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ABSTRACT: We study operators with large charge j in the d-dimensional O(N) model with

d+s where s is a continuous

long range interactions that decrease with the distance as 1/r
parameter. We consider the double scaling limit of large N, large j with j/N = 7 fixed,
and identify the semiclassical saddle point that captures the two-point function of the large
charge operators in this limit. The solution is given in terms of certain ladder conformal
integrals that have recently appeared in the literature on fishnet models. We find that the

scaling dimensions for general s interpolate between A; ~ @ j at small 7 and Aj o~ (d;rs) j

at large 7, which is a qualitatively different behavior from the one found in the short range
version of the O(N) model. We also derive results for the structure constants and 4-point
functions with two large charge and one or two finite charge operators. Using a description
of the long range models as defects in a higher dimensional local free field theory, we
also obtain the scaling dimensions in a complementary way, by mapping the problem to a
cylinder in the presence of a chemical potential for the conserved charge.
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1 Introduction and summary

Long range O(N) models are interesting generalizations of the familiar “short range” O(N)
symmetric spin systems. While in the latter the spins only have nearest-neighbor interactions,
in the long range models all spins interact with each other with a strength that depends on
the distance r as a power law ~ %a The exponent « is usually parameterized as a = d + s,
where d is the spacetime dimension and s a real parameter. The long range models have
second order phase transitions over a range of s, with critical exponents being non-trivial
functions of this continuous parameter. Vector models with long range interactions have a
long history [1-3], and various aspects of their physics have also been revisited in several
recent works [4-13]. In this paper, we focus on the spectrum of operators that carry a large
charge under the O(N) symmetry. CFT dynamics simplify significantly when considering
operators with a large charge under some global symmetry, as has been observed extensively
in the last few years [14-26] (also see [27] for a review and more references).

In the continuum limit, the long range O(N) model may be described by an action
containing a non-local kinetic term and a local quartic interaction term [1, 5, 10]

I I sT(d+s
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where we Work in the Euclidean flat space R?. The scaling dimension of the fundamental
field is Ay = %5* and does not get renormalized due to the non-local nature of the quadratic



term (composite operators, on the other hand, can have non-trivial anomalous dimensions).
It is well-known that the model has nontrivial RG fixed points in the range d/2 < s < s™.
For s < d/2, where the quartic term becomes irrelevant, the low energy behavior of the
model is described by the Gaussian (generalized free field) fixed point, while above the upper
critical value s, it is described by the usual short range O(NN) symmetric fixed point. The
critical value is s* =2 — 27¢ , where 7¢ is the anomalous dimension of the fundamental
field at the short range fixed point (the value of s* is such that the scaling dimension
A, at the long range fixed point becomes equal to that of the short range fixed point).
Near the lower limit of the range of s, i.e. for s = (d + €)/2, the model has a perturbative
Wilson-Fisher fixed point with g ~ O(e) [1], while a weakly coupled description near the
upper limit s* was recently proposed in [6, 7].

In this paper we will focus on the large N limit of the long range theory (1.1). In
this limit, it is convenient to introduce a Hubbard-Stratonovich auxiliary field in a way
analogous to the standard treatment of the short range O(N) model [1, 5, 10]
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The ordinary 1/N perturbation theory of the theory for any s may be developed from the
above action (where, in the critical limit, one may drop the quadratic term in o) by expanding
around the translational invariant vacuum state, where all one-point functions vanish and
the propagator of o contributes powers of 1/N in correlation functions. However, when we
consider a correlation function of operators with a large charge j, say O; = (¢! +ig?),
with j being of the same order as NV, the standard perturbation theory breaks down. This
is because j legs in the operators contribute factors of j ~ N to the action. As we will
explain in the next section, in the regime where both N and j are large but J = j /N is
held fixed, there is a new semiclassical saddle where the operator ¢ acquires a non-trivial
classical profile. The two-point function of charge j operators may then be expressed in
terms of an effective action at this new saddle point, from which one can extract the scaling
dimensions of the operators in this large j, large N limit. The scaling dimensions may be
expressed as Aj = N h(7) where h(j) is a non-trivial function of d,) and s. We find the
following analytic expansions at small and large j for generic s

Aj=N [d_SA (52)}

Aj:N[d;quLA(d s)J d+s+..}.

(1.3)

For small J, this matches the expectation from the ordinary 1 /N perturbation theory (the
term of order 52 can also be explicitly compared to standard diagrammatic expansions).
At large 7, the leading behavior of the scaling dimensions is still linear (with a different
slope), which is strikingly different from the case of the local O(N') models, where one finds
Aj~ de%l for j > 1 [18, 28].! Note that at large N, the upper critical value for the range

!The behavior of the scaling dimension A; ~ g/ (@=1)

coupled CFT [14, 16].

in the large charge limit holds in a generic strongly



of sis s* =24 O(1/N). While the behavior (1.3) arises from the dominant saddle point
at generic s, we suggest that in the limit s — 2, the A; ~ Nj'd%l behavior of the short
range model is recovered due to an interplay between the multiple solutions to the saddle
point equation.

An interesting aspect of the long range models (1.1) is their connection to the subject
of defect CFT. Indeed, the model (1.1) may be thought of as arising from a free scalar
field theory in an auxiliary space of dimension D = d + 2 — s, with the quartic interaction
localized on a d dimensional “defect” subspace [4, 10, 29]. The operators in the long range
O(N) model map to the operators living on the d-dimensional defect. In the special case
s =1,ie. D = d+ 1, the model is equivalent to a BCFT that is free in the bulk and
has boundary localized interactions. In that context, the large charge operators living
on the boundary were recently considered in [23]. They used a Weyl transformation to
map the problem of calculating scaling dimensions on the half-plane to that of calculating
energies on R x HS?, where HS? is the hemisphere (with the long range model living on
the R x S9! boundary). To do the calculation, one then may compute the free energy
on R x HS? in the presence of a chemical u for the conserved charge. In this paper we
generalize this calculation to arbitrary s, by mapping the problem to the higher dimensional
cylinder R x SP~1 in the presence of a chemical potential x, with the interaction localized
on the subspace R x S%~1. Using this approach, we rederive the scaling dimensions of the
large charge operators, obtaining results that precisely match with what we get from the
saddle point on R? thus providing a useful consistency check. Along the way, we also do
perturbative calculations for s = (d + €)/2 in an e expansion valid for any N. We find
agreement between large N and e expansions in the overlapping regimes of validity.

The rest of this paper is organized as follows: in section 2, we set up the calculation of
the two-point function of large charge operators in flat space and identify the saddle that
provides the dominant contribution in the large j, large N double scaling limit. Solving
the saddle point equation requires calculating the Green’s function at the large charge
saddle point. Having obtained the Green’s function, we show that correlation functions
of two “heavy” (large charge) and an arbitrary number of light operators can be obtained
with little extra effort. We discuss in some detail the calculation of “heavy-heavy-light”
three point function and “heavy-heavy-light-light” four-point function. We end the section
with a separate discussion of the d = 1 long range O(N) model that behaves somewhat
differently from its higher dimensional counterparts. Then in section 3, we show how our
results may be obtained by calculating the energy in a large charge state on a cylinder.
The two appendices contain technical details and the standard 1/N perturbation theory
calculation of the scaling dimensions which is valid at ; < 1.

2 The large charge, large IN saddle point on R

In this section, we start by defining the setup and identifying the large charge saddle point
in the long range O(N) model at large N. We will closely follow the discussion in [28]
where the large charge saddle for the local, short-range O(NN) models was discussed. Since



there are many similarities in the analysis, we will be brief here, and refer the reader to [28]
for details.

