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Abstract

In this paper, we consider Hankel operators on domains with bounded intrinsic geom-
etry. For these domains we characterize the L?-symbols where the associated Hankel
operator is compact (respectively bounded) on the space of square integrable holo-
morphic functions.
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1 Introduction

Given a bounded domain 2 C C¢, let w denote the Lebesgue measure and let L3(Q) =
L2(Q, n). Alsolet A%(2) C L?(2) denote the subspace of holomorphic functions and
Pg : L*(2) — A%(S2) denote the Bergman projection, i.e. the orthogonal projection
of L?(2) onto A%(X2). Finally, given ¢ € L?(2), the associated Hankel operator Hy
has domain

dom(Hy) = {f cAXNQ) ¢ [ € Lz(Q)}
and is defined by
Hy(f) = (d=Po)(@- f)=¢-f— Pa(d- [).

We will let S(Q2) € L?(R2) denote the symbols ¢ where the associated Hankel
operator is densely defined on AZ(Q). We always have L*°(2) C S(2) and when
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L%(Q) N A%2() is dense in AZ() (e.g. 2 is strongly pseudoconvex [2, Theorem
3.1.4] or star shaped) we have L?(Q2) = S().

In this paper, we consider the well-studied problem of characterizing the symbols
with compact Hankel operator. The results of this paper are especially inspired by Li’s
characterization for strongly pseudoconvex domains [10] (see [9, 11, 12] for closely
related results). For such domains, Li proved that a Hankel operator is compact if
and only if on each sufficiently small metric ball Bg (¢, r) in the Bergman metric the
symbol can be approximated by a holomorphic function. More precisely:

Theorem 1.1 (Li [10]) Suppose 2 C C? is a strongly pseudoconvex domain and
¢ € L2(Q). Then the following are equivalent:

(1) Hy extends to a compact operator on AX(Q),
(2) for somer >0

1
lim inf{—— —h|*du : h € Hol (Bg(¢, }:0.
;Eggm {/L(Bsz({,r)) Bg(g,r)|f P e Hol (Ba (6, m)

In this paper, we extend Li’s result to domains with bounded intrinsic geometry,
see Definition 3.1 below. This class of domains was introduced in [18] and include
many well studied families of domains such as

(1) Strongly pseudoconvex domains,

(2) Finite type domains in C2,

(3) Convex domains or more generally C-convex domains which are Kobayashi hyper-
bolic (with no boundary regularity assumptions),

(4) Simply connected domains which have a complete Kéhler metric with pinched
negative sectional curvature,

(5) Bounded homogeneous domains, and

(6) The Bers embeddings of the Teichmiiller space of hyperbolic surfaces of genus g
with n punctures.

Further, by definition, any domain biholomorphic to one of the domains listed above
also has bounded intrinsic geometry.

As in the classical strongly pseudoconvex case, for domains with bounded intrinsic
geometry we show that compactness of a Hankel operator is equivalent to the symbol
being locally approximable by holomorphic functions in a L2-space, but instead of
using a scaled Lebesgue measure we use the Riemannian volume form d Vg, induced
by the Bergman metric.

Theorem 1.2 Suppose 2 C C¢ is a bounded domain with bounded intrinsic geometry
and ¢ € S(K2). Then the following are equivalent:

(1) Hy extends to a compact operator on AX(Q),
(2) for somer >0

lim inf{/ lp —h|>dVeq : h eHol(]B%Q(;,r))} =0.
¢—>9% Bo(¢,r)
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Remark 1.3 For a strongly pseudoconvex domain € C C¢, we will show that for any
r > 0 there exists C = C(r) > 1 such that: if ¢ € Q, then

1
—d Vg

1
—_—d CdV. 1
0= UBa. = W

on B (¢, r), see Theorem 1.8 below. Hence Theorem 1.2 is a true generalization of
Li’s theorem.

In the continuous category, Theorem 1.2 simplifies to the following.

Theorem 1.4 Suppose £2 C C? is a bounded domain with bounded intrinsic geometry,
3 is C°, and ¢ € C(RQ). Then the following are equivalent:

(1) Hy is a compact operator on A%(Q),
(2) ¢ is holomorphic on every analytic variety in 2.

Remark 1.5 To be precise, we say:

(1) aQ is CY, if for every point x € <2 there exists a neighborhood U of x and there
exists a linear change of coordinates which makes U N 92 the graph of a C°
function.

(2) ¢ is holomorphic on every analytic variety in 0€2, if for every holomorphic map
F : D — 9% the composition ¢ o F' is holomorphic.

Remark 1.6 Theorem 1.4 is related to a number of prior results for convex domains:

(1) For smoothly bounded convex domains with symbols in C*®(), Cutkovié-
Sahutoglu [16] proved that (1) = (2).

(2) For bounded convex domains with symbols in C($2), Celik-Sahutoglu-Straube
[3, 4] proved that (1) = (2) and also established an analogous result for Hankel
operators on (0, g)-forms.

(3) For bounded convex domains with symbols in C'($2), Celik-Sahutoglu-Straube
[5] proved that (2) = (1) and also established an analogous result for Hankel
operators on (0, g)-forms.

It appears that even in the special case of convex domains the implication (2) = (1)
was unknown for symbols in C(£2).

We can also characterize the Hankel operators that extend to bounded operators.

Theorem 1.7 Suppose Q2 C C? is a bounded domain with bounded intrinsic geometry
and ¢ € S(K2). Then the following are equivalent:

(1) Hy extends to a bounded operator on A2(Q),
(2) for somer >0

sup inf {/ l¢p — h|>dVq : h € Hol (Bga(¢, r))} < +o00.
teQ Ba(g,r)
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In the last part of the paper we use the Bergman kernel Kg to characterize the
domains € C C? with bounded intrinsic geometry where the estimates in Equation (1)
hold.

