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AbstractÐNetwork Slicing (NS) technique is comprehensively
reshaping the next-generation communication networks (e.g. 5G,
6G). Software-Defined Networking (SDN) and Network Functions
Virtualization (NFV) predominantly control the flow of service
functions on NS to incorporate versatile applications as per user
demands. In the virtualized-Software Defined Networking vSDN
environment, a chain of well-defined virtual network functions
(VNFs) are installed on Service Function Chains (SFCs) by mul-
tiple Internet Service Providers (ISPs) concurrently. Generation,
allocation, re-allocation, release and destroying associative VNFs
on SFC is an extremely difficult task while keeping high selection
accuracy. Towards solving this fundamental issue, in this work,
we have proposed a multi-layered SFC formation for adaptive
VNF allocation on dynamic slices. We have formulated an
ILP to address the VNF-EAP (VNF-Embedding and Allocation
Problem) over real network topology (AT&T Topology). Lever-
aging machine learning techniques we have shown an intelligent
VNF selection mechanism to optimize resource utilization. The
performance evaluation shows remarkable efficiency on ML-
driven dynamic VNF selections over static allocations on SFCs
by halving resource usage. Further, we have also studied a VNF
typecasting technique for service backup on outage slices in the
field of disaster management activities.

Index TermsÐSDN, NFV, 5G and beyond, VNF, SFC, TSPs,
Machine Learning

I. INTRODUCTION

The forthcoming 5G and beyond communication networks

are reshaping the overall network architecture for ultimate

user experiences. As the pace of development increases in the

networking sector, it calls for better infrastructure to facilitate

the growing and increasingly stringent demands from various

sectors of society [1], [2]. There’s an ever-growing need for

better network speed, better connectivity and lower network

latency. As a result, many advanced technologies have been

brought to the limelight to meet these demands. Concepts

like SDN, NFV, NS, ML, and AI are now the forerunners

of streamlining the process of delivering better network con-

nectivity but with a manageable cost to the network operators

[3], [4]. Contrary to 2G, 3G, and existing 4G-LTE networks

and the demands of those areas, modern network demands

are now much more varied and the service requirements have

also become more strict to ensure better service. As a result,

the networks in 5G and beyond are generally ‘sliced’ to cater

to specific needs according to the network’s subscribers. A

major portion of the realization and maintenance of these slices

is from the management and orchestration of network slices.

Furthermore, the allocation of resources becomes crucial in

such scenarios, hence the introduction of robust machine

learning algorithms to help us maintain quality service.

The heterogeneous network slices are done logically based

on three major types of subscriber demands. The first one is

eMBB (enhanced mobile broadband) which caters to mobile

users and the main focus of this slice is maintaining a stable

connection with at least moderate to high peak data rates.

The second one is mMTC (machine type communication) and

as the name suggests, this slice is catered towards meeting

demands for communication between different machines. This

slice finds itself most utilized in IoT where different sensors

and controllers need communication for perfect working.

Lastly, the URLLC (ultra-reliable low latency communication)

slice is kept for applications and subscribers for whom low

latency is crucial for their operation such as smart healthcare

applications [5]. As a result, this slice is utilized by the medical

sector, disaster management, autonomous vehicular networks,

and UAV networks, to name a few [6], [7].

The indigenous traffic characteristics of vast user domains

generate random and complex demands. Managing such di-

verse traffic often requires VNF concatenation and steering of

network functions. Chaining and aligning multiple VNFs to

serve demand-specific applications are termed SFC (Service

Function Chaining) [8]. The advantage of network softwariza-

tion and virtualization leveraging SDN and NFV concepts

helps multiple VNF instances to run on the shared platform.

These VNF instances can be created, allocated, re-allocated,

released, deleted, and updated on-demand basis. Orchestrating

the VNF instances by optimizing SFC requests is an extraordi-

narily challenging and difficult task for any network operator.

Further, network constraints like restricted resources (network

bandwidth, CPU memory, etc.) generate additional hindrances

towards traffic steering over shared resources.

