

Two-dimensional liquid chromatography-mass spectrometry for lipidomics using off-line coupling of HILIC with 50 cm long reversed phase capillary columns

Matthew J. Sorensen¹, Kelsey E. Miller^{2,3}, James W. Jorgenson³, Robert T. Kennedy^{1,4}

1. Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
2. Current address: Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27709, USA
3. Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
4. Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA

10 Corresponding Author: Robert Kennedy, rtkenn@umich.edu

11 Keywords:

12 Ultra-high pressure liquid chromatography

13 Two-dimensional chromatography

14 Lipidomics

15 Capillary liquid chromatography

16 Nanoscale liquid chromatography

17 Abstract

Comprehensive characterization of the lipidome remains a challenge requiring development of new analytical approaches to expand lipid coverage in complex samples. In this work, offline two-dimensional liquid chromatography-mass spectrometry was investigated for lipidomics from human plasma. Hydrophilic interaction liquid chromatography was implemented in the first dimension to fractionate lipid classes. Nine fractions were collected and subjected to a second dimension separation utilizing 50 cm capillary columns packed with 1.7 μm C18 particles operated on custom-built instrumentation at 35 kpsi. Online coupling with time-of-flight mass spectrometry allowed putative lipid identification from precursor-mass based library searching. The method had good orthogonality (fractional coverage of ~40%), achieved a peak capacity of approximately 1900 in 600 min, and detected over 1000 lipids from a 5 μL injection of a human plasma extract while consuming less than 3 mL of solvent. The results demonstrate the expected gains in peak capacity when employing long columns and two-dimensional separations, and illustrate practical approaches for improving lipidome coverage from complex biological samples.

31 **1. Introduction**
32

33 Lipidomics has emerged as an important technique for studying lipids from biological and
34 environmental samples. Applications of lipidomics include studying disease states, physiological processes,
35 pharmacological effects, and food science [1,2]. While targeted lipidomics can be valuable for studying and
36 quantifying certain lipids for hypothesis-driven studies, untargeted approaches can give insight into how
37 unknown or unexpected lipids are associated within the system of interest and can be used to generate new
38 hypotheses [3,4]. Identifying and quantifying all lipids in a sample is challenging due to the large number,
39 wide concentration range, numerous isomers, and broad physicochemical properties of lipids.

40 One analytical technique is not yet sufficient for analyzing an entire lipidome. Techniques
41 implemented for untargeted lipidomics include spectroscopy and mass spectrometry, often coupled with
42 separations [5]. Advantages of LC-MS based lipidomics include good resolving power, sensitivity, and
43 amenability to a wide range of lipid classes [1,6–8]. Various approaches have been pursued to increase the
44 lipidome coverage in LC-MS based lipidomics. Improving peak capacity of the separation is an important
45 route to improving lipidome coverage, and multidimensional separations are a powerful approach for
46 increasing peak capacity [9,10]. The theoretical peak capacity of a two-dimensional (2D) separation is the
47 product of the first dimension (¹D) and second dimension (²D) separation peak capacities, assuming the two
48 separation mechanisms are orthogonal and the resolution of the first dimension is not compromised by the
49 second dimension [10]. Multidimensional methods for lipids have demonstrated enhanced lipidome
50 coverage relative to single dimensional analyses [11–16].

51 In 2D separations, transfer of effluent from the first dimension can occur online, where fractions
52 are directed immediately to a rapid ²D, or offline where fractions are collected and independently injected
53 on the ²D [17,18]. Online 2D-LC separations typically employ higher resolution ¹D separations and have
54 the advantage of being fast; however, they come with a number of disadvantages [19]. Online 2D-LC
55 typically involves more complicated instrumentation, worse detection limits due to dilution and (often)
56 flow-splitting when coupled to MS, limited ²D analysis time and peak capacity, and solvent incompatibility
57 between the two dimensions [20,21]. In addition, for rapid methods the ²D uses high flow rates and results
58 in peak widths less than 1 s, which is too narrow to be accurately sampled by most mass spectrometers.
59 These effects can lead to inaccurate peak width measurement, mass measurement, reduced sensitivity, and
60 quantification. It also reduces the effectiveness of MS/MS methods such as data dependent acquisition
61 where multiple MS scanning events need to occur within the elution band of a given compound. The
62 incompatibility with MS constrains the possible applications of such on-line methods. Despite these

63 drawbacks, various online 2D-LC-MS methods have been developed for lipidomics with good separation
64 peak capacity and lipidome coverage with analysis times typically 2 – 4 h [12,22–25].

65 Offline 2D-LC can overcome some of these challenges. Because the separations are independent,
66 the ²D analysis time is not limited by the ¹D peak width or sampling frequency. Thus, long gradients can
67 be implemented in the ²D, achieving high resolution separations with peak widths that are compatible with
68 MS. Additionally, effluent from the first dimension can be dried down and resuspended in a more
69 appropriate solvent for the ²D. Finally, small resuspension volumes can preconcentrate fractions and
70 provide enhanced signal intensity. Offline 2D-LC-MS approaches have typically provided broader lipidome
71 coverage compared to online methods [11,16,26].

72 An intermediate approach is stop-flow 2D-LC. These methods do not require fast ²D dimension
73 separations, but are still mostly considered online [27]. This approach is still limited by solvent
74 compatibility and more intricate instrument configuration relative to offline 2D-LC. Stop-flow 2D-LC is
75 popular for proteomics with only a few reports for lipidomics [14,28].

76 Capillary LC with nanoESI-MS has also been implemented to increase lipidome coverage based
77 on enhanced ionization efficiency and alleviation of ionization suppression associated with low flow rates
78 [29–33]. Use of small inner diameter columns also reduces sample volume which can be beneficial for
79 sample-limited analyses and reduces stationary and mobile phase consumption [34–36]. Capillary column
80 formats also allow use of longer columns to be implemented without needing to couple multiple shorter
81 columns. It is well known that long columns packed with small particles can provide much higher separation
82 efficiencies; however, this approach requires high instrument operating pressure and is difficult to
83 implement in a practical setting [37,38]. Recent reports of lipid separations have shown that use of long
84 columns (e.g., 30 – 60 cm) packed with 1.7 μ m C18 particles increased separation peak capacity for lipids,
85 resolved more isomers, and detected more lipids in complex mixtures compared to lower resolution
86 separations [39–42].

87 The combination of the strategies mentioned above (multidimensional separations, capillary LC-
88 MS, and use of long columns) has recently been employed for various proteomic workflows in both top-
89 down and bottom-up approaches [43–46]; however, there has been limited use of such technologies in
90 lipidomics or metabolomics [15,47,48]. Here, we describe an offline 2D liquid chromatography-mass
91 spectrometry method for untargeted lipidomics. Similar to previous work [11,49], we use a microbore bare
92 silica HILIC column in the first dimension to separate lipid classes. Following evaporation and
93 resuspension, each fraction was injected onto a 50 cm long x 100 μ m bore column packed with 1.7 μ m C18
94 particles operated at 35 kpsi interfaced to a quadrupole time-of-flight (QToF) mass spectrometer. Our

95 findings suggest large gains in peak capacity, compared to 1D approaches, that result in enhanced lipid
96 coverage.

97 **2. Materials and methods**

98

99 **2.1. Chemicals and standards**

100

101 All solvents and chemicals were purchased from Sigma Aldrich (St. Louis, MO) unless otherwise
102 stated. HPLC grade acetonitrile was purchased from Fisher Scientific (Waltham, MA). Potassium silicate
103 (Kasil 2130) was purchased from PQ corporation (Valley Forge, IA). Palmitic acid was purchased from
104 Sigma Aldrich. All other lipids were purchased from Avanti Polar Lipids Inc (Alabaster, AL).

105 **2.2. Human plasma extraction**

106

107 Pooled human plasma was provided by the Michigan Regional Comprehensive Metabolomics
108 Resource Core. For lipid extraction, 50 μ L of plasma, 200 μ L of 0.15 M KCl in water, 400 μ L of methanol,
109 200 μ L of chloroform, and 1 μ L of acetic acid were added to an Eppendorf tube and vortexed well [50]. An
110 additional 200 μ L of water and 200 μ L of chloroform were added, vortexed briefly, and centrifuged at
111 12,100 \times g for 5 min at room temperature. The organic layer was carefully collected and transferred to a
112 glass HPLC vial, dried under nitrogen gas, and reconstituted in 100 μ L of 90/10 (v/v) IPA/water for
113 injection on the first dimension HILIC column.

114 **2.3. First dimension HILIC-MS**

115

116 Lipids were separated by HILIC in the first dimension using a 15 cm x 1 mm, 5 μ m Spherisorb
117 bare silica column (Waters; Milford, MA). A Waters NanoAcuity UPLC was used and coupled with a
118 Micromass QToF Premier (Waters; Milford, MA). The method was similar to a previously reported method
119 for lipid class separations [11,49]. Mobile phase A was 5 mM ammonium acetate and mobile phase B was
120 acetonitrile. The flow rate was 50 μ L/min. A gradient elution program was used as follows: initial, 95% B;
121 40 min, 77% B; 42 min, 95% B; 55 min, 95% B. The column oven was set to 30 °C. The injection volume
122 was 5 μ L. Electrospray ionization was used in positive ionization mode at 3.5 kV. The source temperature
123 was 100 °C, desolvation temperature 150 °C, cone gas 50 L/h, and desolvation gas 450 L/h. The MS was
124 operated in full scan mode from *m/z* 100 – 1000 with a 1 s scan rate and 0.1 s inter-scan.

125 For fraction collection, effluent from the ¹D separation was collected in glass HPLC vials. Fractions
126 were typically collected in 1 – 2 min portions, which amounted to 50 – 100 μ L of volume. Solvent was
127 evaporated with a stream of nitrogen and re-dissolved in reversed phase mobile phase (different
128 compositions and volumes depending on fraction type).