We will start with the model defined by (1.2). As mentioned in the introduction, we
will study operators that carry a large charge j under O(N) symmetry, and we will work in
the double scaling limit such that both j and N are large, with the ratio j = j /N fixed
and finite. In this note, we focus on operators that transform in the symmetric traceless
representation of O(N). Such operators may be written as O;(z) = (u!¢!(2))? with null
auxiliary complex vector u! (a simple representative is the operator (¢! +i¢?)7). These are
the lowest dimension operators in the given charge sector, and are not expected to undergo
mixing. Their two-point function is constrained by conformal symmetry in the usual way:

(05(21)0;(2)) = (ufud)y/ S5 (21)
1y’
This two-point function can also be computed using the path integral (recall that in the
critical limit we drop the o quadratic term)
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where we integrated out the scalars and defined the Green’s function in the presence of a
non-trivial o field

K K
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We can perform the path integral over ¢ in (2.2) using a saddle point approximation by
extremizing the effective action

o /1 C d A . _
g (210g det [W +o(x)d(z—y)| —7 log(G(xl,a:Q,a))> =0. (2.4)

This equation will give a profile of o(x) = 0. (x;z1, z2) satisfying
2}G(m1,x;a*)G(x2,x;a*) = —G(z,x;04)G(x1,x2;04). (2.5)

To calculate the Green’s function and then to solve the saddle point equation, we start with
an ansatz for the o profile at the saddle point. We observe that this can be viewed as the
one-point function of the field o(z) in the presence of the large charge operators, namely a
3-point function:

( o [ Do a(a:)efN{% logdet[ﬁJﬂ(y)tSd(y%)]fﬁ log(G(z1,22;0))}

ox(x;21,22) = lim s
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(2.6)




Conformal symmetry then requires

|1 — 22

ox(z;21,22) = ¢4

2.7
o1 — o les — 2P 27)

since Ay, = s+ O(1/N).

2.1 Green’s function

In this subsection, we calculate the Green’s function in the presence of a non-trivial ¢*. As
usual, it is given by inverting the quadratic term in the action

/ddx/ <,m_i/|d+ +0.(2)8(x — x/)) G(z' y;0.) = 6%z —y) (2.8)
. We can solve it by expanding the Green’s function in powers of ¢*
G=G01+aW +c? 4 . (2.9)

where the superscript indicates the power of o, and the terms in the expansion satisfy
following equations

C
[t S =5t

c (2.10)
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The leading order result is just the usual two-point function without any large charge
operators
d—s
C. I'(7
|z -yl 25721 ()

We can then get the result for order L Green’s function by iteratively applying the above

result
GL('CL'ayaO-* = (H /ddeO' Zk (Zkazk-‘rl)) GO(ZL‘,Zl)
= Cyplr(x,y,x1,22) (2.12)
In(z,y,21,22) = gt- H/ Az H
Y 2 |2k — 1|2k — 22f* \Zy+1—za\d s
where we defined g9 = —C¢calm1 — x9|® and z9 =y, z,+1 = x. The order L result involves

doing an integral over L variables. The integral may be visualized as in figure 1. Let us
now analyze it in more detail. By just shifting all the integration variables, we can see that
it is only a function of 3 variables

In(z,y,x1,20) = I(x — 1,y — 21,0, 20 — 27). (2.13)
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Figure 1. The pictorial representation of the integral I;,. The notation is such that the line between
the points z; and z; contributes 1/]2;;|2* to the integral where « is the number written above the
line. Every filled dot represents a point that is integrated over.

We can then do a change of variables to invert all the variables z} = z/ 22, and the fact
that the integral is conformal helps to simplify it as follows

ILl'—xl :6'10.%'2—:(}1 /
(o~ ony =, 2] rzk T H b 201 — zj|d g
_ 1 ( 912 > / ddzl,c H
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where in the third line, we did a shift of variables so that in that equation
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and in the last line, we defined the integral

d’z; 1
0=(11/ W) = 9 (219

L = 1. To gain some intuition for the result, let us start by working perturbatively in ¢,

which is the same as working order by order in L. For L = 1, we have the following integral

diz
%60 = | g 240



For the purposes of obtaining the scaling dimensions, we will need several limits of the
Green’s function: G(z1,y,0%),G(x,x2,0%), G(z1,22,0%), and G(z,x,0*). Let us start with
the first one: when z — x1. We introduce a regulator § and set © = x1 + 9 to get

dz
o _ d—s/— 2.1

This integral still has a UV divergence, so we introduce a further regulator

d?s §d—sr d/2 5d—sﬂ.d/2
d — d—s—?li/ _ 1
1(§,m) =46 |Z’8+H‘2_n’d—s+fe (g) F(%) og (d|n]) =
G(.%' y,o )_ F<d5$) F<d2 ) Co log 5‘$2—Z/|
1,9, .
27T (5) [z —ylts 2257 1w3 T (5)°T (§) [ —ylt— |1 2lli—y]

(2.19)

The divergent 1/k piece should contribute to wavefunction renormalization, but it will not
affect our calculation of scaling dimensions. The G(x,x2,0*) should just be related to this
one by interchanging x <> y, 1 <> x9. Finally, to obtain G(x1,x2,0%), we set y = x9 + 4§ in
the above to get

b T, (4 < >

2
log .
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Next we turn to G(x,z,0*), for which we need to consider £ = 7 limit of the inte-
gral (2.16) which is easy to obtain

2
(&) (2.21)
L(d=s)T (3)" ¢
which implies
2
Cleomd/2T (d=s) P (s — 2 |29 — 29 |7°
G(z,2,0,) = — (5 2 ) (2.22)
L(d—s)T(35)" o — z|T 5| — 2a]d—s

Note that without any insertions, we should set coincident point two-point function to zero,

ie. GO (z,z) =0.

General L. Next we turn to the more difficult problem of evaluating the integral in (2.16)
for general L. For the local case of s = 2, the integral is exactly the kind considered in [30].
But the generalization of that formalism to general s is not straightforward. Fortunately,
the integral in (2.16) was already computed exactly in [31] in a very different context of
fishnet Feynman integrals. The result can be expressed in terms of Gegenbauer polynomials



as follows

(lxlfy]) = 7=~
LT T (E =) T (S )
Gt = [ (459) 0 (4552 4 iu) D (45552 — i) (2:23)

In principle, the integral over u can be performed by a sum over residues. The contour can be
closed in the upper half-plane and there are infinitely many residues at u = ¢ (w + n>
But in practice, it becomes hard since the poles are of order L + 1. To convince the reader
that it makes sense, we perform some basic checks of this result starting from L = 0 when
there is no integral to do. This can be expressed in terms of Gegenbauer polynomials
as follows . | ® ey .

o) = Gy = e O () [

o |z[ly]

(2.24)

On the other hand, the integral on the right hand side of (2.23) gives the following sum
over residues

) r(42) i (14 952) D (32 Hn) D (14n=3) a2 7 oy \ [y |20
Do (x,y C < ) =
| |d SF<d s) 1,n=0 n'I‘ (§—|—l—|—n) ( %) l ‘$||y| x
(2.25)
This implies the following identity for Gegenbauer polynomials
_ 131, d=2 4 o _op)T (=2 —n\T(1 _ s\ (d9=2
des 2 5 o —2n > +a—n)T(1+n—3) 5
CCXQ (l‘) = Z CaEQn(‘r)( )d ( ) s d—s ( >7 (226)
which is known to be true (see for instance appendix A of [32]).
We can get the full Green’s function by summing over L
C¢F H o 2 d—2 &- .
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It is useful to write this Green’s function as a function of the conformal cross-ratios defined as
_ 200, 2 _ 20, 2
_ |z == Ly x2|2, _ |z |2y f”1|2_ (2.28)
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The Green’s function in terms of these cross-ratios is given by
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The reason that the Green’s function can be written in terms of the standard conformal
cross-ratios is that, as we clarify below, it is directly related to the 4-point function of two
large charge and two charge 1 operators.

One may perform the integral over u by closing the contour in the upper half plane,
and the poles are given by the solutions to the following equation

1
— +C¢Cg7Td/2 =0, =

Qi(u)

F(W—iu)f‘(%—l—iu) e

I‘(d_sT”l—i—iu)F(W—iu) o2

(2.30)

We expect the poles to lie on the imaginary axis, and we will parameterize the roots of the
above equation by u = iu/2, where u = u(c,) is real.?

We can now calculate this Green’s function in the various limits needed to extract the
scaling dimensions. Let us start by considering the case when either x — x1 or y — a2 or
both at the same time. In the limit when x — x1, we have £ — 0o, the dominant contribution
to the integral in (2.27) comes from the pole with the smallest positive imaginary part,
i.e. u = ip/2 with the smallest p. This also allows to just consider I = 0 term in the sum.
The same is true when y — x2, because in that case, n — 0. We can find this solution
analytically for small and large ¢, as

e, () () ()0 @) )
H\Co 2 25_1F(%)F(%) 22871F(%>2F(%)2 ..
e, () T80 (0]
T () @) snr (4T (37 )
(2.31)

For general values of ¢,, we can find this root numerically. The Green’s function in this
limit is then given by

d c _d—s
G(l’l Yy 0'*) — I (5) ,U/(c ) ( (ﬂy - 132‘ )H( =%
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¥ _ / 1 2.32
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d—s
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e 274/2| g — xq|d—s |zg — 212

At small ¢,, this can be checked to agree with (2.19) and (2.20).