Theorem 1.8 (see Theorem 9.1 below) Suppose Q2 C C? is a bounded domain with
bounded intrinsic geometry. Then the following are equivalent:

(1) logKq(z, 2) has self bounded gradient,
(2) foreveryr > QO there exists C = C(r) > 1 such that: if { € 2, then

1
Va

1
—d < ——dpu < CdV,
c nBa.rn @

onBq(¢,r).
Remark 1.9 In Theorem 9.1 we also provide several other equivalent statements.

Using Theorems 1.2 and 1.8 we obtain the following direct extension of Li’s theo-
rem.

Corollary 1.10 Suppose Q@ C C¢ is a bounded domain with bounded intrinsic geom-
etry, log Kq(z, z) has self bounded gradient, and ¢ € S(2). Then the following are
equivalent:

(1) Hy extends to a compact operator on AX(Q),
(2) for somer >0

1
lim inf{—8F0 —h*du : h € Hol (Bg(¢, =0.
{irggln {M(Bg(i,r)) Bo(¢,r) 10 "y : k< Hol (Ba(t r))}

It is known that log Ko (z, z) has self bounded gradient when €2 is a strongly pseu-
doconvex domain [7, Proposition 3.4], a pseudoconvex finite type domain in C?
[8], a Kobayashic hyperbolic convex domain [18, Proposition 4.6], or a Kobayashi
hyperbolic C-convex domain [18, Proposition 4.12]. To the best of our knowledge,
Corollary 1.10 is new in all but the first case (which is Li’s theorem).

There also exist domains with bounded intrinsic geometry where log Ko (z, z) does
not have self bounded gradient, see [18, Proposition 1.11].

Theorem 1.8 says that, in general, the local L2-spaces considered in Li’s theorem
and in Theorem 1.2 are not uniformly comparable, but it is unclear if it is possible to
construct a symbol which satisfies one condition but not the other.

1.1 Structure of the Paper

In Sect. 2 we set our notations and recall a few classical results. In Sect. 3 we recall the
definition of domains with bounded intrinsic geometry and some results from [18].
Then we prove a number of new results about these domains.

Sections 5, 4, 6, and 7 are devoted to the proofs of Theorems 1.2 and 1.7. The proofs
are similar to the arguments in [10] (which in turn are similar to the arguments in [1,
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9, 11, 12]) and in some sense the most important results of this paper are in Sect.3
which give us the tools necessary to adapt Li’s proof.

In Sect. 4 we characterize the L?-symbols whose multiplication operator is compact
(respectively bounded). Using this result, in Sect. 5 we prove a sufficient condition for
a C'-smooth symbol to have compact (respectively bounded) Hankel operator.

The implication (1) = (2) in Theorems 1.2 and 1.7 is fairly straightforward (using
the results in Sect. 3). To show that (2) = (1), we construct a special decomposition
of our symbol ¢ = ¢1 + ¢>. Then using the results of Sects.4 and 5 we show that Hy,
and Hy, are both compact.

In Sect. 8 we prove Theorem 1.4 using Theorem 1.2. Finally, in Sect. 9 we consider
domains with bounded intrinsic geometry where the standard potential of the Bergman
metric has self bounded gradient.

2 Preliminaries

2.1 Notations

In this section we fix any possibly ambiguous notation.

2.1.1 The Bergman Kernel, Metric, Volume, and Distance

We will use the following notations.

Definition 2.1 Suppose Q© C C is a pseudoconvex domain.

(1) Let Kg denote the Bergman kernel on €2,
(2) let g denote the Bergman metric on €2,
(3) let Vg denote the volume form induced by the Bergman metric, that is

0 0
det U — d b
[gg<3z/ 31k>” .

(4) let distg denote the distance induced by the Bergman metric, and
(5) for¢ € Qandr > 0 let

dVgo =

Bq(¢,r) :={z € Q:dista(z,¢) < r}

denote the open ball of radius r centered at ¢ in the Bergman distance.

2.1.2 Approximate Inequalities

Given functions f,h : X — [0, co) we write f < h or equivalently & 2> f if there
exists a constant C > 0 such that f(x) < Ch(x) for all x € X. Often times the set X
will be or include a set of parameters (e.g. m € N).

If f <gand g < f wewrite f < g.

@ Springer



176 Page 6 of 29 A.Zimmer

2.1.3 The Levi Form

Given a domain  C C¢ and a C2-smooth real valued function f:Q — R, the Levi

form of f is

2
Z(f) = Z o dz; ® dzk.

|<ih<d 02,07k
Notice that f is plurisubharmonic if -Z(f) > 0 and, by definition,
Z (logKa(z,2)) = ga-

2.1.4 Norms on 1-Forms and Functions with Self bounded Gradient

Given a 1-form « on a domain © C C¢ and a Hermitian pseudo-metric /4 on €2, one
can define the pointwise norm

leez I, = sup {laz(X)I CX eC? h(X,X) < 1}.

Then a C? plurisubharmonic function A :  — R is said to have self bounded gradient
if

(2N 726N

is uniformly bounded on 2. This is equivalent to the existence of some C > 0 such
that

forall X e C4.

2.2 Solutions to the 5-Equation

We will use the following existence theorem for solutions to the d-equation.
Theorem 2.2 Suppose Q C C? is a bounded pseudoconvex domain, A1 : 2 — R has

self bounded gradient, and L> : Q — {—oo} U R is plurisubharmonic. There exists
C > 0 which only depends on

sup [[0A1 ]l 2.y
7€
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such that: ifa € L?(’)lolc) (Q) and da = 0, then there is some u € L*1°¢(Q) with du = «
and

/Q|u|2g—)»2d/1, < C/Q lel%,) ¢ *2du

assuming the right hand side is finite.

A proof of Theorem 2.2 can be found in [14, Theorem 4.5 and Section 4.6]. A
special case was established earlier in [13, Proposition 3.3] with essentially the same
argument.

2.3 Separated Sets in Riemannian Manifolds

Recall that a set of points A in a metric space (X, disty) is called r-separated if
distx (x1, x2) > r for all distinct x1, xp € A. We will frequently use the following
observation about separated sets in Riemannian manifolds satisfying a type of bounded
geometry condition.