129 2.4. Capillary column packing

130

131 Polyimide-coated, fused silica capillaries with inner diameters (i.d.) of 100 μm and outer diameter
132 (o.d.) of 360 μm were purchased from Polymicro Technologies, Inc. (Phoenix, AZ). Columns of 50 cm
133 long x 100 μm i.d. were packed in-house with 1.7 μm C18 bridged ethyl hybrid particles (Waters; Milford,
134 MA) as previously described [39,51]. Briefly, column outlet frits were prepared using the Kasil method
135 [52]. An equal amount of potassium silicate and formamide were applied to a glass microfiber filter (Reeve
136 Angel; Clifton, NJ) and the capillary tip was dabbed on the wetted paper to form the frit. A 200 mg/mL
137 slurry was prepared in acetone and placed in an ultrahigh pressure packing apparatus. The column inlet was
138 then secured and submerged in the slurry, with the rest of the column, other than the last \sim 2 cm, submerged
139 in a sonication bath (Elma Schmidbauer GmbH; Singen, Germany). Packing was initiated by a DSHF-300
140 (Haskel; Burbank, CA) pneumatic amplifier pump at \sim 1000 psi, which displaced the loaded slurry with
141 acetone. After \sim 2 cm of the column was packed, the pressure was increased to 30 kpsi. Once \sim 60 cm was
142 packed, the column was slowly depressurized. The column was flushed at 50 kpsi for 1 h using a DSXHF-
143 903 pump (Haskel; Burbank, CA), slowly depressurized, cut to 50 cm, and an inlet frit was applied using
144 the Kasil method.

145 2.5. Second dimension RPLC-MS

146

147 Reversed phase LC separations were carried out on collected fractions using capillary LC-MS.
148 Gradient elution was performed using a custom-built UHPLC system operated at a constant pressure of 35
149 kpsi using 50 cm x 100 μm , 1.7 μm C18 columns similar to previous reports [39,53]. Mobile phase A was
150 60/40 (v/v) water/acetonitrile with 10 mM ammonium formate and 0.1% (v/v) formic acid. Mobile phase
151 B was 85/10/5 (v/v/v) isopropanol/acetonitrile/water with 10 mM ammonium formate and 0.1% (v/v)
152 formic acid. Injection volumes were 1 or 2 μL . Injection solvent was 100% A for **LPC** and LPE fractions.
153 For t_0 fraction, 100% B was used. For all other fractions, 50 or 100% B was used, with no major differences
154 observed. For LPC and LPE fractions, the gradient was 50-70% B over 40 min. For PC and SM fractions,
155 the gradient was 70-100% B over 70 min. For all other fractions, the gradient was 60-100% B over 60 min.
156 The column temperature was 60 $^{\circ}\text{C}$. Effluent from the column was transferred to either a Waters/Micromass
157 QToF Premier or a Waters Xevo QToF using a stainless-steel union and a 30 μm i.d. spray tip (New
158 Objective; Woburn, MA). For positive ionization mode, the spray voltage was 2 kV, cone voltage 30, the
159 sheath gas was 0.5 bar, and the source temperature was 100 $^{\circ}\text{C}$. For negative ionization mode, the spray
160 voltage was 1.3 kV, cone voltage 22, and the sheath gas was 0.8 bar. The MS was operated in both full
161 scan and MS/MS mode (MS^e and data-dependent acquisition). Scan rates were 0.3 s with 0.1 s inter-scan.
162 External mass calibration was performed using sodium formate. Leucine enkephalin was used as the lock
163 mass compound.

164 **3. Results and discussion**

165

166 **3.1. First dimension HILIC separation**

167

168 Previous work has shown that HILIC and RPLC were a useful and orthogonal combination for 2D-
169 LC [11,12]. We used this combination with HILIC (15 cm long x 1 mm bore packed with 5 μ m bare silica
170 particles) as the ¹D for fractionation. A set of 14 lipid standards were used for method development (Figure
171 1A). Similar to previous reports, lipid separations utilizing bare silica particles for HILIC is dominated by
172 the lipid head group so that a majority of lipid classes can be separated (Figure 1A) [49,54]. Certain isomers
173 such as sn-1/sn-2 isomers of LPC and LPE are also resolved; however, because they can be separated with
174 higher resolution by RP in the ²D, they were collected in the same fraction to minimize total analysis time.

175 Similar resolution and peak shapes compared to the standards were achieved for endogenous lipids
176 present in the plasma (**Figure 1B**). Importantly, good repeatability of retention times was achieved with
177 subsequent injections of the plasma extract, ensuring successful collection of each fraction. Retention times
178 were 1.86 ± 0.1 , 13.75 ± 0.12 , 25.35 ± 0.11 , 29.04 ± 0.13 , and 31.30 ± 0.19 min for fractions 1 (t_0), 4
179 (PE/PA), 7 (PC), 8 (SM), and 9 (LPC), respectively. Nine fractions were collected based on the elution
180 profiles of different classes as summarized in **Supplemental Table 1**. The standard mixture did not contain
181 representatives of all lipid classes that were found in plasma. These other classes include
182 phosphatidylinositol phosphates, acyl-CoA's, and hexosylceramides, and were collected within the 9
183 fractions as summarized in Supplemental Table 1. The complexity of each fraction is illustrated in **Figure**
184 **2** where many ions are detected for a given peak during online ESI-MS analysis, demonstrating the potential
185 need for ²D separations of each fraction.

186 A disadvantage of employing bare silica columns is that most neutral and acidic lipids are not well
187 separated. Fatty acids and neutral lipids such as glycerols and sterols/sterol esters elute in the dead time
188 placing a greater burden on the separation of these components by reversed phase LC in the ²D.
189 Phosphatidic acids were retained but gave larger peak widths than the other lipid classes investigated
190 (**Supplemental Figure 1**). Recent work has shown that hydride stationary phases can give improved
191 separation of acidic lipids, however this was not investigated in this work [55]. Nonetheless, phosphatidic
192 acids were still able to be collected with the phosphatidylethanolamine fraction and detected following ²D
193 RP-LC-MS analysis.

194 **3.2. Evaluation of transfer from first to second dimension**

195

196 One disadvantage of using an offline approach compared to online 2D-LC is the potential for
197 analyte loss when transferring sample between the first and second dimensions. We evaluated the sample

198 recovery between the dimensions by comparing the signal of PC 18:1/18:1 standard injected directly onto
199 the capillary column and injected on to the HILIC column, collected, evaporated, resuspended in ²D buffer,
200 and subsequently injected on to the capillary column. Peak height was 2705 ± 225 (n = 2 injections) and
201 3033 ± 435 (n = 3 injections) and peak area was 545 ± 53 and 573 ± 58 for the for the 2D workflow versus
202 direct injection, respectively, suggesting no significant sample loss. Trace amounts of the most nonpolar
203 lipids such as triacylglycerols and cholesteryl esters were seen in multiple fractions, possibly due to low
204 solubility of TGs and CEs in the ¹D mobile phase, and the high concentration of these lipids in plasma (e.g.,
205 ~high μ M to mM). Quantification could be problematic for these lipids as a result, and future work should
206 investigate mitigation strategies.

207 3.3. Evaluation of ²D injection amount

208 An advantage of offline 2D-LC is that the ²D separations are independent of the ¹D allowing greater
209 freedom regarding sample preparation and injection volume in the ²D. We investigated different approaches
210 for injecting larger amounts of each fraction on the ²D column to increase detectability of more compounds.
211 One approach was sample preconcentration. By reconstituting the fraction in a smaller volume after solvent
212 evaporation from the first dimension, a more concentrated sample can be injected. **Figure 3A&B** illustrates
213 the gain in signal intensity for fraction 2 (PGs and Ceramides) with no preconcentration compared to a 2X
214 preconcentrated sample (sample redissolved in 20 μ L vs. 10 μ L, respectively) both with a 1 μ L injection.
215 Further preconcentration was attempted by redissolving in 5 μ L; however, this approach was inconsistent
216 likely due the difficulty in effectively dissolving the lipids. Additionally, this small of sample volume limits
217 the number of possible replicates when using 1 – 2 μ L injection volumes.

218 The second approach to maximizing the amount of lipids injected and detected was increasing the
219 injection volume. Although the volume of the 50 cm x 100 μ m capillary columns is ~3 μ L, the high retention
220 of lipids on C18 columns allowed relatively large injection volumes (1 – 2 μ L) without detrimental loss in
221 separation performance. Example base peak chromatograms for fraction 8 (sphingomyelins) shows a larger
222 number of observed peaks and enhanced signal when using a 2 μ L injection volume compared to 1 μ L
223 (**Figure 3C&D**). Limited sample available from fraction collection made it impractical to pursue larger
224 sample volumes. These approaches for increasing the amount of sample injected on the ²D were most
225 beneficial for fractions with low lipid content or fractions that do not produce as good of MS response. In
226 contrast, some fractions had sufficient content that injecting 2 μ L results in frequent saturation of the MS
227 detector. Supplemental Table 1 summarizes injection volumes and reconstitution volumes for each fraction.

