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ABSTRACT

Context. High-frequency very-long-baseline interferometry (VLBI) observations can now resolve the event-horizon-scale emission
from sources in the immediate vicinity of nearby supermassive black holes. Future space-VLBI observations will access highly lensed
features of black hole images — photon rings — that will provide particularly sharp probes of strong-field gravity.

Aims. Focusing on the particular case of the supermassive black hole M 87%*, our goal is to explore a wide variety of accretion flows
onto a Kerr black hole and to understand their corresponding images and visibilities. We are particularly interested in the visibility on
baselines to space, which encodes the photon ring shape and whose measurement could provide a stringent test of the Kerr hypothesis.
Methods. We developed a fully analytical model of stationary, axisymmetric accretion flows with a variable disk thickness and a matter
four-velocity that can smoothly interpolate between purely azimuthal rotation and purely radial infall. To determine the observational
appearance of such flows, we numerically integrated the general-relativistic radiative transfer equation in the Kerr spacetime, taking
care to include the effects of thermal synchrotron emission and absorption. We then Fourier transformed the resulting images and
analyzed their visibility amplitudes along the directions parallel and orthogonal to the black hole spin projected on the observer sky.
Results. Our images generically display a wedding cake structure composed of discrete, narrow photon rings (n = 1,2, ...) stacked
on top of broader primary emission that surrounds a central brightness depression of model-dependent size. At 230 GHz, the n = 1
ring is always visible, but the n = 2 ring is sometimes suppressed due to absorption. At 345 GHz, the medium is optically thinner and
the n = 2 ring displays clear signatures in both the image and visibility domains. We also examine the thermal synchrotron emissivity
in the equatorial plane and show that it exhibits an exponential dependence on the radius for the preferred M 87* parameters.
Conclusions. The black hole shadow is a model-dependent phenomenon — even for diffuse, optically thin sources — and should not be
regarded as a generic prediction of general relativity. Observations at 345 GHz are promising for future space-VLBI measurements of
the photon ring shape, since at this frequency the signal of the n = 2 ring persists despite the disk thickness and nonzero absorption
featured in our models. Future work is needed to investigate whether this conclusion holds in a larger variety of reasonable models.
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1. Introduction

In 2019, the Event Horizon Telescope collaboration released
1.3 mm interferometric observations of the supermassive black
hole M 87* at the center of the galaxy Messier 87
(EHT; Event Horizon Telescope Collaboration 2019a, hereafter
EHT L1), achieving an effective angular resolution compara-
ble to the black hole size. These observations revealed the
presence of a bright ring of approximately 40pas in diame-
ter that surrounds a much darker central region. While these
basic image features are undisputed and have in fact been inde-
pendently confirmed (Arras et al. 2022; Carilli & Thyagarajan
2022; Lockhart & Gralla 2022), several aspects of their theo-
retical interpretation remain open. One example is whether the
dark area should be associated with the “black hole shadow”
(Falcke et al. 2000), as originally proposed (EHT L1), or with
the apparent position of the equatorial event horizon, as the data
now seem to suggest (Chael et al. 2021).

A plausible range of observational appearances for M 87*
is depicted in Fig. 1. Under the currently favored assumption of
optically thin emission concentrated very near the event horizon

(e.g., Event Horizon Telescope Collaboration 2019d, hereafter
EHT LS, 2021), the characteristic appearance ranges between
two extremes: a narrow photon ring surrounding a dark region
inside the critical curve (a ‘“shadow”, see Falcke et al. 2000),
and a series of discrete photons rings stacked on top of broader
emission outside the apparent equatorial horizon (a “wedding
cake”, see Grallaetal. 2019 Fig. 1, and Johnson et al. 2020
Fig. 3). Models of spherically symmetric, infalling matter lead
to shadows, while models with equatorial, orbiting matter gen-
erate wedding cakes. General-relativistic magnetohydrodynamic
(GRMHD) models generally favor the wedding cake over the
shadow (Johnson et al. 2020; Chael et al. 2021), but the debate
has yet to be settled (Bronzwaer & Falcke 2021).

