that we
can use to heuristically debias our estimators. (TSR
designs were also independently introduced and
studied in recent work by Bajari et al. (2021); see Sec-
tion 2 for discussion.) In the next section, we develop
the relevant formalism for these designs; we then sub-
sequently define natural “naive” estimators that are
commonly used for the LR and CR designs as well as
an estimator for a TSR design. In the remainder of the
paper, we study the bias of these different designs
and estimators under different market conditions.

5.1. Experimental Design
Because CR and LR are special cases of a TSR design,
we first describe how to embed TSR experimental de-
signs into our model and then subsequently describe
CR and LR designs in our model.

5.1.1. Treatment Condition. We consider a binary
treatment; every customer and listing in the market
will either be in treatment or control. (Generalization of
our model to more than two treatment conditions is
relatively straightforward.) We model the treatment
condition by expanding the set of customer and listing
types. For every customer type γ  � Γ  we create two
new customer types (γ, 0), (γ, 1), and for every listing
type θ � Θ we create a two new listing types
(θ, 0), (θ, 1). The types (γ, 0), (θ, 0) are control types; the
types (γ, 1), (θ, 1) are treatment types.

5.1.2. Two-Sided Randomization. In this design, ran-
domization takes place on both sides of the market
simultaneously. We assume that a fraction aC  of cus-
tomers are randomized to treatment and a fraction 1 −
aC to control independently, and we assume that a
fraction aL of listings are randomized to treatment and
a fraction 1 − aL to control independently.

5.1.3. Treatment as a Choice Probability Shift. Exam-
ples of interventions that platforms may wish to test
include the introduction of higher-quality photos for a
hotel listing on a lodging site, showing previous job
completion rates of a freelancer on an online labor
market, or reducing the friction for an item in the
checkout flow. Such interventions change the choice
probability of listings by customers through either the
consideration probabilities or perceived utility for a
listing. In particular, we continue to assume the multi-
nomial logit choice model, and we assume that for a
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type γ  customer and a type θ listing that have been
given the intervention, the utility becomes vγ(θ) >  0
and the probability of inclusion in the consideration
set becomes αγ(θ) >  0. Because we focus on changes
in choice probabilities, we assume that the holding
time parameter of a listing of type θ is ν(θ), regardless
of whether it is assigned to treatment or control.5

In the TSR designs that we consider, a key feature
is that the intervention is applied only when a treated
customer interacts with a treated listing. For example,
when an online labor marketplace decides to show
previous job completion rates of a freelancer as an in-
tervention, only treated customers can see these rates,
and they see them only when they consider treated
freelancers. We model this by redefining quantities in
the experiment as follows:

vγ,0(θ, 0)  vγ,1(θ, 0)  vγ,0(θ, 1)  vγ(θ);

vγ,1(θ, 1)  vγ(θ);

αγ,0(θ, 0)  αγ,1(θ, 0)  αγ,0(θ, 1)  αγ(θ);

αγ,1(θ, 1)  αγ(θ);

γ,0  γ,1  γ ; (15)

ν(θ, 0)  ν(θ, 1)  ν(θ): (16)

This definition is a natural way to incorporate ran-
domization on each side of the market. However, we
remark here that it is not necessarily canonical; for ex-
ample, an alternate design would be one where the in-
tervention is applied when either the customer has
been treated or the listing has been treated. Even more
generally, the design might randomize whether the
intervention is applied, based on the treatment condi-
tion of the customer and the listing. In all likelihood,
the relative advantages of these designs would de-
pend not only on the bias they yield in any resulting
estimators but also in the variance characteristics of
those estimators. We leave further study and compari-
son of these designs to future work.

5.1.4. Customer-Side and Listing-Side Randomization.
Two canonical special cases of the TSR design are as fol-
lows. When aL 1, all listings are in the treatment condi-
tion; in this case, randomization takes place only on the
customer side of the market. This is the customer-side
randomization (CR) design. When aC 1, all customers
are in the treatment condition, and randomization takes
place only on the listing side of the market. This is the
listing-side randomization (LR) design.

5.1.5. System Dynamics. With the specification above,
it is straightforward to adapt our mean field system of
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ODEs, cf. (8), and the associated choice model (7), to
this setting. The key changes are as follows:

1. The mass of control (resp., treatment) listings of
type (θ, 0) (resp., (θ, 1)) becomes (1 − aL)ρ(θ) (resp.,
aLρ(θ)). In other words, abusing notation, we define
ρ(θ, 0)  (1 − aL)ρ(θ) and ρ(θ, 1)  aLρ(θ).

2. The arrival rate of control (resp., treatment) cus-
tomers of type (γ, 0) (resp., (γ, 1)) becomes (1 − aC)λφ
(resp., aCλφ ). Thus we define φ  (1 − aC)φ     and
φγ,1  aCφγ .

3. The choice probabilities are defined as in (7), with
the relevant quantities defined in (13)−(15).

Using Proposition 1 and Theorem 1, we know that
there exists a unique solution to the resulting system of
ODEs and that there exists a unique limit point to which
all trajectories converge, regardless of initial condition.
This limit point is the steady state for a given experimen-
tal design. For a TSR experiment with treatment cus-
tomer fraction aC  and treatment listing fraction aL, we use
the notation st(aC , aL)  (st(θ, j) | aC, aL),θ � Θ, j � {0, 1}) to
denote the ODE trajectory, and we use s�(aC , aL)
(s�(θ, j) | aC , aL),θ � Θ, j � {0, 1}) to denote the steady
state.

5.1.6. Rate of Booking. In our subsequent develop-
ment, it will be useful to have a shorthand notation
for the rate at which bookings of listings of treatment
condition j � {0, 1} are made by customers of treat-
ment condition i � {0, 1} in the interval [0, T]. In partic-
ular, we define

Qij(T | aC, aL)  
λ  T

φγ,ipγ,i (θ, j | st(aC, aL)) dt: θ

(17)

Because st(aC , aL) is globally asymptotically stable,
bounded, and converges to s�(aC, aL) as t → ∞, we
have

Qij(∞ | a C , a L )¢  lim Qij(T | aC , aL)

 λφγ,ipγ,i (θ, j | s�(aC, aL)): (18)

θ

5.1.7. Global Treatment Effect. Recall that we assume
that the steady-state rate of booking is the quantity of
interest to the platform. In particular, the platform is
interested in the change in this rate from the global
control condition (aC  0, aL  0) to the global treatment
condition (aC  1, aL  1).

In the global control condition, the steady state rate at
which customers book is QGC  Q00(∞ | 0, 0), and in the
global treatment condition, the steady state rate at which
customers book is QGT  Q11(∞ | 1, 1). Under these defi-
nitions, the global treatment effect is GTE  QGT − QGC .