228 3.4. Evaluation of ²D gradient length and steepness

229

231 Previous work has shown that longer and shallower gradients improve the resolution and the
232 number of lipids identified in untargeted single dimensional LC-MS lipidomics [39–41]. This observation
233 is likely due to alleviation of ionization suppression caused by co-elution and increased resolution of
234 isobaric species. Recent proteomics studies have shown that longer gradients are beneficial when injecting
235 large amounts of sample (e.g., unfractionated and ng to μ g amount of protein) but shorter gradients can be
236 beneficial for sample-limited experiments where sensitivity losses from chromatographic dilution limit MS
237 detection or when multidimensional separations decrease the sample complexity [56,57]. In pilot
238 experiments, we evaluated the effect of gradient time and gradient slope on resolution and signal intensity
239 of the lipid fractions. We compared 2–3 h gradient separations to ~1 h gradient times. For a few fractions a
240 shorter gradient provided better signal intensity due to narrower peaks and higher peak heights from less
241 chromatographic dilution (e.g., PG/Cer fraction, LPC fraction) compared to a ~2.5 h gradient
242 (**Supplemental Figure 2**). In some cases, the broader peaks caused by such shallow gradients caused a loss
243 in detection for lower abundance isomers (e.g., LPC 18:0 in the inset of **Supplemental Figure 2A&B**). For
244 other fractions, however, a steeper gradient caused losses in resolution for certain critical pairs, and further
245 method development was needed (**Figure 4A&C**). Implementing a narrower $\Delta\%$ B (e.g., 70 – 100% B)
246 more amenable to the target compounds in each fraction allowed for shallower gradients to be used in
247 roughly the same amount of time compared to wider gradient profiles (e.g., 50 – 100% B). This change
248 provided good separation for isomeric and other critical pairs and was most evident in the fractions
249 containing PCs and SMs (**Figure 4B&D**). Supplemental Table 1 summarizes the gradients used for each
250 fraction based on these pilot experiment observations.

251 3.5. Orthogonality and 2D peak capacity measurements

252 Employing orthogonal separation mechanisms in a multidimensional separation is crucial for
253 maximizing peak capacity [9,10]. In this work, we evaluated the orthogonality between the ¹D HILIC
254 separation and the ²D RP separations using the ‘bin-containing’ method [58,59]. In this approach, the
255 separation space is divided into bins, and the fractional coverage is calculated by dividing the number of
256 bins containing peaks by the total number of bins within the separation space. A bin was defined as 0.5 min
257 wide, and a bin was considered at each point between the start and end of the gradient. A base peak
258 chromatogram was generated for each fraction and the maximum intensity normalized to 100% (**Figure**
259 **5A**). A bin was considered “full” if the signal intensity was above 3% of the baseline. Results of this
260 calculation are shown in **Figure 5B**. The coverage was determined to be 41%, which is considered highly
261 orthogonal and thus the product rule of peak capacity measurement for a 2D separation is a good
262 approximation [58]. A ~40% coverage space is similar to previous lipidomics reports using online HILIC
263 and RP-LC [12].

265 The total peak capacity of the 2D-LC separation was 1880 with a total separation time of
266 approximately 505 min for the 9 fractions plus 40 min for the ¹D separation (**Supplemental Table 1**). The
267 t_0 fraction was analyzed twice (once in positive ion mode and once in negative ion mode), which made the
268 total analysis time 605 min but did not increase the separation peak capacity. In terms of peak capacity
269 repeatability, previous work using 50 cm columns showed good repeatability for unfractionated plasma
270 extracts (~2-5% RSD) [39]. In this work several fractions were subjected to repeated analysis to ensure no
271 large deviations in peak capacity. Peak capacity RSDs for fractions 1, 4, 8, and 9 were 1%, 8%, 6%, and
272 1% (n = 2), respectively.

273 3.6. Lipid identification

274
275 We putatively identified lipids from the human plasma extract using MS1 data and libraries from
276 Lipid Blast [60] and the Metabolomics Workbench [61]. Approximately 1080 lipids were detected in human
277 plasma using the 2D-LC-MS method. Peaks were identified based on fraction type, *m/z*, and retention time.
278 Annotated ²D chromatograms of fraction 7 (phosphatidylcholines) and fraction 9
279 (lysophosphatidylcholines) are shown in **Figure 6**. Other lipids were detected in these fractions but not
280 labeled on the base peak chromatogram due to co-elution or signal below lower mass ions. These
281 chromatograms illustrate the benefit of high resolution ²D separations for detecting lipids from a complex
282 mixture. Separation by chain length and double bond characteristics of lipid species is achieved within a
283 given class as expected using reversed phase in the ²D [41]. While comparisons with previous publications
284 is difficult due to different instrumentation, matrices, and identification software used, the chromatograms
285 here clearly show more peaks than previous 2D reports, indicating broader lipidome coverage.

286 The number of lipids detected is roughly double the number detected in our previous work using
287 single dimensional RP-LC-MS at 35 kpsi with 3-4 h analysis time [39]. Similar improvements in lipid
288 identification have been observed for multidimensional LC-MS lipidomics methods, likely due to decreased
289 ionization suppression from higher peak capacity separations, cleaner mass spectra, and separation of
290 isobaric and isomeric species [15,28]. As with peak capacity repeatability, lipid detection repeatability was
291 examined for a few fractions to ensure no wide variations. The variation in lipids detected in fractions 1, 5,
292 7, and 9 were 18%, 33%, 5%, and 7% RSD (n = 2), similar to our previous report and suggesting no
293 significant variability [39]. The improvement in detecting lipids and features by 2D comes at the expense
294 of analysis time. Previous work with 1D separations showed an approximately linear increase in lipids and
295 features detected with peak capacity and analysis time. The 2D data did not fit this trend, with fewer lipids
296 and features detected per unit of peak capacity or analysis time (**Figure 7**). This work suggests a diminishing
297 return in terms of lipid detection by increasing peak capacity. Without knowledge of the number of lipids
298 present in the sample, it is difficult to know if this effect is due to actually resolving most of the lipids

299 available or limitations of the method. For example, dilution with longer methods may prevent detection of
300 lower concentration lipids or the method may not be resolving more difficult to separate species due to
301 insufficient selectivity.

302 Further improvements in lipidome coverage may be attainable using modified extraction protocols,
303 employing smaller inner diameter columns with lower flow rates, combining with ion mobility separations
304 and more sensitive mass spectrometers [13], or employing even higher resolution separations with smaller
305 particles or longer columns [13,62]. Lipidome coverage could also be increased with the current
306 instrumentation by selectively adjusting the ^2D mobile phase composition depending on the fraction type.
307 For example, ammonium fluoride buffer provides higher signal intensity for PI species in negative
308 ionization mode compared to ammonium formate or acetate buffers [63].

309 In this work 5 μL injection volumes, requiring 2.5 μL of undiluted plasma were used. These low
310 volume injections are advantageous for small samples. The actual volume of plasma used in the extraction
311 was 50 μL , and using smaller volumes of plasma (e.g., < 5 μL) may require different sample preparation
312 techniques as discussed in other reports [31,46]. The use of a microbore column (1 mm i.d.) in the first
313 dimension and a capillary column (100 μm i.d.) in the ^2D also provided low solvent consumption –
314 approximately 2.5 mL in the total 2D-LC method.

315 3.7. Comparisons with previous 2D methods

316
317 Previous online 2D-LC lipidomics studies typically employed analysis times of 2 – 4 h, achieving
318 peak capacities up to ~600 [16]. Using trapped ion mobility separations as ^2D , a peak capacity of 991 was
319 achieved in 190 min, however lipid identifications were less than 2D-LC [12]. Offline 2D analysis times
320 were typically > 5 h, with peak capacities estimated at ~500 – 1000 [11,26]. There has been little work
321 implementing long capillary columns in the ^2D for lipidomics. High resolution 1D analyses of lipids have
322 yielded peak capacities of 300 – 400 in 2 – 4 h using long (30 – 60 cm) columns [39–42]. Work shown here
323 achieved peak capacities approaching 2000 and illustrates the advantages of long microcolumns for the ^2D
324 for relatively high resolving power and peak capacity of lipids compared to previously published work.

325 Peak capacities for lipid separations are lower than what has been achieved with small molecules
326 or peptides, likely due to the high viscosity of isopropanol-containing mobile phases which results in slower
327 diffusion of lipids and limits particle size and column length. 1D peak capacities up to ~1800 can be
328 achieved for peptides or small molecules using very long columns [53,64,65]. Recent online 2D-LC work
329 for peptide separations has shown peak capacities of 1500 in 30 min and 10,000 in 240 min, although the
330 extremely narrow peak widths are likely not compatible with most current MS methods [66,67].

331 **4. Conclusions**

332

333 Previous work has shown that 50 cm long columns packed with 1.7 μ m particles and operated at
334 35 kpsi generate peak capacities up to 400 in 240 min and can detect up to ~500 lipids in plasma samples.
335 We found that lipid prefractionation with HILIC into 9 fractions substantially increases the peak capacity
336 to 1900 and number of lipids detected to 1100 for the capillary columns. Modification of 2D gradient
337 parameters for individual fractions improved resolution and signal intensity compared to original conditions
338 for unfractionated 1D analysis. The gain from prefractionation is likely more than would be possible by
339 using even longer 1D columns and higher pressure due to the benefits of 2D separations including
340 orthogonality, preconcentration, and multiplicity of peak capacity. Since the number of lipids detected did
341 not increase proportionately with time, this work also illustrates the diminishing return of increasing
342 analysis time for compounds identified. It is likely that more sensitive mass spectrometers could be used to
343 further gain compound identifications in these mixtures. The long times are impractical for routine analysis,
344 but this approach should be useful for characterizing samples in depth, especially if combined with MS/MS
345 methods. Indeed, an important next step in this work will be to combine the high-resolution separation with
346 MS/MS and standards to achieve more confident peak identification. Once confident compound
347 identifications are obtained, it may be possible to use 1D methods to track the compounds for more routine
348 quantitative work.

349

350 **ACKNOWLEDGMENTS**

351 This work was supported by NSF CHE-1904146 (R.T.K.). The authors thank Brady Anderson
352 (University of Michigan) for helpful discussions. This work is not a product of the U.S. Government or
353 U.S. EPA. The author, Kelsey Miller, did not do this work in any governmental capacity since her
354 contribution was completed while at UNC Chapel Hill for graduate school. The views expressed are her
355 own and do not necessarily represent those of the U.S. or U.S. EPA.

356 **Figure Captions**

357 **Figure 1.** First dimension HILIC separation of (A) lipid standards and (B) human plasma extract.
358 Conditions: 15 cm x 1 mm, 5 μ m bare silica column; 50 μ L/min; 30 °C; 5 μ L injection volume; 95-77% B
359 gradient over 40 min; mobile phase A was 5 mM ammonium acetate; mobile phase B was acetonitrile. MS
360 was operated in full scan positive ion mode. All effluent went to MS during these separations.

