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1 Introduction

Celestial holography proposes a duality between gravity in asymptotically flat spacetimes
and a conformal field theory living on the celestial sphere [1–3]. This presentation of the
gravitational S-matrix has shed light on the infinite dimensional symmetry enhancements
that arise in the infrared limit of scattering [4]. Indeed the starting point of this program
is the observation that soft theorems in 4D look like currents in 2D when we transform our
external particles from momentum to boost eigenstates.

So far, most of our understanding of celestial holography is derived from our knowledge
of the 4D physics and how it maps to 2D under our change of basis [5–7]. While this change
of basis depends on physics at all energy scales, we can make robust statements about the
holographic dictionary that are agnostic about the UV completion by focusing on aspects
that are governed by symmetries. The asymptotic symmetry group of gravity in the bulk
is infinite dimensional and any choice of vacuum breaks all but a finite number of the
symmetry generators. The so-called ‘conformally soft sector’ of scattering describes the
dynamics of associated Goldstone modes [8–11].

Studying the Goldstone mode dynamics can provide a surprising amount of mileage.
First, this sector provides non-trivial constraints on scattering. In going to the boost basis,
the soft modes that generate the asymptotic symmetries are recast as celestial currents that
couple to matter via conformally soft theorems [12–14]. The corresponding celestial OPEs
give rise to differential constraints on amplitudes and provide a first step towards a celestial
bootstrap program. Second, this is the perfect arena for developing candidate boundary
dual models that capture sectors of the bulk theory [8, 15]. Exploring these models informs
our understanding of the relevant representations of the asymptotic symmetry group.

In the recent paper [16], we applied both of these approaches to the celestial Virasoro
symmetry, identifying a sector with large central charge that incorporates backreaction ef-
fects and exhibits maximal quantum chaos. By focusing on the connection between radial
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evolution in the celestial CFT and Rindler evolution in the bulk we were able to observe
Lyapunov behavior without needing to add horizons in the bulk — the observer horizon
of the Rindler trajectories taking its place. Our emphasis on the Virasoro multiplets also
avoided a discussion of how translation invariance and other symmetries manifest in this
story, which we would like to remedy. While this is convenient from the perspective of using
2D CFT machinery, part of the richness of the celestial dual is that gravity in 4D asymptot-
ically flat spacetimes possesses a much larger set of symmetries. In particular, there exists
a semi-infinite tower of conformally soft theorems which exhibit a w1+∞ symmetry [17, 18]
that has received a flurry of attention recently [19–24].

We are led to the following question: can we build a model that incorporates the full
set of infinite dimensional symmetry enhancements associated to 4D gravity and gives an
origin for the signals of chaos we saw in [16]? The goal of this paper is to answer in the
affirmative. We show that a 2D generalization of the Sachdev-Ye-Kitaev (SYK) model
closely related to the one proposed in [25] provides an example of a quantum many body
system with soft dynamics that strongly resembles, or in an appropriate realization even
matches, the conformally soft sector of gravity in 4D. Like its 1D archetype [26–30], this
2D generalization is known to demonstrate maximally chaotic behavior, exhibit conformal
symmetry in the IR, and be invariant under area preserving diffeomorphisms — three
features our desired dual must possess!

This paper is organized as follows. In section 2 we review the celestial incarnation of
the Lw1+∞ symmetry: as manifested in analytic continuations of the collinear limits of
positive helicity gravitons and its twistor description in self-dual gravity. We then review a
2D generalization of the SYK model based on [25] in section 3, emphasizing the symmetries
exhibited by this model in the infrared, which include a Schwarzian Goldstone mode and
area preserving diffeomorphisms. Finally, we connect these two stories in section 4, showing
how the soft dynamics of the 2D model of [25] captures the main features of the conformally
soft sector of gravity in 4D asymptotically flat spacetime.

2 Celestial w1+∞

The celestial holographic map requires us to change our external scattering states from en-
ergy to boost eigenstates [5, 6]. For massless scattering this can be achieved by exchanging
lightcone energy ω

pµ = ±ωqµ, qµ = 1
2
(
1 + z̃z, z+ z̃, i(z̃− z), 1− zz̃

)
, (2.1)

for a 4D Rindler energy, equivalent to a 2D conformal weight ∆, via a Mellin transform

A(∆i, zi, z̃i) =
[ ∏

i

∫ ∞
0
dωi ω

∆i−1
i

]
A(ωi; zi, z̃i) . (2.2)

The resulting object transforms like a correlator of SL(2,C) primaries O±∆,J(z, z̃) with
conformal dimension ∆ and spin J = ` (matching the 4D helicity) at the location on
the celestial sphere corresponding to the direction of the null momentum (2.1). Unless
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necessary, we will suppress the superscript indicating in and out. We will also go freely
between (1,3) and (2,2) signatures, in which case it is more convenient to use the left and
right conformal weights (h, h̄) =

(1
2(∆ +J), 1

2(∆−J)
)
. While the principal series spectrum

∆ = 1 + iλ provides a basis of finite energy states [6], translations generate a shift in the
spectrum ∆→ ∆ + 1 [9, 31] and we will want to analytically continue to generic complex
∆ ∈ C in what follows [32].

w1+∞ from collinear limits of scattering. We start with a brief review of how the
w1+∞ symmetry arises in this basis, following [18]. Consider the sector of positive helicity
gravitons. As discussed above, the structure of celestial CFT leads us to consider operators
with conformal dimensions analytically continued to the complex plane ∆ ∈ C. If we look
at a soft expansion of the momentum space amplitude, we see that subleading powers in
ω → 0 turn into residues at integer values of the conformal dimension, namely (at tree
level) [33]

lim
∆→−n

(∆ + n)
∫ ∞

0
dωω∆−1∑

k

ωkA(k) = A(n). (2.3)

When the external leg is a graviton, the expansion starts with the leading soft theorem [34]
at k = −1 corresponding to the Ward identity for supertranslations [35], followed by the
subleading soft graviton [36] at k = 0 corresponding to superrotations [37].

