This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3235382

DRIVE: Dynamic Resource Introspection and VNF
Embedding for 5G using Machine Learning

Deborsi Basu,* Graduate Student Member, IEEE, Soumyadeep Kalt, Uttam Ghosh,t Senior Member, IEEE
and Raja Datta,T Senior Member, IEEE
*G. S. Sanyal School of Telecommunications, Indian Institute of Technology Kharagpur, India.
"Dept. of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, India.
IDept. of Computer Science and Data Science, Meharry Medical College, TN, USA.
d.basu@iece.org*, s.kal034@kgpian.iitkgp.ac.inf, ghosh.uttam @ieee.org?, rajadatta@ece.iitkgp.ac.in’

Abstract—Network Slicing (NS) technique is comprehensively
reshaping the next-generation communication networks (e.g. 5G,
6G). Software-Defined Networking (SDN) and Network Functions
Virtualization (NFV) predominantly control the flow of service
functions on NS to incorporate versatile applications as per user
demands. In the virtualized-Software Defined Networking vSDN
environment, a chain of well-defined virtual network functions
(VNFs) are installed on Service Function Chains (SFCs) by mul-
tiple Internet Service Providers (ISPs) concurrently. Generation,
allocation, re-allocation, release and destroying associative VNFs
on SFC is an extremely difficult task while keeping high selection
accuracy. Towards solving this fundamental issue, in this work,
we have proposed a multi-layered SFC formation for adaptive
VNF allocation on dynamic slices. We have formulated an
ILP to address the VNF-EAP (VNF-Embedding and Allocation
Problem) over real network topology (AT&T Topology). Lever-
aging machine learning techniques we have shown an intelligent
VNF selection mechanism to optimize resource utilization. The
performance evaluation shows remarkable efficiency on ML-
driven dynamic VNF selections over static allocations on SFCs
by halving resource usage. Further, we have also studied a VNF
typecasting technique for service backup on outage slices in the
field of disaster management activities.

Index Terms—SDN, NFYV, 5G and beyond, VNF, SFC, TSPs,
Machine Learning

I. INTRODUCTION

The forthcoming 5G and beyond communication networks
are reshaping the overall network architecture for ultimate
user experiences. As the pace of development increases in the
networking sector, it calls for better infrastructure to facilitate
the growing and increasingly stringent demands from various
sectors of society [1], [2]. There’s an ever-growing need for
better network speed, better connectivity and lower network
latency. As a result, many advanced technologies have been
brought to the limelight to meet these demands. Concepts
like SDN, NFV, NS, ML, and AI are now the forerunners
of streamlining the process of delivering better network con-
nectivity but with a manageable cost to the network operators
[3], [4]. Contrary to 2G, 3G, and existing 4G-LTE networks
and the demands of those areas, modern network demands
are now much more varied and the service requirements have
also become more strict to ensure better service. As a result,
the networks in 5G and beyond are generally ‘sliced’ to cater
to specific needs according to the network’s subscribers. A
major portion of the realization and maintenance of these slices
is from the management and orchestration of network slices.
Furthermore, the allocation of resources becomes crucial in

such scenarios, hence the introduction of robust machine
learning algorithms to help us maintain quality service.

The heterogeneous network slices are done logically based
on three major types of subscriber demands. The first one is
eMBB (enhanced mobile broadband) which caters to mobile
users and the main focus of this slice is maintaining a stable
connection with at least moderate to high peak data rates.
The second one is mMTC (machine type communication) and
as the name suggests, this slice is catered towards meeting
demands for communication between different machines. This
slice finds itself most utilized in IoT where different sensors
and controllers need communication for perfect working.
Lastly, the URLLC (ultra-reliable low latency communication)
slice is kept for applications and subscribers for whom low
latency is crucial for their operation such as smart healthcare
applications [5]. As a result, this slice is utilized by the medical
sector, disaster management, autonomous vehicular networks,
and UAV networks, to name a few [6], [7].

The indigenous traffic characteristics of vast user domains
generate random and complex demands. Managing such di-
verse traffic often requires VNF concatenation and steering of
network functions. Chaining and aligning multiple VNFs to
serve demand-specific applications are termed SFC (Service
Function Chaining) [8]. The advantage of network softwariza-
tion and virtualization leveraging SDN and NFV concepts
helps multiple VNF instances to run on the shared platform.
These VNF instances can be created, allocated, re-allocated,
released, deleted, and updated on-demand basis. Orchestrating
the VNF instances by optimizing SFC requests is an extraordi-
narily challenging and difficult task for any network operator.
Further, network constraints like restricted resources (network
bandwidth, CPU memory, etc.) generate additional hindrances
towards traffic steering over shared resources.

Main Motivation Behind the Work:

Recent state-of-the-art analysis shows the importance of
the problem. In [9] authors have detailed the challenges
faced while deploying next-generation infrastructure for the
betterment of humanity. The surge in local tariff plans and
uninitialized service plans has already started putting the load
on consumers’ pockets. The improper service distribution
also causes a huge waste of network resources. Though
technologies like SDN, NFV, NS, 5G, and next-generation
Al extend their comprehensive contributions to resolve such
critical issues [10], the existence of suitable resource sharing,

Authorized licensed use limited to: Howard University. Downloaded on June 30,2023 at 16:22:34 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3235382

— Intra-slice link
e |niter-slice link

.IPlaced VNF instance ..Unplaced VNF Instance @ Selected instance OpenFlow Switches
4 &

(D-plane)

SDN Controller
{C-plane)

SDN Hypervisor

(H-plane)

Virtual H-plane
Instances

Virtual C-plane

Instances

P
A

MEC
-
N

Server % '
B “"(
= \,'5 %

D-plane

()] Small scale
A

Region controller

@I MEC Server

Network
Slices

=
«g»

Edge Controlling
Tower

Physical Links

1

1

1

1

1

1

1

1

1

1

1

1

1

1 (eg) Last Mile Network
F A

1

1

1

1

1

1

1

1

1

1

1

1 Wireless Links
1

Network Slicing and Virtual Resource Distributions

k C-plane to D-plane
1 connecter

Fig. 1: vSDN-based network slicing architecture for 5G and beyond networks with shared-SFCs

re-sharing, rolling back, and controlling algorithms is still an
open area for significant contributions. These factors motivate
us to build an exclusive and user-friendly technique for the
next-level quality of service.