Main Motivation Behind the Work:

Recent state-of-the-art analysis shows the importance of

the problem. In [9] authors have detailed the challenges

faced while deploying next-generation infrastructure for the

betterment of humanity. The surge in local tariff plans and

uninitialized service plans has already started putting the load

on consumers’ pockets. The improper service distribution

also causes a huge waste of network resources. Though

technologies like SDN, NFV, NS, 5G, and next-generation

AI extend their comprehensive contributions to resolve such

critical issues [10], the existence of suitable resource sharing,
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Fig. 1: vSDN-based network slicing architecture for 5G and beyond networks with shared-SFCs

re-sharing, rolling back, and controlling algorithms is still an

open area for significant contributions. These factors motivate

us to build an exclusive and user-friendly technique for the

next-level quality of service.

Understanding the factors is very easy here, given a

resource-restricted environment where users are continuously

growing. Now, the VNF instances that channel the services

need to be coupled in such a way that the formation of

SFCs should satisfy the targets. A simplistic overview of SFC

formation in a multi-slice environment is shown in Fig. 1.

Two main targets which have been addressed here are 1)

how to select the suitable VNF clusters from the pool and 2)

how efficiently concatenate them following restricted resource

availability and network QoS. The problems are aggregated

as VNF-EAP and a suitable and novel approach is adopted

to solve them over real network topology. The next section

explains our major contributions briefly.

Contributions Solving the complex VNF-EAP with dy-

namic resource sharing is done by formulating a BIP model

(Binary Integer Programming model). The target objective is

to optimize the QoS that relates to end-to-end SFC cost and

resource utilization capacity. We have proposed two novel al-

gorithms termed VNF-READ Algorithm (VNF Re-allocation,

VNF Evoke, VNF Allocation, VNF Delete or Detention) and

SFC-DRIVE using multi-graph layering.

• AT & T North America topology from [11] is considered

as a multi-layered graph with shared-SFCs distributed

over the entire region and exchanging information. The

demand-based user traffic analysis is modelled following

the MIP. The parameters of different factors and their

corresponding values are given in tables (1) and (2)

respectively.

• Beyond the problem of proper estimation of required

resources to fulfil a network demand, we need to also

place or ‘embed’ the VNFs in a network to actually

service a particular network request. This brings us to the

next part of our work. To actually serve a network request,

all the parameters related to the request will have to be

accommodated within the limits of the network topology

and its capacities.

• Owing to the fact that these network requests are to be

serviced by VNFs, the main attribute related to a particu-

lar request was its memory demand which is the amount

of memory a particular VNF would consume to serve

the request, its bandwidth demand which is how much

bandwidth it would take up while travelling through the

links between the nodes in any given network topology,

and finally depending upon the bandwidth demand, there

will be demand for CPU resources which we aimed to

find out by intelligent methods.

• Keeping in mind the maximum available resources at the

links and the nodes we have to route the request through

the nodes and links in the topology which provides

the fastest and most reliable service function chaining.

Only from an end-to-end solution can we appreciate the

increase in QoS through realistic VNF embedding along

with an intelligent estimation of resource allocation for

SFC requests.

Paper Organization: The rest of the paper is organized as

follows: related state-of-the-art techniques and the existing so-

lutions are shown in Section II. Section III explains the system

model over the real network topology. VNF-EAP is formulated

as a BIP problem in Section IV. Section V demonstrates

the proposed VNF-READ and SFC-DRIVE algorithms with
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extensive simulations. Section VI does the result analysis and

discussions to show the efficiency of our proposed approach.

Finally, Section VII concludes the work with some open

research directions.

II. RELATED WORKS

Network Slicing has emerged as one of the key areas on

which the forthcoming 5G and emerging 6G technologies will

rely. Several applications are already running in the market.

Researchers have started contributing after identifying the

problems. Several novel contributions have already been made

but most of them are not sufficient enough to address the ever-

growing complexities and all-new challenges. The progress is

still growing and evolving [12], [13].

A. Resource Sharing in Network Slicing

A hierarchical decomposition method was proposed by Sun-

day. O. Oladejo et al. addressing the resource allocation prob-

lem of NS. They have formulated their optimization model

as a maximum utility optimization problem. An extensive

solution leveraging Monte Carlo simulation is done using a

genetic algorithm. Their findings aim to minimize the misuse

of available resources within a resource-constrained environ-

ment [11]. Dynamic resource allocation is addressed using a

unique PDRA (Priority-Based Dynamic Resource Allocation)

Scheme in [14]. An agent-based resource management algo-

rithm is proposed which dynamically allocates resources based

on priorities and demand profiles of the incoming request

types. The optimization is formed as an LP problem (Lin-

ear Programming) on CMDP (Constrained Markov Decision

Process). In [15] authors have studied the VNF’s demand-

based characteristics and predicted the approximate numbers

of required functions based on real VNF data. S. Draxler et

al. put forth a dynamic joint scaling and placement solution

with a bi-directional traverse through VNFs and falling back

to their respective origins. They have formulated the joint

optimization as a MILP (Mixed Integer Linear Programming)

model. The proposed concept of VNF reuse supports network

functions with pre-defined locations and is static in nature.