With this interpretation in mind, let us define the corresponding residues as follows

Hk = lim
ε→0

εOk+ε,+2 k = 2, 1, 0,−1 . . . (2.4)

whereOk+ε,+2 denotes the positive helicity graviton of conformal weight (h, h̄)=
(
k+2

2 , k−2
2

)
.

This tower of conformal dimensions is special from a purely representation theoretic point
of view. Namely, these each have primary descendants. For the standard BPZ inner
product, primary descendants are null and the corresponding SL(2,C) multiplets are finite
dimensional

∆ = 3− n, n ∈ Z> ⇒ L̄n−1|∆, J = +2〉 = 0. (2.5)

While this truncation is not guaranteed from the Hermiticity conditions obeyed by the
Lorentz generators with the standard 4D Hilbert space inner product, these descendants
are observed to reduce to contact terms at sources for the celestial currents in scattering
amplitudes. Taking this truncation as an input leads us to the following mode expansion
for these residues

1
κ
H−2p+4(z, z̄) =

p−1∑
n=1−p

z̃p−n−1

Γ(p− n)Γ(p+ n)W
p
n(z). (2.6)

Here we included a prefactor in the expansion, anticipating the identification of W p
n(z)

with holomorphic w1+∞ currents, with corresponding global charges

ŵpn =
∮
dz

2πi W
p
n(z). (2.7)
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Celestial OPEs are determined by the collinear limits of scattering. The standard
procedure is to compute the complexified collinear limits starting from known amplitudes
in R1,3 and analytically continue to Klein space where the global Lorentz symmetry becomes
SL(2,R)×SL(2,R) and z and z̄ are independent real variables (which are then complexified
to C2). Using this procedure, one finds that the positive helicity sector exhibits a rich
symmetry algebra [17].

The symmetry algebra of the conserved charges are computed using the radial quan-
tization prescription applied to complexified celestial sphere coordinates. For instance,
in the positive helicity sector each of the modes W k

n (z) would be treated as holomorphic
operators. Via the usual prescription

[A,B](z) =
∮
z

dx

2πiA(x)B(z), (2.8)

one finds that the charges (2.7) satisfy the w1+∞ commutation relations [18]

[ŵpm, ŵqn] = [m(q − 1)− n(p− 1)]ŵp+q−2
m+n , (2.9)

where1 p = 1, 3
2 , 2,

5
2 , . . . and 1− p ≤ m ≤ p− 1.

The restriction in the range of p takes us to the wedge subalgebra of w1+∞. Applying
the bracket (2.8) to the z-dependent modes W p

n , we find a realization of the corresponding
subalgebra of the loop algebra Lw1+∞.

w1+∞ symmetry of self-dual gravity. To highlight the geometric origin of the celestial
w1+∞ symmetry in self-dual gravity, we briefly recall the twistor-space construction of [20].
The connection to self-dual gravity opens us up a rich branch of the literature. The
realization of a w1+∞ symmetry algebra within self-dual gravity dates back to [38–41] and
was already implicit in the original work by Penrose on the non-linear graviton construction
of classical solutions to self-dual gravity [42].

Let ZA = (ζα̇, zα) be homogeneous coordinates on CP3, with twistor space PT the
locus where zα 6= 0. We can write PT as a fibration over the celestial sphere coordinate
z ∈ CP1

p : PT→ CP1, p(Z) = zα. (2.10)

Points in Minkowski space correspond to a linear embedding of the Riemann sphere into PT
defined by the incidence relation ζα̇ = xaα̇zα. The w1+∞ symmetry acts via area preserving
diffeomorphisms of the 2-plane parametrized by ζα̇ = (ζ 0̇, ζ 1̇)

{f, g} = εα̇β̇∂α̇f∂β̇g, ε0̇1̇ = 1. (2.11)

Performing a double Taylor series expansion in these coordinates, we can use the following
monomials

vpm = 1
2(ζ 0̇)p+m−1(ζ 1̇)p−m−1, 2p− 2 ∈ Z≥, 1− p ≤ m ≤ p− 1, (2.12)

1Note that in order to have sources for the celestial currents we need to allow for a contact term at
the level n descendants. This is consistent with the truncated SL(2,C) multiplets of (2.6) so long as the
z-dependence has poles.
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as a basis for functions on the ξ-plane. The Poisson bracket of these modes

{vpm, vqn} = (m(q − 1)− n(p− 1))vp+q−2
n+m (2.13)

matches the wedge algebra of w1+∞. In this context, the restriction to the wedge subalgebra
comes from demanding that our vector fields are regular at the origin of the ζ-plane.

The non-linear graviton construction follows from a theorem of Penrose [42] that estab-
lishes a bijective correspondence between convex regions of self-dual Ricci flat metrics and
complex deformations of twistor space that preserve the fibration (2.10) and Poisson struc-
ture (2.11) on the fibers. If we cover the celestial sphere with two patches U = {z0 6= 0}
and Ũ = {z1 6= 0} parametrized by ZA = (ζα̇, zα) and Z̃A = (ζ̃α̇, zα), turning on the non-
linear graviton background amounts to gluing the two patches together via a non-trivial
area preserving transition function. Infinitesimal deformations of this type that respect the
scaling symmetry of CP3 are determined by a degree two generating function G(zα, ζ 0̇, ζ̃ 1̇)
that prescribe how the 2-plane fibers are patched over the intersection via the canonical
transformation

ζ 1̇ = ∂G

∂ζ 0̇
, ζ̃ 0̇ = ∂G

∂ζ̃ 1̇
. (2.14)

A basis of such functions takes the form

gpm,r = vpm

z2p−4−r
0 zr1

, r ∈ Z, (2.15)

with ζ 1̇ 7→ ζ̃ 1̇ in (2.12). This is precisely the loop algebra of the wedge algebra of w1+∞.
By Penrose’s theorem these are isomorphic to self-dual Ricci flat solutions. The confor-

mal primary wavefunctions with positive helicity are exact (complex) self-dual spacetimes
of this type [43]. The authors of [20] explore this w1+∞ symmetry in the context of twistor
sigma models sigma models [44]. We will return to the connection between these area pre-
serving diffeomorphisms and the celestial dictionary in the context of our 2D SYK model
in section 4.