Understanding the factors is very easy here, given a
resource-restricted environment where users are continuously
growing. Now, the VNF instances that channel the services
need to be coupled in such a way that the formation of
SFCs should satisfy the targets. A simplistic overview of SFC
formation in a multi-slice environment is shown in Fig. 1.
Two main targets which have been addressed here are 1)
how to select the suitable VNF clusters from the pool and 2)
how efficiently concatenate them following restricted resource
availability and network QoS. The problems are aggregated
as VNF-EAP and a suitable and novel approach is adopted
to solve them over real network topology. The next section
explains our major contributions briefly.

Contributions Solving the complex VNF-EAP with dy-
namic resource sharing is done by formulating a BIP model
(Binary Integer Programming model). The target objective is
to optimize the QoS that relates to end-to-end SFC cost and
resource utilization capacity. We have proposed two novel al-
gorithms termed VNF-READ Algorithm (VNF Re-allocation,
VNF Evoke, VNF Allocation, VNF Delete or Detention) and
SFC-DRIVE using multi-graph layering.

e AT & T North America topology from [11] is considered
as a multi-layered graph with shared-SFCs distributed
over the entire region and exchanging information. The
demand-based user traffic analysis is modelled following
the MIP. The parameters of different factors and their
corresponding values are given in tables (1) and (2)
respectively.

« Beyond the problem of proper estimation of required
resources to fulfil a network demand, we need to also
place or ‘embed’ the VNFs in a network to actually
service a particular network request. This brings us to the
next part of our work. To actually serve a network request,
all the parameters related to the request will have to be
accommodated within the limits of the network topology
and its capacities.

o Owing to the fact that these network requests are to be
serviced by VNFs, the main attribute related to a particu-
lar request was its memory demand which is the amount
of memory a particular VNF would consume to serve
the request, its bandwidth demand which is how much
bandwidth it would take up while travelling through the
links between the nodes in any given network topology,
and finally depending upon the bandwidth demand, there
will be demand for CPU resources which we aimed to
find out by intelligent methods.

o Keeping in mind the maximum available resources at the
links and the nodes we have to route the request through
the nodes and links in the topology which provides
the fastest and most reliable service function chaining.
Only from an end-to-end solution can we appreciate the
increase in QoS through realistic VNF embedding along
with an intelligent estimation of resource allocation for
SFC requests.

Paper Organization: The rest of the paper is organized as
follows: related state-of-the-art techniques and the existing so-
Iutions are shown in Section II. Section III explains the system
model over the real network topology. VNF-EAP is formulated
as a BIP problem in Section IV. Section V demonstrates
the proposed VNF-READ and SFC-DRIVE algorithms with

Authorized licensed use limited to: Howard University. Downloaded on June 30,2023 at 16:22:34 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3235382

extensive simulations. Section VI does the result analysis and
discussions to show the efficiency of our proposed approach.
Finally, Section VII concludes the work with some open
research directions.

II. RELATED WORKS

Network Slicing has emerged as one of the key areas on
which the forthcoming 5G and emerging 6G technologies will
rely. Several applications are already running in the market.
Researchers have started contributing after identifying the
problems. Several novel contributions have already been made
but most of them are not sufficient enough to address the ever-
growing complexities and all-new challenges. The progress is
still growing and evolving [12], [13].

A. Resource Sharing in Network Slicing

A hierarchical decomposition method was proposed by Sun-
day. O. Oladejo et al. addressing the resource allocation prob-
lem of NS. They have formulated their optimization model
as a maximum utility optimization problem. An extensive
solution leveraging Monte Carlo simulation is done using a
genetic algorithm. Their findings aim to minimize the misuse
of available resources within a resource-constrained environ-
ment [11]. Dynamic resource allocation is addressed using a
unique PDRA (Priority-Based Dynamic Resource Allocation)
Scheme in [14]. An agent-based resource management algo-
rithm is proposed which dynamically allocates resources based
on priorities and demand profiles of the incoming request
types. The optimization is formed as an LP problem (Lin-
ear Programming) on CMDP (Constrained Markov Decision
Process). In [15] authors have studied the VNF’s demand-
based characteristics and predicted the approximate numbers
of required functions based on real VNF data. S. Draxler et
al. put forth a dynamic joint scaling and placement solution
with a bi-directional traverse through VNFs and falling back
to their respective origins. They have formulated the joint
optimization as a MILP (Mixed Integer Linear Programming)
model. The proposed concept of VNF reuse supports network
functions with pre-defined locations and is static in nature.
Their heuristic algorithm solves the NP-complete problem in
a short time which they have proved later [16].