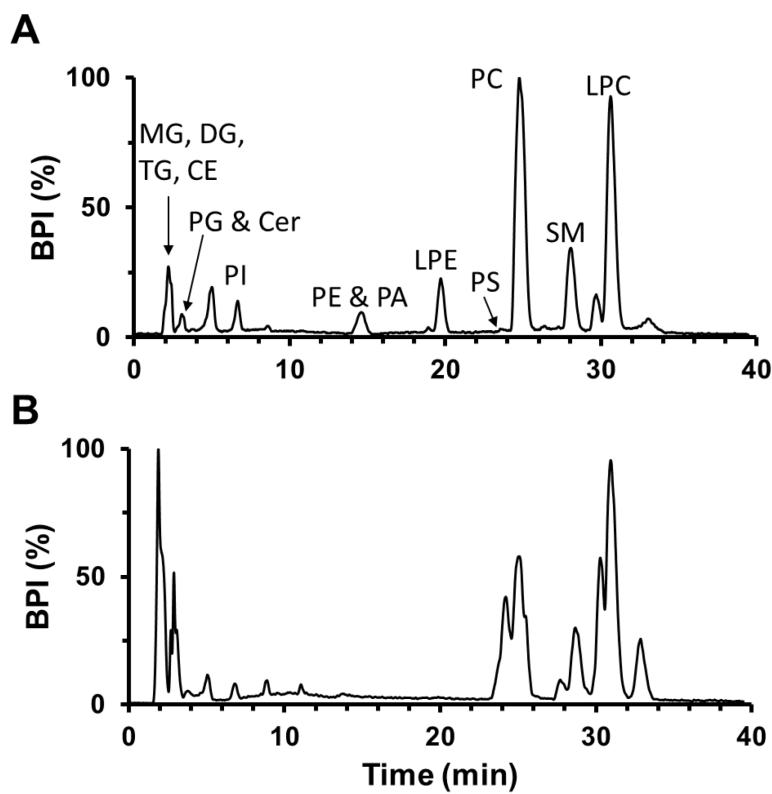
361 **Figure 2.** Example positive ion mode mass spectra of (A) fraction 7 (phosphatidylcholine) and (B) fraction
362 1 (glycerols, sterol esters, fatty acyls) following first dimension HILIC separation of human plasma with
363 effluent directed online to the MS. Other LC-MS conditions are the same as in Figure 1.

364 **Figure 3.** Effect of resuspension volume and injection volume on signal intensity for different fractions.
365 Comparison of 20 μ L (A) and 10 μ L (B) resuspension volumes on signal intensity for fraction 2
366 (phosphatidylglycerols and ceramides); gradient slope was 50-100% B. Comparison of 1 μ L (C) and 2 μ L
367 (D) injection volumes on signal intensity for fraction 9 (sphingomyelins); gradient slope was 70-100% B.
368 Other conditions: 50 cm x 100 μ m, 1.7 μ m C18 column; 35 kpsi operating pressure; 60 °C; mobile phase
369 A was 60/40 water/acetonitrile with 10 mM ammonium formate and 0.1% formic acid; mobile phase B was
370 85/10/5 isopropanol/acetonitrile/water with 10 mM ammonium formate and 0.1% formic acid.

371 **Figure 4.** Effect of gradient steepness on chromatographic resolution for (A and B) fraction 7
372 (phosphatidylcholines) and (C and D) fraction 8 (sphingomyelins). A 50-100% B gradient (A) is compared
373 with a 70-100% B gradient (B). Example EICs for *m/z* 784.6 and 786.6 are shown to illustrate the
374 improvement in resolution of different isomers with a shallower gradient. A 60-100% B gradient over 50
375 min (C) is compared with a 70-100% B gradient over 70 min (D). EICs for *m/z* 813 and 811 are shown.
376 Other conditions are the same as in Figure 3.

377 **Figure 5.** (A) Two-dimensional waterfall plot with each fraction displayed as base peak intensity
378 chromatograms. Individual LC-MS parameters are in the text and from Figure 3. (B) “bin”-based fractional
379 coverage plot used for orthogonality measurement.

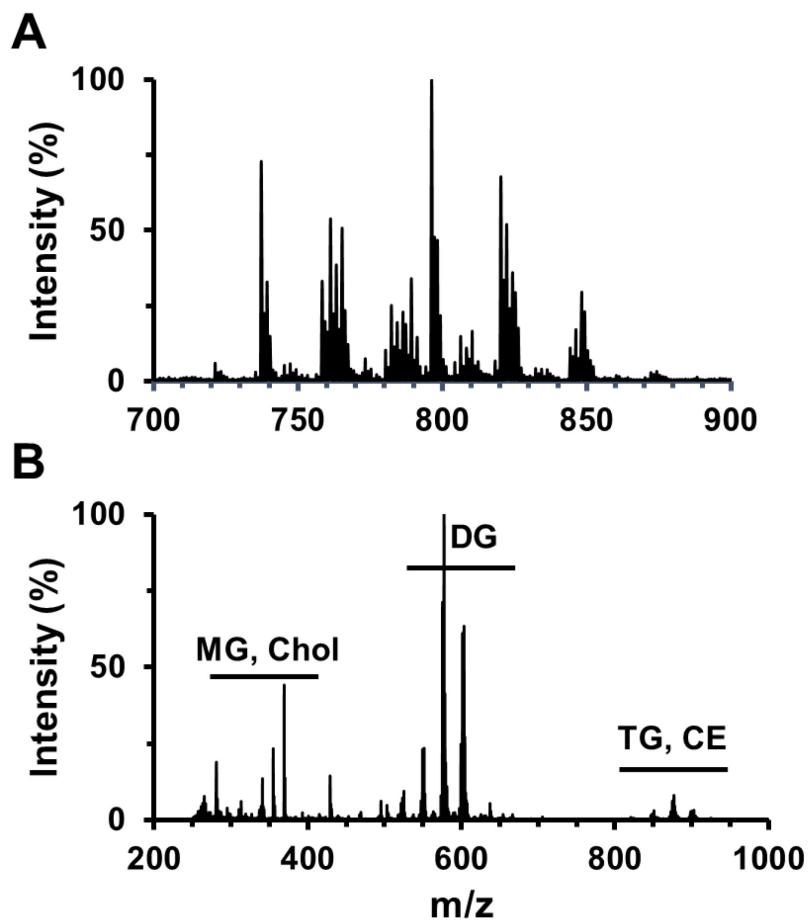
380 **Figure 6.** Base peak chromatograms of (A) fraction 7 (phosphatidylcholine) and (B) fraction 9
381 (lysophosphatidylcholine) with peaks annotated with the identified lipid based on *m/z* and retention time.
382 For fraction 7, a 70-100% B gradient was used; for fraction 9, a 50-70% B gradient was used. Other
383 conditions are the same as in Figure 3.


384 **Figure 7.** Number of lipids detected and MS1 features detected from previous 1D LC-MS work (black
385 circles) and the present 2D work (gray diamond). Lipids identified using library database matching of
386 precursor ion data is plotted as a function of peak capacity (A) and analysis time (B). MS1 features are
387 plotted versus peak capacity (C) and analysis time (D). One-dimensional work is reproduced in part from
388 previous work.