3 A 2D generalization of SYK

We now turn to discuss a 2D quantum many body model that exhibits both the w1+∞
symmetry and the type of chaotic Goldstone mode dynamics we expect for gravitational
scattering in asymptotically flat spacetimes. The Sachdev-Ye-Kitaev (SYK) model is of
interest as an example of a soluble quantum many body system that exhibits maximal
chaotic behavior, and as a candidate holographic dual for 2D black hole spacetimes [26–30].
The standard 1D version of the model consists of N Majorana fermions interacting via a
homogeneous non-linear potential with Gaussian random couplings. It exhibits an emergent
conformal symmetry in the IR that is modeled by the same Schwarzian theory found in
2D gravity [45–47].
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2D generalizations of the SYK model were proposed in [25] and [48]. Here we consider
a slight modification of the model of [25] with an action of the form

S = SUV + SIR, (3.1)

SUV =
∑
i

∫
d2z εµνψi+∂µψ

i
+ ψ

i
−∂νψ

i
−, (3.2)

SIR =
∫
d2z

( ∑
i1,...,iq

J−i1...iqψ
i1
− . . . ψ

iq
− +

∑
j1,...,jq

J+
j1...jq

ψj1+ . . . ψ
jq
+

)
. (3.3)

Here ψi± where i = 1, . . . , N are the chiral components of N 2D Majorana fermions, while
J±i1...jq are Gaussian random couplings with variance

〈
(J±i1...jq)

2〉= J2(q − 1)!
N q−1 . (3.4)

We briefly compare the symmetries of the UV and IR limits of this theory, in turn. The
modified kinetic term SUV is designed so that the fermions have canonical scale dimension
[ψ]UV = 0. This makes the interaction term SIR relevant so that it dominates in the
IR. Moreover, for the version of the model considered in [25], it was found that the IR
Schwinger-Dyson equation exhibits conformal symmetry and that the emergent pseudo-
Goldstone action arising from broken reparameterization invariance matches the boundary
action derived from 3D AdS gravity. This latter match hints at a potential application to
celestial holography, given the analysis in our recent paper [16].

UV symmetries and commutators. Let us start by looking at the UV action. It
splits into N decoupled terms, consisting of a pair of Majorana fermions. We will focus on
a single copy here. To understand the canonical structure of this kinetic term, it is useful
to rewrite (3.2) by introducing the Hubbard-Stratonovich variables e±µ

S′UV = 1
2

∫
d2z εµν

(
eaµψa∂νψa −

1
2εabe

a
µe
b
ν

)
(3.5)

where a = ±. For fixed e±µ , treated as a Cartan zweibein, we recognize a standard fermionic
kinetic term. We get to (3.2) by integrating out the e±µ . The classical equations of motion
we get from varying the action with respect to the zweibein equate e+

µ = −ψ−∂µψ− and
e−µ = ψ+∂µψ+. For fixed frame field, the equal time anti-commutation relations read

{ψ±(z1), ψ±(z2)}= (e±1 )−1δ(z12). (3.6)

Upon performing a Legendre transform, we get the following free Hamiltonian density

H ′UV = ea0(εabeb1 − ψa∂1ψa). (3.7)

We see that ea0 acts as a Lagrange multiplier. This UV theory is invariant under a local
internal Lorentz symmetry as well as reparameterizations

e±µ (z) 7→ Λ∓2(z)e±µ (z), ψ±(z) 7→ Λ±1(z)ψ±(z) (3.8)

e±µ (z) 7→ ∂z̃ν

∂zµ
e±ν (z̃(z)), ψ±(z) 7→ ψ±(z̃(z)) (3.9)

– 6 –



J
H
E
P
0
9
(
2
0
2
2
)
0
4
7

under which the fermions transform like scalars. These will be partially broken by the
interaction term, which we turn to next.

Symmetries of the interacting theory. In the full model, the fermions acquire a
flavor index but any flavor symmetries are broken by the interaction term SIR (3.3). The
Hamiltonian density is now H = H0 +Hint where H0 is a sum over a copy of (3.7) for each
flavor and

Hint = −
∑
i1,...iq

J−i1...iqψ
i1
− . . . ψ

iq
− −

∑
j1,...jq

J+
i1...iq

ψj1+ . . . ψ
jq
+ . (3.10)

Because H0 is weakly vanishing we will drop it in what follows unless necessary. In iso-
lation, the IR action is invariant under reparameterizations given the following modified
transformation law for the fermions

ψ±(z) 7→
∣∣∣∣det ∂z̃

µ

∂zν

∣∣∣∣1/qψ′±(z̃). (3.11)

This is compatible with (3.9) provided that∣∣∣∣det ∂z̃
µ

∂zν

∣∣∣∣= 1. (3.12)

We thus see that the full theory is invariant under area-preserving diffeomorphisms. The
charges generating these diffeomorphisms take the form

W (ξ) =
∮
dzµεµνξ

νHint, ∂νξ
ν = 0 (3.13)

and obey a faithful representation of the lie algebra for the corresponding vector fields

[W (ξ1),W (ξ2)] = −W ([ξ1, ξ2]). (3.14)

From our discussion in section 2, we recognize a w1+∞ symmetry in this model.
This appearance of a w1+∞ symmetry, a conformal regime (to be discussed below),

and maximal chaos are signs that the collective mode dynamics of the 2D SYK model
shares important qualitative features with the celestial soft dynamics of 4D gravity. In the
following we aim to make this similarity more explicit and present some initial entries of a
potential holographic dictionary.