Proposition 2.3 Suppose (X, g) is a complete Riemannian manifold with bounded sec-
tional curvature and positive injectivity radius. Let dist, denote the distance induced
by g and let B4 (x, r) denote the open metric ball of radius r centered at x € X. For
any r, R > 0 there exists L = L(r, R) > 0 such that: if A is a r-separated set in
(X, disty), then

#(ANBy(x,R) < L

forany x € X.

Proof Fix r, R > 0. Let V, denote the volume induced by g. By the Bishop-Gromov
volume comparison theorem, there exists C; > 0 such that Vo (B, (x, R +r)) < C;
forall x € X. Since the injectivity radius is positive, by [6, Proposition 14] there exists
C> > O such that Vg (B, (x,7/2)) > Cp forallx € X.

Fix x € X and suppose that x1, ..., x,, are distinct points in A N B, (x, R). Then
the sets Bg (x1,7/2), ..., Bg(x, r/2) are disjoint subsets of By (x, R + r) and so

Ci = VeBy(x. R+1) =Y Ve(By(xj,7/2)) = mC.
J
Hence

C
#(ANBy(x, R) < —
6))

and the proof is complete.
O
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3 Domains with Bounded Intrinsic Geometry

In this section, we recall the definition of domains with bounded intrinsic geometry
and some results from [18]. Then we prove some new results.

Definition 3.1 [18, Definition 1.1] A domain Q@ C C¢ has bounded intrinsic geometry
if there exists a complete Kéhler metric g on 2 such that

(b.1) the metric g has bounded sectional curvature and positive injectivity radius,
(b.2) there exists a C? function A :  — R such that the Levi form of X is uniformly
bi-Lipschitz to g and [|dA ||, is bounded on €2.

The Kéhler metric in Definition 3.1 does not have to be one of the standard invariant
Kihler metrics, but in [18] we proved that once there is some Kéhler metric satisfying
the definition, then the Bergman metric also satisfies the definition.

Theorem 3.2 [18, Theorem 1.2] If Q C C? is a domain with bounded instrinsic
geometry, then the Bergman metric gq on 2 satisfies Definition 3.1. In particular, Q
is pseudoconvex.

We will also use the following theorem from [18].

Theorem 3.3 [18, Theorem 1.8] If 2 C C¢ is a domain with bounded instrinsic geom-
etry, then the Bergman metric and the Kobayashi metric are bi-Lipschitz equivalent.

3.1 Solving the 5-Equation
As a corollary to Theorems 3.2 and 2.2 we have the following existence theorem for
solutions to the d-equation on domains with bounded intrinsic geometry.

Corollary 3.4 Suppose 2 C C¢ is a bounded domain with bounded intrinsic geometry.
Then there exists C > 0 such that: if Ay : & — {—o00} UR is plurisubharmonic and
o€ L%é{‘l)i(ﬁ) with da = 0, then there is some u € L*1°°(Q) with du = o and

[k eran=c [ 1al, e
Q Q

assuming the right hand side is finite.

Proof Let A be a C> function satisfying Definition 3.1 for the Bergman metric. Then
apply Theorem 2.2 with A1 = A. O

3.2 Discretization
As a corollary to Theorem 3.2 and Proposition 2.3 we have the following useful
discretization of a domain with bounded intrinsic geometry.

Corollary 3.5 Suppose 2 C C¢ is a bounded domain with bounded intrinsic geometry.
Foranyr > 0 there exists a sequence of distinct points ({m)m=>1 in Q with the following
properties:
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(1) {&m : m > 1} is r-separated in (2, distg),
(2) @ = Uy Bo(gn, 1), and
(3) forany R > 0, sup,cq #{m : {n € Ba(z, R)} < +oo.
Proof Let A C 2 be a maximal r-separated set in 2 (Which exists by Zorn’s lemma).
Since the Bergman metric is complete, the metric space (€2, distg) is unbounded (by
the Hopf-Rinow theorem). So the set A must be infinite. By Proposition 2.3, the set A
is countable. Hence A = {{,, : m > 1} for some sequence (¢;),>1 of distinct points.

Then part (1) follows from the definition of A. Part (2) follows from the maximality
of A: if there exists w € Q\ Uy, Bo (&, ), then A U {w} would also be r-separated.
Part (3) follows from Proposition 2.3.

O

3.3 Estimates on the Bergman Kernel and Metric

In this subsection, we recall two results from [ 18] and then use them to derive a number
of new estimates for the Bergman kernel and metric.

Suppose, for the rest of this subsection, that Q C C? is a bounded domain with
bounded intrinsic geometry.

Combining Theorem 3.2 with deep results of Wu-Yau [17] and Shi [15], yields the
following.

Theorem 3.6 [18, Theorem 5.1, Theorem 10.1] There exists C; > 1 such that: for
every ¢ € Q there is a holomorphic embedding ®; : B — Q with ®.(0) = ¢,

1 * 2
EgEuc =< cbggQ < C{gEuc
1

on B, and

1 .
ol lwi — wally < distg (D¢ (w1), Pe(w2)) < Cy lwy — wally (2)

forall wy, wy € B.

Remark 3.7 Notice that Equation (2) implies that

B, <§, c%) C D (rB) C Bq (2. Cir)

1
when r < o

Using the embeddings in Theorem 3.6, we define

Br BxB—C
B (u, w) = Ko (P, (1), ¢ (w)) det CD’;(u)det <I>2 (w).

These functions have the following uniform estimates.
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Theorem 3.8 [I8, Theorem 9.1, Theorem 10.1]
(1) There exists Co > 1 such that:

Gyl < Be(w,w) < Gy

forallt € Qand w € B.
(2) Forevery § € (0, 1) and multi-indices a, b there exists Cs 4 p > 0 such that

3|a|+|b|'3§(u7 w)

<
duagup | = Coad

forallt € Qandu,w € § B.
Theorem 3.8 implies the following off-diagonal estimates near the diagonal.