Their heuristic algorithm solves the NP-complete problem in

a short time which they have proved later [16].

B. VNF and SFC Coupling for future 5G

Jianing Pei et al. formulated the problem of SFC embedding

in a geo-distributed network as a model based on binary integer

programming (BIP) aiming to embed SFC requests at the

minimum possible cost. Also, their SFC embedding approach

which they called SFC-MAP and the dynamic release of VNF

instances had been proposed for the purpose of embedding

SFC requests and optimizing the number of VNF instances

placed to service a particular request. Their performance

evaluation results showed their algorithms provided higher

performance in terms of SFC request acceptance rate and

network throughput [17]. Mohammad M. Tajiki et al. in [18]

formulated the problem of VNF placement in a network as an

Integer Linear Programming based optimization problem while

being aware of constraints on delay, link and server utilization.

They proposed a heuristic solution to find a near-optimal

solution within a realistic real-life time frame. Francesco

Malandrino et al. studied the area of VNF sharing which

involves sharing a particular VNF at a node to service multiple

requests and adapting the virtual machines to handle the

multiple service requests which are being serviced by it. They

also proposed their solution with the goal of reducing total

cost and end-to-end delay as well. Their solution provided

a near-optimal solution to the VNF embedding problem via

VNF sharing which ran in polynomial time [19].

Fig. 2: VNF mapping over SFCs of physical resource units

C. Intelligent Resource Sharing using ML

Recent works are using extensive ML and DL techniques

for resource-aware NS. In [20], the authors have implemented

a machine learning-based solution for intelligent resource

allocation. Their proposed approach has framed the traffic

characteristics as a Convolutional Long-Short Term Memory

(ConvLSTM). They have optimized the system delay consider-

ing a vehicular network. Their optimal slice weight allocation

problem is solved using the primal-dual interior-point method.

A deep reinforcement learning approach is used to solve the

resource allocation problem in [21]. Authors have assumed

the resource demand as ’states’ and allocated resources as

’actions’. A GAN network model (Generative Adversarial

Network model) is used to find the action state values using the

deep Q-learning network method. The novelty was to check

the system performance in the presence of noise.

The methods explained above do not consider any real

network topology while allocating resources on-demand. The

random and abrupt networking behaviour produces a strong

barrier against the smooth flow of services [22]±[24]. In

this work, we have applied the model over the real-network

topology emphasising the practicality of our system model and

to the best of our knowledge, this approach is the first-ever of

its kind.

III. SYSTEM MODEL ARCHITECTURE ON AT&T

A. SDN and NFV for NS

The introduction of SDN and NFV in networking opened

up a lot of avenues for innovation. Before the introduction of

such concepts, the data plane and the control plane had no

separation between them and as a result, there was not much

control over it, but with the introduction of SDN, the data

plane and the control plane were separated which meant, we
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could control the data plane more centrally. This meant that

we could determine paths for data packets to take without

the data having to go through unnecessary routes. As a result

of SDN, network security increased as well as costs were cut

down since the control plane was more centralized. SDN paved

the way for Network Function Virtualization to appear in the

picture.

Fig. 3: AT&T North America Topology [25]

Fig. 3 represents our reference topological framework over

which the entire experiment has been performed. Individual

node points in the graph are the SDN controllers and NFV

hypervisor entities [26]. The entire network has been virtu-

alized by installing respective VNFs on the pre-fixed nodes.

The SFCs are formed leveraging the connections of multiple

VNFs for providing single or multiple network functions. The

slicing for dedicated application delivery is done within the

programmable hardware units. Table (1) summarizes the para-

metric entities along with their system model interpretations

on AT&T north America topology.