2We denote it by u because it will be equal to the chemical potential when we map the problem to the
cylinder.



Finally, we consider the coincident point limit, G(x, z,0*). In this limit, £ — 7 and the
result simplifies to

GH(w,z,0%) = Col (432) Iz — |~ (—4j¢caﬂd/2)L

(|2 — 21|z — iUZDd_S (2.33)
3 (PR ) [ 2@

=0
As usual, this coincident point limit is related to the functional determinant of the quadratic
piece in the action, so we discuss it more in the next subsection.

2.2 Functional determinant

The functional determinant can be expressed in terms of the Green’s function as follows

¢ D R Y.
logdet m +0'*(£U)6d([[,‘—y):| = ;T (il—{/ddzzo'*(Zz)GO(Z“Zz—i-l))
> 1
= — ddxa* 2)GE1 T,T,0% 2.34
3 [t @6 o) (234)

where in the first line, it is to be understood that z711 = z1. Plugging the result from (2.33),
we need to perform an integral over x, which is divergent. We regularize it in the same way
as we did in previous subsection
/ddl, oy — |t /ddl, 0wy — an 4720
|z — x1|%|2 — x2]¢ |z — x1|4=26 |z — 29|02k
omrd/2 4rd/2

g @) () o

2

(2.35)

Again, the 1/k piece will be canceled by an appropriate counterterm and will not be
important for us, so we will only keep the log term in the following. Then performing the
sum over L, we obtain the following result for the functional determinant

52
logdet[...] = =2F(c5) log (W)
) (2.36)
%+d 2)(d—2+0 du i
log (14 Cpeom™ Qi (u)
1=0 -1 / ( ’ | )
where we used d—2 r
) 1) e -
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The Green’s function at coincident points is related to the derivative of the functional
determinant. Indeed by summing over L in (2.33), we can see
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In the limit of small ¢,, we can expand in powers of ¢,

20+d—2)T(d—2+1) [du (—Cqscaﬂd/zQz(U))L

T (d—1)! o &~ L

NE

F(ey) =—

(2.39)
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For the L = 1 term, we can explicitly perform the integral by summing up residues, and then
perform the sum over [ to check that it vanishes. So in the limit of small ¢,, F(c,) actually
goes like c2. This is also expected because the L = 1 term is proportional to GY(z, x) which
is the short distance limit of the two-point function in flat space, which should be set to
zero. To obtain this c2 it is easiest to go back to (2.34) and look at the L = 2 term. The
Green’s function G! was written in (2.22) and after performing the integral over x, we get

_ar()r(s-9)
Fles) = 92D (d— )T (3)'T (4) @40)

As a check, note that in the special case of s = 2, corresponding to the local (short range)
O(N) model, the expression of Q;(u) simplifies to

r(42) (w+ d (14 42)°)

We can then perform the integral over u by closing the contour in the upper half plane and
d—2+2l)
1

Qi(u) = (2.41)

using the residue at u =1 ( . This gives for s = 2

Fle) =Y (—DM1eE? @2k + 1) 5 T(d—2+1)
7T RNk + 2)T(d — 1) & (l +4- 1)2k+2

. (2.42)
I

k=0
It can be checked that this agrees with what was obtained in [28].
To find the large j limit of the scaling dimensions, we will also need the large ¢,
behavior of F(¢,). To gain some intuition, note that for a constant mass, we have

1 . Vol(RY) [ de Vol(R%)(m?)*
S Trlog (V)5 +m?) = (RY) / P tog (" +m?) = —— (RY)(m?) |
2 2 (2m) 2d+1rs 1T (% + 1) sin (%)
(2.43)
A natural guess in the presence of a position dependent ¢* is that we should replace

d

Vol(R¥)(m2)t — / Az (0. (2)

da
s =

244173711 (4 4 1) sin (2¢) (2.44)
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B Numerical result

= = Small ¢, expansion

= = Large c, expansion

Figure 2. The numerical result for F'(c,) in d = 3,s = 1.6. We also plot the analytic expansions at
small and large c,.

We will show in appendix B that this is indeed the correct behavior using heat kernel
methods. So in the limit of large ¢,, we have (B.20)

1
201 4 1 (4) sin (72) (1 +0 (&/)) : (2.45)

For finite c,, one can evaluate the functional determinant numerically using (2.36). But
for the numerics to converge, it is necessary to regulate it. One simple way to do this is to
use the following form

S a——

»

- Cd)cgﬂd/QQl(u) +

(C¢ca7rd/2Ql(u))21 ooar (%)%(
2 2251 (d — 5) T (5)*

where we subtracted out the linear and quadratic pieces in ¢, and then added them back
(the linear in ¢, term vanishes while the quadratic term is given by (2.40)). To avoid
confusion, we emphasize that the last term in the above formula is not integrated over u
or summed over [. This formula can be directly used to numerically evaluate F(c,). We
plot the results for d = 3,s = 1.6 in figure 2. As is clear, the large ¢, result works very well
even down to very small c,.
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2.3 The scaling dimensions

We finally have all the ingredients to calculate the scaling dimensions of the operators O;,
which can be extracted from the two-point function

1 o)
A= _§\x12\m log(O;(x1)0;(x2)). (2.47)

At the large N saddle point, using (2.2), this is given by

N 0 1 C A
iz \x12\a‘x12‘ (2 og det [\x e +o(x)d(xz—y)| —J og(G(ml,xQ,a))>

(2.48)
= N (F(co) + ju(co))

where we used (2.32) and (2.36). The number ¢, is determined by solving the saddle point
equation (2.5), which after using (2.32) and (2.38) becomes

F/(CO') = *l;:u/(ca)' (2'49)

Note that this just corresponds to extremizing A; = N(F(c,) + ju(c,)) with respect to the
constant c,.

Small j expansion. At small ¢,, we can use (2.40) and (2.31) to get the solution to the
saddle point equation

_J2tr(d—-s)r(5)°

co 2
il N (2.50)
Aj  d—sa 2I' (d —s)T' (5)

~9 ~3
EEERCS RO,

Note that, recalling that j = j /N, the quadratic term in 7 above should match the term
proportional to j2 in the anomalous dimension to order 1/N computed in the standard
large N diagrammatic expansion. We check this explicitly in appendix A.

In the next section, we will also study this model in an € expansion in s = d'; for any

N but with €5 held fixed. To compare with the results in that section, we write here the
above result for this value of s to leading order in ¢

Aj=j (Z + % +0 ((ej)2>) . (2.51)

Large j expansion. At large c,, using (2.45) and (2.31), the saddle point equation gives

o (e ) oo
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d=3,s=1.6 d=3,s=1.6

= Small ]\ expansion m Numerical result === Small } expansion ® Numerical result
- Large } expansion === Large j expansion
Co Af
2.5¢F . N
20k ‘.t ““.-.“ 20¢ “‘oo
. PR o*
- . *
1.5 et 15
ot “‘
“ . >
o
100 o 10}
* -
ISR .
.. Q. 0.
05; o 5
; ; ; ; ; ; ; A il ‘ s s s s s A
2 4 6 8 10 12 14 2 4 6 8 10 12 14

Figure 3. The numerical results for the dimension A; and the solution to the saddle point equation
for d = 3,s = 1.6. In both the plots, black line represent the numerical results, the dashed red line
is the analytical result in a large J expansion and the dashed blue line is the analytical result in a
small  expansion.

This gives the dimension of the large charge operator in the limit of large j

L= X254 A, )j
M) — 2T+ s) T (%) ssin (%) 1 () s (2.53)
(d,s) = I‘(%)zsin (m) ds r(-%)n

Notice that the factor in the parenthesis above becomes negative for s > 2 and for s < d/2
(we are considering only d > 2 case here). This implies that outside of the range d/2 < s < 2,
the factor A(d, s) becomes complex. This is consistent with the fact that the long range real
fixed points only exists in the range d/2 < s < s*, with s* =2+ O(1/N). As mentioned
in the introduction, for s < d/2 the IR limit of the long range model is described by the
Gaussian fixed point, while for s > 2 the system should cross over to the short range fixed
point. We will comment on this more in subsection 2.5.