Proposition 3.9 There existro > 0 and C3 > 1 suchthat: If ¢ € Qand z € O (roB),
then

1
G; (e 9 Ka. 0) < IKaG, O < C3Ka(z, 2) Ka(g, ©).
Proof By Theorem 3.8 part (1) and (2) there exists rp > 0 such that
1

T 1B (w, 0)|” < 23

forall ¢ € Q and w € ro B. Also,
1 ’ -2 / -2
& ‘det Cbz(w)‘ < Ka(®; (w), D¢ (w) < C; ‘detcbg(w)‘
forall ¢ € Qand w € B. Now if ¢ € Q and z = ®;(w) where w € ro B, then
2 2 ’ -2 ’ -2
Ka(z, 01 = | B¢ (w, 0)]| ’det @C(w)‘ ‘detQC(O)’
and so
1
I Ke(z. 2)Ka(2, 0) < Ke(z OI* < C3Ka(z. 2) Ka(S, §)

where C3 = 2C§. O

Proposition 3.10 There exists Cq4 > 0 such that: ifr < Cyandu : Q — [0, o0) is a
Sfunction with log(u) plurisubharmomic, then

C
(@) < -5 Ka(€.0) wdp 3)
r Ba(¢,r)
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forall ¢ € Q.

Proof Theorem 3.6 implies that ®, (CL] ]B) C Bq(¢, r) and so

2
/ udp > / (o Pg)(w) ‘det @2(111)‘ du(w).
Ba(¢.r) o B

2
Notice that log(u) o ®; + log ’det @2 is plurisubharmonic and so

2

2
exp (log(u) o ®; + log ‘det D, > = (uod)- ‘det @,

is also plurisubharmonic. So by the mean value theorem for plurisubharmonic func-
tions

) c2d
(@) )det cbg(O)( e ud.
r=u) Jeg,r

So by Theorem 3.8,

C
u(@) < —r Ka(t,¢) wdp
r Bo(¢,r)

c¥c
where Cy := ;LITE)Z' O

As a consequence of the above proposition, the Bergman kernel has the following
local positivity of mass.

Proposition3.11 Ifr < Cyand ¢ € , then

C
[ Koo ane = 5 [ ka0 duco.
Q r Ba(s.r)

Proof Apply Equation (3) to u = |[Kq(:, ;)I2 and recall that

Kg(;,o:/gmsz(z, OP du ().

]

We also obtain the following estimate on the volume form induced by the Bergman
metric.

@ Springer



176 Page 120f 29 A. Zimmer

Proposition 3.12 There exists C5 > 1 such that
1
o Ka(z, 2)dn(z) < dVa(z) < CsKal(z, 2)du(z)
5

on 2.
Proof By Theorem 3.6

<cy

g wtaen (5575 )
€ s A=
¢80 dz; " 0Zk

a a
det 8Q.¢ gj, @

Hence Theorem 3.8 implies that

27 =
o
and so

1 , -2 2d , -2
C—%d‘detd>§(0)‘ < < ‘detCD{(O)‘ .

Ci Ka(z. Ddp() < dVa(2) < CsKa(z, 2)du(z)
5

where C5 = C12dC2. O
For each ¢ € 2, consider the function

1
- Ka(0).
%= Keco 20

Then s, € A%(Q) and ”s; ”2 = 1. As an application of Proposition 3.10 and the

completeness of the Bergman metric, we have the following convergence result.

Proposition 3.13 If ¢, — 0%, then s, converges locally uniformly to the zero func-
tion.

Proof Suppose not. Then after passing to a subsequence we can suppose that s;,, —
f locally uniformly where f is holomorphic and non-zero. By Fatou’s lemma,

JolfPdu < 1.
Fix a sequence of compact sets (K,,),>1 in Q with me |[fI2dn — Jo |f1>dp.
Replacing (s¢, )m>1 with a subsequence, we can assume

im | s, — f] du=0.

m—0o0 K
Then
limsup |s;,, — fH2 = limsup || (s, — Lo\, ||2 < limsup | s, Lo\x,, H2
m—00 m—00 m—00

+ 111wk, |,

=limsup 1 — |55, 1, [, = 1= fl.
m—0Q
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Fix r < Cy. Applying Proposition 3.10 to | f|? yields

C 172
| @) < rT;‘,\/KQ@m, ) (/B |f|2du>

for all m > 1. Since the Bergman metric is proper (by the Hopf-Rinow theorem) and
m — 082, for any compact set K C €2 the sets

Q(&m.r)

Bﬂ(fm, }”) NK

are eventually empty. Then, since f € L?(2), we have

lim [fI2dpn =0

m—00 B (&m,r)

and so

lim Lf(&m)l
m—00 /Ko (&m, &m)

Finally, let

1

oy = ———————— (s, — f).
a2, e

Then for m large we have | h,,|l, < 1 and

1R (Cn) | > VK@ Gy Em)

which is impossible since

VKa(@0) = sup {Ih(@)1 : h e A%, 10l < 1]

4 Multiplication Operators

Given ¢ € L?(Q), the associated multiplication operator M4 has domain
dom(My) = {f cAXQ) ¢ [ € L2(Q)}

and is defined by

My(f)=¢-f.
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Proposition 4.1 Suppose Q@ C C? is a bounded domain with bounded intrinsic geom-
etry and ¢ € L*(2). Then:

(1) The following are equivalent:
(a) there exists r > 0 such that

sup/ |¢|2dVQ < 400,
¢eQ IBq(¢,r)

(b) dom(My) = A%(Q) and My : A%(Q) — L*(Q) is bounded.
(2) The following are equivalent:

(a’) there exists r > 0 such that

lim |p1? d Vg =0,
§=0R JBg(¢.r)

(b’) dom(My) = A%(Q) and My : A>(Q) — L*(Q) is compact.
The rest of the section is devoted to the proof of the theorem.
Lemma4.2 (b’) = (a’).

