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Abstract

In this paper, we consider Hankel operators on domains with bounded intrinsic geom-
etry. For these domains we characterize the L2-symbols where the associated Hankel
operator is compact (respectively bounded) on the space of square integrable holo-
morphic functions.
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1 Introduction

Given a bounded domain � ⊂ C
d , let μ denote the Lebesgue measure and let L2(�) =

L2(�,μ). Also let A2(�) ⊂ L2(�) denote the subspace of holomorphic functions and
P� : L2(�) → A2(�) denote the Bergman projection, i.e. the orthogonal projection
of L2(�) onto A2(�). Finally, given φ ∈ L2(�), the associated Hankel operator Hφ

has domain

dom(Hφ) =
{

f ∈ A2(�) : φ · f ∈ L2(�)

}

and is defined by

Hφ( f ) = (id −P�)(φ · f ) = φ · f − P�(φ · f ).

We will let S(�) ⊂ L2(�) denote the symbols φ where the associated Hankel
operator is densely defined on A2(�). We always have L∞(�) ⊂ S(�) and when
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L∞(�) ∩ A2(�) is dense in A2(�) (e.g. � is strongly pseudoconvex [2, Theorem
3.1.4] or star shaped) we have L2(�) = S(�).

In this paper, we consider the well-studied problem of characterizing the symbols
with compact Hankel operator. The results of this paper are especially inspired by Li’s
characterization for strongly pseudoconvex domains [10] (see [9, 11, 12] for closely
related results). For such domains, Li proved that a Hankel operator is compact if
and only if on each sufficiently small metric ball B�(ζ, r) in the Bergman metric the
symbol can be approximated by a holomorphic function. More precisely:

Theorem 1.1 (Li [10]) Suppose � ⊂ C
d is a strongly pseudoconvex domain and

φ ∈ L2(�). Then the following are equivalent:

(1) Hφ extends to a compact operator on A2(�),

(2) for some r > 0

lim
ζ→∂�

inf

{

1

μ(B�(ζ, r))

∫

B�(ζ,r)

| f − h|2 dμ : h ∈ Hol (B�(ζ, r))

}

= 0.

In this paper, we extend Li’s result to domains with bounded intrinsic geometry,
see Definition 3.1 below. This class of domains was introduced in [18] and include
many well studied families of domains such as

(1) Strongly pseudoconvex domains,
(2) Finite type domains in C

2,
(3) Convex domains or more generally C-convex domains which are Kobayashi hyper-

bolic (with no boundary regularity assumptions),
(4) Simply connected domains which have a complete Kähler metric with pinched

negative sectional curvature,
(5) Bounded homogeneous domains, and
(6) The Bers embeddings of the Teichmüller space of hyperbolic surfaces of genus g

with n punctures.

Further, by definition, any domain biholomorphic to one of the domains listed above
also has bounded intrinsic geometry.

As in the classical strongly pseudoconvex case, for domains with bounded intrinsic
geometry we show that compactness of a Hankel operator is equivalent to the symbol
being locally approximable by holomorphic functions in a L2-space, but instead of
using a scaled Lebesgue measure we use the Riemannian volume form dV� induced
by the Bergman metric.

Theorem 1.2 Suppose � ⊂ C
d is a bounded domain with bounded intrinsic geometry

and φ ∈ S(�). Then the following are equivalent:

(1) Hφ extends to a compact operator on A2(�),

(2) for some r > 0

lim
ζ→∂�

inf

{∫

B�(ζ,r)

|φ − h|2 dV� : h ∈ Hol (B�(ζ, r))

}

= 0.
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Remark 1.3 For a strongly pseudoconvex domain � ⊂ C
d , we will show that for any

r > 0 there exists C = C(r) > 1 such that: if ζ ∈ �, then

1

C
dV� ≤ 1

μ(B�(ζ, r))
dμ ≤ CdV� (1)

on B�(ζ, r), see Theorem 1.8 below. Hence Theorem 1.2 is a true generalization of
Li’s theorem.

In the continuous category, Theorem 1.2 simplifies to the following.

Theorem 1.4 Suppose � ⊂ C
d is a bounded domain with bounded intrinsic geometry,

∂� is C
0, and φ ∈ C(�). Then the following are equivalent:

(1) Hφ is a compact operator on A2(�),

(2) φ is holomorphic on every analytic variety in ∂�.

Remark 1.5 To be precise, we say:

(1) ∂� is C
0, if for every point x ∈ ∂� there exists a neighborhood U of x and there

exists a linear change of coordinates which makes U ∩ ∂� the graph of a C
0

function.
(2) φ is holomorphic on every analytic variety in ∂�, if for every holomorphic map

F : D → ∂� the composition φ ◦ F is holomorphic.

Remark 1.6 Theorem 1.4 is related to a number of prior results for convex domains:

(1) For smoothly bounded convex domains with symbols in C
∞(�), Čučković-

Şahutoğlu [16] proved that (1) ⇒ (2).
(2) For bounded convex domains with symbols in C(�), Çelik-Şahutoğlu-Straube

[3, 4] proved that (1) ⇒ (2) and also established an analogous result for Hankel
operators on (0, q)-forms.

(3) For bounded convex domains with symbols in C
1(�), Çelik-Şahutoğlu-Straube

[5] proved that (2) ⇒ (1) and also established an analogous result for Hankel
operators on (0, q)-forms.

It appears that even in the special case of convex domains the implication (2) ⇒ (1)
was unknown for symbols in C(�).

We can also characterize the Hankel operators that extend to bounded operators.

Theorem 1.7 Suppose � ⊂ C
d is a bounded domain with bounded intrinsic geometry

and φ ∈ S(�). Then the following are equivalent:

(1) Hφ extends to a bounded operator on A2(�),

(2) for some r > 0

sup
ζ∈�

inf

{∫

B�(ζ,r)

|φ − h|2 dV� : h ∈ Hol (B�(ζ, r))

}

< +∞.
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In the last part of the paper we use the Bergman kernel K� to characterize the
domains � ⊂ C

d with bounded intrinsic geometry where the estimates in Equation (1)
hold.

Theorem 1.8 (see Theorem 9.1 below) Suppose � ⊂ C
d is a bounded domain with

bounded intrinsic geometry. Then the following are equivalent:

(1) log K�(z, z) has self bounded gradient,

(2) for every r > 0 there exists C = C(r) > 1 such that: if ζ ∈ �, then

1

C
dV� ≤ 1

μ(B�(ζ, r))
dμ ≤ CdV�

on B�(ζ, r).

Remark 1.9 In Theorem 9.1 we also provide several other equivalent statements.

Using Theorems 1.2 and 1.8 we obtain the following direct extension of Li’s theo-
rem.

Corollary 1.10 Suppose � ⊂ C
d is a bounded domain with bounded intrinsic geom-

etry, log K�(z, z) has self bounded gradient, and φ ∈ S(�). Then the following are

equivalent:

(1) Hφ extends to a compact operator on A2(�),

(2) for some r > 0

lim
ζ→∂�

inf

{

1

μ(B�(ζ, r))

∫

B�(ζ,r)

|φ − h|2 dμ : h ∈ Hol (B�(ζ, r))

}

= 0.