389

390

391 **Figures**

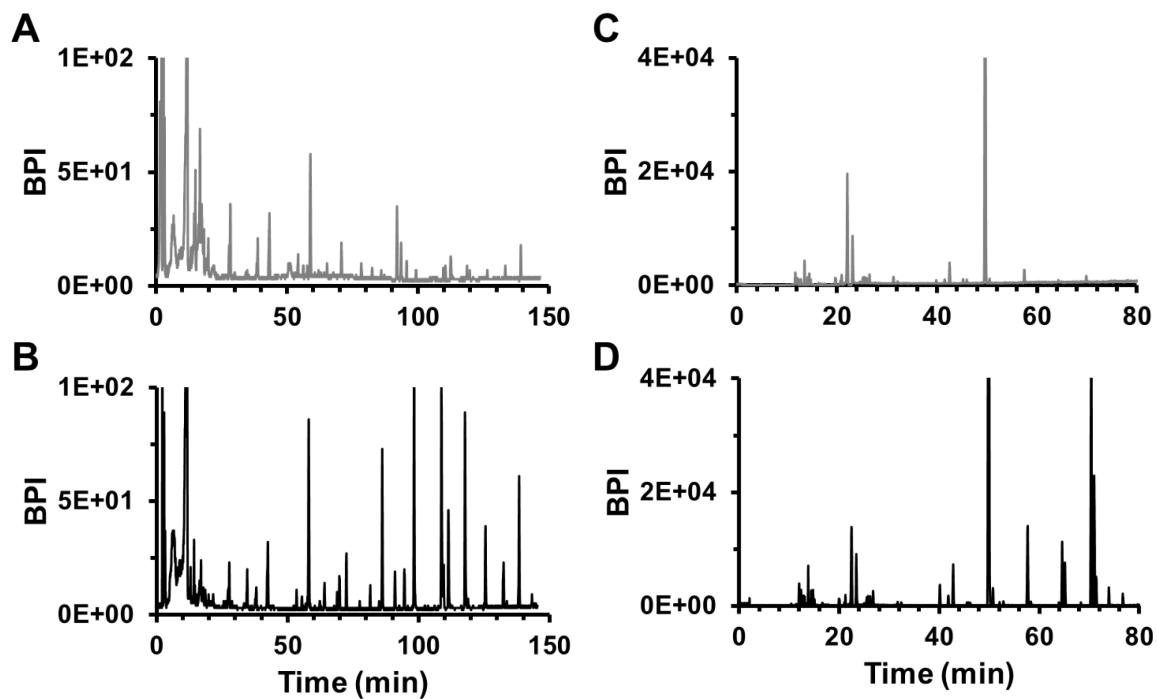

392 **Figure 1.**

393

394

395 **Figure 2.**

396

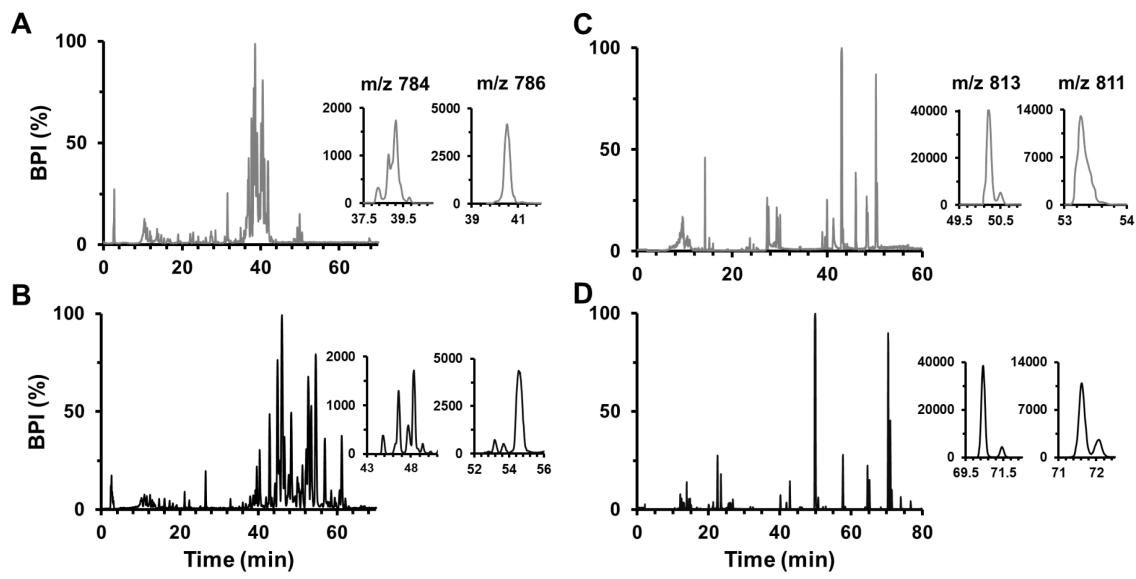

397

398

399

400 **Figure 3.**

401

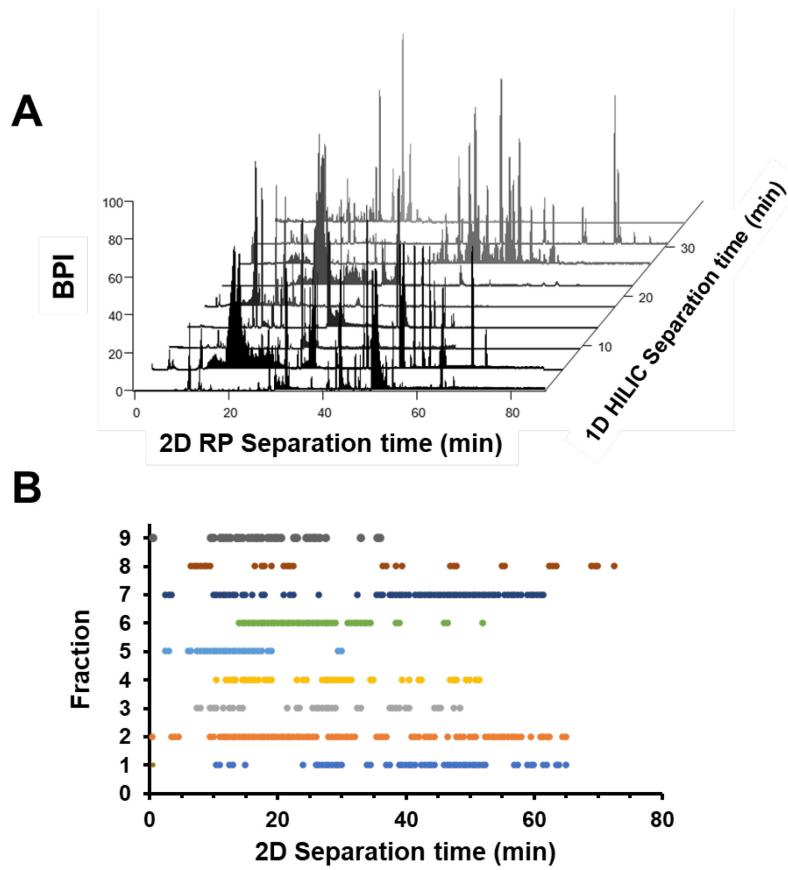

402

403

404

405

406 **Figure 4.**

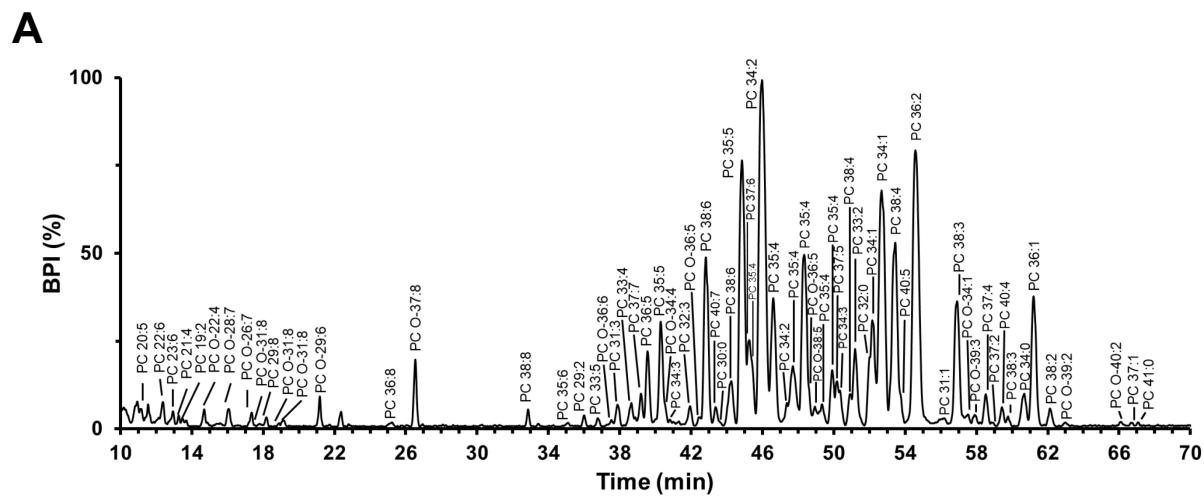


407

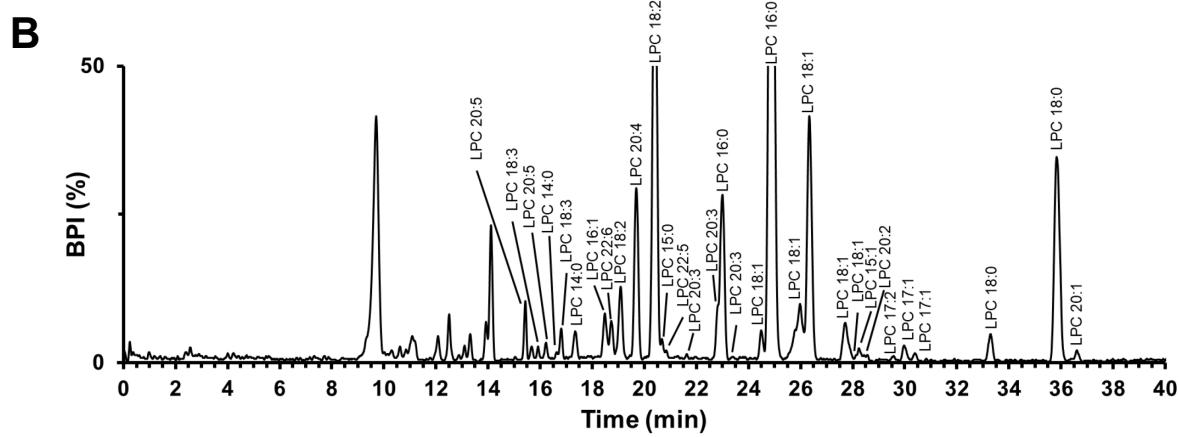
408

409

410 **Figure 5.**

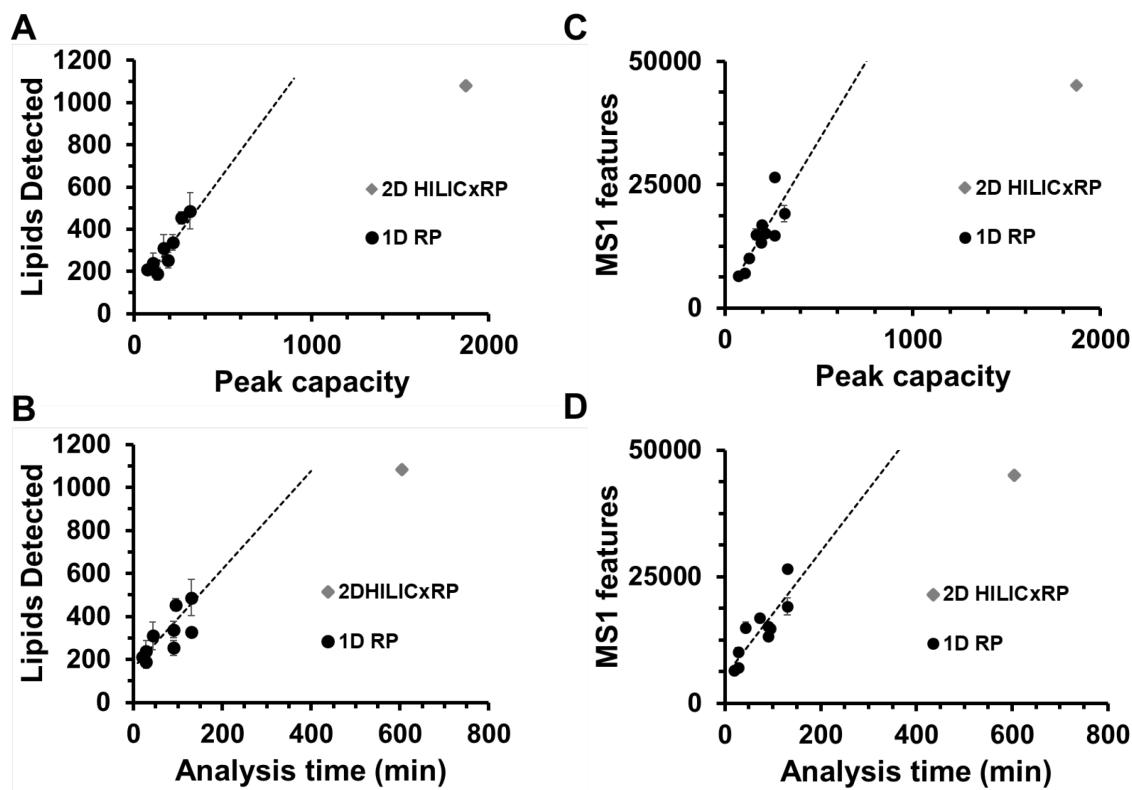


411


412

413 **Figure 6.**

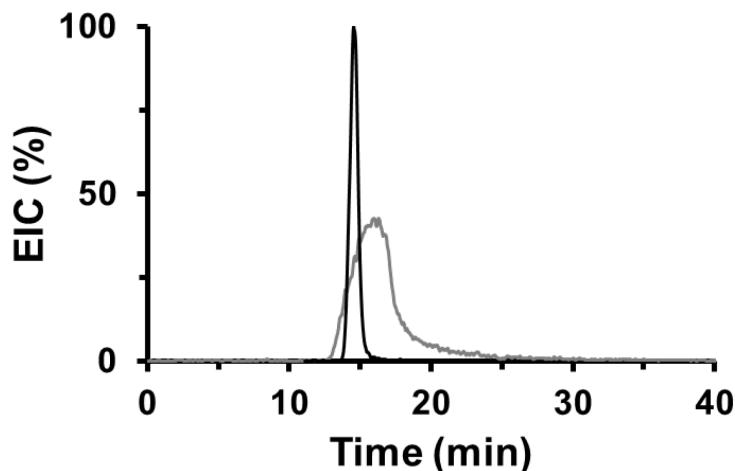
414


415

416

417

418 Figure 7


419

420

421 **Supplemental Material**

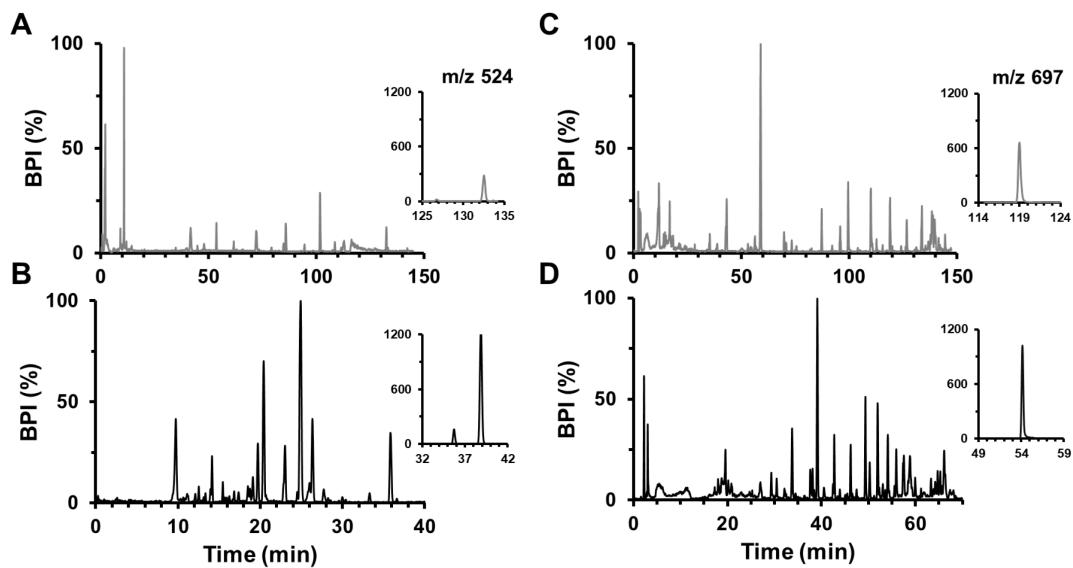
422

423

424

425 **Supplemental Figure S1.** Poor peak shape of phosphatidic acid (gray) on the ^1D bare silica column.
426 Phosphatidylethanolamine (black), which co-eluted and was collected with phosphatidic acid, demonstrated
427 better peak shape representative of most lipids on this column.

428


429

430 **Supplemental Table 1.** Conditions used for fraction collection of different lipid classes and analysis of
431 each fraction in second dimension.

Fraction	Lipid class(es)	Collection time (min)	Reconstitution volume (μL)	Injection volume (μL)	^2D gradient slope (%ΔB)	^2D gradient time (min)	Peak capacity
1	TG, DG, MG, FA, Chol, CE, acylCoA, PIP	1.3-3	10	2	60-100	60	275
2	PG, Cer	3-5	10	2	60-100	70	285
3	PI, HexCer, LPG	5-8	10	2	60-100	60	265
4	PE, PA	13-16	10	2	60-100	50	205
5	LPE	18.5-21	10	2	50-70	40	145
6	PS	21.5-23	10	2	60-100	50	155
7	PC	23-26	20	1	70-100	65	145
8	SM	27-29.5	20	2	70-100	70	241
9	LPC	29.5-32.5	20	1	50-70	40	163

432

433

434

435 **Supplemental Figure 2.** Effect of gradient length for (A & B) fractions 9 (lysophosphatidylcholine) and
436 (C & D) fraction 2 (phosphatidylglycerols and ceramides). A longer ~2.5 h gradient (A & C) is compared
437 with ~1 h gradient (B & D). Example extracted ion chromatograms show the decrease in signal height at
438 longer gradient times.

439

440

441

442 **References**

443 [1] H.F. Avela, H. Sirén, Advances in lipidomics, *Clinica Chimica Acta.* 510 (2020) 123–141.
444 <https://doi.org/10.1016/j.cca.2020.06.049>.

445 [2] H.-C. Lee, T. Yokomizo, Applications of mass spectrometry-based targeted and non-targeted
446 lipidomics, *Biochemical and Biophysical Research Communications.* 504 (2018) 576–581.
447 <https://doi.org/10.1016/j.bbrc.2018.03.081>.

448 [3] A. Kruve, Strategies for Drawing Quantitative Conclusions from Nontargeted Liquid