Table I: Sets and Parameters for VNF-EAP

Set/Parameter Description

N Number of total nodes at AT&T where n ∈ N ; n →

node samples

L Number of links where l ∈ L

R Number of requests req ∈ R

srcLi
Source node for link Li; ∀i ∈ I

destLi
Destination node for link Li ∀i ∈ I

distLi
Distance between source and destination for Li

srcR⟩
Source node for SFC request Li ∀i ∈ I

dstR⟩
Destination node for SFC request Li ∀i ∈ I

Rtx,i Transmission delay of link i ∈ Ek

Rproc,i Processing delay in node ni

Rproc,ij Processing delay in VNF instance i on node j

memi Memory is available on each node

B. Model design for the virtualized plane for SFC

To provide an end-to-end network slice orchestration and

management solution, we have formulated a solution for the

VNF placement in a network. From the given system model

of the proposed solution in Fig. 2, we can see that, in order to

solve the problem of embedding VNFs in a network, we need

to consider the topology of the given network, that is how

many nodes(or base stations) are there, how are they linked

and what are the constraints present in them. A particular node

can have multiple servers running in them thereby facilitating

multiple VNFs and in the process enabling network slicing

as well. We can see that for a particular application or

communication type, the network has been sliced and all the

slices utilize the same topology but different links as well

as different VNF instances at the nodes according to their

specific requirements. Once again we see the SDN hypervisor

coming into play for the purpose of slicing the networks, and

the separated control plane and forwarding plane facilitated by

SDN coming in handy to maintain control over the slices of

the network.

IV. PROBLEM FORMULATION FOR VNF-EAP

For this part of the work, we have collected network topo-

logical parameters from [25] which contain various network

topologies from various regions around the world. Each of

these topologies contains N nodes with given ’x’ and ’y’

coordinates, L links connecting any two nodes from the N

nodes and the bandwidth capacity of each link and finally R

number of SFC requests with a source node and destination

node. In this work, we have considered the AT & T North

America topology (first world country of the US) as shown

in Fig. 3. The US topology contains N = 26 nodes, L = 84

links and R = 650 SFC requests per node. The parameters

are customizable, so in future, the application-based demand-

specific modifications can be done as per any requirements.

A flowchart-based representation of the proposed algorithm is

given in Fig. 4.

A. XML parsing and model creation

The first step was to parse the XML files from SDNlib

dataset to extract the data present in the nodes, the links and

the SFC requests. Each node contained its ID, its x-coordinate

and its y-coordinate. For each link, the data contained were

which two nodes were being connected by that link and what

was the bandwidth capacity of that node. Finally, for each

SFC request, the source node, and the destination node were

extracted. Furthermore, each node was allocated some memory

(memi), Vi instances of VNFs in each node each having a par-

ticular VNF type associated with it (Vtypeij ), and some CPU

computing power Vij . For each link, the Euclidean distance

between the source srcLi and the destination node (dstLi) is

found out, distLi which has been calculated with the help of

the ’x’ and ’y’ coordinates for srcLi and dstLi. Lastly, for

the SFC requests, apart from the source node and destination

node for each SFC request srcDi and dstDi, each SFC request

has some CPU computing power required (cpuDi), bandwidth

requirement (bwDi), some memory requirement (memDi)

and a VNF type (Vtypeij ) associated with it. Furthermore,

each request has a lifetime associated with it, because of

which the start time and end time of each request, tsDi and

teDi, respectively, have been considered. There are two ways

the cpuDi has been allocated to each request, one of them

being static or fixed allocation of CPU which does not take

into consideration how much computing power the request

actually demands, the other one being intelligent adaptive

CPU allocation which is predicted based on the bandwidth

requirement of the request. This intelligent prediction of CPU

computing power required is done by Algorithm (1) which is

presented earlier. The parameters of the model can be found

in Tables (1) and (2). After the modelling of the nodes, links

and SFC requests, a multilayered graph is created using an

adjacency matrix representation. The multilayered nature of
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Fig. 4: Algorithmic flow diagram for VNF-READ and SFC-DRIVE

Table II: System model specifications for VNF-EAP

Set/Parameter Description Values

memi Total available memory at each node 1000 MB

vi Number of VNF instances at each node i 20

vij Total CPU for each VNF instance i at node j 1.0

Vtypeij
VNF type for each VNF instance i at each node j type 1,..type 4

cpuDi CPU demand for SFC request i 0.0, 1.0

bwDi Bandwidth demand for SFC request i 0,.., Max BW of the App.