It is known that log K�(z, z) has self bounded gradient when � is a strongly pseu-
doconvex domain [7, Proposition 3.4], a pseudoconvex finite type domain in C

2

[8], a Kobayashic hyperbolic convex domain [18, Proposition 4.6], or a Kobayashi
hyperbolic C-convex domain [18, Proposition 4.12]. To the best of our knowledge,
Corollary 1.10 is new in all but the first case (which is Li’s theorem).

There also exist domains with bounded intrinsic geometry where log K�(z, z) does
not have self bounded gradient, see [18, Proposition 1.11].

Theorem 1.8 says that, in general, the local L2-spaces considered in Li’s theorem
and in Theorem 1.2 are not uniformly comparable, but it is unclear if it is possible to
construct a symbol which satisfies one condition but not the other.

1.1 Structure of the Paper

In Sect. 2 we set our notations and recall a few classical results. In Sect. 3 we recall the
definition of domains with bounded intrinsic geometry and some results from [18].
Then we prove a number of new results about these domains.

Sections 5, 4, 6, and 7 are devoted to the proofs of Theorems 1.2 and 1.7. The proofs
are similar to the arguments in [10] (which in turn are similar to the arguments in [1,
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9, 11, 12]) and in some sense the most important results of this paper are in Sect. 3
which give us the tools necessary to adapt Li’s proof.

In Sect. 4 we characterize the L2-symbols whose multiplication operator is compact
(respectively bounded). Using this result, in Sect. 5 we prove a sufficient condition for
a C

1-smooth symbol to have compact (respectively bounded) Hankel operator.
The implication (1) ⇒ (2) in Theorems 1.2 and 1.7 is fairly straightforward (using

the results in Sect. 3). To show that (2) ⇒ (1), we construct a special decomposition
of our symbol φ = φ1 +φ2. Then using the results of Sects. 4 and 5 we show that Hφ1

and Hφ2 are both compact.
In Sect. 8 we prove Theorem 1.4 using Theorem 1.2. Finally, in Sect. 9 we consider

domains with bounded intrinsic geometry where the standard potential of the Bergman
metric has self bounded gradient.

2 Preliminaries

2.1 Notations

In this section we fix any possibly ambiguous notation.

2.1.1 The Bergman Kernel, Metric, Volume, and Distance

We will use the following notations.

Definition 2.1 Suppose � ⊂ C
d is a pseudoconvex domain.

(1) Let K� denote the Bergman kernel on �,
(2) let g� denote the Bergman metric on �,
(3) let V� denote the volume form induced by the Bergman metric, that is

dV� =
∣

∣

∣

∣

det

[

g�

(

∂

∂z j

,
∂

∂ z̄k

)]∣

∣

∣

∣

dμ,

(4) let dist� denote the distance induced by the Bergman metric, and
(5) for ζ ∈ � and r ≥ 0 let

B�(ζ, r) := {z ∈ � : dist�(z, ζ ) < r}

denote the open ball of radius r centered at ζ in the Bergman distance.

2.1.2 Approximate Inequalities

Given functions f , h : X → [0,∞) we write f � h or equivalently h � f if there
exists a constant C > 0 such that f (x) ≤ Ch(x) for all x ∈ X . Often times the set X

will be or include a set of parameters (e.g. m ∈ N).
If f � g and g � f we write f � g.
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2.1.3 The Levi Form

Given a domain � ⊂ C
d and a C

2-smooth real valued function f : � → R, the Levi

form of f is

L ( f ) =
∑

1≤ j,k≤d

∂2 f

∂z j∂ z̄k

dz j ⊗ dz̄k .

Notice that f is plurisubharmonic if L ( f ) ≥ 0 and, by definition,

L (log K�(z, z)) = g�.

2.1.4 Norms on 1-Forms and Functions with Self bounded Gradient

Given a 1-form α on a domain � ⊂ C
d and a Hermitian pseudo-metric h on �, one

can define the pointwise norm

‖αz‖h = sup
{

|αz(X)| : X ∈ C
d , hz(X , X) ≤ 1

}

.

Then a C
2 plurisubharmonic function λ : � → R is said to have self bounded gradient

if

‖∂λ‖L (λ)

is uniformly bounded on �. This is equivalent to the existence of some C > 0 such
that

∣

∣

∣

∣

∣

∣

d
∑

j=1

∂λ

∂z j

X j

∣

∣

∣

∣

∣

∣

2

≤ C

d
∑

j,k=1

∂2λ

∂z j∂ z̄k

X j X̄k

for all X ∈ C
d .

2.2 Solutions to the @̄-Equation

We will use the following existence theorem for solutions to the ∂̄-equation.

Theorem 2.2 Suppose � ⊂ C
d is a bounded pseudoconvex domain, λ1 : � → R has

self bounded gradient, and λ2 : � → {−∞} ∪ R is plurisubharmonic. There exists

C > 0 which only depends on

sup
z∈�

‖∂λ1‖L (λ1)
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such that: if α ∈ L
2,loc
(0,1)

(�) and ∂̄α = 0, then there is some u ∈ L2,loc(�) with ∂̄u = α

and

∫

�

|u|2 e−λ2 dμ ≤ C

∫

�

‖α‖2
L (λ1)

e−λ2 dμ

assuming the right hand side is finite.

A proof of Theorem 2.2 can be found in [14, Theorem 4.5 and Section 4.6]. A
special case was established earlier in [13, Proposition 3.3] with essentially the same
argument.

2.3 Separated Sets in RiemannianManifolds

Recall that a set of points A in a metric space (X , distX ) is called r -separated if
distX (x1, x2) ≥ r for all distinct x1, x2 ∈ A. We will frequently use the following
observation about separated sets in Riemannian manifolds satisfying a type of bounded
geometry condition.

Proposition 2.3 Suppose (X , g) is a complete Riemannian manifold with bounded sec-

tional curvature and positive injectivity radius. Let distg denote the distance induced

by g and let Bg(x, r) denote the open metric ball of radius r centered at x ∈ X. For

any r , R > 0 there exists L = L(r , R) > 0 such that: if A is a r-separated set in

(X , distg), then

#(A ∩ Bg(x, R)) ≤ L

for any x ∈ X.

Proof Fix r , R > 0. Let Vg denote the volume induced by g. By the Bishop-Gromov
volume comparison theorem, there exists C1 > 0 such that Vg(Bg(x, R + r)) ≤ C1
for all x ∈ X . Since the injectivity radius is positive, by [6, Proposition 14] there exists
C2 > 0 such that Vg(Bg(x, r/2)) ≥ C2 for all x ∈ X .

Fix x ∈ X and suppose that x1, . . . , xm are distinct points in A ∩ Bg(x, R). Then
the sets Bg(x1, r/2), . . . , Bg(xm, r/2) are disjoint subsets of Bg(x, R + r) and so

C1 ≥ Vg(Bg(x, R + r)) ≥
∑

j

Vg(Bg(x j , r/2)) ≥ mC2.

Hence

#(A ∩ Bg(x, R)) ≤ C1

C2

and the proof is complete.
��
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3 Domains with Bounded Intrinsic Geometry

In this section, we recall the definition of domains with bounded intrinsic geometry
and some results from [18]. Then we prove some new results.