B. VNF and SFC Coupling for future 5G

Jianing Pei et al. formulated the problem of SFC embedding
in a geo-distributed network as a model based on binary integer
programming (BIP) aiming to embed SFC requests at the
minimum possible cost. Also, their SFC embedding approach
which they called SFC-MAP and the dynamic release of VNF
instances had been proposed for the purpose of embedding
SFC requests and optimizing the number of VNF instances
placed to service a particular request. Their performance
evaluation results showed their algorithms provided higher
performance in terms of SFC request acceptance rate and
network throughput [17]. Mohammad M. Tajiki et al. in [18]
formulated the problem of VNF placement in a network as an
Integer Linear Programming based optimization problem while
being aware of constraints on delay, link and server utilization.
They proposed a heuristic solution to find a near-optimal

solution within a realistic real-life time frame. Francesco
Malandrino et al. studied the area of VNF sharing which
involves sharing a particular VNF at a node to service multiple
requests and adapting the virtual machines to handle the
multiple service requests which are being serviced by it. They
also proposed their solution with the goal of reducing total
cost and end-to-end delay as well. Their solution provided
a near-optimal solution to the VNF embedding problem via
VNF sharing which ran in polynomial time [19].

\

/ \ 4 \ 4
g\vmz [WNE3 (UNE4),
/ \ /TN /~,
/ o h /
/ \\
VNF 1)

\

\
VNE5)
\
.
bbbbb
*+,, End Point 2

Physical
Resources

J

——+ Node Embedding

End Point1 ¢

End-to-End Service

Physical Link

——--» linkEmbedding == # Virtual Link

Fig. 2: VNF mapping over SFCs of physical resource units

C. Intelligent Resource Sharing using ML

Recent works are using extensive ML and DL techniques
for resource-aware NS. In [20], the authors have implemented
a machine learning-based solution for intelligent resource
allocation. Their proposed approach has framed the traffic
characteristics as a Convolutional Long-Short Term Memory
(ConvLSTM). They have optimized the system delay consider-
ing a vehicular network. Their optimal slice weight allocation
problem is solved using the primal-dual interior-point method.
A deep reinforcement learning approach is used to solve the
resource allocation problem in [21]. Authors have assumed
the resource demand as ’states’ and allocated resources as
actions’. A GAN network model (Generative Adversarial
Network model) is used to find the action state values using the
deep Q-learning network method. The novelty was to check
the system performance in the presence of noise.

The methods explained above do not consider any real
network topology while allocating resources on-demand. The
random and abrupt networking behaviour produces a strong
barrier against the smooth flow of services [22]-[24]. In
this work, we have applied the model over the real-network
topology emphasising the practicality of our system model and
to the best of our knowledge, this approach is the first-ever of
its kind.

III. SYSTEM MODEL ARCHITECTURE ON AT&T
A. SDN and NFYV for NS

The introduction of SDN and NFV in networking opened
up a lot of avenues for innovation. Before the introduction of
such concepts, the data plane and the control plane had no
separation between them and as a result, there was not much
control over it, but with the introduction of SDN, the data
plane and the control plane were separated which meant, we

Authorized licensed use limited to: Howard University. Downloaded on June 30,2023 at 16:22:34 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3235382

could control the data plane more centrally. This meant that
we could determine paths for data packets to take without
the data having to go through unnecessary routes. As a result
of SDN, network security increased as well as costs were cut
down since the control plane was more centralized. SDN paved
the way for Network Function Virtualization to appear in the
picture.

Soatila

mam]

Fig. 3: AT&T North America Topology [25]

Fig. 3 represents our reference topological framework over
which the entire experiment has been performed. Individual
node points in the graph are the SDN controllers and NFV
hypervisor entities [26]. The entire network has been virtu-
alized by installing respective VNFs on the pre-fixed nodes.
The SFCs are formed leveraging the connections of multiple
VNFs for providing single or multiple network functions. The
slicing for dedicated application delivery is done within the
programmable hardware units. Table (1) summarizes the para-
metric entities along with their system model interpretations
on AT&T north America topology.

Table I: Sets and Parameters for VNF-EAP
Set/Parameter [[Description
N Number of total nodes at AT&T where n € N; n —

node samples

L Number of links where [€ £
R Number of requests req € R
srcy,. Source node for link L;; Vi € T
destr,; Destination node for link L; Vi € T
distr; Distance between source and destination for L;
STCR Source node for SFC request L; Vi € [
dst Destination node for SFC request L; Vi € I
Rix.i Transmission delay of link 7 € Ej,
Rpyroc,i Processing delay in node n;
Rproc,ij Processing delay in VNF instance i on node j
mem,; Memory is available on each node

B. Model design for the virtualized plane for SFC

To provide an end-to-end network slice orchestration and
management solution, we have formulated a solution for the
VNF placement in a network. From the given system model
of the proposed solution in Fig. 2, we can see that, in order to
solve the problem of embedding VNFs in a network, we need
to consider the topology of the given network, that is how
many nodes(or base stations) are there, how are they linked
and what are the constraints present in them. A particular node
can have multiple servers running in them thereby facilitating
multiple VNFs and in the process enabling network slicing
as well. We can see that for a particular application or
communication type, the network has been sliced and all the
slices utilize the same topology but different links as well

as different VNF instances at the nodes according to their
specific requirements. Once again we see the SDN hypervisor
coming into play for the purpose of slicing the networks, and
the separated control plane and forwarding plane facilitated by
SDN coming in handy to maintain control over the slices of
the network.

IV. PROBLEM FORMULATION FOR VNF-EAP

For this part of the work, we have collected network topo-
logical parameters from [25] which contain various network
topologies from various regions around the world. Each of
these topologies contains A nodes with given ’x’ and ’y’
coordinates, £ links connecting any two nodes from the N
nodes and the bandwidth capacity of each link and finally R
number of SFC requests with a source node and destination
node. In this work, we have considered the AT & T North
America topology (first world country of the US) as shown
in Fig. 3. The US topology contains N' = 26 nodes, £ = 84
links and R = 650 SFC requests per node. The parameters
are customizable, so in future, the application-based demand-
specific modifications can be done as per any requirements.
A flowchart-based representation of the proposed algorithm is
given in Fig. 4.