Bi-local collective field theory. At large N , the collective dynamics of the 2D SYK
model is encoded in the fermionic two-point function and the collective frame field

G±(z1, z2) = 1
N

∑
i

〈
ψi±(z1)ψi±(z2)

〉
, e± = 1

N

∑
i

e±i . (3.15)

While there are N Cartan frames to integrate out, at leading order in large N only this
collective mode (3.15) contributes [25]. The cubic kinetic term in (3.5) makes it more
convenient to go directly to the effective action in terms of bosonic bi-local dynamical mean
fields, namely the two-point functions G±(x1, x2) and self energies Σ±(x1, x2). Performing
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Figure 1. Diagrammatic representation of the Schwinger-Dyson equations (3.17) with q = 4.

the disorder average and integrating out fermions, one obtains a bi-local dynamical mean
field theory with the following effective action

S/N =−
∫
e+∧ e− −

∑
a=±

log Pf(ea∧∂ − Σa) + 1
2

∫ ∫ (
ΣaGa−

J2

q

(
Gq+ +Gq−

))
. (3.16)

This bosonic effective action shares the same symmetry under area-preserving diffeomor-
phisms as its fermionic counterpart (3.1). The resulting Schwinger-Dyson equations read

Σ± = J2Gq−1
± , e±∧∂G±−Σ±∗G± = δ12, e± = ±∂G∓

∣∣
z2=z1

, (3.17)

where ∗ denotes the convolution product and δ12 is a delta-function. This is illustrated in
figure 1. Assuming translation invariance, the latter equation implies that the frame field
ea is constant.

The bi-local fields live on the 4D kinematic space K4 parametrized by two pairs of
coordinates (zµ1 , z

µ
2 ). K4 is the symmetric product R2×R2/Z2 of two copies of 2D spacetime

with a boundary given by the coincidence locus zµ1 = zµ2 . Let us introduce lightcone
coordinates on K4 via the projection along the frame-field2

(zα, ζα̇) = (z+
a , z

−
a ). (3.18)

We will use the (zα, ζα̇) notation whenever it reduces clutter. Kinematic space K4 comes
equipped with a metric with (2,2) signature defined by the bi-local vacuum expectation
values

〈e−(z1)e−(z2)〉 = √κ+ dz1dz2, 〈e+(z1)e+(z2)〉 = √κ− dζ 0̇dζ 1̇ (3.19)

with κ± some constants. Here we built in that the frames by definition only have com-
ponents in the corresponding chiral directions. We will use this (2,2) signature metric to
raise and lower indices.

2Here α = a = 1, 2 in the first entry and α̇ = a− 1 = 0, 1 in the second.
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Large q limit. Our goal in the following is to construct and study the effective field
theory that describes the full soft dynamics of the 2D SYK model. A special limit that is
particularly well suited for this purpose is the double scaling limit q → ∞, N → ∞ with
q2/N fixed, where q denotes the order of the SYK interaction. The effective action and
equations of motion that describe the soft SYK dynamics considerably simplifies in this
limit. As explored in more detail in the appendix, in the large q limit the bi-local (G,Σ)
fields can be conveniently parametrized via an Ansatz [30, 49]

Σ± = σ±(z1, z2)
q

, G±(z1, z2) = 1
2√κ∓

sgn(z±12)
(

1 + φ±(z1, z2)
q

)
(3.20)

where 1
2√κ∓ sgn(z±12) denotes the Green’s function of the chiral fermions ψ± derived from

the UV kinetic term [25].
It was shown in [49] that the bi-local effective action of the 1D SYK model in the

double scaling limit reduces to a Liouville action. Repeating the same analysis in the 2D
case is not entirely straightforward due to the presence of the dynamical frame field. We
will therefore adopt a mean field approximation and replace the frame fields ea and their bi-
local products by the corresponding vacuum background values. With this extra physical
input, we can follow the same calculation steps as in [49]. First we note that in the large
q limit, the bi-local SYK Hamiltonian (G+)q + (G−)q turns into the sum of two Liouville-
type exponentials eφ+ + eφ− . Next we expand the Pfaffian in (3.16) to second order in σ±
and integrate out the σ± fields by performing the Gaussian integral. This will produce
a quadratic kinetic term for the φ± fields. The dynamical mean field two-forms (3.19)
provide the background metric for the sought after effective action.

Performing the calculation outlined above, we find that the effective action of the 2D
SYK model in the double scaling limit takes the form of a sum of two Liouville actions

Seff = N

4q2

∫
d2zd2ζ

(√
κ−

(
− 1

2∂
αφ+∂αφ++ J 2eφ+

)
+√κ+

(
− 1

2∂
α̇φ−∂α̇φ−+ J 2eφ−

))
.

(3.21)

The above effective theory looks like a higher dimensional version of the effective theory of
1D double scaled SYK [49]. The 1D theory can be solved exactly by treating the Liouville
interaction perturbatively [50]. This leads to a perturbative expansion in terms of chord
diagrams [51] which can be summed exactly. We will not attempt to perform the same
analysis here, but we will make temporary use of a similar perturbative treatment later on
to exhibit the w1+∞ current algebra symmetry of 2D SYK theory.

The two individual terms in the action (3.21) are symmetric under the product of 2D
conformal transformations and 2D area preserving diffeomorphisms, but each in a different
combination. The first term is invariant under (ζ-dependent) conformal transformations
in the z plane

(z1, z2) → (Z1(z1, ζ), Z2(z2, ζ)) (3.22)

provided eφ+ transforms as a (1, 1)-form, and (z-dependent) area preserving diffeomor-
phisms in the ζ plane

ζα̇ → F α̇(ζ, z), det
(
∂α̇F

β̇) = 1, (3.23)
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and vice versa for the second term. This special symmetry structure arises because the
kinetic term of φ+ and φ− only contain derivatives along two of the four directions of
kinematic space K4.3

In the next section we will study the soft dynamics associated with these symmetries
and make a comparison with celestial holography. For this application, we will mostly be
interested in taking the strict large N limit. In this limit, the effective dynamics of the
bi-Liouville theory is restricted to the manifold of classical solutions to the equations of
motion

∂α∂αφ++ J 2eφ+ = 0, ∂α̇∂α̇φ−+ J 2eφ− = 0. (3.24)

The effective action thus further simplifies to a sum of two JT gravity-like theories

Seff =
∫
d2z d2ζ

(√
κ−Φ+(∂α∂αφ+ + J 2eφ+

)
+ √κ+Φ−

(
∂α̇∂α̇φ−+ J 2eφ−

))
(3.25)

where the dilaton fields Φ+ and Φ− act as Lagrange multipliers imposing the equations of
motion (3.24). Note that both theories (3.21) and (3.25) live in a (2,2) signature spacetime,
even if the original SYK model is defined with Euclidean signature.