Definition 3.1 [18, Definition 1.1] A domain � ⊂ C
d has bounded intrinsic geometry

if there exists a complete Kähler metric g on � such that

(b.1) the metric g has bounded sectional curvature and positive injectivity radius,
(b.2) there exists a C

2 function λ : � → R such that the Levi form of λ is uniformly
bi-Lipschitz to g and ‖∂λ‖g is bounded on �.

The Kähler metric in Definition 3.1 does not have to be one of the standard invariant
Kähler metrics, but in [18] we proved that once there is some Kähler metric satisfying
the definition, then the Bergman metric also satisfies the definition.

Theorem 3.2 [18, Theorem 1.2] If � ⊂ C
d is a domain with bounded instrinsic

geometry, then the Bergman metric g� on � satisfies Definition 3.1. In particular, �

is pseudoconvex.

We will also use the following theorem from [18].

Theorem 3.3 [18, Theorem 1.8] If � ⊂ C
d is a domain with bounded instrinsic geom-

etry, then the Bergman metric and the Kobayashi metric are bi-Lipschitz equivalent.

3.1 Solving the @̄-Equation

As a corollary to Theorems 3.2 and 2.2 we have the following existence theorem for
solutions to the ∂̄-equation on domains with bounded intrinsic geometry.

Corollary 3.4 Suppose � ⊂ C
d is a bounded domain with bounded intrinsic geometry.

Then there exists C > 0 such that: if λ2 : � → {−∞} ∪ R is plurisubharmonic and

α ∈ L
2,loc
(0,1)

(�) with ∂̄α = 0, then there is some u ∈ L2,loc(�) with ∂̄u = α and

∫

�

|u|2 e−λ2 dμ ≤ C

∫

�

‖α‖2
g�

e−λ2 dμ

assuming the right hand side is finite.

Proof Let λ be a C
2 function satisfying Definition 3.1 for the Bergman metric. Then

apply Theorem 2.2 with λ1 = λ. ��

3.2 Discretization

As a corollary to Theorem 3.2 and Proposition 2.3 we have the following useful
discretization of a domain with bounded intrinsic geometry.

Corollary 3.5 Suppose � ⊂ C
d is a bounded domain with bounded intrinsic geometry.

For any r > 0 there exists a sequence of distinct points (ζm)m≥1 in � with the following

properties:
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(1) {ζm : m ≥ 1} is r-separated in (�, dist�),

(2) � = ∪m B�(ζm, r), and

(3) for any R > 0, supz∈� #{m : ζm ∈ B�(z, R)} < +∞.

Proof Let A ⊂ � be a maximal r -separated set in � (which exists by Zorn’s lemma).
Since the Bergman metric is complete, the metric space (�, dist�) is unbounded (by
the Hopf-Rinow theorem). So the set A must be infinite. By Proposition 2.3, the set A

is countable. Hence A = {ζm : m ≥ 1} for some sequence (ζm)m≥1 of distinct points.
Then part (1) follows from the definition of A. Part (2) follows from the maximality

of A: if there exists w ∈ �\ ∪m B�(ζm, r), then A ∪ {w} would also be r -separated.
Part (3) follows from Proposition 2.3.

��

3.3 Estimates on the Bergman Kernel andMetric

In this subsection, we recall two results from [18] and then use them to derive a number
of new estimates for the Bergman kernel and metric.

Suppose, for the rest of this subsection, that � ⊂ C
d is a bounded domain with

bounded intrinsic geometry.
Combining Theorem 3.2 with deep results of Wu-Yau [17] and Shi [15], yields the

following.

Theorem 3.6 [18, Theorem 5.1, Theorem 10.1] There exists C1 > 1 such that: for

every ζ ∈ � there is a holomorphic embedding �ζ : B → � with �ζ (0) = ζ ,

1

C2
1

gEuc ≤ �∗
ζ g� ≤ C2

1 gEuc

on B, and

1

C1
‖w1 − w2‖2 ≤ dist�

(

�ζ (w1),�ζ (w2)
)

≤ C1 ‖w1 − w2‖2 (2)

for all w1, w2 ∈ B.

Remark 3.7 Notice that Equation (2) implies that

B�

(

ζ,
r

C1

)

⊂ �ζ (r B) ⊂ B� (ζ, C1r)

when r < 1
C1

.

Using the embeddings in Theorem 3.6, we define

βζ : B × B → C

βζ (u, w) = K�(�ζ (u),�ζ (w)) det �′
ζ (u)det �′

ζ (w).

These functions have the following uniform estimates.
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Theorem 3.8 [18, Theorem 9.1, Theorem 10.1]

(1) There exists C2 > 1 such that:

C−1
2 ≤ βζ (w,w) ≤ C2

for all ζ ∈ � and w ∈ B.

(2) For every δ ∈ (0, 1) and multi-indices a, b there exists Cδ,a,b > 0 such that

∣

∣

∣

∣

∣

∂ |a|+|b|βζ (u, w)

∂ua∂w̄b

∣

∣

∣

∣

∣

≤ Cδ,a,b

for all ζ ∈ � and u, w ∈ δ B.

Theorem 3.8 implies the following off-diagonal estimates near the diagonal.

Proposition 3.9 There exist r0 > 0 and C3 > 1 such that: If ζ ∈ � and z ∈ �ζ (r0 B),

then

1

C3
K�(z, z) K�(ζ, ζ ) ≤ |K�(z, ζ )|2 ≤ C3 K�(z, z) K�(ζ, ζ ).

Proof By Theorem 3.8 part (1) and (2) there exists r0 > 0 such that

1

2C2
2

≤
∣

∣βζ (w, 0)
∣

∣

2 ≤ 2C2
2

for all ζ ∈ � and w ∈ r0 B. Also,

1

C2

∣

∣

∣
det �′

ζ (w)

∣

∣

∣

−2
≤ K�(�ζ (w),�ζ (w)) ≤ C2

∣

∣

∣
det �′

ζ (w)

∣

∣

∣

−2

for all ζ ∈ � and w ∈ B. Now if ζ ∈ � and z = �ζ (w) where w ∈ r0 B, then

|K�(z, ζ )|2 =
∣

∣βζ (w, 0)
∣

∣

2
∣

∣

∣
det �′

ζ (w)

∣

∣

∣

−2 ∣

∣

∣
det �′

ζ (0)

∣

∣

∣

−2

and so

1

C3
K�(z, z) K�(ζ, ζ ) ≤ |K�(z, ζ )|2 ≤ C3 K�(z, z) K�(ζ, ζ )

where C3 = 2C4
2 . ��

Proposition 3.10 There exists C4 > 0 such that: if r < C1 and u : � → [0,∞) is a

function with log(u) plurisubharmomic, then

u(ζ ) ≤ C4

r2d
K�(ζ, ζ )

∫

B�(ζ,r)

u dμ (3)
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for all ζ ∈ �.

Proof Theorem 3.6 implies that �ζ

(

r
C1

B

)

⊂ B�(ζ, r) and so

∫

B�(ζ,r)

u dμ ≥
∫

r
C1

B

(u ◦ �ζ )(w)

∣

∣

∣
det �′

ζ (w)

∣

∣

∣

2
dμ(w).