We remark that the rate of booking decisions made
by arriving customers will change over time, even if
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the market parameters are constant over time (includ-
ing the arrival rates of different customer types as
well as the utilities that customers have for each list-
ing type). This transient change in booking rates is
driven by changes in the state st; in general, such fluc-
tuations will lead the transient rate of booking to dif-
fer from the steady-state rate for all values of aC  and
aL (including global treatment and global control). In
this work, we focus on the steady-state quantities to
capture, informally, the long-run change in behavior
due to an intervention.6

5.2. Estimators: Transient and Steady State
The goal of the platform is to use the experiment to es-
timate GTE. In this section, we consider estimators
the platform might use to estimate this quantity. We
first consider the CR and LR designs, and we define
“naive” estimators that the platform might use to esti-
mate the global treatment effect. These designs and es-
timators are those most commonly used in practice.
We define these estimators during the transient phase
of the experiment and then define the associated
steady-state versions of these estimators. Finally, we
combine these estimation approaches in a natural
heuristic that can be employed for any general TSR
design.

5.2.1. Estimators for the CR Design. We start by con-
sidering the CR design, that is, where aL 1 and aC �
(0, 1). A simple naive estimate of the rate of book-ing is
to measure the rate at which bookings are made in a
given interval of time by control customers and
compare this to the analogous rate for treatment cus-
tomers. Formally, suppose the platform runs the ex-
periment for the interval t � [0, T], with a fraction aC  of
customers in treatment. The rate at which customers
of treatment condition i � {0, 1} book in this period is
Qi1(T | aC, 1). The naive CR estimator is the difference
between treatment and control rates, where we correct
for differences in the size of the control and treatment
groups by scaling with the respective masses:

GTE
CR

(T | aC)  
Q11(T | aC, 1) 

−
Q01(T | aC, 1)

: (19)
C C

We let GTE
CR

(∞ | aC)  Q11(∞ | aC, 1)=aC −  Q01(∞ | aC, 1)=
(1 − aC) denote the steady-state naive CR estimator.

5.2.2. Estimators for the LR Design. Analogously, we
can define a naive estimator for the LR design, that is,
where aC  1 and aL � (0, 1). Formally, suppose the
platform runs the experiment for the interval t � [0, T],
with fraction aL of listings in treatment. The rate at
which listings with treatment condition j � {0, 1} are
booked in this period is Q1j(T | 1, aL). The naive LR esti-
mator is the difference between treatment and control
rates scaled by the mass of listings in each group:
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GTE
LR

(T | aL)  
Q11(T | 1, aL) 

−
 
Q10(T | 1, aL)

: (20)
L L

We let GTE
LR

(∞ | aL)  Q11(∞ | 1, aL)=aL −  Q10(∞ | 1, aL)=
(1 − aL) denote the corresponding steady-state naive
LR estimator.

5.2.3. Estimators for the TSR Design. As with the LR
and CR designs, it is possible to design a natural naive
estimator for the TSR design as well. In particular, we
have the following definition of the naive TSR estima-
tor:

GTE
TSRN

(T | aC , aL)  
Q11(T | aC , aL) C

L

Q01(T | aC , aL ) + Q10(T | aC , aL) + Q00(T | aC , aL)
1 −  aCaL

(21)

To interpret this estimator, observe that the first term
is the normalized rate at which treatment customers
booked treatment listings in the experiment; we nor-
malize this by aCaL , since a mass aC  of customers are
in treatment and a mass aL of listings are in treatment.
This first term estimates the global treatment rate of
booking.     The     sum     Q01(T | aC , aL) +  Q10(T | aC , aL) +
Q00(T | aC , aL) is the total rate at which control book-
ings took place either because the customer was in the
control group, the listing was in the control group, or
both. (Recall that in the TSR design, the intervention
is only seen when treatment customers interact with
treatment listings.) This is normalized by the comple-
mentary mass, 1 −  aCaL . This second term estimates
the global control rate of booking. As before, we can
define a steady-state version of this estimator as

GTE
TSRN

(∞ | aC, aL), with the steady-state versions of
the respective quantities on the right hand side of (21).

It is straightforward to check that as aL → 1, we

have GTE
TSRN

(T | aC , aL) → GTE
CR

(T | aC), the naive
CR estimator. Similarly, because aC → 1, we have

GTE
TSRN

(T | aC , aL) → GTE
LR

(T | aL), the naive LR esti-
mator. In this sense, the naive TSR estimator naturally
“interpolates” between the naive LR and CR estima-
tors. In the next section, we exploit this interpolation
to choose aC  and aL as a function of market conditions
in such a way as to reduce bias.

More generally, the TSR design also contains much
more information about competition in the market-
place, and the resulting interference effects, than either
the CR or LR designs. Inspired by this observation, to-
gether with the idea of interpolating between the naive
CR estimator and the naive LR estimator, in Section
6.3 we explore alternative, more sophisticated TSR es-
timators that heuristically debias interference due to
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competition effects. As we show, these estimators can
offer substantial bias reduction over the naive TSRN
estimator above.

6. Analysis of Bias
We now utilize the framework defined to analyze the
bias of two common experiment types, LR experi-
ments and CR experiments. Recall from Section 1 that,
in a setting where listings are immediately replen-
ished, all customers see the full set of original listings
as available. There is no competition between custom-
ers, but there is still competition between listings, and
so intuitively, we expect CR to be unbiased and LR to
be biased. Meanwhile, in a setting where listings re-
main unavailable for some amount of time, the result-
ing dynamic linkage across customers creates a bias in
CR as well. Now, consider the extreme where the
market is highly supply-constrained; most customers
who arrive see no available listings, but some custom-
ers arrive just as a booked listing becomes available
and see a single available listing. Such customers com-
pare the listing against the outside option but, because
no other listings are available, do not compare listings
against each other. In this regime, there is no competi-
tion across listings, but there is competition between
customers, and so we expect LR to be unbiased and
CR to be biased.

In this section, we formalize this intuition about the
behavior of the estimators in the extremes of market
balance. We establish two key theoretical results; in
the limit of a highly supply-constrained market
(where λ=τ  → ∞), the naive LR estimator becomes an
unbiased estimator of the GTE, whereas the naive CR
estimator is biased. On the other hand, in the limit of
a highly demand-constrained market (where λ=τ  → 0),
the naive CR estimator becomes an unbiased estimator
of the GTE, whereas the naive LR estimator is biased.
In other words, each of the two naive designs is respec-
tively unbiased in the limits of extreme market imbal-
ance. At the same time, we find empirically that neither
estimator performs well in the region of moderate mar-
ket balance.