449 Chromatography–High-Resolution Mass Spectrometry Analysis, *Anal. Chem.* 92 (2020) 4691–4699.
450 <https://doi.org/10.1021/acs.analchem.9b03481>.

451 [4] T. Cajka, O. Fiehn, Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-
452 Based Metabolomics and Lipidomics, *Anal. Chem.* 88 (2016) 524–545.
453 <https://doi.org/10.1021/acs.analchem.5b04491>.

454 [5] K. Jurowski, K. Kochan, J. Walczak, M. Barańska, W. Piekoszewski, B. Buszewski, Analytical
455 Techniques in Lipidomics: State of the Art, *Critical Reviews in Analytical Chemistry.* 47 (2017) 418–
456 437. <https://doi.org/10.1080/10408347.2017.1310613>.

457 [6] S. Tumanov, J.J. Kamphorst, Recent advances in expanding the coverage of the lipidome, *Current
458 Opinion in Biotechnology.* 43 (2017) 127–133. <https://doi.org/10.1016/j.copbio.2016.11.008>.

459 [7] Y.H. Rustam, G.E. Reid, Analytical Challenges and Recent Advances in Mass Spectrometry Based
460 Lipidomics, *Analytical Chemistry.* 90 (2018) 374–397.
461 <https://doi.org/10.1021/acs.analchem.7b04836>.

462 [8] E. Rampler, Y.E. Abiead, H. Schoeny, M. Rusz, F. Hildebrand, V. Fitz, G. Koellensperger, Recurrent
463 Topics in Mass Spectrometry-Based Metabolomics and Lipidomics—Standardization, Coverage,
464 and Throughput, *Anal. Chem.* 93 (2021) 519–545. <https://doi.org/10.1021/acs.analchem.0c04698>.

465 [9] J.C. Giddings, Concepts and comparisons in multidimensional separation, *J. High Resol.
466 Chromatogr.* 10 (1987) 319–323. <https://doi.org/10.1002/jhrc.1240100517>.

467 [10] J.C. Giddings, Two-dimensional separations: concept and promise, *Anal. Chem.* 56 (1984) 1258A–
468 1270A. <https://doi.org/10.1021/ac00276a003>.

469 [11] M. Lísa, E. Cífková, M. Holčapek, Lipidomic profiling of biological tissues using off-line two-
470 dimensional high-performance liquid chromatography–mass spectrometry, *Journal of
471 Chromatography A.* 1218 (2011) 5146–5156. <https://doi.org/10.1016/j.chroma.2011.05.081>.

472 [12] A. Baglai, A.F.G. Gargano, J. Jordens, Y. Mengerink, M. Honing, S. van der Wal, P.J. Schoenmakers,
473 Comprehensive lipidomic analysis of human plasma using multidimensional liquid- and gas-phase
474 separations: Two-dimensional liquid chromatography–mass spectrometry vs . liquid
475 chromatography–trapped-ion-mobility–mass spectrometry, *Journal of Chromatography A.* 1530
476 (2017) 90–103. <https://doi.org/10.1016/j.chroma.2017.11.014>.