Notice that log(u) ◦ �ζ + log
∣

∣

∣
det �′

ζ

∣

∣

∣

2
is plurisubharmonic and so

exp

(

log(u) ◦ �ζ + log
∣

∣

∣
det �′

ζ

∣

∣

∣

2
)

= (u ◦ �ζ ) ·
∣

∣

∣
det �′

ζ

∣

∣

∣

2

is also plurisubharmonic. So by the mean value theorem for plurisubharmonic func-
tions

u(ζ )

∣

∣

∣
det �′

ζ (0)

∣

∣

∣

2
≤ C2d

1

r2dμ(B)

∫

B�(ζ,r)

u dμ.

So by Theorem 3.8,

u(ζ ) ≤ C4

r2d
K�(ζ, ζ )

∫

B�(ζ,r)

u dμ

where C4 := C2d
1 C2
μ(B)

. ��

As a consequence of the above proposition, the Bergman kernel has the following
local positivity of mass.

Proposition 3.11 If r < C1 and ζ ∈ �, then

∫

�

|K�(z, ζ )|2 dμ(z) ≤ C4

r2d

∫

B�(ζ,r)

|K�(z, ζ )|2 dμ(z).

Proof Apply Equation (3) to u = |K�(·, ζ )|2 and recall that

K�(ζ, ζ ) =
∫

�

|K�(z, ζ )|2 dμ(z).

��

We also obtain the following estimate on the volume form induced by the Bergman
metric.
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Proposition 3.12 There exists C5 > 1 such that

1

C5
K�(z, z)dμ(z) ≤ dV�(z) ≤ C5 K�(z, z)dμ(z)

on �.

Proof By Theorem 3.6

1

C2d
1

≤
∣

∣

∣

∣

det

[

(�∗
ζ g�)0

(

∂

∂z j

,
∂

∂ z̄k

)]
∣

∣

∣

∣

≤ C2d
1

and so

1

C2d
1

∣

∣

∣
det �′

ζ (0)

∣

∣

∣

−2
≤

∣

∣

∣

∣

det

[

g�,ζ

(

∂

∂z j

,
∂

∂ z̄k

)]
∣

∣

∣

∣

≤ C2d
1

∣

∣

∣
det �′

ζ (0)

∣

∣

∣

−2
.

Hence Theorem 3.8 implies that

1

C5
K�(z, z)dμ(z) ≤ dV�(z) ≤ C5 K�(z, z)dμ(z)

where C5 = C2d
1 C2. ��

For each ζ ∈ �, consider the function

sζ = 1√
K�(ζ, ζ )

K�(·, ζ ).

Then sζ ∈ A2(�) and
∥

∥sζ

∥

∥

2 = 1. As an application of Proposition 3.10 and the
completeness of the Bergman metric, we have the following convergence result.

Proposition 3.13 If ζm → ∂�, then sζm converges locally uniformly to the zero func-

tion.

Proof Suppose not. Then after passing to a subsequence we can suppose that sζm →
f locally uniformly where f is holomorphic and non-zero. By Fatou’s lemma,
∫

�
| f |2 dμ ≤ 1.
Fix a sequence of compact sets (Km)m≥1 in � with

∫

Km
| f |2 dμ →

∫

�
| f |2 dμ.

Replacing (sζm )m≥1 with a subsequence, we can assume

lim
m→∞

∫

Km

∣

∣sζm − f
∣

∣

2
dμ = 0.

Then

lim sup
m→∞

∥

∥sζm − f
∥

∥

2 = lim sup
m→∞

∥

∥(sζm − f )1�\Km

∥

∥

2 ≤ lim sup
m→∞

∥

∥sζm1�\Km

∥

∥

2

+
∥

∥ f 1�\Km

∥

∥

2

= lim sup
m→∞

1 −
∥

∥sζm1Km

∥

∥

2 = 1 − ‖ f ‖2 .

123



Hankel Operators on Domains with Bounded Intrinsic Geometry Page 13 of 29 176

Fix r < C1. Applying Proposition 3.10 to | f |2 yields

| f (ζm)| ≤ C4

r2d

√

K�(ζm, ζm)

(∫

B�(ζm ,r)

| f |2 dμ

)1/2

for all m ≥ 1. Since the Bergman metric is proper (by the Hopf-Rinow theorem) and
ζm → ∂�, for any compact set K ⊂ � the sets

B�(ζm, r) ∩ K

are eventually empty. Then, since f ∈ L2(�), we have

lim
m→∞

∫

B�(ζm ,r)

| f |2 dμ = 0

and so

lim
m→∞

| f (ζm)|√
K�(ζm, ζm)

= 0.

Finally, let

hm = 1

1 − (1/2) ‖ f ‖2
(sζm − f ).

Then for m large we have ‖hm‖2 < 1 and

|hm(ζm)| >
√

K�(ζm, ζm)

which is impossible since

√

K�(ζ, ζ ) = sup
{

|h(ζ )| : h ∈ A2(�), ‖h‖2 ≤ 1
}

.

��

4 Multiplication Operators

Given φ ∈ L2(�), the associated multiplication operator Mφ has domain

dom(Mφ) =
{

f ∈ A2(�) : φ · f ∈ L2(�)

}

and is defined by

Mφ( f ) = φ · f .
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Proposition 4.1 Suppose � ⊂ C
d is a bounded domain with bounded intrinsic geom-

etry and φ ∈ L2(�). Then:

(1) The following are equivalent:

(a) there exists r > 0 such that

sup
ζ∈�

∫

B�(ζ,r)

|φ|2 dV� < +∞,

(b) dom(Mφ) = A2(�) and Mφ : A2(�) → L2(�) is bounded.

(2) The following are equivalent:

(a’) there exists r > 0 such that

lim
ζ→∂�

∫

B�(ζ,r)

|φ|2 dV� = 0,

(b’) dom(Mφ) = A2(�) and Mφ : A2(�) → L2(�) is compact.

The rest of the section is devoted to the proof of the theorem.

Lemma 4.2 (b’) ⇒ (a’).

Proof As in Sect. 3.3, for each ζ ∈ �, consider the function

sζ = 1√
K�(ζ, ζ )

K�(·, ζ ) ∈ A2(�).

Using Propositions 3.9 and 3.12 we can fix r > 0 and C > 0 such that

1

C
dV� ≤

∣

∣sζ

∣

∣

2
dμ ≤ CdV�

on B�(ζ, r).
Fix a sequence (ζm)m≥1 where ζm → ∂� and

lim sup
ζ→∂�

∫

B�(ζ,r)

|φ|2 dV� = lim
m→∞

∫

B�(ζm ,r)

|φ|2 dV�.

By Proposition 3.13 the sequence (sζm )m≥1 converges weakly to 0. Since Mφ is com-
pact, then

lim
m→∞

∫

�

∣

∣φ · sζ

∣

∣

2
dμ = 0.

Then

lim
m→∞

∫

B�(ζm ,r)

|φ|2 dV� ≤ C lim
m→∞

∫

�

∣

∣φ · sζ

∣

∣

2
dμ = 0
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and the proof is complete. ��

Lemma 4.3 (b) ⇒ (a).

Proof Very similar to the proof that (b’) ⇒ (a’). ��

Lemma 4.4 (a) ⇒ (b).