For s = %, where we can compare to the weakly coupled Wilson-Fisher fixed point,
the expansion in €5 of the above result at leading order in € yields

e p 3\ 2/3
Aj=j 3sz _3(sin (f);jz *C‘l 12/: (%)) (g)l/g , (2.54)
w4/ oI (§>

For general intermediate J, we can numerically evaluate F(c,) and p(c,) and then solve
the saddle point equation (2.49) numerically to obtain ¢, as a function of j. We can then
plug in this into (2.48) to get the scaling dimensions. We show these numerical results for
d = 3,s = 1.6 in figure 3.
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2.4 Correlation functions

So far we have focused on the two-point function of large charge operators. But having
access to the Green’s function at the large charge saddle point, it is easy to obtain also higher
point correlation functions involving two heavy (large charge) and an arbitrary number of
light (finite charge) operators. In this subsection, we will focus on the “heavy-heavy-light”
three point function and “heavy-heavy-light-light” four point function. We will closely
follow the approach used in [28].

Let us start with the three point function, and as before we will consider scalar operators
in symmetric traceless representation of O(N), which may be written as O; = (u - ¢).
Their three-point function is fixed by conformal symmetry and O(N) symmetry upto an
overall constant

<Oj1 (xlv U1)0j2 (x27 UQ)OJB (333, U3)>
o (uy - u2)(j1+j2*j3)/2(u1 . u3)(j1+j3*j2)/2(U2 . u3)(j2+j3*j1)/2 (2.55)
= j2gs ’3712 ’Aﬂ RAVPETAVS ’xl?”Ah RRAYIRAY |x23|A.72 ERAVIRAV

In the following, we will calculate this overall constant when the two operators are heavy
and the third one is light. We will choose a configuration such that j; and js are large with
j3 held fixed. To be specific, let us choose j; = j + ¢, jo = j where j — oo while j = Jj/N
and ¢ are held fixed. The correlation function may be explicitly computed using techniques
similar to what we used to calculate the two-point function earlier

(Oj, (w1,u1)Oj, (w2,u2) O, (13,u3))

K K
~§ Jatyats 2O EL A [ atnog g @)

1 . , .
— 5 [ DOP (- (ur-(a2))’ (- (aa)) ¢
=Ny gjjs /DU (ul,u2G12)j+(q—j3)/2 (Ul-U3G13)(j3+q)/2 (u2,u3023)(j3—q)/2

N C d
— 5 logdet (W+U($)6 (ac—y)))

e (2.56)

where in the last line, we just did the Wick contractions which gave rise to the combinatorial
factor

o (j +9)5!73!
Jta.d.gs = (j n q—2j3)! (qv;js)! (j32—q)!.

Note that this three point function is only nonzero when —j3 < ¢ < j3 and j3 + ¢ is even.

(2.57)

The Green’s function Gj; = G(z4,x;5;0) is the two point function in the presence of a
non-trivial . However, notice that at large j and N, the saddle point will only be affected
by the factor of (G12)? in the prefactor above which gives the same exponent as in (2.2).
Therefore the large N, large j saddle point is the same as before, and the three-point
function is given by simply plugging in the previous saddle point solution into the above
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equation. Then, using (2.32) and (2.36), we get

(O, (w1, u1)Ojy (w2, u2) Ojy (73, u3))

Jj3+aq

j+
L(§) i)\ | 5
= Mjrgiis ( (2) §2NF(co)+(2j+9) (n—(%5))

ord/2 (2.58)

Jj+(g—3s)/2 . (J3+4q)/2 (J3—q)/2
) (u1 - u3) ( )

(w1 - ug 1
|19 |2V F (o) 12+ 0)=53(552) | o [H0+33(52) | | ~HaH53(552)

Uz - u3

Note that this is scheme dependent through its dependence on d. To get a scheme indepen-
dent result, we can choose a normalization in which the coefficient of the two-point function
is normalized to one. For that, we need to divide the above result by the square root of
the coefficient of the two-point functions. For the large charge operators, the two-point
function is normalized as

J
T (4) 1)\ (ur - ug)? 162V F(er)+i2n—(d=s))
_ J:
<Oj(l'1,u1)0j(l‘2,u2)> - ( 9d/2 |x12|2NF(Ca)+2ju (259)
as we found earlier, while for the light operator, we have the usual normalization
(ug - up)”® j3lCP
(Oji (@1, u1) Oy (2, u2)) = e (2.60)
|x12|ys(7)
Then the normalized coefficient of three-point function is
J3
dy ./ 2
o myrgggs (T (8) #(co)
TR G\ 2niRCy
(2.61)

J3
2

()
(75)! (#52)! r (%)
where we already took the large IV limit. The ¢, in the above expression is the one that

solves the saddle point equation (2.49). At large j, the OPE coefficient has the following
scaling

J3 i (d—:
5 Ja(d—s)

V! _NI(3) - ¥ M WJF
Aj+q,5.j5 = (qgjs)! (ng—q)! r (%) sT (g) sin (Ld) T(-3)

S
(2.62)
Next, we look at the four-point function of two large charge and two finite charge

[

operators. For simplicity of presentation, let us choose the large charge operators to be 27
and Z7 with 27 = (¢' +i¢?)7. Let us further choose the finite charge operators to have
charge one. Then there are two possible four point functions we can consider. The first
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one is?

j =7 ; _Niogdet| —C — +o(z)5%(z—
(2 (1) 27 (w2)9" (w3)0" (24)) = 5abj!/D0 (2G12)’ Gaae ? tog t(Im—y\d“rs—’_ (@)o%( y)))

J
55! r % 1'(co) .
Y25 ( ( ) G(xs,xq;0")  (2.63)

2N F(es 1d/2

212

where a,b are not equal to 1 or 2. So this four-point function is just proportional to the
Green’s function we found in (2.29). As expected, this has the form of a CFT four-point
function

(27 (21) 27 (w2)¢" (3) 0" (24))

55! (F (%) ﬂ’(cv))j Gl (%2°)

= |12 2N F (o) 421|445 d/2 (xXv)5 —s (2.64)

S () ) 5 (3 et

: 2WXY X) 1+ Cheomd2Q)(u)
with cross-ratios
x = @ Plra— ol v _ s —woPlaa — (2.65)
|21 — @2[?|ws — z4]? |1 — @2[?|ws — x4]® ‘
The other four-point function we can consider in this simple setting is
(27 (21) 27 (2) 2(3) Z(24))

(2.66)

~ Y tog et =Sz +o@) @)

= jloitl /Da (G{Q +jG{;1014G23> e ==

Because of the explicit factor of j upfront, the second term dominates. Then using (2.32)
and (2.36) as before, we get
(29 (21) 27 (x2) Z(3) Z(24))

j+1
_ (F (%) M/(CU)) (] + 1)' 2ufidfs)Y72u (d—s) (267)

A2 |xl2|2NF(cg)+2ju|x34|d,sX

Let us also normalize this four-point function by dividing it by the two-point function
coefficients, so that we can extract the OPE coefficients in 13 — 24 channel and compare it
with what we got by calculating three-point functions

r (%) ,U/(CU) N§ 2 (des)  —2u—(d—s)
X 4Y 2
20¢7rd/2 |:E12|2Aj|l=34|d—s

(29 (1) 27 (w2) Z2(23) Z(24) hnorm. = (

1 T34 Aj_Ad) 9 As
_mw(m> g;aA,SX 7 gas(X,Y)

(2.68)

3We are now going to not write the factors of renormalization scale § here anymore, which as we explained
in the context of three-point function, may be absorbed in the definition of the operators.
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where we expanded the four-point function into conformal blocks ga s in the 13 — 24
channel (see for instance [33]). Now that we have the four-point function, it is possible
to extract all the OPE data from it, but here we will just calculate the OPE coefficient
of the leading operator that appears in 13 — 24 channel. It should be a scalar operator
with charge j + 1 and should correspond to the leading term in the four-point function in
the limit X — 0 and Y — 1. The blocks are normalized such that ga s(X,Y)=1+... in
the limit X — 0,Y — 1. Then the leading operator has the following dimension and OPE
coeflicient

Nj. (2.69)

()T e
Ajpr=A+p aj141 = .
r (%)
This OPE coefficient agrees with what we found using the three-point function calcula-
tion (2.62) for js = g = 1. The result for the scaling dimension implies that at large j, the
derivative of the dimension with respect to j is p

A =8y = b= . (2.70)

This is in agreement with the structure of the result for the scaling dimension that we found
earlier, as can be seen as follows

94; _ 9
9j 9]

(NFleq) + pi) = o+ (NFlea) 4 (ed) G2 =i (271)

where we used the saddle point equation (2.49).