4 Soft dynamics and gravity

The goal of this section is to merge our understanding of the symmetries of the 2D SYK
model from section 3 with the celestial symmetries reviewed in section 2. We will see that
the bi-local effective theory (3.21) or (3.25) of the double scaled SYK model incorporates
both Virasoro symmetry as well as the full w1+∞ current algebra symmetry. Because one
can recursively reconstruct the MHV amplitudes from their soft limits [52], we expect the
Ward identities of these chiral currents [14, 17–20] to comprise the full information about
the gravitational MHV amplitudes. On the geometric side, we will argue that the soft
modes that distinguish the vacuum states of the 2D SYK model satisfy an equations of
motion that looks identical to that of self-dual gravity.

Virasoro symmetry. We start with a few comments about the Virasoro symmetry and
soft dynamics. The bi-Liouville theory (3.21) has a traceless stress tensor in the z plane

T11 = −1
2(∂1φ+)2+ 1

2∂
2
1φ+, T22 =−1

2(∂2φ+)2+ 1
2∂

2
2φ+, T12 = 0 (4.1)

that is chirally conserved ∂2T11 = ∂1T22 = 0. Upon quantization, the modes

Ln =
∮
dz1
2πi z

n+1
1 T11(z1), T11(z1) =

∫
d2ζ
√
κ− T11(z1, ζ) (4.2)

generate a left-moving Virasoro algebra, and similarly for the right-movers. The central
charge of this algebra is imaginary, due to the fact that the 2D CFT is Lorentzian while
the action has a real pre-coefficient.

3Normally, one might feel somewhat uncomfortable with field theories with ultra-local kinetic terms like
in (3.21). They are acceptable, however, as effective field theories with a more complete UV description.
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In the quantum theory, the choice of vacuum will break conformal invariance to the
finite dimensional subgroup of global conformal transformations

z1 →
az1 + b

cz1 + b
. (4.3)

This unbroken global conformal symmetry will later be identified with Lorentz symmetry.
The φ+ and φ− fields can be viewed as the Goldstone modes associated with this sponta-
neous symmetry breaking of conformal symmetry. To make this explicit, let us act with
a general ζ and z2 dependent diffeomorphism z1 → Z1(z, ζ) on the z1 coordinate. Using
that the φ+ field transforms under diffeomorphism as

φ+(z1, z2, ζ)→ φ+(Z1, z2, ζ) + log(∂1Z1) (4.4)

we find that the transformed action (3.21) produces the following effective action for the
diffeomorphism field

Seff [Z] = N

8q2

∫
d2z d2ζ

∂̄Z

∂Z

(
∂3Z

∂Z
− 2

(
∂2Z

∂Z

)2)
(4.5)

with Z = Z1, ∂ = ∂
∂z1

and ∂̄ = ∂
∂z2

. The above action can be recognized as a generalization
(because of the extra ζ integral) of the Alekseev-Shatashvili action, the geometric action of
the Virasoro algebra [53, 54]. The stress tensor of this geometric action takes the form of
the Schwarzian derivative. Using this fact, one can show that in a combined large N and
high temperature limit, it reduces to Schwarzian quantum mechanics [55]. This Virasoro
mode is responsible for the maximal Lyapunov behavior of the 2D SYK model.

w1+∞ current algebra. In section 2, we saw that 4D gravity exhibits Lw1+∞ loop
group symmetry. Can we identify this symmetry in the effective theory of our 2D SYK
model? In section 3, we introduced a set of w1+∞ charges in the UV description of the SYK
model, defined as integrals of the microscopic Hamiltonian density times the vector field
over a spatial slice. In the bi-local disorder averaged theory, we expect that these global
charges ŵpm are represented by a 3D surface integral of the time component of a conserved
current. Moreover, one would expect that this current splits into two chirally conserved
currents in the conformal regime. To test this expectation we will now explicitly construct
this current for the 4D JT gravity-like theory (3.25).

Encouraged by the success of the perturbative treatment of the 2D effective theory
of the 1D SYK model, we will assume that the 4D theory can be built up via a similar
perturbative expansion. We write the 4D JT theory (3.25) as a sum

Seff = S0 + S̃0 + Sint (4.6)

of two free boson actions and a Liouville interaction term. We will first analyze the sym-
metry structure of the free theory and then reintroduce the interactions.

The non-interacting theory splits into a sum of two free boson actions

S0 =
∫
d2z d2ζ

√
κ− Φ+∂α∂αφ+, (4.7)
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plus an analogous kinetic term for Φ− and φ−. Let us focus on the above sector. From now
on we will drop the ± sub/superscript. The free equation of motion ∂α∂αφ = ∂2∂1φ = 0 is
solved by writing φ as a sum of a left and right-moving wave

φ(z, z̄, ζ) = ϕ(z, ζ) + ϕ̄(z̄, ζ), z ≡ z1, z̄ ≡ z2. (4.8)

In the quantum theory, ϕ(z, ζ) and ϕ̄(z̄, ζ) represent two chiral bosons. To make the chiral
factorization explicit, we introduce the two conjugate field π = ∂Φ and π̄ = ∂̄Φ and recast
the free boson action (4.7) as

S′0 =−
∫
d2zd2ζ

√
κ
(
π∂̄ϕ+ π̄∂ϕ̄

)
, ∂ ≡ ∂2, ∂ ≡ ∂1. (4.9)

The equations of motion are ∂̄ϕ = ∂ϕ̄ = 0. This chiral boson action has the two symmetry
groups that characterize celestial dynamics: it defines a 2D CFT with Virasoro symmetry
in the z-plane and it has chiral area preserving diffeomorphism invariance in the ζ-plane.