Proof As in Sect. 3.3, for each ¢ € €2, consider the function

1
= —— Kq(, A%(Q).
S¢ ’—Kg(g, ;) Q( ;) € ( )

Using Propositions 3.9 and 3.12 we can fix r > 0 and C > 0 such that

%dVg <|se|?dp < Ccdvg

on Bq (¢, r).
Fix a sequence (£ )m>1 wWhere &, — 02 and
limsup/ ¢ dVgo = lim || d V.
;=3 JBq(¢.r) m=00 B (&m,r)

By Proposition 3.13 the sequence (s¢,,)m>1 converges weakly to 0. Since My is com-
pact, then

lim f |qbos§‘2d,u=0.
Q

m— 00

Then

lim lpI>dVq < C lim / |¢~s§|2d,u=0
m-—00 Q

m=00 Bo(&m,r)
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and the proof is complete. O
Lemma4.3 (b) = (a).
Proof Very similar to the proof that (b’) = (a’). O
Lemma4.4 (a) = (b).

Proof Fix f € AZ(Q). By Corollary 3.5 there exists a sequence (&, )n>1 of distinct
points in €2 such that

(1) {&n : m > 1} is r-separated with respect to the Bergman distance,
(2) UpBa(m,r) =K, and
(3) L :=sup,cq#{m : &y € Ba(z, 2r)} < +oo.

Applying Proposition 3.10 to |f|2 yields: if z € Bq (&, ), then

If @) < Kalz,2) If12du < Ka(z, 2) |fIPdu.
BQ(Z,") EQ({»MZ”)

So by Proposition 3.12

/ 6 FPdp < (/ |¢|2Kg(z,z)du) (/ |f|2du>
BQ(Cm»r) BQ(Cm»r) BQ({m,ZI‘)
< (/ |¢|2va) (/ |f|2du>
BQ(Cm»r) B (&m.2r)

< / |fI*dp.
]BQ((mvzr)

Hence

¢ - fPdu < f ¢ - flPdu < f
\/Q f H ; Bﬂ(gnlsr) f a ; B

Since f € A?(S2) was arbitrary, dom(My) = A%(Q) and My : A%(Q) — L*(Q)
is bounded.

Pdp < L[Q P du.

Q(&m,2r)

O

Lemmad4.5 (a’) = (D’).

Proof Itis enough to fix a sequence ( fy,),>1 of unit vectors in AZ(Q) which converges
weakly to 0 and show that M (f) converges strongly to 0.

As in the proof of Lemma 4.4, there exists a sequence (& )m>1 of distinct points
in  such that

(1) {¢m : m = 1} is r-separated with respect to the Bergman distance,
(2) Uy Bo(Gm,r) = 2, and
(3) L :=sup,cq#{m: &y € Ba(z,2r)} < +o0.

@ Springer



176 Page 16 of 29 A. Zimmer

Further, arguing as in Lemma 4.4 we have

/ 6 fuPdu < (/ |¢|2va) (/ Ifnlzdu> .
BQ({mJ’) BQ({mJ’) BQ(CmJV)

Fix € > 0. Since

lim lp1>d Vg =0,
§=>02 JBg(¢.r)

there exists M > 0 such that

/ 61> dVe < €
Bﬂ(fmyr)

for all m > M. Since f, € A*(Q) converges to 0 weakly, f, converges locally
uniformly to 0. Hence

. 2 _
Jm Y[ gRdu=o

m<M B (&m,2r)

Then

lim sup / ¢ ful”dpe
Q

n—oo

n—o00

SlimsupZ(/ |¢|2dV§z> (/ |fn|2dﬂ>
n— 00 . Bq(&m,r) B (&m,2r)

n

= lim sup Z (/ |¢|2dVQ) (f |fn|2du>
n—oo m>M BQ({m,r) BQ(Cm»zr)

<limsup ) € [fol?du) <limsup €L | |ful?>du = €L.
B
v @ (Gm.2r) Q

n—o00 n—o0

<timsp Y [ g fiPdu
m Ba(Gm.r)

Since € > 0 was arbitrary, My (f,) = ¢ - f, converges strongly to 0. O

5 Smooth Symbols

Using Proposition 4.1 we establish a sufficient condition of a C!-smooth symbol to
have compact (respectively bounded) Hankel operator.

Proposition 5.1 Suppose Q2 C C? is a bounded domain with bounded intrinsic geom-
etryand ¢ € ClQ)NS().
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(1) If there exists r > 0 such that

sup / 139 ]2. dVe < +oc,
$eQ JBq(.r)

then Hy extends to a bounded operator on AZ(SZ).
(2) If there exists r > 0 such that

. = 2
I b2 dva =0,
S f, o, 199 Ve

then Hy extends to a compact operator on A%(Q).

Proof Let M : A2(Q2) — L%() be the multiplication operator
M) = |oel,, - f-
Fix f € dom(Hy). By definition

|Ho (D, = ,min 179 = hlly.

Furthf,r, by Cgrollary 3.4 there exists C > 0, independent of f, and some u € LZ(Q)
with du = fd¢ and

[P an=c [ 117 o]}, an=cumcis
Q Q

Thenh := f¢p —u € A%(Q) and so

|Ho ()], < I f ¢ —hlla = lluly < VCIM$), .

So Proposition 4.1 immediately implies the result.

6 Proof of Theorem 1.2

We are now ready to prove Theorem 1.2 which we restate here.

Theorem 6.1 Suppose 2 C C¢ is a bounded domain with bounded intrinsic geometry
and ¢ € S(2). Then the following are equivalent:

(1) Hy extends to a compact operator,
(2) for somer >0

lim inf{/ lp —h|>dVeq : h eHol(]B%Q(;,r))} =0.
¢—>9% Bo(¢.r)
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For the rest of the section suppose that & ¢ C is a bounded domain with bounded
intrinsic geometry and ¢ € S(2).