Proof Fix f ∈ A2(�). By Corollary 3.5 there exists a sequence (ζm)m≥1 of distinct
points in � such that

(1) {ζm : m ≥ 1} is r -separated with respect to the Bergman distance,
(2) ∪m B�(ζm, r) = �, and
(3) L := supz∈� #{m : ζm ∈ B�(z, 2r)} < +∞.

Applying Proposition 3.10 to | f |2 yields: if z ∈ B�(ζm, r), then

| f (z)|2 � K�(z, z)

∫

B�(z,r)

| f |2 dμ ≤ K�(z, z)

∫

B�(ζm ,2r)

| f |2 dμ.

So by Proposition 3.12

∫

B�(ζm ,r)

|φ · f |2 dμ �

(∫

B�(ζm ,r)

|φ|2 K�(z, z)dμ

) (∫

B�(ζm ,2r)

| f |2 dμ

)

�

(∫

B�(ζm ,r)

|φ|2 dV�

)(∫

B�(ζm ,2r)

| f |2 dμ

)

�

∫

B�(ζm ,2r)

| f |2 dμ.

Hence
∫

�

|φ · f |2 dμ �
∑

m

∫

B�(ζm ,r)

|φ · f |2 dμ �
∑

m

∫

B�(ζm ,2r)

| f |2 dμ ≤ L

∫

�

| f |2 dμ.

Since f ∈ A2(�) was arbitrary, dom(Mφ) = A2(�) and Mφ : A2(�) → L2(�)

is bounded.
��

Lemma 4.5 (a’) ⇒ (b’).

Proof It is enough to fix a sequence ( fn)n≥1 of unit vectors in A2(�) which converges
weakly to 0 and show that Mφ( f ) converges strongly to 0.

As in the proof of Lemma 4.4, there exists a sequence (ζm)m≥1 of distinct points
in � such that

(1) {ζm : m ≥ 1} is r -separated with respect to the Bergman distance,
(2) ∪m B�(ζm, r) = �, and
(3) L := supz∈� #{m : ζm ∈ B�(z, 2r)} < +∞.
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Further, arguing as in Lemma 4.4 we have

∫

B�(ζm ,r)

|φ · fn|2 dμ �

(∫

B�(ζm ,r)

|φ|2 dV�

)(∫

B�(ζm ,2r)

| fn|2 dμ

)

.

Fix ε > 0. Since

lim
ζ→∂�

∫

B�(ζ,r)

|φ|2 dV� = 0,

there exists M > 0 such that
∫

B�(ζm ,r)

|φ|2 dV� < ε

for all m > M . Since fn ∈ A2(�) converges to 0 weakly, fn converges locally
uniformly to 0. Hence

lim
n→∞

∑

m≤M

∫

B�(ζm ,2r)

| fn|2 dμ = 0.

Then

lim sup
n→∞

∫

�

|φ · fn|2 dμ

≤ lim sup
n→∞

∑

m

∫

B�(ζm ,r)

|φ · fn|2 dμ

� lim sup
n→∞

∑

m

(∫

B�(ζm ,r)

|φ|2 dV�

)(∫

B�(ζm ,2r)

| fn|2 dμ

)

= lim sup
n→∞

∑

m>M

(∫

B�(ζm ,r)

|φ|2 dV�

)(∫

B�(ζm ,2r)

| fn|2 dμ

)

≤ lim sup
n→∞

∑

m>M

ε

(∫

B�(ζm ,2r)

| fn|2 dμ

)

≤ lim sup
n→∞

εL

∫

�

| fn|2 dμ = εL.

Since ε > 0 was arbitrary, Mφ( fn) = φ · fn converges strongly to 0. ��

5 Smooth Symbols

Using Proposition 4.1 we establish a sufficient condition of a C
1-smooth symbol to

have compact (respectively bounded) Hankel operator.

Proposition 5.1 Suppose � ⊂ C
d is a bounded domain with bounded intrinsic geom-

etry and φ ∈ C
1(�) ∩ S(�).
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(1) If there exists r > 0 such that

sup
ζ∈�

∫

B�(ζ,r)

∥

∥∂̄φ
∥

∥

2
g�

dV� < +∞,

then Hφ extends to a bounded operator on A2(�).

(2) If there exists r > 0 such that

lim
ζ→∂�

∫

B�(ζ,r)

∥

∥∂̄φ
∥

∥

2
g�

dV� = 0,

then Hφ extends to a compact operator on A2(�).

Proof Let M : A2(�) → L2(�) be the multiplication operator

M( f ) =
∥

∥∂̄φ
∥

∥

g�
· f .

Fix f ∈ dom(Hφ). By definition

∥

∥Hφ( f )
∥

∥

2 = min
h∈A2(�)

‖ f φ − h‖2 .

Further, by Corollary 3.4 there exists C > 0, independent of f , and some u ∈ L2(�)

with ∂̄u = f ∂̄φ and

∫

�

|u|2 dμ ≤ C

∫

�

| f |2
∥

∥∂̄φ
∥

∥

2
g�

dμ = C ‖M( f )‖2
2

Then h := f φ − u ∈ A2(�) and so

∥

∥Hφ( f )
∥

∥

2 ≤ ‖ f φ − h‖2 = ‖u‖2 ≤
√

C ‖M( f )‖2 .

So Proposition 4.1 immediately implies the result.
��

6 Proof of Theorem 1.2

We are now ready to prove Theorem 1.2 which we restate here.

Theorem 6.1 Suppose � ⊂ C
d is a bounded domain with bounded intrinsic geometry

and φ ∈ S(�). Then the following are equivalent:

(1) Hφ extends to a compact operator,

(2) for some r > 0

lim
ζ→∂�

inf

{∫

B�(ζ,r)

|φ − h|2 dV� : h ∈ Hol (B�(ζ, r))

}

= 0.
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For the rest of the section suppose that � ⊂ C
d is a bounded domain with bounded

intrinsic geometry and φ ∈ S(�).

6.1 (1) implies (2)

Suppose that Hφ extends to a compact operator Ĥφ on A2(�). Fix a sequence (ζm)m≥1
converging to ∂�. By Proposition 3.13 the functions sζm ∈ L2(�) converge weakly
to zero. Hence

lim
m→∞

∥

∥

∥
Ĥφ(sζm )

∥

∥

∥

2
= 0.

By Proposition 3.9 we can fix r > 0 and C > 1 such that

1

C
|K�(z, ζ )|2 ≤ K�(z, z) K�(ζ, ζ ) ≤ C |K�(z, ζ )|2 (4)

for all ζ ∈ � and z ∈ B�(ζ, r). By increasing C > 1 and using Propositions 3.12
and 3.9 we may also assume that

1

C
dV� ≤

∣

∣sζ (z)
∣

∣

2
dμ ≤ CdV� (5)

on each B�(ζ, r). Notice that this implies that each sζm is non-vanishing on B�(ζm, r).
By assumption, dom(Hφ) is dense in A2(�). So for each m we can find a sequence

( fm,k)k≥1 in dom(Hφ) converging to sζm in A2(�). Then ( fm,k)k≥1 converges uni-
formly to sζm on B�(ζm, r). Since sζm is non-vanishing on B�(ζm, r), we can then
pick km such that

1

C

∣

∣ fm,km

∣

∣ ≤
∣

∣sζm

∣

∣ ≤ C
∣

∣ fm,km

∣

∣

on B�(ζm, r). By possibly increasing km further we may also assume that

lim
m→∞

∥

∥Hφ( fm,km )
∥

∥

2 = 0. (6)

Let fm := fm,km . Since fm is non-vanishing on B�(ζm, r), the function

hm := f −1
m P�(φ fm)

123



Hankel Operators on Domains with Bounded Intrinsic Geometry Page 19 of 29 176

is in Hol (B�(ζm, r)). Then by Equations (5) and (6)

lim
m→∞

∫

B�(ζm ,r)

|φ − hm |2 dV�

= lim
m→∞

∫

B�(ζn ,r)

|φ fm − P�(φ fm)|2 | fm |−2 dV�

≤ lim
m→∞

C2
∫

B�(ζm ,r)

∣

∣Hφ( fm)
∣

∣

2
dμ ≤ lim

m→∞
C2

∥

∥Hφ( fm)
∥

∥

2
2 = 0.