A. XML parsing and model creation

The first step was to parse the XML files from SDNIib
dataset to extract the data present in the nodes, the links and
the SFC requests. Each node contained its ID, its x-coordinate
and its y-coordinate. For each link, the data contained were
which two nodes were being connected by that link and what
was the bandwidth capacity of that node. Finally, for each
SFC request, the source node, and the destination node were
extracted. Furthermore, each node was allocated some memory
(mem;), V; instances of VNFs in each node each having a par-
ticular VNF type associated with it (Viype,,), and some CPU
computing power V;;. For each link, the Euclidean distance
between the source srcy; and the destination node (dsty;) is
found out, disty; which has been calculated with the help of
the "x’ and 'y’ coordinates for srcr; and dstr;. Lastly, for
the SFC requests, apart from the source node and destination
node for each SFC request srcp; and dstp;, each SFC request
has some CPU computing power required (cpup;), bandwidth
requirement (bwp;), some memory requirement (memp;)
and a VNF type (Viype,;) associated with it. Furthermore,
each request has a lifetime associated with it, because of
which the start time and end time of each request, {sp; and
tep;, respectively, have been considered. There are two ways
the cpup; has been allocated to each request, one of them
being static or fixed allocation of CPU which does not take
into consideration how much computing power the request
actually demands, the other one being intelligent adaptive
CPU allocation which is predicted based on the bandwidth
requirement of the request. This intelligent prediction of CPU
computing power required is done by Algorithm (1) which is
presented earlier. The parameters of the model can be found
in Tables (1) and (2). After the modelling of the nodes, links
and SFC requests, a multilayered graph is created using an
adjacency matrix representation. The multilayered nature of

Authorized licensed use limited to: Howard University. Downloaded on June 30,2023 at 16:22:34 UTC from |IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3235382

______________ ————

Allocate BW from all links in route l_LJ
]

In a different parallel
thread; the locked
resources are released

e s——

!

’.EE once the lifetime of a
- request gets fulfilled
_ _____________

Allocate memory from all links in
route

I
Allocate CPU from VNFs at each node
in worst fit manner to prevent
fragmentation

CPU demand is calculated

i o ————————————————————

Fig. 4: Algorithmic flow diagram for VNF-READ and SFC-DRIVE

Table II: System model specifications for VNF-EAP |

| Set/Parameter | Description 1 Values |
mem; Total available memory at each node 1000 MB
v, Number of VNF instances at each node i 20
Vij Total CPU for each VNF instance i at node j 1.0
Vtype-;j VNF type for each VNF instance i at each node j type 1,..type 4
cpupi CPU demand for SFC request i 0.0, 1.0
bwp; Bandwidth demand for SFC request i 0,.., Max BW of the App.
memp; Memory demand for SFC request i 0, 10 MB
CPUMazx Maximum allowable CPU for each VNF at each node 1.0
tspi Lifetime start time for SFC request i 1, 100 msec.
tep; Lifetime end time for SFC request i 500, 1500 msec.
dig,i Transmission delay on link i 1.5 sec.
dproc,i Processing delay on node i 10 sec
dpre,ij Processing delay in VNF instance i on node j 1 msec.
dprop,i Propagation delay along link i topolody defined
Dinax Maximum tolerable delay 100 msec

the graph originates from the fact that there are multiple VNFs,
Vi, at a particular node, which can be used to serve multiple
SFEC requests simultaneously. For each SFC request, however,
this multilayered graph is converted into a single-layer graph,
before further VNF allocation. Algorithms (1) and (2) together
solve the problem with the heuristic approach and extend
a comparative analysis of different state-of-the-art machine
learning algorithms. In this work, we have considered SVR and
KRR algorithms for the interpolation of average VNF sample
points with respect to any new incoming SFC request.

B. Multi-threaded operation for VNF allocation and re-
allocation

After the successful creation of a proper model of the
network topology and the SFC requests, we propose a multi-
threaded approach for the allocation and de-allocation of
resources. As time elapses, the start times of the SFC requests
are monitored and thread 7 takes the responsibility of creating
the single-layer graph for each SFC request. This thread first

prunes all the nodes and links from the graph which contain
insufficient resources to service the request. Upon pruning, a
minimum distance algorithm is applied to find out the shortest
path from the source node to the destination node. For this
purpose, we have employed Dijkstra’s algorithm to find the
shortest route from the source to the destination or target node.
After pruning, if we find that the target node is unreachable
from the source node, that particular SFC request is taken
as failed. For successful service of a request, the following
constraints had to be met regarding the limited availability of
resources.

R
N memp; x 2 < meman, Vi €N (D)
i=0
R
> bwpi x 27 < bvgmaz, Vi € L)
=0
R
Zcpum X 27 < epmaz, Vi € Nandvk €V (3)
i=0

Authorized licensed use limited to: Howard University. Downloaded on June 30,2023 at 16:22:34 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3235382

Here 277™, 2}, 27" are binary variables which indicate
7" node is being used by SFC request i or not (1 or 0), j**
link is being used by SFC request i or not(1 or 0) and whether
kth VNF instance of j** node is being used for SFC request

i or not (1 or 0), respectively.