6.1 (1) implies (2)

Suppose that Hy extends to a compact operator ﬁ¢ on A2(Q). Fixa sequence (&) m>1
converging to 2. By Proposition 3.13 the functions s, € L*(S2) converge weakly
to zero. Hence

=0.
2

Jim H Ho (s¢,,)
By Proposition 3.9 we can fix r > 0 and C > 1 such that
1
- [Ka(z, O < Ka(z, 9 Ka(t, ¢) = ClKa(z, ) @)

forall ¢ € Q2 and z € Bq(¢, r). By increasing C > 1 and using Propositions 3.12
and 3.9 we may also assume that

1
cdVe < |sc @) du < Cava )

oneach B (¢, 7). Notice that this implies that each s;,, is non-vanishing on B (¢, 7).

By assumption, dom(Hy) is dense in A%(Q). So for each m we can find a sequence
(fm,k)k=1 in dom(Hy) converging to s¢,, in A%(Q2). Then (fm.k)k>1 converges uni-
formly to s¢,, on Bq(&y, r). Since s¢,, is non-vanishing on B (¢, 7), we can then
pick &, such that

1
Vol | fnkon | < [86n] < C | Fnskon|

on Bg (¢, ). By possibly increasing k,, further we may also assume that

=0. (6)

Jim | Ho o)

Let fin := fu.k,- Since f;, is non-vanishing on B (&, r), the function

B = fr ' Po( fn)
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is in Hol (B (¢, 1)). Then by Equations (5) and (6)
lim lp — hm|*>dVa
m—00 B (&m.r)

= lim | fin — P f)* | fn| 2 d Ve

m=—00 B (&n,r)

< lim C2/ |Hy(fu)|>di < 1im C?||Hy(f)||5 = 0.
B ({n.r) e

m— 00

Since (¢&m)m>1 was an arbitrary sequence converging to €2, this completes the
proof of this direction.

6.2 (2) Implies (1)

Suppose that there exists r > 0 such that

lim inf{/ |¢—h|2dVQ:heHol(]B%Q(;“,r))} =0.
¢—>0Q Ba(¢.r)

Without loss of generality we can assume r < 1.
Let C; > 1 and {®; : ¢ € Q} satisfy Theorem 3.6. Then fix r; < é By

Corollary 3.5 there exists a sequence (&, )m>1 of distinct points in €2 such that

(1) {¢m : m > 1} is ry-separated with respect to the Bergman distance,
(2) U Bo(&m, 1) = 2, and
(3) L :=sup,cq#{m : ¢y € Ba(z, 3r/2)} < +o0.

Since the Bergman metric is a complete Riemannian metric and hence proper, we
must have ¢, — 9. Then for each m > 1, there is some 4,, € Hol (Bq (&, 7)) such

that if
12
e = (/ |¢—hm|2dvg) ,
BQ({mv")

then lim,;, o €, = 0.

Then fix a compactly supported smooth function y : B — [0, 1] such that x = 1
on C1ry B and supp(x) C CL] B. Then define y,, := x o <I>;nl. Notice that Theorem 3.6
implies that

Ba(lm, 1) C @, (C1r1B) C x,, (1)

and

r
supp(xm) C Py, <C_1 B) C Ba(Gm, ).
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Further, by Theorem 3.6

[03m ] g = 19x | 074, = €1 9], S 1-

Next, let x,,, := ﬁ Xm- Then

- 1 _ Am _ _
3 Y [ PO R L+1 5 <1,
193], H TR Xn)z; xn| < (L+ ):lzlli 19 <

8Q

(N

Finally, let

and

pr=¢—d1 = im-($—hm)

Lemmaé6.2 lim |¢2|2 dVq = 0. In particular,
§= 02 JBa(.r/2)

(1) dom(My,) = AX(Q) and My, : A%2(Q) — L%(Q) is a compact operator,
(2) dom(Hy,) = AZ(Q) and Hy, : AZ(Q) — LZ(Q) is a compact operator,
(3) dom(Hy,) = dom(Hy).

Proof For the main assertion, it is enough to show that
[ iR ava Smaxiel ¢ € supplon)
Bq(g,r/2)

Fix ¢ € Q2 and let

{m1,....,mg} = {m : supp(xm) N Ba(¢,r/2) # 0}
C{m: ¢y € Ba(g,3r/2)}).

Notice that £k < L and

5 1/2

12 k
|¢2|2dVQ> _ / o (& — )| d Ve
<\/];Q(Z,r/2) B Z i "

e(¢.r/2) j=1

12
2
<S([ e Pava) = Lmaxten ¢ € suppOo)
EQ({mjvr)

j=1
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Next we prove the “in particular” assertions. Proposition 4.1 immediately implies
(1). Since Hy, = (id — Pg) o My, and id — Pg is a bounded operator, we see that (1)
implies (2). Finally, since dom(My,) = A%(Q), we see that

dom(Hy,) = dom(My,) = dom(My) = dom(Hy).

O
Fix ry < 5 sufficiently small such that: if w € supp(x), then B(w, Cr2) C CLI B.
Lemma 6.3 If ¢ € supp(x») N supp(xm), then

12
(/ ™ —hmldeQ> < en + em.
Bq(¢.r2)

Proof 1f ¢ € supp(x,) N supp(xm), then

BQ(;v r2) C Bﬁ(é‘nr r) mBQ(é‘n’h r)'

1/2 1/2
(/ hy — hm|2dvg> < (/ hy — f|2dvsz)
Bq(¢.r2) Bq(¢.r2)

12
+ (/ Vi — fldesz>
Ba(¢.r2)

<€+ én.

So

O

Lemma 6.4 lim;_; 50 fEQ(C,rz) ||E_)¢1 ”zzm dVq = 0. In particular, Hg, extends to a

compact operator on A%(S).