Since (ζm)m≥1 was an arbitrary sequence converging to ∂�, this completes the
proof of this direction.

6.2 (2) Implies (1)

Suppose that there exists r > 0 such that

lim
ζ→∂�

inf

{∫

B�(ζ,r)

|φ − h|2 dV� : h ∈ Hol (B�(ζ, r))

}

= 0.

Without loss of generality we can assume r < 1.
Let C1 > 1 and {�ζ : ζ ∈ �} satisfy Theorem 3.6. Then fix r1 < r

C2
1

. By

Corollary 3.5 there exists a sequence (ζm)m≥1 of distinct points in � such that

(1) {ζm : m ≥ 1} is r1-separated with respect to the Bergman distance,
(2) ∪m B�(ζm, r1) = �, and
(3) L := supz∈� #{m : ζm ∈ B�(z, 3r/2)} < +∞.

Since the Bergman metric is a complete Riemannian metric and hence proper, we
must have ζm → ∂�. Then for each m ≥ 1, there is some hm ∈ Hol (B�(ζm, r)) such
that if

εm :=
(∫

B�(ζm ,r)

|φ − hm |2 dV�

)1/2

,

then limm→∞ εm = 0.
Then fix a compactly supported smooth function χ : B → [0, 1] such that χ ≡ 1

on C1r1 B and supp(χ) ⊂ r
C1

B. Then define χm := χ ◦�−1
ζm

. Notice that Theorem 3.6
implies that

B�(ζm, r1) ⊂ �ζm (C1r1 B) ⊂ χ−1
m (1)

and

supp(χm) ⊂ �ζm

(

r

C1
B

)

⊂ B�(ζm, r).
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Further, by Theorem 3.6

∥

∥∂̄χm

∥

∥

g�
=

∥

∥∂̄χ
∥

∥

�∗
ζ g�

≤ C1
∥

∥∂̄χ
∥

∥

2 � 1.

Next, let χ̂m := 1
∑

n χn
χm . Then

∥

∥∂̄ χ̂m

∥

∥

g�
=

∥

∥

∥

∥

∥

1
∑

n χn

∂̄χm − χm

(
∑

n χn)2

∑

n

∂̄χn

∥

∥

∥

∥

∥

g�

≤ (L + 1) sup
n≥1

∥

∥∂̄χn

∥

∥

g�
� 1.

(7)

Finally, let

φ1 :=
∑

m

χ̂m · hm

and

φ2 = φ − φ1 =
∑

m

χ̂m · (φ − hm).

Lemma 6.2 lim
ζ→∂�

∫

B�(ζ,r/2)

|φ2|2 dV� = 0. In particular,

(1) dom(Mφ2) = A2(�) and Mφ2 : A2(�) → L2(�) is a compact operator,

(2) dom(Hφ2) = A2(�) and Hφ2 : A2(�) → L2(�) is a compact operator,

(3) dom(Hφ1) = dom(Hφ).

Proof For the main assertion, it is enough to show that

∫

B�(ζ,r/2)

|φ2|2 dV� � max{ε2
m : ζ ∈ supp(χm)}.

Fix ζ ∈ � and let

{m1, . . . , mk} = {m : supp(χm) ∩ B�(ζ, r/2) �= ∅}
⊂ {m : ζm ∈ B�(ζ, 3r/2)}.

Notice that k ≤ L and

(∫

B�(ζ,r/2)

|φ2|2 dV�

)1/2

=

⎛

⎜

⎝

∫

B�(ζ,r/2)

∣

∣

∣

∣

∣

∣

k
∑

j=1

χ̂m j
(φ − hm j

)

∣

∣

∣

∣

∣

∣

2

dV�

⎞

⎟

⎠

1/2

≤
k

∑

j=1

(

∫

B�(ζm j
,r)

∣

∣φ − hm j

∣

∣

2
dV�

)1/2

≤ L max{εm : ζ ∈ supp(χm)}.
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Next we prove the “in particular” assertions. Proposition 4.1 immediately implies
(1). Since Hφ2 = (id −P�) ◦ Mφ2 and id −P� is a bounded operator, we see that (1)
implies (2). Finally, since dom(Mφ2) = A2(�), we see that

dom(Hφ1) = dom(Mφ1) = dom(Mφ) = dom(Hφ).

��
Fix r2 < r

2 sufficiently small such that: if w ∈ supp(χ), then B(w, C1r2) ⊂ r
C1

B.

Lemma 6.3 If ζ ∈ supp(χn) ∩ supp(χm), then

(∫

B�(ζ,r2)

|hn − hm |2 dV�

)1/2

≤ εn + εm .

Proof If ζ ∈ supp(χn) ∩ supp(χm), then

B�(ζ, r2) ⊂ B�(ζn, r) ∩ B�(ζm, r).

So

(∫

B�(ζ,r2)

|hn − hm |2 dV�

)1/2

≤
(∫

B�(ζ,r2)

|hn − f |2 dV�

)1/2

+
(∫

B�(ζ,r2)

|hm − f |2 dV�

)1/2

≤ εn + εm .

��
Lemma 6.4 limζ→∂�

∫

B�(ζ,r2)

∥

∥∂̄φ1
∥

∥

2
g�

dV� = 0. In particular, Hφ1 extends to a

compact operator on A2(�).

Proof To prove the first assertion, it is enough to show that

∫

B�(ζ,r2)

∥

∥∂̄φ1
∥

∥

2
g�

dV� � max{ε2
m : ζ ∈ supp(χm)}.

Fix ζ ∈ � and let

{m1, . . . , mk} = {m : supp(χm) ∩ B�(ζ, r2) �= ∅}
⊂ {m : ζm ∈ B�(ζ, r + r2)}.

Notice that k ≤ L since r2 < r
2 . Also

∂̄φ1(ζ ) =
k

∑

j=1

hm j
∂̄ χ̂m j
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on B�(ζ, r2). Further, since {χ̂m} is a partition of unity,
∑k

j=1 ∂̄ χ̂m j
= 0 on B�(ζ, r2).

So

∂̄φ1 =
k

∑

j=2

(

hm j
− hm1

)

∂̄ χ̂m j

on B�(ζ, r2). Then by Equation (7) and Lemma 6.3

(∫

B�(ζ,r2)

∥

∥∂̄φ1
∥

∥

2
g�

dV�

)1/2

�

k
∑

j=2

(∫

B�(ζ,r2)

∣

∣hm j
− hm1

∣

∣

2
dV�

)1/2

≤
k

∑

j=2

(εm j
+ εm1) � max{εm : ζ ∈ supp(χm)}.