memDi Memory demand for SFC request i 0, 10 MB

cpumax Maximum allowable CPU for each VNF at each node 1.0

tsDi Lifetime start time for SFC request i 1, 100 msec.

teDi Lifetime end time for SFC request i 500, 1500 msec.

dtx,i Transmission delay on link i 1.5 sec.

dproc,i Processing delay on node i 10 sec

dprc,ij Processing delay in VNF instance i on node j 1 msec.

dDrop,i Propagation delay along link i topolody defined

Dmax Maximum tolerable delay 100 msec

the graph originates from the fact that there are multiple VNFs,

Vi, at a particular node, which can be used to serve multiple

SFC requests simultaneously. For each SFC request, however,

this multilayered graph is converted into a single-layer graph,

before further VNF allocation. Algorithms (1) and (2) together

solve the problem with the heuristic approach and extend

a comparative analysis of different state-of-the-art machine

learning algorithms. In this work, we have considered SVR and

KRR algorithms for the interpolation of average VNF sample

points with respect to any new incoming SFC request.

B. Multi-threaded operation for VNF allocation and re-

allocation

After the successful creation of a proper model of the

network topology and the SFC requests, we propose a multi-

threaded approach for the allocation and de-allocation of

resources. As time elapses, the start times of the SFC requests

are monitored and thread T1 takes the responsibility of creating

the single-layer graph for each SFC request. This thread first

prunes all the nodes and links from the graph which contain

insufficient resources to service the request. Upon pruning, a

minimum distance algorithm is applied to find out the shortest

path from the source node to the destination node. For this

purpose, we have employed Dijkstra’s algorithm to find the

shortest route from the source to the destination or target node.

After pruning, if we find that the target node is unreachable

from the source node, that particular SFC request is taken

as failed. For successful service of a request, the following

constraints had to be met regarding the limited availability of

resources.

R∑

i=0

memDi × zmem
ij ≤ memmax, ∀j ∈ N (1)

R∑

i=0

bwDi × zmem
ij ≤ bwmax, ∀j ∈ L (2)

R∑

i=0

cpuDi × zmem
ij ≤ cpumax, ∀j ∈ Nand∀k ∈ Vj (3)
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Here zmem
ij , zbwij , zcpuijk are binary variables which indicate

jth node is being used by SFC request i or not (1 or 0), jth

link is being used by SFC request i or not(1 or 0) and whether

kth VNF instance of jth node is being used for SFC request

i or not (1 or 0), respectively.

Thread T1 is also responsible for checking for available

resources at each node and links in the route from the

source and target. It checks if all the connecting links have

enough bandwidth left to service the request. If available, the

demanded bandwidth is deducted from the available bandwidth

till the end time of that SFC request, teDi. It also checks

if all the nodes in the route from source to target have

enough available memory to accommodate the SFC request

with its memory demand. As far as the CPU goes, we have

implemented the worst-fit algorithm amongst all the VNFs, Vi,

at a particular node, i, to service the request. This means that,

whatever the demand is, the VNF containing the maximum

remaining CPU resource capable of meeting the demands and

is of the same VNF type, Vtypeij , as the request, is allocated to

that particular SFC. This is done to prevent fragmentation of

resources where there might be enough collective resources to

provide service but no singular VNF have enough resources to

provide the service, thus resulting in failure of that particular

request and leading to poor QoS. Each VNF is also associated

with a particular type of VNF or service. Each SFC request

also has a corresponding VNF type or request type associated

with it. At any node, only the same type of VNF can service

a request corresponding to that type of request. We have

proposed two approaches to how the VNF types are divided at

a particular node: a) Uniform division of VNF Types among

all the VNFs at a node and b) Random division of VNF Types

among all the VNFs at a node, which is a more realistic

scenario. We have showcased the results for both of these VNF

Type allocations for both the Indian and the US topology.

Beyond the constraints imposed by the limited availability

of resources, the VNF embedding process also faces con-

straints regarding delays. Instead of a simple additive delay

model, we have tried to emulate a more realistic scenario as

proposed by [27] where the service may be delayed more

if there is less amount of resources. This has been brought

into play by means of a utilization factor, which is given by,

U = (1 − rres)/rres; where rres is the remaining rate of

the resources which is how much resource is remaining after

the resources for a particular SFC request has been allocated.