Inspired by this finding, we consider TSR and asso-
ciated estimators that naturally interpolate between
the two naive designs, depending on market balance.
Given the findings above, we show that a simple ap-
proach to adjusting aC  and aL as a function of market
balance yields performance that balances between the
naive LR estimator and the naive CR estimator. Nev-
ertheless, we show that there is significant room for
improvement by adjusting for the types of interfer-
ence that arise, using observations from the TSR ex-
periment. In particular, we propose a heuristic for a
novel interpolating estimator for the TSR design that
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aims to correct these biases and yields surprisingly
good numerical performance.

6.1. Theory: Steady-State Bias of CR and LR in
Unbalanced Markets

In this section, we study theoretically the bias of the
steady-state naive CR and LR estimators in the limits
where the market is extremely unbalanced (either
demand-constrained or supply-constrained). The key
tool we employ is a characterization of the asymptotic
behavior of Qij(∞ | aC, aL), as defined in (18) in the lim-
its where λ=τ  → 0 and λ=τ  → ∞. We use this charac-
terization in turn to quantify the asymptotic bias of
the naive estimators relative to the GTE. We derive
these results in the next two sections and provide a
simple example in Section 6.1.3 to illustrate the effects.

6.1.1. Highly Demand-Constrained Markets. We start
by considering the behavior of naive estimators in the
limit where λ=τ  → 0. We start with the following
proposition that characterizes behavior of Qij(∞ |
aC , aL) as λ=τ  → 0. The proof is in Online Appendix A.

Proposition 2. Fix all system parameters except λ  and τ,
and consider a sequence of systems in which λ=τ  → 0.
Then along this sequence,

λ
Qij(∞ | aC , aL) → 

θ γ  
φγ,ipγ,i(θ, j | r): (22)

The expression on the right hand side depends on
both aC  and aL through φ and r ,  respectively. In par-
ticular, we recall that φ       aCφ , φ  (1 − aC)φ and
ρ(θ, 1)  aLρ(θ), ρ(θ, 0)  (1 − aL)ρ(θ). In our subse-
quent discussion in this regime, to emphasize the
dependence of r  on aL      below, we will write
r(aL )  (ρ(θ, j | aL),θ � Θ, j  0, 1). With this definition, we
have ρ(θ, 1 | aL)  aLρ(θ), ρ(θ, 0 | aL)  (1 − aL)ρ(θ).

This proposition allows us to characterize the bias
of both CR and LR estimators in the demand-
constrained limit. Note that Proposition 2 shows that,
in this limit, the (scaled) rate of booking behaves as if
the available listings of type (θ, j) were exactly ρ(θ, j |
aL) for every θ and treatment condition j0, 1. That is, it
is as if every arriving customer sees the entire mass of
listings as being available, and so bookings are im-
mediately replenished. This observation drives our
first main result, that in the demand-constrained limit
the CR estimator is unbiased and LR estimator is
biased.

Theorem 3. Consider a sequence of systems where
λ=τ  → 0. Then     for     all     aC        such     that     0 <  aC <  1,

GTE
CR

(∞ | aC )=λ −  GTE=λ →  0. However, for 0 <  aL <  1,

generically over parameter values,7 we have limGTE
LR

(∞ | aC)=λ − GTE=λ ≠  0.
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The full proof can be found in Online Appendix A.
The key insight is that as the market becomes more de-
mand constrained, there is a weakening of the competi-
tion between arriving customers, which leads to less in-
terference in a CR experiment. In the limit, the CR
estimator becomes unbiased. On the other hand, in an
LR experiment, there is a positive mass of control and
treatment listings available in steady state, leading to
competition between listings and bias in the LR
estimator.

6.1.2. Heavily Supply-Constrained Markets. We now
characterize the behavior of naive estimators in the
limit where λ=τ  → ∞. We start with the next proposi-
tion, where we study the behavior of Qij as λ=τ  → ∞.
The proof is in Online Appendix A. To state the prop-
osition, we define

gγ,i(θ, j)  
αγ,i(θ, j)vγ,i(θ, j)

:
γ,i

Proposition 3. Fix all system parameters except for λ  and
τ, and consider a sequence of systems in which λ=τ  → ∞.
Along this sequence, the following limit holds

τ
Qij(∞ | aC,aL)→

i0,1 

φγ,igγ

i

(θ, j)

θ, j)
ρ(θ, j)ν(θ): (23)

As before, the expression on the right-hand side de-
pends on both aC  and aL through φ      and r  respec-
tively. In particular, we recall that φγ,1  aCφγ , φγ,0

(1 − aC)φγ and ρ(θ, 1)  aLρ(θ), ρ(θ, 0)  (1 − aL)ρ(θ).
A key intermediate result we employ is to demon-

strate that in the steady state in this limit, s�(θ, j |
aC , aL) → 0 for all θ, j. We know that in the steady state
of the mean field limit, the rate at which occupied list-
ings become available must match the rate at which
available listings become occupied (flow conserva-
tion). We use this fact to show that to first order in
λ=τ , in the limit where λ=τ  → ∞ we have

s�(θ, j | aC , aL) ≈  
λ
1
τ

·
γ

ρ(θ, j)ν(θ)
(θ, j)

:

The proposition follows by using this limit to charac-
terize the choice probabilities.

The proof of the preceding proposition reveals that
in the limit where λ=τ  → ∞, we have

pγ,i(θ, j | s�(aC, aL)) ≈  gγ,i(θ, j)s�(θ, j | aC , aL)

 
αγ,i(θ, j)vγ,i(θ, j)s�(θ, j | aC, aL)

:
γ,i

This preceding expression is the formalization of our
intuition that, in the limit where the market is heavily
supply constrained, it is as if each arriving customer
seeing an available listing compares only that listing
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to the outside option; there is no longer any competi-
tion between listings.

We can use the preceding proposition to understand
the behavior of the GTE, the naive LR estimator, and the
naive CR estimator in steady state as λ=τ  → ∞. For sim-
plicity, we hold τ  constant and take the limit λ  → ∞. In
this case, the preceding proposition shows that

Q11(∞ | 1, 1) → τ ρ(θ)ν(θ); Q00(∞ | 0, 0)

→ τρ(θ)ν(θ): θ

The global treatment effect is GTE → 0 in this limit.
Bookings occur essentially instantaneously after a listing
becomes available, which happens at rate τ ρ(θ)ν(θ).

We also note that

Q11(∞ | 1, aL) → aL τ ρ(θ)ν(θ); Q10(∞ | 1, aL)
θ

→ (1 −  aL )τ ρ(θ)ν(θ):
θ

The preceding two expressions reveal that the steady-
state naive LR estimator GTE (∞ | aL) in this setting
approaches zero, matching the GTE; thus it is asymp-
totically unbiased.