Proof To prove the first assertion, it is enough to show that
=2
f || 01 ”gQ dVa < max{e,i 2 ¢ € supp(m)}-
Ba(s.r2)

Fix ¢ € Q and let

{my,....mi} = {m : supp(xm) N Ba(l, r2) # ¥}
C{m:m € Ba(g, r +r2)}.

Notice that k < L since rp < 5. Also
k
Ip1(&) =Y hm;03m,
j=1
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onBgq(¢, rp). Further, since {X,,} is a partition of unity, Zl;zl E_)imj =0onBgq(Z, r).
So

k
g1 = Z (hm/ - hml) éim.i

j=2

on B (¢, r2). Then by Equation (7) and Lemma 6.3

(TR e ol (e
Bo(.r2) s o By

k
<D (€m; +€my) S max{en : ¢ € supp(xm)}.
j=2

This proves the first assertion.
From Lemma 6.3 we know that dom(Hy,) = dom(Hy) and so ¢ € S(R2). Hence
Proposition 5.1 implies that Hy, extends to a compact operator. O

Lemma 6.5 Hy extends to a compact operator.

Proof By the last two lemmas we see that Hy = Hy, + Hgy, extends to a compact
operator on A%(). O

7 Proof of Theorem 1.7

The proof of Theorem 1.7 is very similar to the proof of Theorem 1.2 and is left to the
reader.

8 Proof of Theorem 1.4
Suppose €2 C C? is a bounded domain with bounded intrinsic geometry, 32 is C°,
and ¢ € C(R2). Let C; > 1 and {®; : ¢ € Q} satisfy Theorem 3.6.

Theorem 1.4 is a consequence of Theorem 1.2 and the next three lemmas.

Lemma 8.1 If ¢ is holomorphic on every analytic variety in 02, then there existsr > (0
such that

lim inf {/ |¢p — h|>dVg : h € Hol (Ba(¢, r))} =0.
{09 Ba(¢.r)

@ Springer



Hankel Operators on Domains with Bounded Intrinsic Geometry Page230f29 176

Proof Fixr < %.Then Bo(¢,r) C & (5B) forall ¢ € Q. Fix a sequence (m)m=1
in Q such that ¢, — 02 and

lim sup inf {/ |¢p — h|>dVq : h € Hol (Ba(¢, r))}
—0Q Ba(¢,r)

= lim inf {/ |p — h|>dVq : h € Hol (B (&, r))} .
m—ee Bo(§m.r)

Passing to a subsequence we can suppose that @, converges locally uniformly

to ® : B — Q. Since the Bergman distance on 2 is proper (by the Hopf-Rinow

theorem) and ®,(B) C Bq(¢, C1), we must have ®(B) C 9S2. Then by assumption,

ho := ¢ o ® : B — C is holomorphic. Then, if 4, := hg o @;1 we have
" ABQ(&m.r)
lim |p — hm|* d Vg §limsup/ ‘q&od)gm —h0|2<1>’£ dVg
"0 JBao(n.r) m—o0 JIB "

< Clz‘ilimsup[ |¢o D, —h0|2du =0.
1
2

m—00
O

To the prove the other direction in Theorem 1.4, we first show that every analytic
variety in d€2 can be locally obtained by taking a limit of the embeddings ®, : B — Q

Lemma8.2 If F : D — 0K is holomorphic and zo € D, then there exist 5o > 0 and a
sequence (§m)m=1 in 2 such that @, converges locally uniformly to a holomorphic
map ® : B — 9Q with ®(0) = F(z0) and
F(D(zp,8)) C ®(B).
Proof Since 9$2 is C° there exists a unit vector v € C? and 8y > 0 such that
tv + F(D(zo, ép)) C L2
forall ¢+ € (0, &p).

Let ¢, := fn—ov + F(zg). Then let dg and dg denote the Kobayashi distances on 2
and D respectively. By the distance decreasing property of the Kobayashi metric,

I} w —
d& (; Zov + F(w)) <ak (0, 8020)

forall w € ]D)(Z(), 50) Then l)y Theorem 33, there exists § > 0 such that
—V F s , —— (I) —_ .
m 0 @ " 2C] bm 2
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Passing to a subsequence we can suppose that @, converges locally uniformly to
® : B — Q. Then

®0) = lim @, (0) = F(zo).

Also, since the Bergman distance on 2 is proper (by the Hopf-Rinow theorem) and
@ (B) C Ba(¢, C1), we must have ®(B) C 9S2. Finally, Equation (8) implies that
F(D(zo, 8)) C ©(B).

O

Lemma 8.3 [f there exists r > 0 such that

lim inf{/ lp —h|>dVq : h eHol(BQ(g,r))} =0,
{09 Bo(Z.r)

then ¢ is holomorphic on every analytic variety in 0.

Proof Using Lemma 8.2, it is enough to fix a sequence () >1 in Q2 where ¢, — 92
and ®,, converges locally uniformly to a holomorphic map ® : B — 9€2, then show
that ¢ o ® is holomorphic in a neighborhood of 0.

By hypothesis, for each m > 1, there is some &, € Hol (Bq (¢, r)) such that: if

1,2
@u=</' |¢—hdewQ ,
Bo(Gn,r)
then lim,;, s o0 €, = 0.

Fix r; < min {CLI, 1}. Then @, (11 B) C Bo(Lm, r) and 0 fiy = hy o Oy, is

well defined on r B. Also, if ¢3m i=¢oP,,, then qu converges uniformly on | B to
b:=¢od.
By Theorem 3.6,

/rlllB%

~ ~ |2
‘¢m - hm‘ cDanVQ

N ~ 12
b= | = ¥ |
rllB

= C%d/ lp — hm|>dVg < C3e2,
cDé'm (r1B)

n . ~ 2
Since ¢, converges uniformly to ¢, we then see that fr B ‘hm‘ dp is uniformly

bounded. So after passing to a subsequence we can suppose that o converges locally
uniformly to a holomorphic function /# on r; B. Then by Fatou’s lemma

~ ~12 N ~ 12
/ ‘q&—h‘ dufliminf/ )qﬁm—hm‘ du =0.
r B rnB

m—0oQ

Sopod = ¢3 coincides with A, a holomorphic function, on r B.
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9 When the Standard Potential has Self bounded Gradient

In this section, we characterize when the standard potential for the Bergman metric
has self bounded gradient.