The purpose of this paper is to more fully flesh out the model
space between the shadow and wedding cake extremes. Having
a broad range of models is crucial, not just for understanding
the source, but also for accurately forecasting its potential for
future observations. We are especially motivated by the promise
of photon ring (orbiting light) measurements on long interfero-
metric baselines (Johnson et al. 2020; Gralla 2020), which could
provide a stringent test of the Kerr hypothesis (Gralla et al. 2020,
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hereafter GLM 20; Wielgus 2021). A recent proposal to mea-
sure the precise shape of the n = 2 photon ring (formed by light
that executes a full orbit around the black hole before escaping
to a detector) relied exclusively on a purely equatorial and per-
fectly absorption-free model of the emission (Gralla et al. 2020).
It is imperative to check whether this exciting prospect survives
the introduction of geometrical thickness, absorption, and other
potential complications of the real astrophysical flow (see also
Paugnat et al. 2022).

For this study, we constructed a set of semi-analytic mod-
els that bridge the gap between the shadow and wedding cake
extremes, while also including a “realistic” level of absorption.
For select density, temperature, and velocity profiles, we com-
puted the synchrotron emission and absorption based on the
assumption of a uniformly magnetized disk. Tuning parameters
to match the total 230 GHz horizon-scale flux density reported
by EHT, we performed radiative transport to determine the
observational appearance at both 230 GHz and 345 GHz, which
is the planned frequency of future observations (Doeleman et al.
2019; Event Horizon Telescope Collaboration 2019b, hereafter
EHT L2). Finally, we Fourier transformed the images and
checked whether the photon ring signatures are observable on
moderate and long baselines. We considered both infalling and
orbiting matter, as well as geometrically thin, thick, and fully
spherical emission regions. We fixed the observer inclination to
a value of 160°, which is deemed to be very likely for M 87*
(Walker et al. 2018), while varying the black hole spin from
near-zero to near-maximal spin.

Our results have both theoretical and practical implications.
On the theory side, we confirm that the size of the central
brightness depression is highly model-dependent, while the pres-
ence of discrete photon rings is generic (Gralla et al. 2019;
Johnson et al. 2020). We also confirm that the classic black hole
shadow (a sharp intensity drop inside the critical curve) is caused
by extreme special-relativistic redshifting (Narayan et al. 2019;
Gralla 2021), depending only indirectly on general-relativistic
effects. Furthermore, we find that the intensity drop occurs only
in fully spherical, infalling models, whereas the dark area is
highly distinct from the critical curve even for very thick disks
assumed to contain purely infalling matter. That is, far from
being a generic prediction for optically thin flows (as claimed,
e.g., in Psaltis 2019; Narayan et al. 2019), the appearance of a
dark shadow filling the interior of the critical curve is in fact a
remarkably fine-tuned phenomenon. This provides further evi-
dence that the EHT observations should not be regarded as
the black hole shadow in the strict sense given by Falcke et al.
(2000).

On the practical side, our results indicate that the n = 2 pho-
ton ring is only marginally observable at 230 GHz. For strongly
magnetized disks, we reproduced previous results (Johnson et al.
2020; Chael et al. 2021) showing a prominent n = 2 photon ring,
but we found that in the weak-magnetization regime, the strength
of the n = 2 signal is sensitive to the astrophysical details of the
source, and especially to the black hole spin. In some cases, the
n = 2 signal even vanishes entirely due to absorption. However,
we found that at 345 GHz, the n = 2 signal returns to levels
broadly consistent with previous estimates. This suggests that
345 GHz is an appropriate target for future space-VLBI obser-
vations of M 87%*, since the signal at that frequency is robust
to the astrophysical parameters we vary. We stress that these
results only mark the beginning of a systematic study of the rea-
sonable parameter space. In particular, our models exclude the
possibilities of tilted disks, highly inclined observers, or jet-base
emission.
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The paper is organized as follows. We present our accretion
disk model in Sect. 2 and display images of some accretion flows
in Sect. 3, before discussing the resulting visibility amplitudes in
Sect. 4 and summarizing our conclusions in Sect. 5.

2. Accretion flow model

In this paper, we considered accretion onto a black hole
described by the Kerr metric in Boyer-Lindquist coordinates
(t,r,0,¢). The dimensionless spin parameter is labeled a. We
used natural units such that G = ¢ = 1, and radii are thus
expressed in units of the black hole mass M. We always use p
to denote the cylindrical radius p = rsin@ (rather than a den-
sity) and z = rcos 6 to denote the cylindrical height above the
equatorial plane 8 = 7/2.