It is also now straightforward to see why the CR de-
sign will be biased. Note that

Q11(∞ | aC,1)→ aCτ 
θ γ i

φ 

φγ

,

i gγ

,

i (θ,1)
ρ(θ)ν(θ):

An analogous expression holds for Q01(∞ | aC, 1).
We see that the right-hand side reflects the dynamic
interference created between treatment and control
customers; just as in our simple example, whether an
available listing is seen by, for example, a control cus-
tomer depends on whether it has previously been
booked by a treatment customer. That is, customers
compete for listings. As in the example, the naive CR
estimator will remain nonzero in general in the limit,
even though the GTE approaches zero.

We summarize our discussion in the following
theorem.

Theorem 4. Consider a sequence of systems where
λ=τ  → ∞. Then, GTE=τ → 0, and for all aL  such that

0 <  aL <  1, there also holds GTE
LR

(∞ | aL)=τ → 0. How-
ever, for 0 <  aC <  1, generically over parameter values we

have limGTE
CR

(∞ | aC )=τ − GTE=τ ≠  0.

Although the preceding theorem shows that the ab-
solute bias of the naive LR estimator approaches zero,

in fact in general the relative bias (GTE
LR

(∞ |
aL) −  GTE)=GTE will not generally approach zero; this
is because the GTE is also approaching zero, and so
the second-order behavior of the naive LR estimator
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matters. This is in contrast to the behavior of the naive
CR estimator in the demand-constrained limit; in that
limit, the GTE remains nonzero in general, and so the
naive CR estimator is both absolutely and relatively
unbiased. Nevertheless, note that relative bias of the
naive LR estimator will be significantly smaller than
the relative bias of the naive CR estimator in the
supply-constrained limit since the naive CR estimator
has a nonzero absolute bias in this limit, whereas the
GTE approaches zero.

We finish this section by noting that Theorems 3
and 4 are driven by fundamental competition dynam-
ics in the respective limiting regimes, and therefore,
we believe that they hold under a much more general
class of models than the ones considered here. We
leave this for future investigation.

6.1.3. An Example: Homogeneous Customers and
Listings. To more clearly understand the behavior of
the bias, in this section we apply Propositions 2 and 3
to a simpler setting where both listings and customers
are homogeneous; that is, there is only one type of cus-
tomer and one type of listing. This example illustrates
the symmetry between the two sides of the market
and the resulting implications for bias in marketplace
experiments.

Let v denote the control utility and v the treatment
utility of a customer for a listing. Let  denote the outside
option value of both control and treatment customers,
α0(0)  α1(1)  1, and ν(0)  ν(1)  1. In this example, we
consider two limits: one where λ  is fixed and τ  → ∞ (the
demand-constrained regime) and one where τ  is fixed
and λ  → ∞ (the supply-constrained regime).

In the first case, when τ  → ∞ with λ  fixed, if we ap-
ply Proposition 2, we obtain

Q00(∞ | aC , aL) → λ  ·
(1 − a )(1 − aL)ρv

;

Q01(∞ | aC , aL) → λ  ·
(1 − aC

)
aLρv

;

Q10(∞ | aC , aL) → λ  ·
 +

 (aC(1 − aL)ρv 
Lρv 

;

Q11(∞ | aC , aL) → λ  ·
 +

 
(1 −

 
a

a
)ρv +

 
aLρv

 
: (24)

In this limit,

GTE → λ  · 
 +  ρv 

−  
 +  ρv 

:

From these expressions it is clear that the naive CR esti-
mator is unbiased, whereas the naive LR estimator is
biased. Furthermore, the expressions reveal that listing-
side randomization creates interference across listings.
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In the second case, when λ  → ∞ with τ  is fixed, if
we apply Proposition 3, we obtain

Q00(∞ | aC , aL) → τ(1 −  aC)(1 − aL)ρ;

Q01(∞ | aC , aL) → τ  ·
(1 

(1 − aC)v
 C   ̃aLρ;

Q10(∞ | aC , aL) → τaC (1 − aL)ρ;

Q11(∞ | aC , aL) → τ  ·
(1 − aC)v +

 
aC  ̃aLρ: (25)

In this limit, GTE → 0. From these expressions, it is
clear that the naive CR estimator is biased, whereas
the naive LR estimator is unbiased. Furthermore,
these expressions also reveal that customer-side ran-
domization creates interference across customers.

Interestingly, these expressions highlight a remark-
able symmetry. As expected, in the limit of a highly
demand-constrained market, customers choose among
listings; thus there is competition for customers among
listings, and this is the source of potential interference
in LR designs. The expressions reveal that in the limit
of a highly supply-constrained market, it is as if listings
choose among customers; thus there is competition
among customers, and this is the source of potential
interference in CR designs. Indeed, the expressions for
Q01 and Q11 in (25) take the form of a multinomial logit
choice model of listings for customers. We believe this
type of symmetry provides important insight into the
nature of experimental design in two-sided markets
and in particular the roots of the interference typically
observed in such settings.

6.1.4. Sign of the Bias in CR and LR Estimates. Theo-
rems 3 and 4 state that the LR estimate is biased in the
demand-constrained limit and the CR estimate is bi-
ased in the supply-constrained limit but make no
claim as to whether the estimators overestimate or un-
derestimate the GTE. In general, we cannot provide
guarantees for the sign of the bias because it depends
on the distribution of listings, the rates at which list-
ings replenish, and the lift on the individual αγ(θ) and
vγ(θ) induced by the interventions. However, for a
broad class of interventions, we can show that the LR
estimate overestimates in the demand-constrained
limit and CR overestimates in the supply-constrained
limit. In such cases where we know the bias to be pos-
itive, CR and LR experiments can be used to bound
the size of the GTE.

We call an intervention positive if αγ(θ)vγ(θ) >
αγ(θ)vγ(θ) for all γ  and θ. Such an intervention can be
viewed as an improvement on the platform for all cus-
tomer and listing type pairs, since for each pair at least
one of the customer’s consideration probabilities or
utilities for the listing type must increase. Note that
this class of interventions is broad enough to allow for



˜ ˜

(26)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

17
4.

25
1.

2]
 o

n 
03

 J
ul

y 
20

23
, a

t 1
1:

54
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll
 r

ig
ht

s 
re

se
rv

ed
.

7082

heterogeneous treatment effects across different (γ,θ)
pairs.8

For positive interventions, straightforward applica-

tions of Propositions 2 and 3 show that GTE
LR 

overesti-
mates the GTE in the demand-constraint limit and

GTE
CR 

overestimates the GTE in the supply-constrained
limit. The result follows from the fact that in a customer-
side (resp., listing-side) experiment in a supply-constrained
(resp., demand-constrained) setting, the individuals
in the treatment group face less competition than they
would in the global treatment setting, whereas the in-
dividuals in the control group face more competition
than in the global control setting.