This proves the first assertion.
From Lemma 6.3 we know that dom(Hφ1) = dom(Hφ) and so φ1 ∈ S(�). Hence

Proposition 5.1 implies that Hφ1 extends to a compact operator. ��

Lemma 6.5 Hφ extends to a compact operator.

Proof By the last two lemmas we see that Hφ = Hφ1 + Hφ2 extends to a compact
operator on A2(�). ��

7 Proof of Theorem 1.7

The proof of Theorem 1.7 is very similar to the proof of Theorem 1.2 and is left to the
reader.

8 Proof of Theorem 1.4

Suppose � ⊂ C
d is a bounded domain with bounded intrinsic geometry, ∂� is C

0,
and φ ∈ C(�). Let C1 > 1 and {�ζ : ζ ∈ �} satisfy Theorem 3.6.

Theorem 1.4 is a consequence of Theorem 1.2 and the next three lemmas.

Lemma 8.1 If φ is holomorphic on every analytic variety in ∂�, then there exists r > 0
such that

lim
ζ→∂�

inf

{∫

B�(ζ,r)

|φ − h|2 dV� : h ∈ Hol (B�(ζ, r))

}

= 0.
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Proof Fix r < 1
2C1

. Then B�(ζ, r) ⊂ �ζ

( 1
2 B

)

for all ζ ∈ �. Fix a sequence (ζm)m≥1
in � such that ζm → ∂� and

lim sup
ζ→∂�

inf

{∫

B�(ζ,r)

|φ − h|2 dV� : h ∈ Hol (B�(ζ, r))

}

= lim
m→∞

inf

{∫

B�(ζm ,r)

|φ − h|2 dV� : h ∈ Hol (B�(ζm, r))

}

.

Passing to a subsequence we can suppose that �ζm converges locally uniformly
to � : B → �. Since the Bergman distance on � is proper (by the Hopf-Rinow
theorem) and �ζ (B) ⊂ B�(ζ, C1), we must have �(B) ⊂ ∂�. Then by assumption,

h0 := φ ◦ � : B → C is holomorphic. Then, if hm := h0 ◦ �−1
ζm

∣

∣

∣

B�(ζm ,r)
we have

lim
m→∞

∫

B�(ζm ,r)

|φ − hm |2 dV� ≤ lim sup
m→∞

∫

1
2 B

∣

∣φ ◦ �ζm − h0
∣

∣

2
�∗

ζm
dV�

≤ C2d
1 lim sup

m→∞

∫

1
2 B

∣

∣φ ◦ �ζm − h0
∣

∣

2
dμ = 0.

��

To the prove the other direction in Theorem 1.4, we first show that every analytic
variety in ∂� can be locally obtained by taking a limit of the embeddings �ζ : B → �

Lemma 8.2 If F : D → ∂� is holomorphic and z0 ∈ D, then there exist δ0 > 0 and a

sequence (ζm)m≥1 in � such that �ζm converges locally uniformly to a holomorphic

map � : B → ∂� with �(0) = F(z0) and

F(D(z0, δ)) ⊂ �(B).

Proof Since ∂� is C
0 there exists a unit vector ν ∈ C

d and δ0 > 0 such that

tν + F(D(z0, δ0)) ⊂ �

for all t ∈ (0, δ0).
Let ζm := δ0

m
ν + F(z0). Then let d K

� and d K
D

denote the Kobayashi distances on �

and D respectively. By the distance decreasing property of the Kobayashi metric,

d K
�

(

ζm,
δ0

m
ν + F(w)

)

≤ d K
D

(

0,
w − z0

δ0

)

for all w ∈ D(z0, δ0). Then by Theorem 3.3, there exists δ > 0 such that

δ0

m
ν + F(D(z0, δ)) ⊂ B�

(

ζm,
1

2C1

)

⊂ �ζm

(

1

2
B

)

. (8)
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Passing to a subsequence we can suppose that �ζm converges locally uniformly to
� : B → �. Then

�(0) = lim
m→∞

�m(0) = F(z0).

Also, since the Bergman distance on � is proper (by the Hopf-Rinow theorem) and
�ζ (B) ⊂ B�(ζ, C1), we must have �(B) ⊂ ∂�. Finally, Equation (8) implies that
F(D(z0, δ)) ⊂ �(B).

��
Lemma 8.3 If there exists r > 0 such that

lim
ζ→∂�

inf

{∫

B�(ζ,r)

|φ − h|2 dV� : h ∈ Hol (B�(ζ, r))

}

= 0,

then φ is holomorphic on every analytic variety in ∂�.

Proof Using Lemma 8.2, it is enough to fix a sequence (ζm)m≥1 in � where ζm → ∂�

and �ζm converges locally uniformly to a holomorphic map � : B → ∂�, then show
that φ ◦ � is holomorphic in a neighborhood of 0.

By hypothesis, for each m ≥ 1, there is some hm ∈ Hol (B�(ζm, r)) such that: if

εm :=
(∫

B�(ζm ,r)

|φ − hm |2 dV�

)1/2

,

then limm→∞ εm = 0.

Fix r1 < min
{

r
C1

, 1
}

. Then �ζm (r1 B) ⊂ B�(ζm, r) and so ĥm := hm ◦ �ζm is

well defined on r1 B. Also, if φ̂m := φ ◦ �ζm , then φ̂m converges uniformly on r1 B to
φ̂ := φ ◦ �.

By Theorem 3.6,

∫

r1 B

∣

∣

∣
φ̂m − ĥm

∣

∣

∣

2
dμ ≤ C2d

1

∫

r1 B

∣

∣

∣
φ̂m − ĥm

∣

∣

∣

2
�∗

ζm
dV�

= C2d
1

∫

�ζm (r1 B)

|φ − hm |2 dV� ≤ C2d
1 ε2

m .

Since φ̂m converges uniformly to φ̂, we then see that
∫

r1 B

∣

∣

∣
ĥm

∣

∣

∣

2
dμ is uniformly

bounded. So after passing to a subsequence we can suppose that ĥm converges locally
uniformly to a holomorphic function ĥ on r1 B. Then by Fatou’s lemma

∫

r1 B

∣

∣

∣
φ̂ − ĥ

∣

∣

∣

2
dμ ≤ lim inf

m→∞

∫

r1 B

∣

∣

∣
φ̂m − ĥm

∣

∣

∣

2
dμ = 0.

So φ ◦ � = φ̂ coincides with ĥ, a holomorphic function, on r1 B.
��
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9 When the Standard Potential has Self bounded Gradient

In this section, we characterize when the standard potential for the Bergman metric
has self bounded gradient.

Theorem 9.1 Suppose � ⊂ C
d is a domain with bounded intrinsic geometry and

{�ζ : ζ ∈ �} satisfies Theorem 3.6. Then the following are equivalent:

(1) log K�(z, z) has self bounded gradient,

(2) For every r > 0 there exists C = C(r) > 1 such that: if dist�(z, ζ ) ≤ r , then

1

C
≤ K�(z, z)

K�(ζ, ζ )
≤ C .