Since rres can converge to zero after a particular allocation,

it might lead to infinite delay. To avoid this, a lower limit for

the remaining rate of resource had been set at 1× 10−6. The

total end-to-end delay of a particular request is contributed

to by three factors which are processing delays at each node,

processing delays at each VNF, and the combined effect of

both propagation and transmission delays at each link. The

total delay from these various factors must be lesser than the

total allowable delay. The different delay elements and the

delay constraint can be formulated as:

Dtx,i = ddrop,i + dtx,i +
1− rres,bw
rres,bw

× dtx,i, ∀i ∈ L (4)

Dproc,i =
1− rres,mem

rres,mem

× dproc,i, ∀i ∈ N (5)

Dproc,ij =
1− rres,cpu
rres,cpu

× dproc,ij , ∀i ∈ Nand∀j ∈ Vi (6)

Dtx,i +Dproc,i +Dproc,ij ≤ Dmax (7)

Algorithm 1: SFCs as MLG - (Multi-layer Graph)

1 Gk = (Nk,Lk,Rk)→ Graphical Topology;
2 V,L, I ⇒ Nodes, links and VNF instances after the demand

of SFCt where t ∈ T ;
3 X → srcLi, dstLi, distLi, srcDi, dstDi ⇒ Topology

information for Gk

4 N ,L,R → Pruning the nodes, links, and VNF instances
with fewer resources than the demand of SFC requests
SFCi

5 GRAPHmulti → Construct MLG using adjacency matrix
representation.

6 Apply Dijkstra’s algorithm to find the shortest route from the
source node to the target node of SFC request i.

7 bwDi → Deduct demanded bandwidth from all links from
source to target,

8 memDi → Deduct demanded memory from all nodes from
source to target,

9 cpuDi → Calculate CPU demand with help of Machine
Learning technique,

10 cpuDi ← Deduct demanded CPU from all nodes for source
to target with same VNF type Vtypekj

as SFC request ’i’
and VNF instance ’j’ and node ’k’ in worst fit manner.

11 dtx,i, dproc,i, dproc,ij , dprop,i ← compute delay components
to calculate the total compounded delay with utility factor.

12 if [constraints (1), (2), (3), (7) all satisfied] then
13 acquire lock variable to access shared variable and

update success count.
14 put resources demanded by SFC request ’i’ in the

priority queue ’PQ’ according to SFC and times.
15 end
16 else
17 acquire lock variable to access shared value to update

failed count.
18 end
19 END

Algorithm 2: Releasing the VNF instances

1 Gk = (Nk,Lk,Rk) → Graphical Topology;
2 V,L, I ⇒ Nodes, links and VNF instances after the demand of

SFCt where t ∈ T ;
3 X → srcLi, dstLi, distLi, srcDi, dstDi ⇒ Topology information

for Gk

4 teDi,top ⇐ earliest ending time of currently running SFC requests
from priority queue PQ,

5 t ≥ teDi,top, Release resources held by the SFC request at the top
of PQ

6 Forward the function to check the next status.
7 END

V. PERFORMANCE EVALUATION

1) Refinements in the Virtual Plane operations: In Fig. 1 we

have shown the impact of SFC provisioning for multi-layered

network slices. Finding optimal paths to route a network

function belonging to a service chain brings about gains in
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(a) VNF type-1 SFC failure rate (b) VNF type-2 SFC failure rate (c) VNF type-3 SFC failure rate (d) VNF type-4 SFC failure rate

Fig. 5: Distribution of failed SFC requests for uniform VNF distribution for every VNF type on Squid supporting applications

(a) VNF type-1 SFC failure rate (b) VNF type-2 SFC failure rate (c) VNF type-3 SFC failure rate (d) VNF type-4 SFC failure rate

Fig. 6: Distribution of failed SFC requests for random VNF distribution for every VNF type on Squid supporting applications

(a) VNF failure rate on Haproxy (b) VNF failure rate on Nginx (c) VNF failure rate on Squid

Fig. 7: Avg. rate of failed requests for different applications running on different datasets for static VNF distribution

Table III: Analysis on shared VNF utilization

Uniform VNF type -

resource distribution

Percentage Improvement for

VNF types

(Absolute percentages)