Thread 71 is also responsible for checking for available
resources at each node and links in the route from the
source and target. It checks if all the connecting links have
enough bandwidth left to service the request. If available, the
demanded bandwidth is deducted from the available bandwidth
till the end time of that SFC request, tep;. It also checks
if all the nodes in the route from source to target have
enough available memory to accommodate the SFC request
with its memory demand. As far as the CPU goes, we have
implemented the worst-fit algorithm amongst all the VNFs, V;,
at a particular node, i, to service the request. This means that,
whatever the demand is, the VNF containing the maximum
remaining CPU resource capable of meeting the demands and
is of the same VNF type, V;ypeij, as the request, is allocated to
that particular SFC. This is done to prevent fragmentation of
resources where there might be enough collective resources to
provide service but no singular VNF have enough resources to
provide the service, thus resulting in failure of that particular
request and leading to poor QoS. Each VNF is also associated
with a particular type of VNF or service. Each SFC request
also has a corresponding VNF type or request type associated
with it. At any node, only the same type of VNF can service
a request corresponding to that type of request. We have
proposed two approaches to how the VNF types are divided at
a particular node: a) Uniform division of VNF Types among
all the VNFs at a node and b) Random division of VNF Types
among all the VNFs at a node, which is a more realistic
scenario. We have showcased the results for both of these VNF
Type allocations for both the Indian and the US topology.

Beyond the constraints imposed by the limited availability
of resources, the VNF embedding process also faces con-
straints regarding delays. Instead of a simple additive delay
model, we have tried to emulate a more realistic scenario as
proposed by [27] where the service may be delayed more
if there is less amount of resources. This has been brought
into play by means of a utilization factor, which is given by,
U = (1 — 7yes)/Tres; Where r,..s is the remaining rate of
the resources which is how much resource is remaining after
the resources for a particular SFC request has been allocated.
Since r..s can converge to zero after a particular allocation,
it might lead to infinite delay. To avoid this, a lower limit for
the remaining rate of resource had been set at 1 x 107°. The
total end-to-end delay of a particular request is contributed
to by three factors which are processing delays at each node,
processing delays at each VNF, and the combined effect of
both propagation and transmission delays at each link. The
total delay from these various factors must be lesser than the
total allowable delay. The different delay elements and the
delay constraint can be formulated as:

1- res,bw .
Dtx,i = ddrop,i + dtm,i + # X dtw,i7vz el (4)

Tres,bw

1—r .
DPTOC7i = T X dproc,i>V7/ € N (5)

7/"T‘GSJ’IIG'ITL

1 - 7 . .
Dpv"oc,ij = Tesepu o dpr(,(;’ij,\v/l S Nande eV, (6)

Tres,cpu

Dtx,i + Dproc,i + Dproc,ij S Dmam (7)

Algorithm 1: SFCs as MLG - (Multi-layer Graph)

t Gy = (Ng, Lk, Ri) — Graphical Topology;

2 V, L,7 = Nodes, links and VNF instances after the demand
of SFCy where t € T,

3 X — srcri,dstrs, distrs, srcps, dstp; = Topology
information for Gg

4 N, L, R — Pruning the nodes, links, and VNF instances
with fewer resources than the demand of SFC requests
SFC;

s GRAPH uit; — Construct MLG using adjacency matrix
representation.

6 Apply Dijkstra’s algorithm to find the shortest route from the
source node to the target node of SFC request i.

7 bwp; — Deduct demanded bandwidth from all links from
source to target,

8 memp,; — Deduct demanded memory from all nodes from
source to target,

9 cpup; — Calculate CPU demand with help of Machine
Learning technique,

10 cpup; < Deduct demanded CPU from all nodes for source
to target with same VNF type Viype,; as SFC request "1’
and VNF instance ’j” and node ’k’ in worst fit manner.

11 diz,i, dproc,i, Aproc,ij, dprop,i <— compute delay components
to calculate the total compounded delay with utility factor.

12 if [constraints (1), (2), (3), (7) all satisfied] then

13 acquire lock variable to access shared variable and
update success count.
14 put resources demanded by SFC request ’i’ in the

priority queue "PQ’ according to SFC and times.
15 end
16 else
17 acquire lock variable to access shared value to update

failed count.
18 end

19 END

Algorithm 2: Releasing the VNF instances

Gy = (Nk, Lk, Ry) — Graphical Topology;

2 V, L, T = Nodes, links and VNF instances after the demand of
SFCt where t € T},

3 X — srcpq,dstr;,distr;, srcp;,dst p; = Topology information
for Gg,

4 tep; top < earliest ending time of currently running SFC requests
from priority queue PQ,

5 t > tepj top. Release resources held by the SFC request at the top

of PQ
6 Forward the function to check the next status.
7 END

—_

V. PERFORMANCE EVALUATION
1) Refinements in the Virtual Plane operations: In Fig. 1 we
have shown the impact of SFC provisioning for multi-layered
network slices. Finding optimal paths to route a network
function belonging to a service chain brings about gains in

Authorized licensed use limited to: Howard University. Downloaded on June 30,2023 at 16:22:34 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3235382

Sauid VNFL Squid VNF2 SQUAVNES Squid VN4

1 E 0 50 E] £ 310 1] E) 100 150 %0 % 30 0 B 5 20 50 £ 1] E 0 50 0 %0 310
s s s s

(a) VNF type-1 SFC failure rate (b) VNF type-2 SFC failure rate (c) VNF type-3 SFC failure rate (d) VNF type-4 SFC failure rate

Fig. 5: Distribution of failed SFC requests for uniform VNF distribution for every VNF type on Squid supporting applications

SUAVNFL Sauid VNF2 SIidVNE VN4

— S

1] E) e e 0 % 0 1] @ 00] 0 E) E) 1 E) 1w 0 %0 % 0 1] % e 0 % EY
s s s ns

(a) VNF type-1 SFC failure rate (b) VNF type-2 SFC failure rate (c) VNF type-3 SFC failure rate (d) VNF type-4 SFC failure rate

Fig. 6: Distribution of failed SFC requests for random VNF distribution for every VNF type on Squid supporting applications