Proposition 4. Suppose that the treatment is positive, that
is, αγ(θ)vγ(θ) >  αγ(θ)vγ(θ) for all γ,θ. Then we have the
following.

1. LR bias when demand constrained: Consider a se-
quence of systems where λ=τ  → 0. For any 0 <  aL <  1,

we have limGTE
LR

(∞ | aC)=λ −  GTE=λ >  0.
2. CR bias when supply constrained: Consider a se-

quence of systems where λ=τ  → ∞. For any 0 <  aC <  1,

we have limGTE
CR

(∞ | aC )=τ − GTE=τ >  0.

Furthermore, we find through simulations that CR
and LR overestimate the GTE with positive treat-
ments in intermediate ranges of market balance for
all parameter regimes that we study in the examples
in this section (see Figure 3 as well as Online Ap-
pendix C). We do find in some cases that the TSRI
estimators underestimate the GTE, and so, because
we plot bias on a log scale, we report the absolute
value of the bias.

6.2. Discussion: Violation of SUTVA
Our results on the bias of the naive CR and LR ex-
periments can be interpreted through the lens of the
classical potential outcomes model. An important re-
sult from this literature is that when the stable unit
treatment value assumption (SUTVA) holds, then
naive estimators of the sort we consider will be un-
biased for the true treatment effect. SUTVA requires
that the treatment condition of units other than a
given customer or listing should not influence the
potential outcomes of that given customer or listing.
The discussion above illustrates that in the limit
where λ  → 0, there is no interference across custom-
ers in the CR design; this is why the naive CR esti-
mator is unbiased. Similarly, in the limit where
λ  → ∞, there is no interference across listings in the
LR design; this is why the naive LR estimator is
unbiased. On the other hand, the cases where each
estimator is biased involve interference across exper-
imental units.
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6.3. Estimation With the TSR Design
The preceding sections reveal that each of the naive
LR and CR estimators has its virtues, depending on
market balance conditions. In this section, we explore
whether we can develop TSR designs and estimators
in which aC  and aL are chosen as a function of λ=τ  to
obtain the beneficial asymptotic performance of the
naive CR estimator in the highly demand-constrained
regime as well as the LR estimator in the highly
supply-constrained regime. We also expect that an ap-
propriate interpolation should yield a bias for TSR
that is comparable with if not lower than CR and LR
in intermediate regimes of market balance.

Recall the naive TSRN estimator defined in (21)
and in particular the steady-state version of this esti-
mator. Suppose the platform observes λ=τ ; note that
this is reasonable from a practical standpoint be-
cause this is a measure of market imbalance involv-
ing only the overall arrival rate of customers and
the average rate at which listings become available.
For example, consider the following heuristic choices
of aC  and aL for the TSR design for some fixed val-
ues of a C and aL :

aC (λ=τ)  (1 − e−λ=τ) +  aCe−λ=τ ;

aL (λ=τ)  a L (1 − e−λ=τ) + e−λ=τ :

Then, as λ=τ  → 0, we have aC (λ=τ) → aC       and
aL (λ=τ) → 1, whereas as λ=τ  → ∞, we have
aC (λ=τ) → 1 and aL (λ=τ) → aL .9 With these choices, it
follows that in the highly demand-constrained limit
(λ=τ  → 0), the TSRN estimator becomes equivalent to
the naive CR estimator, whereas in the highly supply-
constrained limit (λ=τ  → ∞), the TSRN estimator
becomes equivalent to the naive LR estimator. In
particular, using Propositions 2 and 3, it is straightfor-
ward to show that the steady-state naive TSRN esti-
mator is unbiased in both limits; we state this as the
following theorem and omit the proof.

Corollary 1. For each λ=τ, consider the TSR design with
aC  and aL defined as in (26). Consider a sequence of systems
where either λ=τ  → 0 or λ=τ  → ∞. Then, in either limit,

GTE
TSRN

(∞ | aC(λ=τ), aL(λ=τ)) − GTE → 0:

We are also led to ask whether we can improve upon
the naive TSRN estimator when the market is moder-
ately balanced. Note that the TSRN estimator does not
explicitly correct for either the fact that there is interfer-
ence across listings or the fact that there is interference
across customers. We now suggest a heuristic for cor-
recting these effects, which we use to define two im-
proved interpolating TSR estimators; these estimators
are the fourth and fifth estimators appearing in Figure 2,



 β −

+  (1 − β) − : (27)

a (1−aa )a

−

(1−a )(1−a )

+(1−β) −

−kβ − :

TSRI−k

-
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which we call “TSR-Improved (1)” and “TSR-Improved
(2)”. These effects are visualized in Figure 1.

First, abusing notation, let GTE
CR

(T | aC , aL) denote
the estimator in (19) using the same terms from a TSR
design and dividing through by aL on both terms as nor-

malization. Similarly abusing notation, let GTE
LR

(T |
aC , aL) denote the estimator in (20) using the same
terms from a TSR design and dividing through by
aC      on both terms as normalization. Motivated by
these naive estimators, we explicitly consider an in-
terpolation between the LR and CR estimators of the
form

βGTE
CR

(T | aC , aL ) + (1 − β)GTE
LR

(T | aC , aL)

Q11(T | aC , aL) Q01(T | aC , aL)
aCaL                         (1 − aC)aL

Q11(T | aC , aL) Q10(T | aC , aL)
aC aL                         aC(1 − aL)

Now, consider the quantity Q00(T | aC , aL)=((1 − aC)(1 −
aL)) −  Q10(T | aC , aL)=((1 − aC)aL) in a TSR design. This
is the (appropriately normalized) difference between
the rate at which control customers book control list-
ings and the rate at which treatment customers book
control listings. Note that both treatment and control
customers have the same utility for control listings,
because of the TSR design, but potentially different
utilities for treatment listings. Hence, the difference in
steady-state rates of booking among control and treat-
ment customers on control listings must be driven by the
fact that treatment customers substitute bookings from
control listings to treatment listings (or vice versa). This
difference captures the “cannibalization” effect (i.e., in-
terference) that was found in LR designs in the demand-
constrained regime.

Thus motivated, we can think of this difference as
a “correction term” for the LR design from our in-
terpolating TSR estimator in (27). Using a symmetric
argument, we can also consider an appropriately
weighted correction term associated to interference
across customers in a CR design: Q00(T | aC , aL)=((1 −
aL)(1 − aC)) −Q01(T | aC , aL)=((1 − aC)aL). (Similar esti-
mates were also studied in Bajari et al. (2021); see
the related work for further details on this work.)
See Figure 1 for an illustration of these competition
effect estimates.