2.5 Crossover to the short range regime

As we mentioned earlier, at a certain critical s, the behavior of the long range model is
expected to cross over to that of the short-range O(/N) model. For recent discussions of this
crossover see [6, 7, 11]. Recall that s, =2 — 2’y¢§R where vds)R is the anomalous dimension of
¢ at the short-range fixed point. However, in the large N expansion, 74 is of order 1/N, so
in the regime we are working in, the crossover must happen at s = 2. In this subsection, we
will study how the dimensions of the large charge operators behave near s = 2, and how
the scaling dimension of the large charge operators may cross over from the long range to
the short range behavior.

Let us start by observing that the solution of (2.30), with u = iu/2 (where u = p(cy)
will be physically related to the chemical potential on the cylinder), has several branches

for any s < 2, while for s = 2, it has a single solution given by

(o) = 1) co + (;l - 1)2, (2.72)

see figure 4. At small ¢, the values of p on the various branches go as p(c,) = % +2n +
O(co) with n =0,1,2,.... One can see that the small ¢, expansion of (2.72) matches what
we get by just plugging in s = 2 in the small ¢, expansion in (2.31), which gives the value of
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Figure 4. The plot of (2.30) for d =3 at s = 1.8 and s = 2. The horizontal dashed line is the line
¢s = 10 and for this value of ¢, the solution p of (2.30) is given by the point where this dashed line
intersects the curve. It is clear that there are several branches of solution for s < 2 while there is
only one for s = 2.
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Figure 5. The numerical result for various branches of the solution p(c,) for s = 1.9 and for
s =1.999 in d = 3 dimensions. The dashed line is the s = 2 result (2.72), so it is clear that s = 2
result arises by “gluing” different branches.

p(cy) on the first branch (the one with smallest p). But at large ¢, the above s = 2 result
goes like c},/ ? which is very different from the large ¢, expansion in (2.31). In particular,
for any s < 2 the result (2.31) saturates below (d 4 2)/2, while the s = 2 solution (2.72)
crosses that point at ¢, = 2d and keeps growing. So if we always stay on the first branch,
the function p(c,) can only have a smooth transition from s < 2 to the s = 2 behavior for
¢s < 2d, and beyond this value one may expect that the higher roots of (2.30) should play
a role. To get further intuition, it is useful to plot the solutions for various branches of u as
s approaches 2 (see figure 5). One can see that the s = 2 result (2.72) arises essentially by
“gluing” portions of different branches as s approaches 2 from below. Note that the function
u(cy) on the first branch, as we approach s = 2, tends to develop a kink at ¢, = 2d. This
becomes a true kink at s = 2, with u(c,) turning to a constant beyond that value. Similar
kinks appear on the higher branches.*

4The position of the kinks at s = 2 is given by ¢, = 2(d+2n)(n+1), n =0,1,2,....
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When we compute the scaling dimension by extremizing A; = N (F(cy) + ju(cs)) with
respect to c,, we expect the higher branches of u to lead to additional solutions to the
saddle point equation. At small J, it is easy to see that this leads to a tower of solutions
with Ag") /N = (% +2n)j 4+ O(j?). For finite 7, one can find these solutions numerically.
Given the above discussion, we should see that the s = 2 behavior for A; arises by “gluing”
the contributions of the saddles obtained from different branches.’ This is indeed what we
find, as shown in figure 6. The s = 2 case was considered in [18, 28]. In d = 3 and at large
7 the result behaves as

% = ;53 + é}é +0 (;) . (2.73)
In figure 6, we just plot the result in (2.73), since, as observed for instance in [28], the large
7 expansion gives a very good approximation to the true numerical value even down to
relatively low j. Note that, as shown in figure 6 to the right, the solution coming from the
first branch smoothly goes to the s = 2 behavior for 5 < 5crit,. We can get an estimate for
this critical value of 7. As we saw above, the s = 2 result for u(c,) starts diverging from
the s < 2 result at ¢, = 6 in d = 3. When s = 2 and d = 3, ¢, is related to j as [18, 28]

A 1 1
cg_]—m+o<5>. (2.74)

So we expect the curve for the s = 2 result to diverge from the s < 2 result at around j ~ 6.
Beyond this value, the s = 2 behavior is instead well approximated by the saddle obtained
from the second branch of x, until we reach another critical value of j around j ~ 20, and
so on. Note that in the strict s — 2 limit, each branch produces a solution to the saddle
point equation only within a certain interval of ¢, (and corresponding j), outside of which
becomes a constant (see figure 5), which does not allow for solutions to F”(cy) + 7' (cs) = 0.
Therefore, in the s — 2 limit, the short range behavior A; ~ %35 is indeed reproduced
by “gluing” the saddle point solutions obtained from the different branches.® However, for
s < 2 and infinite N, the dominant behavior always comes from the first branch, which in
particular gives scaling dimensions that go as A; ~ % j at large J.

The picture we described above applies in the infinite N limit we studied in this paper,
where the transtion to the short range regime should happen at precisely s = 2. If we include
1/N corrections, however, the role of the higher branches should become important slightly
below s = 2, since the crossover is expected to happen at s* =2 — 2’y£R =2—-0(1/N) < 2.
It would be interesting to compute the subleading corrections to the scaling dimensions by
including the determinant of the fluctuations around the saddle points, and further clarify

how the transition to the short range regime works within the large charge sector.

5Note that the functional determinant F (¢co) has a smooth limit as s — 2, which can for instance be seen
by setting s = 2 in (2.40) and (2.45) and checking that it agrees with the results in [28].

5Tt would be interesting to see if this merging of the branches can be interpreted as some kind of operator
mixing. Indeed, it is natural to think of the solutions for A; obtained from the higher branches as the
dimensions of operators with the same charge but higher bare dimensions. For instance, on the second

branch we have A; /N = (d;S + 2) J+...at small j, which could be viewed as the dimension of an operator

of the schematic form ~ (82(¢1 + i¢2))j. While at small j the scaling dimensions on different branches are
well separated, at sufficiently large j and s — 2 they can approach each other, and mixing may occur.
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Figure 6. The numerical results for the dimension A; obtained from various different branches of
(cy) for d = 3,s = 1.999. In the right plot, we just zoom in to the small j region.

2.6 The long range model in d =1

Let us now consider the special case of the d = 1 long range O(NN) model. Contrary to the
usual short range case, there is a non-trivial fixed point for the one-dimensional long range
model in the range 0 < s < 1 [34-38]. At s = 1, we expect a crossover to the short range
fixed point, which is the trivial zero temperature fixed point where all correlation functions
become constant. So we expect the scaling dimensions to go to zero as s approaches 1. We
will show that this is the case for the large charge operators that we have been considering.

Let us start with the Green’s function (2.29). In d = 1, the two cross-ratios are related
to each other and there is only one cross-ratio, which we can take to be x defined by

X =2, Y =(1-x)> (2.75)

The makes the argument of the Gegenbauer polynomials equal to 1 and then using (2.37),
the result for the Green’s function is

G(z,y,0")

& C¢F<d22>(2l+d—2)F(d—2+l)/du< % )‘W Qu(u)

=2 —yP s (W1—x]) T T (d—2)1/ 27\ (1=x)? 14+Cgeom2Qu(u)  (2.76)

_ F(%) /du< X2 )—iu Ql(u) |
52T (3) le—y[s (1) 7/ 2 \(1=0)? ) 14Cscom2Qi(u)

In d = 1, the prefactor of the integral vanishes unless [ = 0 or 1, so the sum collapses to

only those two terms. In the next section, we will show that all these calculations may also
be done by mapping to a cylinder, R x S%~!. Then the sum over [ comes from summing
over angular momentum modes on the sphere. However in d = 1, there is no sphere, so the
sum over [ must collapse.