Area preserving diffeomorphism invariance acts like an internal symmetry from the
point of view of the 2D CFT. It acts on the ϕ and π fields via

δvφ = 1√
κ
εaβ̇ ∂α̇v ∂β̇φ, δvπ = 1√

κ
εaβ̇ ∂α̇v ∂β̇π (4.10)

where v(ζ) denotes an arbitrary smooth function of the transverse coordinates ζα̇. As
before, let vpn(ζ) denote the polynomial basis (2.12) of such functions. The corresponding
infinite set of area preserving transformations are generated by the w1+∞ charges

ŵpn =
∮
dz

2πi W
p
n(z), W p

n(z) =
∫
d2ζ vpn(ζ)T1(z, ζ) (4.11)

where T1(z, ζ) denotes the chiral current

T1(z, ζ) = εα̇β̇∂α̇T1β̇ = εα̇β̇∂α̇π ∂β̇ϕ (4.12)

with T1β̇ the mixed components of the stress energy tensor. Thanks to the fact that π and
ϕ are chiral fields, this local currents T1(z, ζ) and W p

n(z) satisfy the chiral conservation law

∂̄T1(z, ζ = 0, ∂̄W p
n(z) = 0. (4.13)

This allows the introduction of an infinite set of charges

ŵpn,r =
∮
dz

2πi z
rW p

n(z) (4.14)

that generate the w1+∞ current algebra.
The above construction of chiral currents can in principle be extended to the interacting

theory. This can be done in different ways. One way is to incorporate the interaction
term order by order and show that the currents can be corrected so they remain chirally
conserved at each order in perturbation theory. A more direct argument, that indicates
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that this can indeed be done, is that each of the Liouville equations of motion (3.24) can
in fact be mapped to a free field wave equation via a non-linear Bäcklund transformation

∂φ0 = ∂φ+ J e(φ+φ0)/2 , ∂̄φ0 = −∂̄φ+ J e(φ−φ0)/2 . (4.15)

If φ0 satisfies the linear wave equation ∂∂̄φ0 = 0, then φ satisfies the non-linear Liouville
equation (3.24), and vice versa. Although the field redefinition itself looks non-local, the
free field φ0 still defines a local operator in the interacting theory. Moreover, since it is free,
we can write it as a sum φ0 = ϕ0 + ϕ̄0 of two chiral free fields with associated conjugate
free fields π0 and π̄0. The chiral currents of the interacting theory are then constructed in
terms of the free fields ϕ0 and π0. The explicit expression of the chiral currents in terms
of the interacting fields looks non-local, but the currents themselves act as local operators.
In the following we will continue to work with the free field expressions, but we will drop
the subscript0.

The emergence of a w1+∞ current algebra is associated with the fact that the vacuum
state in the conformal regime spontaneously breaks the area preserving symmetry. We
will now summarize how this soft symmetry breaking and the Ward identities of the chiral
currents comprise the full information about gravitational MHV amplitudes and self-dual
solutions to 4D Einstein gravity.

Soft modes and self-dual 4D gravity. Let h(z, ζ) be a general (0,1)-form valued
function of z and ζα̇. For now we take h infinitesimally small. We can deform the free
action (4.9) via

S′0 +
∫
dzd2ζ

√
κhT1 =−

∫
dzd2ζ

√
κπ∇̄ϕ (4.16)

where ∇̄ denotes the deformed Dolbeault operator

∇̄= ∂̄ + εα̇β̇
∂h

∂ζα̇
∂

∂ζ β̇
≡ ∂̄ + {h, }. (4.17)

with ∂̄ = dz̄ ∂
∂z̄ . The deformed action can be viewed as the result of applying an z dependent

area preserving diffeomorphism to the vacuum state of the original undeformed free theory.
Let us make this interpretation explicit and simultaneously generalize to the case that h
represents a finite deformation.

Starting from the standard SL(2,R) invariant vacuum |0〉, we introduce a new vacuum

|0〉h =U(F )|0〉 (4.18)

with a non-trivial w1+∞ soft mode by acting with a unitary U(F ) that implements z
dependent area preserving diffeomorphism F : (z, ζ α̇) 7→

(
z, F α̇(z, ζ)

)
, with F is related to

the (0,1)-form valued function h via

∂̄F α̇ = εα̇β̇
∂h

∂ζ β̇
. (4.19)
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In the quantum theory, this relation implies that [L̄−1, U(F )] = ŵ(h)U(F ), where ŵ(h)
denotes the Noether charge that generates the linear transformation

[
ŵ(h),O

]
=
{
h,O

}
on

local operators O. The transformed vacuum |0〉 is not translation invariant, but satisfies

L̄−1|0〉h = ŵ(h)|0〉h. (4.20)

It is instructive to relate the (0,1)-form valued function h to the expectation value of the chi-
ral field ϕ(z, ζ) in the deformed vacuum. In the standard vacuum 〈∂̄ϕ〉 = 〈0| [L̄−1, ϕ] |0〉 =
0, implying that the expectation value of ϕ is a holomorphic function in z. In the deformed
vacuum we instead find that 〈∂̄ϕ〉 = 〈[L̄−1, ϕ]〉 = 〈[ŵ(h), ϕ]〉 = 〈{h, ϕ}〉. Hence we see that
〈ϕ〉 is holomorphic with respect to the deformed Dolbeault operator (4.17), ∇̄〈ϕ〉 = 0. This
matches the equation of motion of the deformed action (4.16) in the linearized regime. We
can generalize this reasoning to show that the deformed vacuum expectation values of all
holomorphic currents and conformal blocks are annihilated by ∇̄.4

The above discussion closely follows the non-linear graviton description of classical
self-dual geometries in 4D gravity [42]. To make this relationship explicit we need to lift
the story to 4D spacetime via the twistor correspondence [44]. We define twistor variables
(λα, ζα̇) via

λα =
(
1, z

)
, ζ α̇ = ζα̇, (4.21)

identifying the ζα̇ coordinates of the bi-Liouville theory with the fiber coordinates on
twistor space. A given point xαα̇ = (xα̇, x̃α̇) in flat Minkowski spacetime specifies a linear
curve in twistor space

ζα̇ = xα̇αλα = xα̇ + x̃α̇z. (4.22)

The non-linear graviton construction of Penrose considers deformations of the complex
structure on twistor space PT. These deformations amount to turning on the soft w1+∞
mode and can be implicitly parametrized by replacing the linear relation (4.22) by a general
degree one curve

ζα̇ = xα̇ + x̃α̇z + Zα̇(ζ, z) (4.23)

where Zα̇ is a smooth function in z. The relation ∂̄Zα̇ = εα̇β̇ ∂h(x,z)
∂ζβ̇

guarantees that the
curve (4.23) is holomorphic with respect to the ∇̄ operator (4.17).