We can weight these correction terms with different
factors k >  0 to control their impact. In addition, we
can choose these weights in a market balance-
dependent fashion based on the direction of market
balance in which we have seen that the respective in-
terference grows. Combining these insights, for β �
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(0, 1) and k >  0, we define a class of improved TSR es-
timators given by
GT

E
TSRI-k

(T | aC,aL)β
Q11(T |aC,aL)−

Q01(T | aC,aL) C

L C       L

−
k(1−β) 

Q00(T |aC,aL)
C L

Q01(T |aC,aL)
(1−aC)aL

Q11(T |aC,aL) Q10(T | aC,aL)
aCaL aC(1−aL)

Q00(T |aC,aL) Q10(T |aC,aL)
(1−aC)(1−aL)        aC(1−aL)

(28)

Given market balance λ=τ,  we set β  e−λ=τ , and we
choose aC and aL as in (26).

In the limit where λ=τ  → 0, note that GTE         (T |

aC(λ=τ), aL(λ=τ)) approaches GTE
CR

(T | aC) as ex-

pected. Similarly, in the limit where λ=τ  →

∞, GTE
TSRI-k

(T | aC(λ=τ), aL(λ=τ)) approaches GTE
LR

(T | aL). It is straightforward to show that GTE
TSRI k

for any k is unbiased in both the highly demand-
constrained and highly supply-constrained regimes,
because the correction terms play no role in the limits.

For moderate values of market balance, both the can-
nibalization correction terms kick in, which leads to im-
provements over naive TSRN, as seen in Figure 2. To
simplify the exposition, we consider only two factors

k1, 2; we see that TSRI-1 has lower bias than the na-
ive TSR, but TSRI-2, which has a higher weight in
front of the correction terms, has a lower bias than both

Figure 1. (Color online) Illustration of TSR Design and Com-
petition Effects

Notes. Intervention applies only when treatment customers view
treatment listings (green cell). Suppose that the intervention makes
the listing more attractive.
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naive TSRN and TSRI-1 as well as the naive CR and
LR estimators. In Online Appendix C, we explore the
robustness of our results to other model primitives,
specifically scenarios with smaller or larger utilities and
the introduction of heterogeneity on one or both sides
of the market. We find that the bias of CR and LR esti-
mators can increase with the introduction of these
factors, but remarkably the bias of the TSRI estimators
remains low across the ranges that we study. We em-
phasize the fact that the three TSR estimators pre-
sented here are examples to illustrate the potential for
bias reduction using this new design. There is of course
a much broader range of both TSR designs and estima-
tors; some of these may offer even better performance.

We conclude this section with two additional obser-
vations. First, note that all our analysis in this section
has been carried out in the mean field steady state;
in particular, Figure 2 shows the bias of the estimators
in steady state. For practical implementation, it is
also important to consider the relative bias in the
candidate estimators in the transient system, since
experiments are typically run for relatively short time
horizons. For discussion of the transient behavior for
a finite time horizon, see Online Appendix D. Second,
in the next section, we discuss variance of the estima-
tors we have studied. There we find that the TSR
estimators with the lowest bias also have the highest
variance; in other words, there is a bias-variance tradeoff.

7. Bias-Variance Tradeoff of Estimators
Our mean field model is deterministic, so it does not al-
low us to study the variance of the different estimators.

Figure 2. (Color online) Difference Between Estimator and
GTE in Steady State

Notes. We consider variation in λ=τ  by fixing τ   1 and varying λ ;
analogous results are obtained if λ  is fixed and τ  is varied. We con-
sider a market with homogeneous customers and homogeneous list-
ings pretreatment. We set   1 and α  0:5. In the CR design, aC  0:5.
In the LR design, aL  0:5. Customers have utility v  0.315 for control
listings and v  0:394 for treatment listings, which corre-sponds to a
steady state booking probability of 20% in global control and 23%
global treatment when λ   τ.

Johari et al.: Experimental Design in Two-Sided Platforms
Management Science, 2022, vol. 68, no. 10, pp. 7069–7089, © 2022 INFORMS

In practice, however, markets consist of finitely many
listings, and experiments are run for finite time horizon
T, and so the variance of any estimator will be non-
zero.10 In particular, the variance of estimators becomes
an important consideration alongside bias, particularly
in choosing between multiple estimators with similar
bias. The variance of the TSR estimators is especially
important, given the earlier discussion that many heu-
ristics that platforms use to minimize bias do so at the
cost of increased variance, leading to underpowered
experiments (see Section 2).

With this background as motivation, in this section
we provide a preliminary yet suggestive simulation
study of variance. The simulations highlight two im-
portant considerations that a platform must take into
account when designing and analyzing an experi-
ment. First, similar to the results from Section 6 on
bias, we find that the estimator with the lowest vari-
ance depends on market balance. Second, we see a
bias-variance tradeoff between the CR, LR, and TSR
estimators, with the TSR estimators offering bias im-
provements at the cost of an increase in variance. We
emphasize the point that whether a platform should
care more about bias or variance depends on the size
of the platform (number of listings N) and the time
horizon on which the experiment is run. The bias of
the experiment is relatively unaffected by changes in
these two factors, but of course variance decreases in
the size of the market and the length of the time hori-
zon. Thus these two factors dictate whether bias or
variance contributes more to the overall RMSE.

Full details of the simulation environment and pa-
rameters are in Online Appendix C, which we briefly
summarize here. We simulate marketplace experi-
ments with varying market parameters for a finite sys-
tem with a number of listings n 5,000 and fixed time
horizon T. For each run of the simulation, we fix an
experiment design (e.g., CR, LR, TSR) and simulate
customer arrivals and booking decisions until time T.
System evolution is simulated according to the contin-
uous time Markov chain specified in (3)−(5). We cal-
culate the estimator corresponding to the experiment
design defined in (19)−(21) and (28) (for k 1, 2) for the
time interval [T0, T], where T0 is chosen to elimi-nate
the transient burn-in period. We then simulate
multiple runs and compare the bias and standard er-
ror of the estimators across runs. Note that we report
the true standard errors calculated across simulation
runs. For discussion on the estimation of standard er-
rors, see Section 9.

Figure 3 shows simulations for a homogeneous sys-
tem with only one customer and one listing type, with
the same parameters as the mean field numerics pre-
sented in Figure 2. Note that the bias of the estimators
in these large-market simulations echoes the qualita-
tive insights about bias obtained from the mean field
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Figure 3. (Color online) Homogeneous Listings and Customers

Notes. Top Left: bias of each estimator. Top right: Standard error of estimates. Bottom: RMSE of the estimates. Statistics are normalized by GTE. All
statistics are calculated across 500 runs, with bootstrapped 95 percentile confidence intervals provided for each statistic. We consider a setting with
homogeneous listings and customers, with the same utilities as defined in Figure 2. In the CR design, aC  0:5. In the LR design, aL  0:5. Simulation
parameters are defined in Online Appendix C.

model. Similar findings are obtained in more general
scenarios, see Appendix C, where we investigate the
effect of heterogeneity in the marketplace.