Similarly for the functional determinant (2.36), we have

Fle)= Y [ Shog (14 Cocom2Qu(w) (2.77)
1=0,1"7%°
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At large ¢,, this goes like (B.16)

ctl,/ s ( 1 — g2 )
Fleo) = ——|1——5~+...]. (2.78)
Tosin (D) U o

Since we don’t have an infinite sum over [, it is also possible to extract the large c, behavior
directly from (2.77). To do that, we first differentiate F'(c,) with ¢, and expand at large u.
We then rescale the integration variable u — ccl/ * 4 and then expand at large ¢,. Finally we
perform the integral over u and then the integrate back over c,. The two results of course
agree. At generic values of ¢,, it is possible to evaluate F(c,) numerically using (2.46),
with sum now only running over [ =0 and [ = 1.

Combining (2.78) with the large ¢, behavior of u(c,) from (2.31), we can solve the

saddle point equation at large c,

B 251D (%1) = - 2sin (5) ['(s+ 1) (775 cot (%) + 2s(1p(0) (s) +7) + 2)
o= | @Iy "o+ '

(2.79)
Corrections to the above are of order O(j _ﬁ) at large j. We can then use this result to
get the dimensions of the large charge operators in a large J expansion

1
A _ltss, 2(1+45) (F(T)ssin(;f)j)“s

N L (-5) V7

N 2 sin (%) s
2T sin () (s cot () + 2500 (s) +9) +2) (F (442) ssin (2) 3’)

s sin (%)

It is also possible to numerically solve the saddle point equation and hence find the dimension
of the large charge operators. We plot the result for the saddle solution and the dimensions
for s = 0.75 in figure 7. Note that the analytical large j results in (2.79) and (2.80) work
remarkably well.

Now let us discuss the behavior of the model as s approaches 1. Let us start by recalling
the small ¢, results for F(c,) and for u(c,) when s is close to 1

1—s 2¢, 4¢3

p(co) = T A2 5334'0(02)'
AR DI D 2.8)
F(Co) = —sz)g

where we only wrote the leading order in 1 — s result at each order in ¢,. Note that the
expansion of j(c,) clearly breaks down unless ¢, < (1 — s)?. Assuming the expansion
of F(c,) has a similar validity, we can solve the saddle point equation using these two
expressions and we get

3 2 . _ —
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Figure 7. The numerical results for the dimension A; and the solution to the saddle point equation
for d =1,s = 0.75. In both plots, black line represents the numerical results, the dashed red line is
the analytical result in a large j expansion and the dashed blue line is the analytical result in a
small j expansion.

So this is only really valid for j < 1. But clearly in this regime, both ¢, and A; go to zero
as s — 1. This is consistent with the expectation that the dimensions should go to zero as
s approaches 1. Next let us look at the large ¢, expansions
(o) =1 - 71_200 + 7T240(27 +0(cd).
CO'
m(s—1)

(2.83)
F(CU) =

Clearly, F'(c,) diverges as s — 1, while 1/(c,) is finite. So there is no solution to the saddle
point equation with large ¢, close enough to s = 1.

In order to clarify what happens for finite 7, let us then look at the numerics as s gets
closer to 1. In figure 8, we plot the solution to the saddle point equation for ¢, and scaling
dimension for s = 0.9 and s = 0.99, and it seems clear that as s approaches 1, both of these
quantities approach zero. To see how they approach 0, we can numerically evaluate A;
as a function of s for a fixed j. We show these results in figure 9. The results seem to
suggest the dimension goes to zero linearly as 1 — s even when J is not too small. It would
be interesting to clarify this further, perhaps using the non-local non-linear sigma model
considered in [10], which has a perturbative fixed point in d =1 and s =1 —e.

3 Scaling dimensions from the cylinder

In this section, we show that the scaling dimensions we calculated above can also be derived
by studying the theory on a cylinder, which may be obtained by a Weyl transformation from
the flat space. We will use this approach mainly as a check of the results we obtained above,
so we will be brief. Such an approach has been used in several recent works [14-18, 23]. We
will follow and generalize the approach used in [23], which studied large charge operators in
a boundary conformal field theory.
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Figure 8. The numerical results for the dimension A; and the solution to the saddle point equation
ind=1for s =0.9 (red) and s = 0.99 (blue). As one can see, both ¢, and A; appear to approach

zero as s gets closer to 1.
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Figure 9. The numerical results for the dimension A; as a function of s for 7 =0.2 and for j = 2.
The blue dots are the numerical points while the red dashed line is the analytical result for small
7 (2.82).

3.1 € expansion

We start by considering the long range O(N) model (1.1) in the vicinity of the lower critical

d+e

value of s. For s = , the model has a perturbative fixed point where the coupling is

given by [1]
(4m)2T ()

2(N +8) (3:1)

gx =

We will work at this fixed point to leading order in €. It is convenient to think of the model
as coming from the following model in D = d + 2 — s dimensions, with interactions localized
to the d dimensional subspace [4]

S:(%S/W<F3 ~ (9,012 + /ﬁ (pTp1)2 (3.2)
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The field ® is the D-dimensional extension of ¢’
o' (z,w = 0) = ¢ (x) (3.3)

and we restrict for simplicity to field configurations which depend on the extra coordinates
only through |w|. We are interested in calculating the dimensions of fixed charge operators
with a large charge j while holding ¢j fixed. For that purpose, we perform a Weyl
transformation to the cylinder R x SP~1. By the state-operator correspondence, the large
charge operators on the plane are mapped to large charge states on the cylinder. We pick
the following coordinates on SP~!

ds® = db? + sin® 0dy_1 + cos® 0dQ (3.4)

where 0 < 0 < /2. The limit # — 7/2 then brings us to the d dimensional subspace our
original model was defined on. We want to consider fixed large charge states on the cylinder.
By ensemble equivalence, this can be done by introducing a fixed chemical potential pu.
Without loss of generality, we introduce this chemical potential for the U(1) subgroup that
rotates ®! and ®2. In practice, the chemical potential may be implemented by having a
background gauge field in the time direction” (see for instance [18] for a related discussion)

S 54 r (?) /ngsD—l lw ((i)lq)Q _ (i,Q(I)l) _ M; (((I)l)Q n (@2>2)] (3.5)

(4m)1 3
where dot represents the time derivative. We expand the field around the following ansatz®
o +id? = V2f(0), PP=pl=...=0"V =0. (3.6)

In this background, the classical action is

(3.7)

where (d — 5)?/4 comes from the conformal coupling on the cylinder and 7 is the length of
the cylinder along the Euclidean time direction, which is formally infinite. The variational
principle gives the following equation of motion

1
(sin 0)4=1(cos 0)

—3)2
=0 ((sin 0) " (cos ) 3y (6)) + (ﬁ - (d4>) f0)=0 (38)

"This is done by modifying the kinetic term in the action so that 9p®' — Do®' = 9o®' + ipud? and
0o®? — D®d? = 9p®* — iud'.

8 An equivalent way to introduce the chemical potential is to have a time dependent ansatz given by
®! +i®% = /2f(0)e” " where t now is the Lorentzian time.
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along with the boundary condition

43T () (sin )% (cos h)L 3
) (r 1) . (cosf) Do f(0) +4gf3(9)] =0 (3.9)
-3
The solution that is regular at § = 0 is given by
£(0) = v(cos )™ T o Fy (d - 84_ 2M, a 84_ 2, ;l — tan 0) (3.10)

Using the boundary condition fixes (we can set s = d/2 for this calculation, to leading order

o (g r(¥ )
g7 (g)2r (g)2r (3(d=4m) T (L(d+4p))

The scaling dimensions of the operators on the plane are then related to the energy

in €)
3

(3.11)

on the cylinder and may be calculated by extremizing the following expression (this is
essentially a Legendre transform from the free energy at fixed chemical potential to the free
energy at fixed charge)

r d
AJ = -S;il +Mj:|uzu* _ [_297’(’2.];1((%)— 71'/2) +MJ
2 2 2 o (3.12)
P (o) T )
| 2 5+
o0 (T (a—40) T (S +aw)” T

where we used the boundary condition and p* is the value of u that extremizes the above
expression

9d~1 d/QF(% %) (% 2*) [wm ( )—w()(é(d%u ))—u*%—u*}
D(4)T (4a-40) T (Ra+a)”
(3.13)

It is hard to find this extremal value analytically in general, but we can make progress in

=gJ

the limit of small and large gj. For small gj we get

«_d 9j 2 <d J€ >
W=+ —2 10 — A= +-2L 103 3.14

For large gj, we get instead

O () (r (g ()"
| (gj)%r(g) (3.15)
N PTG L R R
j=J 4 2/3T° <%)4/3 o

where we plugged in the fixed point value of g. At large N these results agree with what
we found before in (2.51) and (2.54).
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3.2 Large NN expansion

We now revisit the large N expansion for the long range O(N) model from the cylinder
approach. We start with the following action on R x SP~1!