(3) For every r > 0 there exists C = C(r) > 1 such that: if ζ ∈ �, then

1

C

1

μ (B�(ζ, r))
≤ K�(ζ, ζ ) ≤ C

1

μ (B�(ζ, r))
.

(4) For every r > 0 there exists C = C(r) > 1 such that: if ζ ∈ �, then

1

C

dμ

μ (B�(ζ, r))
≤ dV� ≤ C

dμ

μ (B�(ζ, r))

on B�(ζ, r).

(5)

sup
ζ∈�

∥

∥

∥
∂w log

∣

∣

∣
det �′

ζ (w)

∣

∣

∣

∣

∣

∣

w=0

∥

∥

∥

2
< +∞.

The rest of the section is devoted to the proof of the theorem.

Lemma 9.2 (1) ⇒ (2).

Proof Let

Q := sup
z∈�

‖∂ log K�(z, z)‖g�
< +∞.

Since log K�(z, z) is real valued, ∂̄ log K�(z, z) = ∂ log K�(z, z). Hence

sup
z∈�

‖d log K�(z, z)‖g�
≤ 2Q

and so

e−2Q dist�(z,ζ ) ≤ K�(z, z)

K�(ζ, ζ )
≤ e2Q dist�(z,ζ )

for all z, ζ ∈ �. ��
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Lemma 9.3 (2) ⇒ (3).

Proof Let C1 > 1 be the constant from Theorem 3.6. We consider two cases:
Case 1: Assume r < 1

C1
. If ζ ∈ �, then Theorem 3.6 implies that

�ζ

(

r

C1
B

)

⊂ B�(ζ, r) ⊂ �ζ (C1r B) .

So
∫

r
C1

B

∣

∣

∣
det �′

ζ (w)

∣

∣

∣

2
dμ(w) ≤ μ (B�(ζ, r)) ≤

∫

C1r B

∣

∣

∣
det �′

ζ (w)

∣

∣

∣

2
dμ(w).

By Theorem 3.8 part (1) and the assumption

∣

∣

∣
det �′

ζ (w)

∣

∣

∣

2
� 1

K�(�ζ (w),�ζ (w))
� 1

K�(ζ, ζ )

when w ∈ B. So, in this case, there exists C = C(r) > 1 such that: if ζ ∈ �, then

1

C

1

μ (B�(ζ, r))
≤ K�(ζ, ζ ) ≤ C

1

μ (B�(ζ, r))
.

Case 2: Assume r ≥ 1
C1

. Fix r0 < 1
C1

. By Corollary 3.5 there exists a sequence
(ζm)m≥1 of distinct points in � such that

(1) {ζm : m ≥ 1} is r0-separated with respect to the Bergman distance,
(2) ∪m B�(ζm, r0) = �, and
(3) L := supz∈� #{m : ζm ∈ B�(z, r + r0)} < +∞.

Then if ζ ∈ �, case 1 implies that

μ (B�(ζ, r)) ≥ μ (B�(ζ, r0)) �
1

K�(ζ, ζ )
.

Also, case 1 and the assumption imply that

μ (B�(ζ, r)) ≤
∑

ζ j ∈B�(ζ,r+r0)

μ
(

B�(ζ j , r0)
)

� L max
ζ j ∈B�(z,r+r0)

1

K�(ζ j , ζ j )
�

1

K�(ζ, ζ )

(notice that the implicit constant depends on r > 0). So, in this case, there exists
C = C(r) > 1 such that: if ζ ∈ �, then

1

C

1

μ (B�(ζ, r))
≤ K�(ζ, ζ ) ≤ C

1

μ (B�(ζ, r))
.

��
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Lemma 9.4 (3) ⇒ (2).

Proof Fix r > 0. If dist�(z, ζ ) < r , then

K�(z, z)

K�(ζ, ζ )
�

μ(B�(ζ, r))

μ(B�(z, 2r))
≤ 1

and

K�(z, z)

K�(ζ, ζ )
�

μ(B�(ζ, 2r))

μ(B�(z, r))
≥ 1

(notice that the implicit constants depend on r > 0). ��

Lemma 9.5 (2 and 3) ⇒ (4).

Proof Fix r > 0. By Proposition 3.12

dV�(z) � K�(z, z)dμ(z).

So (2) and (3) imply that on B�(ζ, r) we have

dV�(z) � K�(ζ, ζ )dμ(z) � 1

μ(B�(ζ, r))
dμ(z)

(notice that the implicit constants depend on r > 0). ��

Lemma 9.6 (4) ⇒ (2).

Proof Fix r > 0. By Proposition 3.12

dV�(z) � K�(z, z)dμ(z).

So for z ∈ B�(ζ, r), we have

K�(z, z) � 1

μ(B�(ζ, r))

and hence

K�(z, z) � K�(ζ, ζ )

(notice that the implicit constants depend on r > 0). ��

Lemma 9.7 (2) ⇒ (5).
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Proof Fix a sequence (ζm)m≥1 such that

sup
ζ∈�

∥

∥

∥
∂w log

∣

∣

∣
det �′

ζ (w)

∣

∣

∣

∣

∣

∣

w=0

∥

∥

∥

2
= lim

m→∞

∥

∥

∥
∂w log

∣

∣

∣
det �′

ζm
(w)

∣

∣

∣

∣

∣

∣

w=0

∥

∥

∥

2
.

Define fm : B → C by

fm(w) =
det �′

ζm
(w)

det �′
ζm

(0)
.

By Theorem 3.6 there exists C1 > 1 such that

�ζ (B) ⊂ B�(ζ, C1)

for all ζ ∈ �. So by Theorem 3.8 part (1) and the assumption

| fm(w)|2 � K�(ζ, ζ )

K�(�ζ (w),�ζ (w))
� 1.

Using Montel’s theorem and passing to a subsequence we can suppose that fm

converges locally uniformly to a holomorphic function f : B → C. Then

sup
ζ∈�

∥

∥

∥
∂w log

∣

∣

∣
det �′

ζ (w)

∣

∣

∣

∣

∣

∣

w=0

∥

∥

∥

2
= lim

m→∞

∥

∥

∥
∂w log

∣

∣

∣
det �′

ζm
(w)

∣

∣

∣

∣

∣

∣

w=0

∥

∥

∥

2

= lim
m→∞

‖∂ fm(0)‖2 = ‖∂ f (0)‖2 < +∞.

��

Lemma 9.8 (1) ⇔ (5).

Proof By Theorem 3.6

∥

∥∂z log K�(z, z)|z=ζ

∥

∥

g�
=

∥

∥∂w log K�(�ζ (w),�ζ (w))
∣

∣

w=0

∥

∥

�∗
z g�

�
∥

∥∂w log K�(�ζ (w),�ζ (w))
∣

∣

w=0

∥

∥

2
.

Further, by Theorem 3.8

∥

∥∂w log βζ (w,w)
∣

∣

w=0

∥

∥

2

is uniformly bounded and by definition

∂w log K�(�ζ (w),�ζ (w))
∣

∣

w=0 =
(

∂w log βζ (w,w) − ∂w log
∣

∣

∣
det �′

ζ (w)

∣

∣

∣

2
)

∣

∣

∣

∣

w=0
.

So (5) ⇔ (1). ��
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