477 [13] I. Blaženović, T. Shen, S.S. Mehta, T. Kind, J. Ji, M. Piparo, F. Cacciola, L. Mondello, O. Fiehn,
478 Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid
479 Chromatography Drift Time–Ion Mobility Mass Spectrometry, *Analytical Chemistry.* 90 (2018)
480 10758–10764. <https://doi.org/10.1021/acs.analchem.8b01527>.

481 [14] P. Dugo, N. Fawzy, F. Cichello, F. Cacciola, P. Donato, L. Mondello, Stop-flow comprehensive two-
482 dimensional liquid chromatography combined with mass spectrometric detection for phospholipid
483 analysis, *Journal of Chromatography A.* 1278 (2013) 46–53.
484 <https://doi.org/10.1016/j.chroma.2012.12.042>.

485 [15] D.Y. Bang, M.H. Moon, On-line two-dimensional capillary strong anion exchange/reversed phase
486 liquid chromatography–tandem mass spectrometry for comprehensive lipid analysis, *Journal of
487 Chromatography A.* 1310 (2013) 82–90. <https://doi.org/10.1016/j.chroma.2013.08.069>.

488 [16] W. Lv, X. Shi, S. Wang, G. Xu, Multidimensional liquid chromatography-mass spectrometry for
489 metabolomic and lipidomic analyses, *TrAC Trends in Analytical Chemistry*. 120 (2019) 115302.
490 <https://doi.org/10.1016/j.trac.2018.11.001>.

491 [17] K.M. Kalili, A. de Villiers, Systematic optimisation and evaluation of on-line, off-line and stop-flow
492 comprehensive hydrophilic interaction chromatography×reversed phase liquid chromatographic
493 analysis of procyanidins, Part I: Theoretical considerations, *Journal of Chromatography A*. 1289
494 (2013) 58–68. <https://doi.org/10.1016/j.chroma.2013.03.008>.

495 [18] G. Guiochon, N. Marchetti, K. Mriziq, R.A. Shalliker, Implementations of two-dimensional liquid
496 chromatography, *Journal of Chromatography A*. 1189 (2008) 109–168.
497 <https://doi.org/10.1016/j.chroma.2008.01.086>.

498 [19] D.R. Stoll, P.W. Carr, Two-Dimensional Liquid Chromatography: A State of the Art Tutorial, *Anal.*
499 *Chem.* 89 (2017) 519–531. <https://doi.org/10.1021/acs.analchem.6b03506>.

500 [20] B.W.J. Pirok, D.R. Stoll, P.J. Schoenmakers, Recent Developments in Two-Dimensional Liquid
501 Chromatography: Fundamental Improvements for Practical Applications, *Anal. Chem.* 91 (2019)
502 240–263. <https://doi.org/10.1021/acs.analchem.8b04841>.

503 [21] P.J. Schoenmakers, B.W.J. Pirok, Practical Approaches to Overcome the Challenges of
504 Comprehensive Two-Dimensional Liquid Chromatography, *LCGC Europe*. 31 (2018) 242–249.

505 [22] M. Holčapek, M. Ovčačíková, M. Lísa, E. Cífková, T. Hájek, Continuous comprehensive two-
506 dimensional liquid chromatography–electrospray ionization mass spectrometry of complex
507 lipidomic samples, *Analytical and Bioanalytical Chemistry*. 407 (2015) 5033–5043.
508 <https://doi.org/10.1007/s00216-015-8528-2>.

509 [23] M. Navarro-Reig, J. Jaumot, R. Tauler, An untargeted lipidomic strategy combining comprehensive
510 two-dimensional liquid chromatography and chemometric analysis, *Journal of Chromatography A*.
511 1568 (2018) 80–90. <https://doi.org/10.1016/j.chroma.2018.07.017>.

512 [24] M. Li, X. Tong, P. Lv, B. Feng, L. Yang, Z. Wu, X. Cui, Y. Bai, Y. Huang, H. Liu, A not-stop-flow online
513 normal-/reversed-phase two-dimensional liquid chromatography–quadrupole time-of-flight mass
514 spectrometry method for comprehensive lipid profiling of human plasma from atherosclerosis
515 patients, *Journal of Chromatography A*. 1372 (2014) 110–119.
516 <https://doi.org/10.1016/j.chroma.2014.10.094>.

517 [25] H. Nie, R. Liu, Y. Yang, Y. Bai, Y. Guan, D. Qian, T. Wang, H. Liu, Lipid profiling of rat peritoneal
518 surface layers by online normal- and reversed-phase 2D LC QToF-MS[S], *Journal of Lipid Research*.
519 51 (2010) 2833–2844. <https://doi.org/10.1194/jlr.D007567>.

520 [26] M. Narváez-Rivas, N. Vu, G.-Y. Chen, Q. Zhang, Off-line mixed-mode liquid chromatography
521 coupled with reversed phase high performance liquid chromatography-high resolution mass
522 spectrometry to improve coverage in lipidomics analysis, *Analytica Chimica Acta*. 954 (2017) 140–
523 150. <https://doi.org/10.1016/j.aca.2016.12.003>.

524 [27] D.A. Wolters, M.P. Washburn, J.R. Yates, An Automated Multidimensional Protein Identification
525 Technology for Shotgun Proteomics, *Anal. Chem.* 73 (2001) 5683–5690.
526 <https://doi.org/10.1021/ac010617e>.

527 [28] S. Wang, J. Li, X. Shi, L. Qiao, X. Lu, G. Xu, A novel stop-flow two-dimensional liquid
528 chromatography–mass spectrometry method for lipid analysis, *Journal of Chromatography A*. 1321
529 (2013) 65–72. <https://doi.org/10.1016/j.chroma.2013.10.069>.

530 [29] N. Danne-Rasche, C. Coman, R. Ahrends, Nano-LC/NSI MS Refines Lipidomics by Enhancing Lipid
531 Coverage, Measurement Sensitivity, and Linear Dynamic Range, *Analytical Chemistry*. 90 (2018)
532 8093–8101. <https://doi.org/10.1021/acs.analchem.8b01275>.

533 [30] N. Danne-Rasche, S. Rubenzucker, R. Ahrends, Uncovering the complexity of the yeast lipidome by
534 means of nLC/NSI-MS/MS, *Analytica Chimica Acta*. 1140 (2020) 199–209.
535 <https://doi.org/10.1016/j.aca.2020.10.012>.

536 [31] A. Zardini Buzatto, B.K. Kwon, L. Li, Development of a NanoLC-MS workflow for high-sensitivity
537 global lipidomic analysis, *Analytica Chimica Acta*. 1139 (2020) 88–99.
538 <https://doi.org/10.1016/j.aca.2020.09.001>.

539 [32] S.K. Byeon, J.Y. Lee, M.H. Moon, Optimized extraction of phospholipids and lysophospholipids for
540 nanoflow liquid chromatography-electrospray ionization-tandem mass spectrometry, *Analyst*. 137
541 (2012) 451–458. <https://doi.org/10.1039/c1an15920h>.

542 [33] G.B. Lee, J.C. Lee, M.H. Moon, Plasma lipid profile comparison of five different cancers by
543 nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry, *Analytica
544 Chimica Acta*. 1063 (2019) 117–126. <https://doi.org/10.1016/j.aca.2019.02.021>.

545 [34] K.L. Sanders, J.L. Edwards, Nano-liquid chromatography-mass spectrometry and recent
546 applications in omics investigations, *Anal. Methods*. 12 (2020) 4404–4417.
547 <https://doi.org/10.1039/D0AY01194K>.

548 [35] K.D. Duncan, J. Fyrestam, I. Lanekoff, Advances in mass spectrometry based single-cell
549 metabolomics, *Analyst*. 144 (2019) 782–793. <https://doi.org/10.1039/C8AN01581C>.

550 [36] J. Stadlmann, O. Hudecz, G. Kršáková, C. Ctortecka, G. Van Raemdonck, J. Op De Beeck, G.
551 Desmet, J.M. Penninger, P. Jacobs, K. Mechtler, Improved Sensitivity in Low-Input Proteomics
552 Using Micropillar Array-Based Chromatography, *Anal. Chem.* 91 (2019) 14203–14207.
553 <https://doi.org/10.1021/acs.analchem.9b02899>.

554 [37] M.J. Sorensen, B.G. Anderson, R.T. Kennedy, Liquid chromatography above 20,000 PSI, *TrAC
555 Trends in Analytical Chemistry*. 124 (2020) 115810. <https://doi.org/10.1016/j.trac.2020.115810>.

556 [38] K. Broeckhoven, G. Desmet, Advances and Challenges in Extremely High-Pressure Liquid
557 Chromatography in Current and Future Analytical Scale Column Formats, *Anal. Chem.* 92 (2020)
558 554–560. <https://doi.org/10.1021/acs.analchem.9b04278>.

559 [39] M.J. Sorensen, K.E. Miller, J.W. Jorgenson, R.T. Kennedy, Ultrahigh-Performance capillary liquid
560 chromatography-mass spectrometry at 35 kpsi for separation of lipids, *Journal of Chromatography
561 A*. 1611 (2020) 460575. <https://doi.org/10.1016/j.chroma.2019.460575>.

562 [40] K.E. Miller, J.W. Jorgenson, Comparison of microcapillary column length and inner diameter
563 investigated with gradient analysis of lipids by ultrahigh-pressure liquid chromatography-mass
564 spectrometry, *J. Sep. Sci.* (2020) jssc.202000545. <https://doi.org/10.1002/jssc.202000545>.

565 [41] M. Ovčáčíková, M. Lísa, E. Cifková, M. Holčapek, Retention behavior of lipids in reversed-phase
566 ultrahigh-performance liquid chromatography-electrospray ionization mass spectrometry, *Journal
567 of Chromatography A*. 1450 (2016) 76–85. <https://doi.org/10.1016/j.chroma.2016.04.082>.