Data

Set

Comparative

Analysis

VNF

Type I

VNF

Type II

VNF

Type III

VNF

Type IV

Hap-

roxy

Fixed Allocation ±

to SVR
19.92% 20.02% 20.31% 20.42%

Fixed Allocation

to KRR
20.56% 20.34% 20.91% 21.06%

KRR to SVR &

vice-versa
0.64% 0.32% 0.60% 0.64%

Nginx

Fixed Allocation

to SVR
25.70% 25.75% 25.67% 24.86%

Fixed Allocation

to KRR
25.38% 25.39% 25.15% 24.49%

KRR to SVR &

vice-versa
0.32% 0.36% 0.52% 0.38%

Squid

Fixed Allocation

to SVR
17.47% 17.48% 17.24% 16.59%

Fixed Allocation

to KRR
16.10% 15.87% 15.48% 15.30%

KRR to SVR &

vice-versa
1.37% 1.61% 1.76% 1.30%

the total bandwidth utilization of the links which reduces the

energy consumption in the network. Both, the physical as

well as virtual links have been considered for this bandwidth

calculation. Also, since a demand needs to traverse through

all the VNFs present in the service chain, following optimal

paths takes lesser time and an overall reduction in the latency

of operation in the entire SDN and NFV-enabled network

framework can be observed.

Table IV: Analysis on dynamically shared VNF utilization

Random VNF type -

resource distribution

Percentage Improvement for

VNF types

(Absolute percentages)

Data

Set

Comparative

Analysis

VNF

Type I

VNF

Type II

VNF

Type III

VNF

Type IV

Random Allocation

to SVR
11.07% 6.83% 11.76% 7.70%

Random Allocation

to KRR
11.18% 6.58% 11.41% 7.95%

Hap-

roxy KRR to SVR &

vice-versa
0.11% 0.24% 0.35% 0.25%

Random Allocation

to SVR
14.24% 8.34% 15.12% 9.64%

Random Allocation

to KRR
13.60% 8.11% 14.75% 9.48%

Nginx
KRR to SVR &

vice-versa
0.64% 0.24% 0.37% 0.17%

Random Allocation

to SVR
10.42% 5.57% 10.81% 8.13%

Random Allocation

to KRR
9.79% 5.72% 10.79% 7.62%

Squid
KRR to SVR &

vice-versa
0.63% 0.15% 0.02% 0.51%

2) Service Flow Considerations on shared VNFs: It must

be noted that we have shown the variation of latency of the

network with the SDN density instead of the network slice

density. This is because of the fact that any user demand

is generated in the Control Plane and the Virtual Plane is

only used to provide different network services. So regardless

of how many network slices are embedded, if the functional

policy being requested is embedded in a particular slice, then
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(a) Failure rate for Haproxy dataset (b) Failure rate for Nginx dataset (c) Failure rate for Squid dataset

Fig. 8: Avg. rate of failed requests for different applications running on different datasets for random VNF distribution

that would be used for demand fulfilment. This independence

between Slice density and latency of network operation has

been shown in Fig. 2. Keeping the SDN density constant we

varied the NS density and calculated the corresponding latency

values. A slight variation was seen due to averaging of values

obtained from 100 model runs but it can be observed clearly

that in general, the latency remained constant for a given SDN

density. Algorithms (1) and (2) work on the same backbone

model with a fixed amount of network resources in uniform

and dynamic environments consecutively.

The MLG as shown in Fig. 1, is formed following a logical

slicing method on a shared physical backbone network. Indi-

vidual slices are responsible to serve dedicated network ser-

vices. The intelligent approach of MLG includes simultaneous

distributions of Random and Uniform traffic distributions over

the topology under observation. SDN controllers are responsi-

ble for the network softwarization and the NFV hypervisor is

responsible for the network virtualization phenomenons. Both

of these processes together generate multiple graph-like slices

where the OpenFlow data-plane switches are controlled by

the nodes (SDN controller and NFV hypervisor) units. The

wired connection links are the optical fibre connections which

are represented as the graphical edges. The modelling of the

graph is explained in Section III using the parameters from

table (I).