These simulations point to a bias variance-tradeoff
between TSR estimators and the naive CR and LR es-
timators as well as between the three TSR estimators
themselves. The TSR estimators, as discussed earlier,
offer benefits over the naive CR and LR estimators
with respect to bias, but they do so at the cost of an in-
crease in variance. Moreover, among the three TSR
estimators that we explore, those with lower bias also
have higher variance. The naive TSRN estimator has
similar variance with the lowest of CR and LR, but
the bias of this estimator is also similar to the lowest
bias of CR and LR. On the other hand, TSRI-2 shows
a substantial improvement in bias over both CR and

LR for several market conditions, but this estimator
also has the largest variance among all five estimators,
especially in the regime of intermediate market bal-
ance (cf. Online Appendix C).

Furthermore, the minimum variance estimator de-
pends on market conditions. For example, in a demand-

constrained market with λ=τ   0:1, GTE
CR 

has the
lowest standard error, whereas in a supply-constrained
market with λ=τ   10, GTE has the highest standard
error.

We conclude this section by highlighting the potential
for the class of TSR experiments, which open up a large
class of both designs and estimators. Among the three
estimators we explore, we see that there is a TSR estima-
tor with low bias and another TSR estimator with low
variance. It is possible that, with further optimization of
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Figure 4. (Color online) Simulations of Cluster-Randomized Estimator and TSR Estimators as Preference Ratio y /x  Varies

Notes. Relative demand is fixed at λ=τ   1. We fix x  0.5 and vary y. Bootstrapped 95 percentile confidence intervals are provided for each
statistic.

these designs and estimators, one can devise a new esti-
mator that optimizes this bias-variance tradeoff.

8. Comparison with Cluster-Randomized
Experiments

In this section, we compare the TSR approach to existing
approaches to reduce bias in marketplace experiments.
One such approach is to run a cluster-randomized
experiment, which changes the unit of randomization
in order to reduce interference effects across units. The
typical approach is to divide the marketplace into clus-
ters, such as geographical regions, such that there is
less interaction of market participants across different
clusters. All participants within a cluster receive the
same treatment condition. The platform then estimates
the GTE by comparing the outcomes within the treat-
ment clusters versus the outcomes in the control clus-
ters. It is important to note that many markets and
social networks are highly connected, and it is not pos-
sible to avoid all interference across clusters; see, for
example, Holtz et al. (2020) for an example in the con-
text of Airbnb. Thus cluster-randomized experiments
will reduce but not fully remove the bias.

To compare the performance of the cluster-randomized
and TSR approaches, we use our existing model to
define a regime that gives the best-case performance
for cluster-randomized experiments, where there are
tightly clustered preferences in the marketplace and
the platform knows ex ante the true clusters (without
having to learn them).

The simulations suggest that cluster-randomized
estimators offer substantial bias reductions over when
the market is tightly clustered, but these improvements
diminish if the market becomes more interconnected.
The TSR estimators, however, offer bias reductions in
both clustered and interconnected markets and, in in-
terconnected markets, are less biased than the cluster-
randomized estimator. In our simulations, the variance
of the cluster-randomized estimator is lower than that
of TSRI-2 in our example, although the variance of the
cluster-randomized estimator will likely change if we
deviate from this best-case scenario with perfect knowl-
edge of the clusters, identical listings within clusters,
and uniform treatment effects across different clusters.
Hence, although our model for market clusters is styl-
ized, we believe our results suggest that TSR designs
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can be a useful alternative to cluster-randomized ex-
periments in interconnected markets.

8.1. Market Setup for Cluster Randomization
We consider the case where clusters are defined on the
listing side so that the cluster-randomized experiment
is expected to improve upon a listing-randomized ex-
periment.11 To induce a clustered structure, we model
a setting with two customer types and two listing
types, where each type of customer prefers a different
type of listing. Formally, there are customer types
{γ  , γ }  and listing types {θ1,θ2}. All customers con-

sider all listings (αγ(θ)  1 for all γ,θ, but customers
have different utilities for different listings.12 The global
control utilities vγ(θ) have the following form:

θ1     θ2

γ x y
γ2       y x

where x ≥  y ≥  0. Note that if y 0, then the market can be
perfectly decomposed into two submarkets, where
customers of type γ1 (resp., γ2) book only listings of
type θ1 (resp., θ2). If y x, then each customer prefers
both listings equally. Thus we can interpret the ratio
y /x as a measure of how equally a customer prefers
both products, where intuitively the market is tightly
clustered when y /x is small. We call y /x the preference
ratio.

The platform then runs a cluster-randomized exper-
iment where it first assigns listings to clusters and
then randomizes entire clusters to either treatment or
control. In practice, the platform must learn how to
create the clusters, likely through observational data
in the global control setting,13 but in these simula-
tions, we assume that the platform observes the clus-
ter structure perfectly. The platform assigns all θ1

listings to one cluster and θ2 listings to another and
runs a completely randomized design on the clusters,
assigning one of the clusters to treatment and one to
control. For simplicity, assume that the intervention has
a multiplicative lift δ >  1 on all customer-listing pairs so
that the treatment utilities satisfy vγ(θ)  δvγ(θ).

The cluster-randomized estimator GTE
Cluster

, with
clusters defined on the listing side, compares the (scaled)
rate of bookings of listings in treatment clusters to the
rate of bookings of listings in control clusters. Formally,
in the mean field setting, once the clusters are random-
ized, let Z  denote the mass of listings assigned to a treat-
ment cluster. Then

GTE
Cluster

(T | Z)   
Q11(T | 1, Z) 

−
Q10(T | 1, Z)

:
(29

)

We can similarly define an analogous estimator in the
finite model.

7087

The full set of parameters is as follows. The market
has an equal number of listings of both types so that
m(N)(θ )  m(N)(θ )  0:5 and the same arrival rate for both
customers types (λ(N)  λ(N)). We set x 0.5 and vary y �
[0, 1]. We set δ  1:3. We fix τ 1 and consider λ  �
{0:1, 1, 10}.

8.2. Results
Figure 4 shows how the performance of the estimators
changes when we vary the preference ratio (at a fixed
market balance). We choose TSRI-2 as a representa-
tive estimator for the TSR approach; see Figure 5
in Online Appendix B for a comparison with all
estimators.