568 [42] K. Sandra, J. Vandenbussche, R. t'Kindt, B. Claerebout, J. Op de Beeck, W. De Malsche, G. Desmet,
569 P. Sandra, Evaluation of Micro-Pillar Array Columns (μPAC) Combined with High Resolution Mass
570 Spectrometry for Lipidomics, *LCGC*. 30 (2017) 6–13.

571 [43] A. Motoyama, J.D. Venable, C.I. Ruse, J.R. Yates, Automated Ultra-High-Pressure Multidimensional
572 Protein Identification Technology (UHP-MudPIT) for Improved Peptide Identification of Proteomic
573 Samples, *Analytical Chemistry*. 78 (2006) 5109–5118. <https://doi.org/10.1021/ac060354u>.

574 [44] Z. Wang, D. Yu, K.A. Cupp-Sutton, X. Liu, K. Smith, S. Wu, Development of an Online 2D Ultrahigh-
575 Pressure Nano-LC System for High-pH and Low-pH Reversed Phase Separation in Top-Down
576 Proteomics, *Anal. Chem.* 92 (2020) 12774–12777. <https://doi.org/10.1021/acs.analchem.0c03395>.

577 [45] D. Yu, Z. Wang, K.A. Cupp-Sutton, X. Liu, S. Wu, Deep Intact Proteoform Characterization in Human
578 Cell Lysate Using High-pH and Low-pH Reversed-Phase Liquid Chromatography, *J. Am. Soc. Mass
579 Spectrom.* 30 (2019) 2502–2513. <https://doi.org/10.1007/s13361-019-02315-2>.

580 [46] M. Dou, C.-F. Tsai, P.D. Piehowski, Y. Wang, T.L. Fillmore, R. Zhao, R.J. Moore, P. Zhang, W.-J. Qian,
581 R.D. Smith, T. Liu, R.T. Kelly, T. Shi, Y. Zhu, Automated Nanoflow Two-Dimensional Reversed-Phase
582 Liquid Chromatography System Enables In-Depth Proteome and Phosphoproteome Profiling of

583 Nanoscale Samples, *Anal. Chem.* 91 (2019) 9707–9715.
584 <https://doi.org/10.1021/acs.analchem.9b01248>.

585 [47] J.D. Vos, D. Stoll, S. Buckenmaier, S. Eeltink, J.P. Grinias, Advances in ultra-high-pressure and multi-
586 dimensional liquid chromatography instrumentation and workflows, *Analytical Science Advances*.
587 2 (2021) 171–192. <https://doi.org/10.1002/ansa.202100007>.

588 [48] M. Lísa, H. Řehulková, E. Hančová, P. Řehulka, Lipidomic Analysis Using Hydrophilic Interaction
589 Liquid Chromatography Microgradient Fractionation of Total Lipid Extracts, *Journal of*
590 *Chromatography A*. (2021) 462380. <https://doi.org/10.1016/j.chroma.2021.462380>.

591 [49] E. Cífková, M. Holčapek, M. Lísa, M. Ovčáčková, A. Lyčka, F. Lynen, P. Sandra, Nontargeted
592 Quantitation of Lipid Classes Using Hydrophilic Interaction Liquid Chromatography–Electrospray
593 Ionization Mass Spectrometry with Single Internal Standard and Response Factor Approach,
594 *Analytical Chemistry*. 84 (2012) 10064–10070. <https://doi.org/10.1021/ac3024476>.

595 [50] E.G. Bligh, W.J. Dyer, A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATION, *Canadian*
596 *Journal of Biochemistry and Physiology*. 37 (1959) 911–917. <https://doi.org/10.1139/o59-099>.

597 [51] J.M. Godinho, A.E. Reising, U. Tallarek, J.W. Jorgenson, Implementation of high slurry
598 concentration and sonication to pack high-efficiency, meter-long capillary ultrahigh pressure liquid
599 chromatography columns, *Journal of Chromatography A*. 1462 (2016) 165–169.
600 <https://doi.org/10.1016/j.chroma.2016.08.002>.

601 [52] A. Maiolica, D. Borsotti, J. Rappaport, Self-made frits for nanoscale columns in proteomics,
602 *PROTEOMICS*. 5 (2005) 3847–3850. <https://doi.org/10.1002/pmic.200402010>.

603 [53] K.M. Grinias, J.M. Godinho, E.G. Franklin, J.T. Stobaugh, J.W. Jorgenson, Development of a 45kpsi
604 ultrahigh pressure liquid chromatography instrument for gradient separations of peptides using
605 long microcapillary columns and sub-2µm particles, *Journal of Chromatography A*. 1469 (2016) 60–
606 67. <https://doi.org/10.1016/j.chroma.2016.09.053>.

607 [54] M. Schwalbe-Hermann, J. Willmann, D. Leibfritz, Separation of phospholipid classes by hydrophilic
608 interaction chromatography detected by electrospray ionization mass spectrometry, *Journal of*
609 *Chromatography A*. 1217 (2010) 5179–5183. <https://doi.org/10.1016/j.chroma.2010.05.014>.

610 [55] E. Cífková, R. Hájek, M. Lísa, M. Holčapek, Hydrophilic interaction liquid chromatography-mass
611 spectrometry of (lyso)phosphatidic acids, (lyso)phosphatidylserines and other lipid classes, *Journal*
612 *of Chromatography A*. 1439 (2016) 65–73. <https://doi.org/10.1016/j.chroma.2016.01.064>.

613 [56] K. Stejskal, J. Op de Beeck, G. Dürnberger, P. Jacobs, K. Mechtler, Ultrasensitive NanoLC-MS of
614 Subnanogram Protein Samples Using Second Generation Micropillar Array LC Technology with
615 Orbitrap Exploris 480 and FAIMS PRO, *Anal. Chem.* (2021).
616 <https://doi.org/10.1021/acs.analchem.1c00990>.

617 [57] D.B. Bekker-Jensen, A. Martínez-Val, S. Steigerwald, P. Rüther, K.L. Fort, T.N. Arrey, A. Harder, A.
618 Makarov, J.V. Olsen, A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface
619 Improves Proteome Coverage in Short LC Gradients*, *Molecular & Cellular Proteomics*. 19 (2020)
620 716–729. <https://doi.org/10.1074/mcp.TIR119.001906>.

621 [58] M. Gilar, P. Olivova, A.E. Daly, J.C. Gebler, Orthogonality of Separation in Two-Dimensional Liquid
622 Chromatography, *Anal. Chem.* 77 (2005) 6426–6434. <https://doi.org/10.1021/ac050923i>.

623 [59] J.M. Davis, D.R. Stoll, P.W. Carr, Effect of First-Dimension Undersampling on Effective Peak
624 Capacity in Comprehensive Two-Dimensional Separations, *Analytical Chemistry*. 80 (2008) 461–
625 473. <https://doi.org/10.1021/ac071504j>.

626 [60] T. Kind, K.-H. Liu, D.Y. Lee, B. DeFelice, J.K. Meissen, O. Fiehn, LipidBlast in silico tandem mass
627 spectrometry database for lipid identification, *Nature Methods*. 10 (2013) 755–758.
628 <https://doi.org/10.1038/nmeth.2551>.

629 [61] M. Sud, E. Fahy, D. Cotter, K. Azam, I. Vadivelu, C. Burant, A. Edison, O. Fiehn, R. Higashi, K.S. Nair,
630 S. Sumner, S. Subramaniam, Metabolomics Workbench: An international repository for

631 metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and
632 analysis tools, *Nucleic Acids Research*. 44 (2016) D463–D470.
633 <https://doi.org/10.1093/nar/gkv1042>.

634 [62] M.J. Sorensen, R.T. Kennedy, Capillary ultrahigh-pressure liquid chromatography-mass
635 spectrometry for fast and high resolution metabolomics separations, *Journal of Chromatography*
636 A. 1635 (2021) 461706. <https://doi.org/10.1016/j.chroma.2020.461706>.

637 [63] D.S. Gertner, D.P. Bishop, A. Oglobline, M.P. Padula, Enhancing Coverage of Phosphatidylinositol
638 Species in Canola Through Specialised Liquid Chromatography-Mass Spectrometry Buffer
639 Conditions, *Journal of Chromatography A*. 1637 (2021) 461860.
640 <https://doi.org/10.1016/j.chroma.2020.461860>.

641 [64] Y. Shen, R. Zhang, R.J. Moore, J. Kim, T.O. Metz, K.K. Hixson, R. Zhao, E.A. Livesay, H.R. Udseth, R.D.
642 Smith, Automated 20 kpsi RPLC-MS and MS/MS with Chromatographic Peak Capacities of
643 1000–1500 and Capabilities in Proteomics and Metabolomics, *Analytical Chemistry*. 77 (2005)
644 3090–3100. <https://doi.org/10.1021/ac0483062>.

645 [65] M. Baca, G. Desmet, H. Ottevaere, W. De Malsche, Achieving a Peak Capacity of 1800 Using an 8 m
646 Long Pillar Array Column, *Anal. Chem.* 91 (2019) 10932–10936.
647 <https://doi.org/10.1021/acs.analchem.9b02236>.

648 [66] S. Chapel, F. Rouvière, S. Heinisch, Pushing the limits of resolving power and analysis time in on-
649 line comprehensive hydrophilic interaction x reversed phase liquid chromatography for the
650 analysis of complex peptide samples, *Journal of Chromatography A*. 1615 (2020) 460753.
651 <https://doi.org/10.1016/j.chroma.2019.460753>.

652 [67] D.R. Stoll, H.R. Lhotka, D.C. Harmes, B. Madigan, J.J. Hsiao, G.O. Staples, High resolution two-
653 dimensional liquid chromatography coupled with mass spectrometry for robust and sensitive
654 characterization of therapeutic antibodies at the peptide level, *Journal of Chromatography B*.
655 1134–1135 (2019) 121832. <https://doi.org/10.1016/j.jchromb.2019.121832>.

656

657

658

659

660