Haproxy failure rate Nginx failure rate Squid failure rate

= v T = e

w0] - Hean 0 - AR Hean w0 - - AR Hean
. B - e = e e || [= e e

35 = 35 35 -

F % F

e ol 1 sl N

i i S i

2 ™ 22

H H H

5., $ £ -

2 2 2 - -- . -
; N "Im H NR ; [1 | | ;
s s s

VNFL VNF2 WNF3 VNF4 VNFL VNF2 VNF3 VN4 VNFL VNF2 VNF3 VNF4
VNF Types VINF Types VNF Types

(a) VNF failure rate on Haproxy (b) VNF failure rate on Nginx (c) VNF failure rate on Squid

Fig. 7: Avg. rate of failed requests for different applications running on different datasets for static VNF distribution

Table III: Analysis on shared VNF utilization Table IV: Analysis on dynamically shared VNF utilization
Uniform VNF type - Percentage Improvement for Random VNF type - Percentage Improvement for
resource distribution VNF types resource distribution VNF types
(Absolute percentages) (Absolute percentages)
Data Comparative VNF VNF VNF VNF Data Comparative VNF VNF VNF VNF
Set Analysis Type 1 Type 11 Type III Type IV Set Analysis Type 1 Type 11 Type III | Type IV
Fixed Allocation — Random Allocation
Hap- to SVR 19.92% 20.02% 20.31% 20.42% to SVR 11.07% 6.83% 11.76% 7.70%
roxy F'Xefo’ﬁll‘;ﬁ‘“"“ 2056% | 20.34% | 2091% | 21.06% Hap- Ra“d‘:g’lgllll‘;cat“’“ 1.18% | 6.58% | 1141% | 7.95%
KRR to SVR & 0.64% | 0.32% 0.60% 0.64% roxy KRR to SVR & 0.11% | 024% 0.35% 0.25%
vice-versa vice-versa
Fixed Allocation Random Allocation
Nainx t0 SVR 25.70% 25.75% 25.67% 24.86% to SVR 14.24% 8.34% 15.12% 9.64%
Fixed Allocation | 5300 | 95399, | 25.15% | 24.49% Random Allocation | 3 qy0 | g11g, | 1475% | 9.48%
to KRR Nginx to KRR
KRI? o SVR & 0.32% 0.36% 0.52% 0.38% KRI? fo SVR & 0.64% 0.24% 0.37% 0.17%
vice-versa vice-versa
Fixed Allocation |17 170, | 17480 | 17.24% | 16.59% Random Allocation [, 1,0 | 5570, | 1081% 8.13%
Squid to SVR to SVR
Fixed Allocation | 100 | 15870, | 1548% | 15.30% Random Allocation | g ;90 | 5709, | 1079% | 7.62%
to KRR Squid to KRR
KRI? to SVR & 1.37% 1.61% 1.76% 1.30% KRI? to SVR & 0.63% 0.15% 0.02% 0.51%
vice-versa vice-versa
the total bandwidth utilization of the links which reduces the 2) Service Flow Considerations on shared VNFs: It must

energy consumption in the network. Both, the physical as be noted that we have shown the variation of latency of the
well as virtual links have been considered for this bandwidth network with the SDN density instead of the network slice
calculation. Also, since a demand needs to traverse through density. This is because of the fact that any user demand
all the VNFs present in the service chain, following optimal is generated in the Control Plane and the Virtual Plane is
paths takes lesser time and an overall reduction in the latency only used to provide different network services. So regardless
of operation in the entire SDN and NFV-enabled network of how many network slices are embedded, if the functional
framework can be observed. policy being requested is embedded in a particular slice, then

Authorized licensed use limited to: Howard University. Downloaded on June 30,2023 at 16:22:34 UTC from IEEE Xplore. Restrictions apply.
© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3235382

Haproxy failure rate

Nginx failure rate

Squid failure rate

= SVR Mean
- KRR M

ean
- fixed Mean

2
I i I I I :
515
_I

i 1|
e

VNFL

VNF2 WNF3 VNF4 VNFL VNF2

VNF3. VNF4

VNFL

VNF2 WNF3 VNF4

VNF Types

(a) Failure rate for Haproxy dataset

(b) Failure rate for Nginx dataset

(c) Failure rate for Squid dataset

Fig. 8: Avg. rate of failed requests for different applications running on different datasets for random VNF distribution

that would be used for demand fulfilment. This independence
between Slice density and latency of network operation has
been shown in Fig. 2. Keeping the SDN density constant we
varied the NS density and calculated the corresponding latency
values. A slight variation was seen due to averaging of values
obtained from 100 model runs but it can be observed clearly
that in general, the latency remained constant for a given SDN
density. Algorithms (1) and (2) work on the same backbone
model with a fixed amount of network resources in uniform
and dynamic environments consecutively.

The MLG as shown in Fig. 1, is formed following a logical
slicing method on a shared physical backbone network. Indi-
vidual slices are responsible to serve dedicated network ser-
vices. The intelligent approach of MLG includes simultaneous
distributions of Random and Uniform traffic distributions over
the topology under observation. SDN controllers are responsi-
ble for the network softwarization and the NFV hypervisor is
responsible for the network virtualization phenomenons. Both
of these processes together generate multiple graph-like slices
where the OpenFlow data-plane switches are controlled by
the nodes (SDN controller and NFV hypervisor) units. The
wired connection links are the optical fibre connections which
are represented as the graphical edges. The modelling of the
graph is explained in Section III using the parameters from
table (I).