__r®) 1 (d— s)2 1
= MW)%_;/RXSDl (2(‘9u<1>1)2+8(<1>1<1>1)> +§/ddm¢1¢1_ (3.16)

We take the same ansatz as in (3.6) and the classical equation of motion and its solution
are the same as in (3.8) and (3.10), but the boundary condition is now given by

[4§F (%) (sin )4~ (cos )1 ~*

T(1-3) 0of(0) + cgf(e)] = 0. (3.17)

6=1

The ¢, here is the classical value of o, which is a constant and may be obtained by a Weyl
transformation from (2.7). This boundary condition requires

T (d+s4—2u) T (d+s4+2u) .
T (dfs472,u) T (dfs:2u> - 23 ’

(3.18)

Note that this is precisely the same as (2.30) that we found in the flat space approach.
Using the boundary condition, one can see that the action actually vanishes on the classical
solution. However, the effective action at large N also involves the fluctuations. We expand
the field around the classical background ®! = <I>]1 + 0®!, and the action up to quadratic
order in fluctuations is given by

(3

_ ) 1 1\2 (d—5)2 Isal 1 d Ig.I
77%/3st71 (2(@5@ ) +T(M) 0d") +§/d x 00" 09" . (3.19)

SuC
fluct (4m)1=

To calculate the large N free energy, we need to calculate the determinant of the
fluctuations. One way to proceed is to reduce it down to R x S9! again

I I
/ diz ddy\ﬁf‘m 4o / A2\ /G cadd! 50 (3.20)

25 1F d+s
7T2I‘ -2

where s(z,y) is the Weyl map of the flat space distance to the cylinder. Let us use the
coordinates (7, Z) on the cylinder, then

s(x,y)? = 2 (cosh (1, — 7,) — cos ) (3.21)

where 6 is the angle between & and ¢ on the cylinder. The free energy on the cylinder is

then given by logdet (K) with K defined by
250 (ks 1 5z —
K= d( 2) G (x=y). (3.22)
Ffr(—%) (S(.%,y)) y \/g:

Let us expand this operator into eigenfunctions of the Laplacian on the cylinder

(s (m (s(z, )T Z/ T ()Y (§) (3.23)
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where Y, are d — 1 dimensional spherical harmonics and e’“” is the eigenfunction on the

real line. Using orthogonality, we get

WTy .
g(l,w) = Yc;m( ) /dda: gwwse_’mﬂﬁm(f) (3.24)
Note that the eigenvalue should not depend on m because of the symmetries of S~!, so we
can just evaluate it at m = 0. Using the same symmetries, we can fix y to be at 7, =0
and at the north pole of the sphere S?~!. Also note that Yjo(6) is proportional to the
Gegenbauer polynomial C(d_z)/ 2(cos ). This results in the following integral

Vol(S¢ 2) 1 , _
g(l,w) = Cu(w / drdf (sin 0)* ( YPE——— e Tl (cos ) (3.25)
We can then use
! ZC’ (cosf)e ‘T|(k+d;§), (3.26)

(2 (cosh T — cos 9))

to turn the integral into a more useful form

d-2) N 43 are
g(l,w)= C\EI(;S;M / dr2coswre” T(H%)/ldz (1—22) oA (Z)C’l(dfz)/z(z).
h _

(3.27)
The integral over 7 may be immediately performed. To perform the integral over z, we first
use (2.26) and then use the orthogonality relations to get

/2 oor(d;f5+l+k)r(1+§+k)< 1 . )
F(%)k:o k!F<g+l+k)F(1+§) (d+ s+ 20+ 4k) + 2iw

g(l,w) =

(3.28)

The sum over k can be computed in terms of generalized hypergeometric functions
. Fd/QF(—S)F <d+82+2l) T <d+i+2z + %>
T ) )
2 2 4 2

o <d+5+2l iw d—s+2l s d+2l d—35+2l+iw 1>+
_ = ———1,——; —; c.c.
342 4 9’ 2 Ty g 4 2"
(3.29)
For s = 2, this gives, as expected
2°0(4hs d 2
d(iﬂg(l,w) =w? 4+ ( -1+ l) : (3.30)
7'['51—‘(—%) 52 2
The cylinder free energy may then be computed in terms of these eigenvalues
N N
F = logdet (K) = E/ddm 75 (x| log K|)
3.31)
N dw QSF( ) (
:EZ/g/ddﬂﬁ\/@ Y] (2)[? log i g(l,w) +co |-
l,m T2 ( 2)
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The spherical harmonics are normalized such that the integral over the sphere just gives
one, while the integral over the real line gives the length of the cylinder. The sum over m
gives a factor of the degeneracy

NTQl4+d—-2)T(I+d—-2) [dw 25T (L
= 71 —_—
d Zl: 20T (d— 1) o 8

_E:Nﬂm+d—mra+d—m dw
4 21T (d — 1) 27

log (Wg(l,w)) (3.32)
m2(—3)

In the second line we separated out the ¢, = 0 piece of the free energy. This is the vacuum
energy, which should be subtracted while computing the scaling dimensions. After this
subtraction, the scaling dimensions may be calculated as in the previous subsection, by
extremizing the following expression with respect to p

Fo
Aj =5+
g 3.33)
B @ +d—2T(+d—2) [dw 730(~5) N
=N Zz: IT(d—1) 1 B\ M e @gaw) ) T

For equivalence to the flat space calculation in (2.48), we want the first term to be identified
with F'(¢,) in (2.36) which requires

P(=3)m
l,w)= .
I (F)a

(3.34)

Comparing (2.23) and (3.29), we need the following hypergeometric identity to hold

3Fy(a,byc;a—b+ 1,204 ¢; 1) sFy(a,ba—2b—c+1l;a—b+1,a—c+ 1;1)
I'a—2b—c+1)I'(a—b+ 1)I'(c + 2b) Fe)l'la—b+1I'(a—c+1)
\/77,21—21)
__F@+%)Na—%+1ﬁ@+@F@—b—c+U

(3.35)

We could not prove this identity or find it in the literature, but we checked that it holds numer-
ically for a wide range of parameters, so we expect it to be true. Hence, as promised, we have
shown that the scaling dimensions calculated on R¢ and from the cylinder approach match.
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kj_o

Figure 10. The two diagrams that contribute to the 1/N correction to the correlator. The dashed
line represents the o propagator.

A Scaling dimensions from standard 1/N perturbation theory

In the regime when j < N or j < 1, we can use ordinary 1 /N perturbation theory to
calculate the scaling dimensions of the operators O;. We will do that in this appendix, and
it will serve as a check of the calculations in section 2. We will calculate the correlator of
the operator O; with j fundamental fields ¢. Let us look at this correlator in momentum
space. Just by dimensional analysis®

(0;(0)p(k1) ... p(k1)) = G(k1, ..., kj) W (A1)

The momentum conservation requires 3_; k;j = 0. The last term is just schematic and is
meant to count the powers of momentum. It is well known that the field ¢ in the long
range model does not receive anomalous dimensions [1, 10]

B o d—s Vj 1
so=tn A () o L), )

Therefore all the logarithmic terms in the correlator must contribute to the anomalous

dimensions of O;

~ 4 1 1 Vi 2 1
Glly ook o6 oty = o (1 + 2 log(p?) + O(3h)) (A.3)

There are 2 types of diagrams that contribute to the 1/N correction to this (j 4+ 1)-point
function as shown in figure 10.

The left diagram does not contribute to the anomalous dimension because it does
not give rise to any log(p?) terms. This is also the reason why ¢ does not get anomalous

9We are suppressing O(N) indices in this appendix.
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dimensions.