Theorem 9.1 Suppose Q@ C C? is a domain with bounded intrinsic geometry and
{®; : ¢ € Q} satisfies Theorem 3.6. Then the following are equivalent:

(1) logKq(z, 2) has self bounded gradient,
(2) Foreveryr > 0 there exists C = C(r) > 1 such that: if distq(z, ¢) <r, then

1<KQ(Z,Z)<

C = Ka(C.0) ~
(3) Foreveryr > 0 there exists C = C(r) > 1 such that: if ¢ € Q, then

1 1

— <K s <C
CrBaG.ry ~ =

nBa(g,r)
(4) For everyr > 0 there exists C = C(r) > 1 such that: if ¢ € Q, then

1 du du
- <dVg < C—r——
C nBa(g,r)) u Ba(g,r))

onBq (¢, r).
(5)

sup H 3y log ‘det <I>’§(w)‘ ‘ H < +4o00.
e w=0112

The rest of the section is devoted to the proof of the theorem.
Lemma9.2 (1) = (2).

Proof Let

O := sup [|0 logKq(z, 2)l,, < +o0.
zeQ

Since log Kq(z, z) is real valued, 9 logKq(z, z) = dlogKq(z, z). Hence

sup |ld logKa(z, 2)ll,, <20
zeQ

and so

—20dista(z,¢) Ka(z, 2) < (20Qdista(z.0)
K5, 0) ~

forall z, ¢ € Q. 0O

@ Springer



176 Page 26 of 29 A. Zimmer

Lemma9.3 (2) = (3).

Proof Let C; > 1 be the constant from Theorem 3.6. We consider two cases:

Case I1: Assume r < Cll If ¢ € 2, then Theorem 3.6 implies that

o, (CL IB%) C Ba(t.r) C & (C1rB).
1
So

(det cpg(w))zdu(w).

2
/ [det @ ()| dpuw) = 1 B, 1) = /
CLIIB CirB

By Theorem 3.8 part (1) and the assumption

1 1
Ko (@ (w), @ (w) ~ Ko(¢, )

‘det ®, (w))2 =

when w € B. So, in this case, there exists C = C(r) > 1 such that: if ¢ € €2, then

1

——— <K , <C
CrBaG. ) ~ o=

1B, )

Case 2: Assume r > Cil Fix ro < C% By Corollary 3.5 there exists a sequence

(&m)m>1 of distinct points in €2 such that

(1) {&n : m > 1} is ro-separated with respect to the Bergman distance,
(2) Un Ba(m, ro) = 2, and
(3) L :=sup,cq#{m : ¢y € Ba(z, r +ro)} < +oo.

Then if { € 2, case 1 implies that

1
nBa,r) =upnBa(tr0) 2 -
Ka(¢, 0)
Also, case 1 and the assumption imply that
1 1
max <
jeBaz.r+ro) Ko (8, &) ™ Ka(g, ¢)

wBo@.r)< Y p(Ba@.r) SL
¢j€Bq(L,r+ro)

(notice that the implicit constant depends on » > 0). So, in this case, there exists
C = C(r) > 1 such that: if ¢ € Q, then

1

—_—_ K , <C
CrBaG. ) - o=

1 (B, r)
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Lemma9.4 (3)= (2).

Proof Fix r > 0. If disto(z, £) < r, then

K@z, 2) o n@Bel. 1) _
Ka(¢, )~ nBalz, 2r) ~

and

Ka(z,2)  nBe((,2r)) -1
Ke (€, 0) ~ nu@Balz,r) —

(notice that the implicit constants depend on r > 0).
Lemma 9.5 (2 and 3) = (4).
Proof Fix r > 0. By Proposition 3.12

dVa(z) < Ka(z, 2)du(z).

So (2) and (3) imply that on B (¢, ) we have

1
dV = Kq(¢, ¢)d = —d
(2) (¢, 0)du(z) BaC.1) n(z)

(notice that the implicit constants depend on r > 0).
Lemma 9.6 (4) = (2).
Proof Fix r > 0. By Proposition 3.12

dVa(z) < Ka(z, 2)du(z).
So for z € Bq(¢, r), we have

1

K )X ————————
)

and hence

Ka(z, 2) < Ka(Z, 0)
(notice that the implicit constants depend on r > 0).

Lemma9.7 (2) = (5).
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Proof Fix a sequence (& )m>1 such that

sup H 3y log ‘det CDQ(w)‘ ‘w:() H2 = lim ‘ 9y log ‘det @ (w)‘ )w=0 H2

é‘EQ m—0o0

Define f,, : B — C by

det <I>’§m (w)
Sm(w) = W~
By Theorem 3.6 there exists C; > 1 such that
D (B) C Ba(¢, Cr)
for all ¢ € €2. So by Theorem 3.8 part (1) and the assumption

GO = @ ), dp )

Using Montel’s theorem and passing to a subsequence we can suppose that f,
converges locally uniformly to a holomorphic function f : B — C. Then

sup H 3y 1og‘detc1>g(w)Hw:0H2= lim )aw log‘det<l>’§m(w)Hw:0H2

[eQ m—00

= lim_[12.fn ()l = 3£ (0)ll5 < +oo.

m}

Lemma 9.8 (1) < (5).
Proof By Theorem 3.6

| 8:logKa(z. )= ||, = || 0w log Ka(@e (w), @c WD), _ g,

= || 0w log Ke (@ (w), Dc )|, |, -
Further, by Theorem 3.8
| 0w log Be (w. w)|, o,
is uniformly bounded and by definition
, 2
0 log Ko (@ (w), Bg ()], _o = (8w 1og s (w, w) — 8, log |det &} (w)|
w=0

So (5) < (1). ]
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