3) System Specification and Complexity Analysis: For VNF
placement (Algorithm 1), the XML parsing and demand gen-
eration are done in linear time. So the time complexity of these
events will be O(L)+O(N)+O(D), where L, N and D are
the total number of links, the total number of nodes and delay
per node, respectively. We see that the thread T/ creates the
pruned graph in O(L£) time as only the links’ data is required
in this step. To find the shortest distance from the source to the
target node, we applied Dijkstra’s shortest path algorithm that
has a complexity of O(N?). After finding the shortest path,
resource allocation and VNF embedding are done with the help
of Algorithm 1, which has the complexity of O(N xV;), where
V; is the total number of VNF instances at the i** node. A
priority queue is maintained for thread 72 to release resources
that have been allocated by thread T/. Here insertion of the
VNF instances into the priority queue is done as shown in
Algorithm 2 that has a complexity of O(log[D]). We find that
thread 72 is only responsible for releasing resources and it is
done in the O(N + L) time. Therefore, we see that the total
complexity of the entire process is O(N?2). The simulation has
been executed on Google Colab with 12.7 GB of RAM.

VI. RESULTS AND DISCUSSIONS

In the overall result analysis via exhaustive simulations, it is
found that our proposed solution gives better QoS under both
ideal uniformly distributed VNF types as well as more realistic
random VNF type allocation for real network topology. We
have taken 300 runs of our VNF placement algorithm each
time with randomized SFC requests. From the distribution
diagrams in Fig. 5, it is clear that the number of failed SFC
requests follows a constant trend throughout the 300 runs
of the algorithm for all scenarios that have been considered.
Figures (5a) through (5b) show the average failure rate for SFC
requests over 300 runs for different VNF types and different
applications. In every possible scenario, resource allocation
done with the help of machine learning over fixed allocation
performs better. In ideal conditions where different types of
VNFs are distributed uniformly among all available VNFs
at a node, intelligent resource allocation can achieve 15%,
17%, and 20% fewer failed requests than fixed resource allo-
cation in the Indian topology for Squid, Haproxy, and Nginx
applications respectively. For the US topology and uniform
VNF distribution, our proposed solution achieves 16%, 20%,
and 25% fewer failed requests than fixed resource allocation
for Squid, Haproxy, and Nginx applications respectively. Fig.
6 shows the case of random VNF distribution over the US
topology (AT&T Topology) for Squid environment. Figures
(7) and (8) show the average rate of failed requests for
different applications running on different datasets for static
and dynamic VNF distributions respectively. Even under more
realistic conditions, where the distribution of different types of
VNFs at a particular node is random, our solution still provides
8%, 9%, and 7% better QoS for Haproxy, Nginx, and Squid
applications respectively in the Indian topology. On the US
topology, for the applications Haproxy, Nginx, and Squid, we
achieved respectively an improvement of 11%, 12%, and 8%
in QoS. Table (5) summarizes the percentage improvements
achieved with our algorithm. While there is a significant
improvement in QoS for intelligent resource allocation as
compared to fixed allocation, there isn’t a significant difference
between the performance of the two machine learning models
that we have trained for this purpose. While KRR outperforms
SVR during the training of the models, the final result of
QoS is not significantly affected by that difference. From
the above figures and results, it is clear that fixed resource
allocation can cause quite a drop in QoS as a significant
number of SFC requests to fail due to a lack of resources. This
happens because a significant amount of resources is allocated

Authorized licensed use limited to: Howard University. Downloaded on June 30,2023 at 16:22:34 UTC from |IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2023.3235382

to requests irrespective of their actual need which results in the
consequent failure of further requests as they find themselves
without any available resources.

VII. CONCLUSION AND FUTURE WORK

In this work, we proposed two novel algorithms (VNF-
READ and SFC-DRIVE) to realize suitable solutions for
VNF-EAP (VNF-Embedding and Allocation Problem) on real
network topology. Service-type specific VNFs are chosen
and allocated to the requested SFCs by following static and
dynamic methods respectively. The process uses Machine
Learning techniques to predict the VNF instances with the
minimum errors. The VNF instances are limited, hence the
distribution of all such instances must be done intelligibly.
The aim is to save the network resources and minimize
the false resource claims by the network applications. Our
exhaustive result analysis shows significant improvement in
VNF classifications over state-of-the-art techniques. We have
shown the SFC and VNF failure analysis of the Squid dataset.
A similar analysis has been conducted for the other two
datasets (Nginz, and Haproxy). Both uniform and random VNF
distributions for all three datasets for a variety of networking
conditions are examined parallelly. The potential future work
could be further improvements in the accuracy of resource
prediction and latency of VNF embedding.

VIII. ACKNOWLEDGEMENT

This work was supported by the National Science Founda-
tion, under award number 2219741.

REFERENCES

[1] J. Hasneen and K. M. Sadique, “A survey on 5g architecture and security
scopes in sdn and nfv,” in Applied Information Processing Systems.
Springer, 2022, pp. 447-460.

[2] X. Cheng, Z. Huang, and L. Bai, “Channel nonstationarity and consis-
tency for beyond 5g and 6g: A survey,” IEEE Communications Surveys
& Tutorials, vol. 24, no. 3, pp. 1634-1669, 2022.

[3]1 A. A. Gebremariam, M. Usman, and M. Qaraqge, “Applications of
artificial intelligence and machine learning in the area of sdn and nfv:
A survey,” in 2019 16th International Multi-Conference on Systems,
Signals & Devices (SSD). 1EEE, 2019, pp. 545-549.

[4] A. Mughees, M. Tahir, M. A. Sheikh, and A. Ahad, “Towards energy
efficient 5g networks using machine learning: Taxonomy, research
challenges, and future research directions,” IEEE Access, vol. 8, pp.
187498-187522, 2020.