We see a clear takeaway that, perhaps unsurpris-
ingly, the cluster-randomized estimator offers sub-
stantial bias improvements when the market is tightly
clustered (i.e., a customer strongly prefers one type of
item over another) but offers little reduction in bias
when the market is more interconnected. In particular,
the cluster-randomized estimator outperforms the
TSR estimators when the market is tightly clustered,
whereas the TSR estimators outperform the cluster-
randomized estimator when the market is more
connected.

The standard error changes little across the preference
ratios, with the standard error of the cluster-randomized
estimate lower than that of TSRI-2, although the vari-
ance of the cluster-randomized estimator will likely
change if we deviate from this best-case scenario with
perfect knowledge of the clusters, identical listings
within clusters, and uniform treatment effects across
clusters. In our scenario, the cluster-randomized estima-
tor has lower RMSE for tightly clustered markets and
higher otherwise.

9. Conclusion
This paper proposes a general mean field framework
to study the dynamics of inventory bookings in two-
sided platforms, and we leverage this framework to
study the design and analysis of a number of different
experimental designs and estimators. We study both
commonly used designs and estimators (CR, LR) and
also introduce a family of more general two-sided ran-
domization designs and estimators (TSR). Our work
sheds light on the market conditions in which each
approach to estimation performs best based on the rel-
ative supply and demand balance in the marketplace.

For bias minimization, we suggest two directions
for future work. The first is further optimization of the
TSR design as a standalone experiment design. We
have proposed three natural TSR estimators, but the
space of both designs and estimators is much richer,
and it is worth asking which are optimal with respect
to bias and variance as well as how this answer may
change with differing market conditions. The second
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direction is to develop the TSR design as a method to
debias one-sided experiments. The design allows us
to measure competition effects between customers
and between listings; this observation suggests that
these measurements can be used to approximately
debias existing CR and LR experiments, providing
another route for platforms to utilize two-sided ran-
domization designs.

To make technical progress in this paper, we em-
ployed several simplifying assumptions on the choice
model and booking behavior. We believe that our core
insight of market balance mediating competition ef-
fects, and thus affecting the resulting bias in an experi-
ment, extends to other settings as well. We hypothesize,
however, that some of our results are more robust to
modeling choices than others. For example, the result
that the CR estimator is unbiased in the demand-
constrained limit depends only on the fact that booked
listings are replenished in between customer arrivals
and likely extends to any reasonable choice model. On
the other hand, the result that the absolute bias of the
LR estimator approaches 0 in the supply-constrained
limit may be more sensitive to different choice models
and in particular how the customer weighs options on
the platform compared with the outside option. In this
supply-constrained limit, we conjecture that the relative
performance of the two experiment types still holds
even in modified settings; that is, the LR estimator has
lower bias than the CR bias. Furthermore, we believe
that the approach of using TSR to observe competition
effects and heuristically debias estimators also extends
beyond our model.

Another practical consideration for platforms is that
not all experiment designs are suitable for all types of
interventions. In this paper, we have largely focused
on interventions such as user interface changes that
change how an individual customer perceives an indi-
vidual listing. There are also other interventions that
operate between subsets of customers or subsets of
listings. For example, a modification in the ranking al-
gorithm over the listings changes operates not on an
individual customer-listing pair but rather changes
how a customer interacts with a subset of listings.
This intervention is more conducive to a CR experi-
ment than an LR or TSR experiment. Beyond these
feasibility constraints, it remains an open question
whether certain types of experiments lead to lower
bias in different classes of interventions.

Finally, we emphasize the importance of inference in
these settings, which we do not study in this paper. In
practice, standard errors are also estimated “naively”;
they are typically computed assuming independence of
observations. However, because of interference, obser-
vations are clearly not independent. In these settings,
how biased might the standard error estimates be?
How can experimenters derive valid confidence

Johari et al.: Experimental Design in Two-Sided Platforms
Management Science, 2022, vol. 68, no. 10, pp. 7069–7089, © 2022 INFORMS

intervals in these settings? Such questions are critical for
any platforms controlling the false-positive and false-
negative results arising from their experiments.
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Endnotes
1  The same modeling framework that we employ in this paper can
be used to consider interventions that change other parameters,
such as customer arrival rates or the time that listings remain occu-
pied when booked; such application is outside the scope of our cur-
rent work.
2  Our framework can also be used to evaluate other metrics of inter-
est based on experimental outcomes; for simplicity, we focus on
rate of booking in this work.
3  Because the system we study is irreducible and we analyze its
steady-state behavior, it would not matter if we chose a different
initial condition.
4  An even more general model might allow the occupancy time to de-
pend on both listing type and the type of the customer who made the
booking; such a generalization remains an interesting open direction.
5  Our current work allows us to relatively easily incorporate ν, de-
pending on treatment condition of the listing, and as such we can ex-
tend our results to study LR designs where ν varies with treatment
condition. In general, however, when customers are also random-
ized to treatment or control, the holding time parameter of a listing
should also depend on the treatment condition of the customer who
booked that listing. Adapting our framework to incorporate this
possibility remains an interesting direction for future work.
6  Note that in two-sided markets, certain types of interventions will
also cause long-run economic equilibration due to strategic re-
sponses on the part of market participants; for example, if prices are
lowered during an experiment, this may affect entry decisions of
both buyers and sellers and thus the long-run market equilibrium.
Although our model allows the choice probabilities to change due
to treatment, a more complete analysis of long-run economic equili-
bration due to interventions remains a direction for future work.
7  Here “generically” means for all parameter values, except possibly
for a set of parameter values of Lebesgue measuring zero.
8  A symmetric analysis can be applied for “negative” interventions,
where αγ(θ)vγ(θ) <  αγ(θ)vγ(θ) for all γ  and θ, although, of course,
interventions known to be negative in advance are less likely to be
desirable from the platform’s perspective.
9  Our choice of exponent here is somewhat arbitrary; the same
analysis follows even if we replace e−λ=τ with e−cλ=τ for any value of c
>  0.
1 0  We note that even if the system consists of only a finite number of
listings N, because T  → ∞, the standard error of the various esti-
mators proposed in this paper will converge to zero. However, for
finite T, this is not the case; because A/ B tests are always run to a
finite horizon T, this nonzero variance will impact the accuracy of
any estimates obtained.
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1 1  Because we analyze a model where customers are short-lived,
whereas listings remain on the platform, it is likely that the platform
has more information on the listings and is better able to learn clus-
ters on the listing side.
1 2  Alternatively, we can induce a clustered structure by modifying
the consideration probabilities αγ(θ). Both approaches of modifying
the αγ(θ) and modifying the vγ(θ) are equivalent in the mean field
model.
1 3  See Holtz et al. (2020) in the context of marketplaces and Ugander
et al. (2013) in the context of social networks.
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