As shown in [44], one can write down a sigma model which produces this relation
between Zα̇ and h as its equation of motion

S[Z] =
∫
CP1

dz

z2
(
εα̇β̇Z

α̇∂̄Z β̇ + 2h(z, Z)
)

(4.24)

where Zα̇ is treated as a function of xαα̇ and zα = (1, z). Upon minimizing the action with
respect to the dynamical field Zα̇(x, z), and after integrating over CP1, the only remaining

4The integrability requirement ∇̄2 = 0 implies ∂̄h+ 1
2{h, h} = 0; in 2D this is automatically satisfied [44].
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dependence is on the spacetime point x. The tetrad of the corresponding self-dual geometry
is then obtained via [44]

eaα̇ = (dxα̇,Ωα̇
β̇
dx̃α̇), Ωα̇α̇ = ∂2Ω

∂xα̇∂x̃β̇
, Ω(x) = εα̇β̇x

β̇x̃α̇−S[F ]
∣∣
on−shell. (4.25)

The usefulness of introducing the twistor sigma model is that the on-shell action is a
generating functional for MHV amplitudes in 4D gravity, where the x and x̃ are related
to the spinor helicity variables of the two negative helicity particles by using their un-
dotted momentum spinors as an SL(2,C)-basis to perform the decomposition from xαα̇ to
xα, x̃α̇ [44].

Graviton vertex operators. The conformal primary wavefunctions with positive he-
licity are examples of self-dual Ricci-flat spacetimes, pertinent to the non-linear graviton
construction [43, 44]. Let us use this to make the connection between the area preserving
diffeomorphisms of our model and the celestial w1+∞ symmetry explicit. We would like to
write a dictionary between

• the chiral currents T1(z, ζ) and W p
n(z) of our 2D SYK model (4.12)

• the momentum space graviton operators H̃(z, λ̃) with momentum pαα̇ = λαλ̃α̇ with
λα = (1, z)

• the celestial operators H−2p+4(z, z̃) in (2.4) that incorporate the w1+∞ currents in
celestial CFT

• the spacetime graviton field H−2p+4
αβα̇β̇

(x) associated with the celestial operators
H−2p+4(z, z̃)

We propose that the momentum operators and the current T1(z, ζ) are related via a
Fourier transform

H̃(z, λ̃) =
∫
d2ζ T1(z, ζ) e−iζ·λ̃ . (4.26)

The special celestial operators are then given by applying the Mellin transform

H−2p+4(z, z̃) = lim
ε→0

ε

∫
dω ω−2p+1+ε H̃(z, ωz̃) (4.27)

= lim
ε→0

ε

∫
dω ω−2p+1+ε

∫
d2ζ T1(z, ζ) e−iωζ·z̃ (4.28)

where z̃α̇ = (1, z̃). We see that the mapping from the kinematic space of the 2D SYK model
to the celestial sphere is not direct, but involves a chiral projection on the z1-direction and
a Fourier plus Mellin transform.

We can verify this proposal by matching the Lw1+∞ generators in (2.4) to those
in (4.11). Doing the Mellin integral in (4.28) first, we have

hp(ζ, z̃) ≡ lim
ε→0

ε

∫
dω ω−2p+1+εe−iωζ·z̃ = (ζ · z̃)2p−2

Γ(2p− 1) . (4.29)
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Expanding this in z̃ we get

hp(ζ, z̃) =
∑
n

z̃p−n−1

Γ(p− n)Γ(p+ n) v
p
n(ζ) (4.30)

so that, indeed

H−2p+4(z, z̃) =
∫
d2ζ hp(ζ, z̃)T1(z, ζ) =

∑
n

z̃p−n−1

Γ(p− n)Γ(p+ n) W
p
n(z) (4.31)

and the Lw1+∞ generators of the two models match. Comparing order by order in z̃, we
see that the celestial CFT vertex operators associated with the w1+∞ soft modes with
given momentum are obtained by multiplying the conserved chiral current T1(z, ζ) by the
corresponding w1+∞ mode function vpn(ζ), matching (4.11).

The integral kernel relating the celestial primaries and chiral SYK current in (4.31) is
precisely an uplift of the scalar conformal primary wavefunction to twistor space with

hp(x, z, z̃) = (−q · x)2p−2

Γ(2p− 1) = hp(ζ, z̃)
∣∣
ζα̇=xα̇αλα (4.32)

on the incidence relation with λα = (1, z). Indeed, using the twistor correspondence we can
make the holographic dictionary between our chiral currents and the spacetime gravitons
explicit for the full graviton modes, including the dependence on polarization tensors, as
follows

H−2p+4
αβα̇β̇

(x) = ιαιβ

∫
d2z hp−1

α̇β̇
(x, z, z̃)H−2p+4(z, z̃) (4.33)

with ια = (0, 1). Here
∫
d2z =

∮ dz
2πi
∮ dz̃

2πi is the analytic continuation of the celestial sphere
measure to the celestial torus5 and

hp−1
α̇β̇

(x, z, z̃) = ∂2

∂ζ α̇∂ζ β̇
hp(ζ, z̃)

∣∣
ζα̇=xα̇αλα . (4.34)

From this discussion we see that the chiral SYK current is closer to the twistor trans-
formed data for the positive helicity external states. Explicitly, inverse Mellin trans-
forming (4.27) leaves us with the half-Fourier transform to the twistor basis for scat-
tering [56, 57]. Composing Mellin and twistor transforms has a natural interpretation in
terms of light transforms of the celestial operators [58].