[5] S. Parui, D. Basu, U. Ghosh, and R. Datta, “A brain to uav commu-
nication model using stacked ensemble csp algorithm based on motor
imagery eeg signal,” in ICC 2022-1EEE International Conference on
Communications. 1EEE, 2022, pp. 1-6.

[6] D. Basu, R. Datta, and U. Ghosh, “Softwarized network function
virtualization for 5g: Challenges and opportunities,” Internet of Things
and Secure Smart Environments, pp. 147-192, 2020.

[71 N. Fatima, P. Saxena, and M. Gupta, “Integration of multi access edge
computing with unmanned aerial vehicles: Current techniques, open
issues and research directions,” Physical Communication, vol. 52, p.
101641, 2022.

[8] D. Qi, S. Shen, and G. Wang, “Towards an efficient vnf placement in
network function virtualization,” Computer Communications, vol. 138,
pp. 81-89, 2019.

[9] 1. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “Toward the

6g network era: Opportunities and challenges,” IT Professional, vol. 22,

no. 1, pp. 34-38, 2020.

D. Basu, A. Jain, U. Ghosh, and R. Datta, “Flexarch: Flexible con-

troller placement architecture for hypervisor assisted vsdn-enabled 5g

networks,” in 2020 IEEE Globecom Workshops (GC Wkshps. 1EEE,

2020, pp. 1-6.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. O. Oladejo and O. E. Falowo, “Latency-aware dynamic resource
allocation scheme for 5g heterogeneous network: A network slicing-
multitenancy scenario,” in 2019 International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob).
IEEE, 2019, pp. 1-7.

W. Wu, C. Zhou, M. Li, H. Wu, H. Zhou, N. Zhang, X. S. Shen, and
W. Zhuang, “Ai-native network slicing for 6g networks,” IEEE Wireless
Communications, vol. 29, no. 1, pp. 96-103, 2022.

H. Chergui, L. Blanco, L. A. Garrido, K. Ramantas, S. Kuklifski,
A. Ksentini, and C. Verikoukis, ‘“Zero-touch ai-driven distributed man-
agement for energy-efficient 6g massive network slicing,” IEEE Net-
work, vol. 35, no. 6, pp. 43-49, 2021.

H. Ko, J. Lee, and S. Pack, “Priority-based dynamic resource alloca-
tion scheme in network slicing,” in 2021 International Conference on
Information Networking (ICOIN). 1EEE, 2021, pp. 62-64.

S. Schneider, N. P. Satheeschandran, M. Peuster, and H. Karl, “Machine
learning for dynamic resource allocation in network function virtualiza-
tion,” in 2020 6th IEEE Conference on Network Softwarization (NetSoft).
IEEE, 2020, pp. 122-130.

S. Drixler, S. Schneider, and H. Karl, “Scaling and placing bidirec-
tional services with stateful virtual and physical network functions,” in
2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft). 1EEE, 2018, pp. 123-131.

J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service
function chains with dynamic virtual network function placement in
geo-distributed cloud system,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 30, no. 10, pp. 2179-2192, 2018.

M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, and B. Akbari,
“Joint energy efficient and qos-aware path allocation and vnf placement
for service function chaining,” IEEE Transactions on Network and
Service Management, vol. 16, no. 1, pp. 374-388, 2018.

F. Malandrino, C. F. Chiasserini, G. Einziger, and G. Scalosub, “Reduc-
ing service deployment cost through vnf sharing,” IEEE/ACM Transac-
tions on Networking, vol. 27, no. 6, pp. 2363-2376, 2019.

Y. Cui, X. Huang, D. Wu, and H. Zheng, “Machine learning based
resource allocation strategy for network slicing in vehicular networks,” in
2020 IEEE/CIC International Conference on Communications in China
(ICCC). IEEE, 2020, pp. 454-459.

Y. Hua, R. Li, Z. Zhao, X. Chen, and H. Zhang, “Gan-powered
deep distributional reinforcement learning for resource management in
network slicing,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 2, pp. 334-349, 2019.

A. Mohamad and H. S. Hassanein, “On demonstrating the gain of
stc placement with vnf sharing at the edge,” in 2019 IEEE Global
Communications Conference (GLOBECOM). 1EEE, 2019, pp. 1-6.
R. Behravesh, D. Harutyunyan, E. Coronado, and R. Riggio, “Time-
sensitive mobile user association and sfc placement in mec-enabled 5g
networks,” IEEE Transactions on Network and Service Management,
vol. 18, no. 3, pp. 3006-3020, 2021.

Y.-T. Chen and W. Liao, “Mobility-aware service function chaining in
5g wireless networks with mobile edge computing,” in /CC 2019-2019
IEEE International Conference on Communications (ICC). 1EEE, 2019,
pp. 1-6.

S. Orlowski, M. Piéro, A. Tomaszewski, and R. Wessily, “SNDIib
1.0-Survivable Network Design Library,” in Proceedings of the 3rd
International Network Optimization Conference (INOC 2007), Spa,
Belgium, April 2007, http://sndlib.zib.de, extended version accepted in
Networks, 2009. [Online]. Available: http://www.zib.de/orlowski/Paper/
OrlowskiPioroTomaszewskiWessaely2007-SNDIib-INOC.pdf.gz

D. Basu, R. Datta, U. Ghosh, and A. S. Rao, “Load and latency
aware cost optimal controller placement in 5g network using snfv,” in
Proceedings of the 21st International Workshop on Mobile Computing
Systems and Applications, 2020, pp. 106-106.

J. Pei, P. Hong, K. Xue, and D. Li, “Efficiently embedding service
function chains with dynamic virtual network function placement in
geo-distributed cloud system,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 30, no. 10, pp. 2179-2192, 2019.

Authorized licensed use limited to: Howard University. Downloaded on June 30,2023 at 16:22:34 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