B 1 815C, d’q 1
= Tl Ty el NP / (@) (@) 72 (p — )7 "
_ 1 017C, L(=5)(S5)(s)
[ [* -+ g 2] (4m) /2N pl* T(§ — 5)D(5)T(%2)
We used that the o propagator is given by
- d
(c(—a)o(q)) = CUL ; s _2(4%)21“2%)22(1—23) (A.5)
N(¢g%)2~* I(s = 9)0(%?)

On the other hand, the right diagram does give rise to logarithms. There are (%) =
j(j — 1)/2 diagrams of this form. For simplicity, we picked a configuration such that

k; = —ky = p where the diagram may be computed by the following simple integral

1 5 / d? 1 C, 1
. 5y Yo
|Ei|s-- - |kj—a|® (2m)4 |p|s|q|® N ((q¢ — p)?)4/2—s

(A.6)

The integral can be computed using Feynman parameters and introducing a regulator 7.

/ diq 1 1
(2m)2 p[?3]q|?s

((q — p)?)d/?=s

2\91

éo F(d . ddq 1
NP LG )F(Q% /daa - 1/ (27)4 [q2 + (1 — c)p?)d/2
éU F(d dj2—s— 2 d/2 dq qd_l_n
N|p\28 1‘(2% /daa —a) 1 () / (2m)% [q2 + o1 — a)p?]d/2
)—d/2
= N|p‘28§‘(’8(;lr()g T [0(3) = 1(§ = )P (s)(log(®?) + ... ) + O(n)] (A.7)

Dropping the 1/7 pole and taking the limit 1 — 0, we see that the coefficient of the log(p?)
piece, after summing all the diagrams of the form (A.6) is

1 ~Coj(i—1) 1
on AR
[ [kj 2l [p?* (4m)4/21(2) 2N (A-8)
Thus the dimension of O; is given by
d—s\ . 20(d-s)T(5)*( - 1) 1
Aj = : 0 <> . A9
’ ( 2 > " r(42)20(s — Hr(4)N oW (4.9)

At large j this is consistent with what we found in (2.50).

B Large ¢, expansion of F'(c,) using heat kernel methods

In this appendix, we show that at large ¢,, the functional determinant F'(c,) behaves
as (2.45). We will use heat kernel methods to calculate the functional determinant (see for
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instance [39—41] for reviews). We start with the following representation of the functional
determinant

1 2y 2 _ Ll *dT _7(psiot(x))
STrlog (-V)f +0u(2)) = —§/d x<x|/0 e ) (B.1)

where we use capital letters to denote operators. Recall that

w1 — xa°

o'(z) =c¢ = c,V(x). (B.2)

7oy — x|*|eg — xl

We then use Trotter formula to write the determinant as a path integral. For that, we
divide T into N pieces, then for N very large, we may write

. o0 s « N
}Trlog ((—V2)5 +0u(7)) = _7/ddx0/ 7 ol ( TR (X)) o)
2
oo dT 7(% (T 2)s/2 Co V(T
! / Da(r )Dp()fd(” (1) =P/ (7)~co V() (B.3)
—z T —LEO
_ dT/ ity DH(ODP()e J dt(in0:4(0-T ) 2O~ Ter V@),

To get the large ¢, behavior, we rescale T — T'/c, and at the same time, also rescale

p— c},/sp to get

}Tr log ((—Vz)% + U*(l‘))

B4
_ > dT /D:L' 1/5 ( )]efol dt(icclr/sp(t)'x.(t)_T(pQ)s/Q—TV(x)) ( )

At large c,, the path integral will be dominated by constant x configurations. A path
integral over x fluctuations will then also force momenta to be constant at large c¢,. So we
can expand about the constant x and p configurations to obtain an expansion in 1/c,

1

s =20t px®, P =p+TIE) =
1 ar [ dx dd ! (B5)

7Tr10g _ 2/ / 0 pO (pg)s/2e—TV(a:0) /Dx(t)DH(t)e_S

where the action to quadratic order in fluctuations is given by
Tp 572 2 Tp874s(s —2) 2
S = /dt —AT(E) (t) — (T2 2y 1) + S )
(B.6)
T T y
+ quauv + ﬁx’ux 3M3VV] .
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First, note that at leading order in ¢, we can ignore the fluctuations, and then we can do
the integral over pg followed by an integral over T' and finally over zg

d d
fTrlog / dT/d zod pocg —T(p3)*/? =TV (o)

__F(S)F( S)cﬁ/s p |21 — 29|
s(4m)d/21 (%) 0 2o — @1]4|20 — 224

d 52
T (2 () (\w)

Note that the last integral over zg is the same as in (2.35). To calculate corrections to it,
we expand the fluctuations into Fourier modes

oo o0
XH(t) = Z Xy, sin(2mwmt) + x4, cos(2mmt)), II*(t) = Z I sin(2mmt)+ 112 cos(2mmt).
m=1 m=1

(B.8)
The action in terms of these modes is given by

T v ~U ~V
S = Z [— ’Lﬂ'm( m - Xm — oy - Xm) + 2 (Xh X + X Xom) 00,V +

+T<Sp§1_ (Hm'Herﬁm'ﬁm)*W((pO'Hm)2+(p0'ﬁm)2>>]'

The last term in the above action mixes the II modes in different directions, and is therefore
slightly tedious to deal with. Let us start with the case when d = 1, so there is only one
direction and no mixing. Then the action simplifies to

, = - T (o oN\ao, Ts(s=1p5 % (10 o
S= ; [—mm (T Xm = T Xom ) Yo (o +X0n ) 97V == 0 (115, 4112,
(B.10)
Then the path integral over IT and x may be easily performed

/ Dx(t)DII(t)e™S
m? ”27’”252(xm+xm) T (G +x3,) 0%V
=TT/t <(_1) T (B.11)
T?0°Vs(s — )po
2402/8

—1—

We chose the path integral measure such that the path integral is normalized to one when
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the potential vanishes. The functional determinant is then given by

s 292 s—2
*TI‘]Og — _7/ dT / d$0deCU e_T(pg)s/26_TV(x0) (1 _ T 8 V8(827 1)])0 )
24c°

[ ) (T
0

T+ 27s 24¢5°T (1)

__/d@wyﬁﬂ“F(QT(—i)<l_ (1-5)0%V )_ (B.12)

- 2
2ms 24 s cg/SVEH

Recall that

|x1 — xa|® o2V (ko — 1) - (2o — x2)
= s(s+2—d)+2s5(25s+2—d

R e R e A A P
(B.13)

But the second term above, when multiplied by V%¢. is proportional to a total derivative.

V(xo) =

This can be seen from the following

(zo — 1) - (w0 —22) _ 1 0 ( (w0 — 1)’ (zo — x)" )
o — 21| wo —wal?  2(d—2) " \ Jwo — m1[9wo — wal 2 T [wo — @ 2]wg — ol
(B.14)
so it does not contribute to the integral. Therefore 92V term only changes the zq integral
by a constant factor. The integral over xy may then be easily performed by using (2.35)

T c},/s ST (= —= _
ﬁm%ﬂqz—/do VUF@N(i)G—“ 3»

27s 24c2/* (B.15)
ol (1—s?) 52
= —— 1—72/5 log 5 |-
sin () 245 12|
This implies that in d = 1, we get
1/s 2
Fleg) = =2 (1 -4 N )> (B.16)
sin (%) 24c2/*

Another case when there is no mixing in (B.9) is s = 2 for any d when the last term
in (B.9) vanishes. In that case also, the path integral over x and II may be done

71'2m2 o o
| Pt H/ dxdem<2T> g (Vi) 2ty (8 °V
(B.17)
T20*V
C12¢,
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We can then calculate the functional determinant by integrating over pg, T and xg as before

d d 292
I I (W

2 12¢,
[ (—2) (c,)%? d g 17 d/2 _ —
et g o)
D (=8 () [ dd—2)(d—4) 1 52
B 2d2r (g) [1 " 24 ¢, o (Cgﬂ g (W)
which then implies
I (—2) (c,)%? _ _
Fle,) = — (2;1“) O [1 G 2?«55 Do (clg)] . (B.19)

This agrees with what was found in [28]. We will not do the general calculation for general
d and s, but from the structure of (B.9), we expect the corrections to the leading large ¢,
behavior to be of order 1/ cg/ * so that

(co)ém 1
Flea) = 261 4T (4)" sin (=) ( +O< 2/5>>' (320
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