3) System Specification and Complexity Analysis: For VNF

placement (Algorithm 1), the XML parsing and demand gen-

eration are done in linear time. So the time complexity of these

events will be O(L)+O(N )+O(D), where L, N and D are

the total number of links, the total number of nodes and delay

per node, respectively. We see that the thread T1 creates the

pruned graph in O(L) time as only the links’ data is required

in this step. To find the shortest distance from the source to the

target node, we applied Dijkstra’s shortest path algorithm that

has a complexity of O(N 2). After finding the shortest path,

resource allocation and VNF embedding are done with the help

of Algorithm 1, which has the complexity of O(N×Vi), where

Vi is the total number of VNF instances at the ith node. A

priority queue is maintained for thread T2 to release resources

that have been allocated by thread T1. Here insertion of the

VNF instances into the priority queue is done as shown in

Algorithm 2 that has a complexity of O(log[D]). We find that

thread T2 is only responsible for releasing resources and it is

done in the O(N + L) time. Therefore, we see that the total

complexity of the entire process is O(N 2). The simulation has

been executed on Google Colab with 12.7 GB of RAM.

VI. RESULTS AND DISCUSSIONS

In the overall result analysis via exhaustive simulations, it is

found that our proposed solution gives better QoS under both

ideal uniformly distributed VNF types as well as more realistic

random VNF type allocation for real network topology. We

have taken 300 runs of our VNF placement algorithm each

time with randomized SFC requests. From the distribution

diagrams in Fig. 5, it is clear that the number of failed SFC

requests follows a constant trend throughout the 300 runs

of the algorithm for all scenarios that have been considered.

Figures (5a) through (5b) show the average failure rate for SFC

requests over 300 runs for different VNF types and different

applications. In every possible scenario, resource allocation

done with the help of machine learning over fixed allocation

performs better. In ideal conditions where different types of

VNFs are distributed uniformly among all available VNFs

at a node, intelligent resource allocation can achieve 15%,

17%, and 20% fewer failed requests than fixed resource allo-

cation in the Indian topology for Squid, Haproxy, and Nginx

applications respectively. For the US topology and uniform

VNF distribution, our proposed solution achieves 16%, 20%,

and 25% fewer failed requests than fixed resource allocation

for Squid, Haproxy, and Nginx applications respectively. Fig.

6 shows the case of random VNF distribution over the US

topology (AT&T Topology) for Squid environment. Figures

(7) and (8) show the average rate of failed requests for

different applications running on different datasets for static

and dynamic VNF distributions respectively. Even under more

realistic conditions, where the distribution of different types of

VNFs at a particular node is random, our solution still provides

8%, 9%, and 7% better QoS for Haproxy, Nginx, and Squid

applications respectively in the Indian topology. On the US

topology, for the applications Haproxy, Nginx, and Squid, we

achieved respectively an improvement of 11%, 12%, and 8%

in QoS. Table (5) summarizes the percentage improvements

achieved with our algorithm. While there is a significant

improvement in QoS for intelligent resource allocation as

compared to fixed allocation, there isn’t a significant difference

between the performance of the two machine learning models

that we have trained for this purpose. While KRR outperforms

SVR during the training of the models, the final result of

QoS is not significantly affected by that difference. From

the above figures and results, it is clear that fixed resource

allocation can cause quite a drop in QoS as a significant

number of SFC requests to fail due to a lack of resources. This

happens because a significant amount of resources is allocated
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to requests irrespective of their actual need which results in the

consequent failure of further requests as they find themselves

without any available resources.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed two novel algorithms (VNF-

READ and SFC-DRIVE) to realize suitable solutions for

VNF-EAP (VNF-Embedding and Allocation Problem) on real

network topology. Service-type specific VNFs are chosen

and allocated to the requested SFCs by following static and

dynamic methods respectively. The process uses Machine

Learning techniques to predict the VNF instances with the

minimum errors. The VNF instances are limited, hence the

distribution of all such instances must be done intelligibly.

The aim is to save the network resources and minimize

the false resource claims by the network applications. Our

exhaustive result analysis shows significant improvement in

VNF classifications over state-of-the-art techniques. We have

shown the SFC and VNF failure analysis of the Squid dataset.

A similar analysis has been conducted for the other two

datasets (Nginz, and Haproxy). Both uniform and random VNF

distributions for all three datasets for a variety of networking

conditions are examined parallelly. The potential future work

could be further improvements in the accuracy of resource

prediction and latency of VNF embedding.
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