5In each of these expressions we want to formally analytically continue p away from integer values to do
the Mellin integral. Upon performing the shift p → pε = p − 1

2ε
′ then the residues limε′→0 ε

′hpε

αβα̇β̇
(x) are

finite. One would precisely get a sum over such residues for each p in p = 1, 3
2 , 2,

5
2 , . . . if we started from

a basis expansion of the graviton operator on radiative states in the self dual (positive helicity) sector and
deformed the principal series contour to the left, picking up the poles that appear at the location of the
Lw1+∞ generators.
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5 Conclusions

In this paper we have proposed that a variant of the 2D SYK model introduced in [25]
provides a toy model for the soft limit of the gravitational sector in 4D asymptotically
flat spacetimes. We have motivated this by matching the symmetries on both sides as
well as the currents and soft mode dynamics. The effective dynamics of the Virasoro soft
modes of the 2D SYK model matches with the superrotation soft dynamics in celestial
CFT. Moreover, we have shown that the area preserving diffeomorphism symmetry of this
model match onto the w1+∞ symmetry acting on the self-dual sector of 4D gravity.

In combination, these results hint at a structure that ties together the observation
of our recent paper [16] on how signals of maximal quantum chaos are encoded in the
superrotation Goldstone modes with the presence of celestial w1+∞ symmetry [18]. For-
tuitously, while the perspective in [16] ignored the w1+∞ structure, it naturally led us to
revisit 2D SYK models of the type proposed in [25]. These models precisely have these
extra symmetries but hitherto lacked an obvious application or purpose for them. Here we
have presented evidence that the parallel between the dynamics of the soft sectors of 4D
gravity and the 2D SYK model is more than just a superficial similarity. Much more work
needs to be done, however, to find out if the application of the 2D SYK model to celestial
soft dynamics can be lifted into a well stated holographic duality or not.

The emerging narrative ends up taking on some longstanding questions about celestial
holography. Is the dual theory on the celestial sphere a genuine 2D CFT? Can we identify
specific 2D quantum field theories or quantum many body systems that have the same
soft dynamics and low energy symmetries as 4D gravity? How does celestial holography
relate to AdS holography? In each case the answer requires a careful understanding of
the vacuum structure of asymptotically flat spacetimes, its symmetries, and the role of IR
regulators. While we have focused on the soft limit of gravitational sector, we have seen
that there is plenty of interesting physics governed by these symmetries. Going beyond
the soft sector, we expect to gain more insight into the possible microscopic realizations
of celestial holography, while the same overabundance of symmetries that make the celes-
tial holographic dual exotic as a CFT will give us more power to constrain and compute
gravitational scattering amplitudes.
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A From Schwinger-Dyson to Liouville

In this appendix we show how the Schwinger-Dyson equations for our 2D SYK model land
us on the Liouville equation. Here we restrict to translation invariant solutions with the
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property that the bi-local fields only depend on the coordinate difference between the two
arguments. The third SD equation in (3.17) then implies that the background frame field
is constant. The remaining SD equations subsequently factorize into two decoupled chiral
set of equations. This will enable us to follow a generalization of the derivation in [30]
for our two chiral copies, so long as we can motivate there are no divergences associated
with the presence of an extra direction. The derivation below is meant to elucidate the
assumptions and range of validity of the effective field theory.

Following [30], we start with the Ansatz

G±(z) = 1
2
√
κ

sgn(z±)
(

1 + 1
q
φ±(z)

)
, Σ±(z) =

√
κJ 2

q
sgn(z±)eφ±(z) (A.1)

which solves the large q limit of the first SD equation Σ±(z) = J2Gq−1
± (z) provided we set

J 2 = 2qJ2

(2
√
κ)q . Here we set κ± = κ, and z = (z+, z−) = (z+

12, z
−
12) denotes the coordinate

difference. The second SD equation in (3.17) is local in frequency space ω = (ω+, ω−) and
takes the form

1
G±(ω) =−i

√
κω± − Σ±(ω). (A.2)

Here we used our assumption that the frame field is constant. Plugging the Ansatz (A.1)
for G± gives that

1
G±(ω) =

√
κ

− 1
iω±

+ 1
2q [sgn(z±)φ±(z)](ω)

= −i
√
κω± +

√
κω2
±

2q [sgn(z±)φ±(z)](ω) + . . .

(A.3)

where . . . denote terms that vanish in the large q limit. To justify the second equality, we
need to assume that

[sgn(z±)φ±(z)](ω)� 2q
ω±

(A.4)

for all values of ω+ and ω−. Comparing equations (A.3) and (A.2), one derives that

2∂2
±
(
sgn(z±)φ±(z)

)
=J 2 sgn(z±)eφ±(z) (A.5)

which implies the two Liouville equations of motion

2∂1∂2φ+ + J 2eφ+ = 0, 2∂̄2̇∂̄1̇φ−+ J 2eφ− = 0 (A.6)

away from the boundary z±12 = 0 of kinematic space. Here ∂a= ∂
∂z+
a

and ∂̄ȧ= ∂
∂z−a

.
The two Liouville equations of motion (A.6) have the following general solution

J 2eφ+ = 4∂1Z
+
1 ∂2Z

+
2

(Z+
1 − Z

+
2 )2 , J 2eφ− = 4∂̄1̇Z

−
1 ∂̄2̇Z

−
2

(Z−1 − Z−2 )2 (A.7)

where Z±a (za) are arbitrary functions of the corresponding coordinates z±a . However, the
range of validity of these solutions is somewhat restricted. First, in the derivation of
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the effective SD equations (A.6), we made the explicit assumption that the frame field
e± is constant and that the bi-local fields only depend on the coordinate difference. It
seems reasonable, however, that these conditions can be somewhat relaxed to the adiabatic
assumption that the spatial variations of the frame metric and of the bi-local fields on the
center of mass coordinate varies very slowly compared to their spatial dependence on the
relative coordinate distance.
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