2.1. Disk geometry, physical quantities, and emission profile

Our goal is to develop a very general and fully analytical model
of geometrically thick disks, extending the one in Vincent et al.
(2021). We restricted our attention to axisymmetric disks, so
there is no dependence on ¢ in any of our physical quantities.
We considered a population of thermal electrons that fills the
spacetime outside the event horizon. The (fluid-frame) electron
number density n.(p, z) is specified in the equatorial plane at the

(cylindrical) horizon radius py = rgy = 1 + V1 — a2,

nC;H = ne(pH7Z = 0)7 (1)
as is the electron temperature 7. (p, z),
Te;H =Te(on,z2 = 0). @)

We defined density and temperature profiles via a prescription
similar to the one used in the analytical radiatively inefficient
accretion flow (RIAF) models (see, e.g., Broderick et al. 2011):

r\7? 2
ne(r, Z) = Ne;H (a) exp (—z(a—p)z) N (33)
-1
To(r) = Tom (é) . (3b)

The dependence of the density profile on the cylindrical height
z is thus a simple Gaussian with standard deviation s, = ap,
where « is a free parameter that sets the opening angle of the
accretion disk. Indeed, if we define the surface of the disk to be a
cone of height s, above the equatorial plane, then a corresponds
to the tangent of its opening angle. As « — 0, we recovered
equatorial models similar to those of GLM 20 and Paugnat et al.
(2022), but here we kept @ # O to explore the effects of disk
thickness, which is expected to be significant for realistic RIAF
flows (Yuan & Narayan 2014).

The magnitude of the magnetic field, which is necessary to
compute the synchrotron radiation, is prescribed by imposing a
constant magnetization throughout the disk. That is, we fixed the
ratio of the magnetic field and particle energy densities

2
O_:B/47r @)

2 9
MpC?Ne

where B is the magnetic field magnitude, mj, the proton mass,
and c the speed of light (which we have restored here for clarity).

We included the effects of thermal synchrotron emission and
absorption using the phenomenological expression derived by
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Fig. 1. Intensity cuts of equatorial and spherical models. Under the assumption of optically thin emitting matter concentrated very near the horizon,
the range of reasonable appearances for models of accretion onto a Kerr black hole can be bracketed by two extreme toy models: equatorial, orbiting
matter (brown), which produces a “wedding cake” structure (Gralla et al. 2019; Johnson et al. 2020), and spherical, infalling matter (purple), which
produces a “shadow” (Falcke et al. 2000). Here, we show a 230 GHz intensity cut parallel to the spin axis of M 87* (taken to be a rapidly spinning
black hole with a = 0.94), including photons that orbit at most one full orbit around the black hole (up to n = 2 half-orbits), with each model
normalized to its peak intensity. The brown and purple curves were ray traced from analytic models (see Sect. 3.4 for details), while the green
curve is numerical data from Johnson et al. (2020) produced with the simulation pipeline described in Wong et al. (2022). The horizontal bars
indicate the location of the Kerr critical curve and the apparent position of the equatorial event horizon.

Leung et al. (2011). We presented this expression and discussed
its accuracy in Appendix A. As shown in Appendix B, the radial
profile of thermal synchrotron emission in our model is approx-
imately

julr) o exp (—gi) , 5)
H
where { is a model-dependent number that takes a typical value
near 3 for our models. However, we emphasize that Eq. (5) is
used for interpretation only; our computations are performed
with the more precise expression B.1 of Leung et al. (2011).

2.2. Dynamics
2.2.1. Orbiting motion

To compute images, we still need to specify the four-velocity
of the emitting electrons in the accretion flow. We introduced
a linear combination of an orbiting matter component and
an infalling matter component that allows one to interpolate
between the two extremes illustrated in Fig. 1.

First, we defined the orbiting component by an azimutal four-
velocity field with vanishing radial and polar components. As
discussed in Appendix C.1, it is nontrivial to find a prescrip-
tion that is simple, everywhere smooth and becomes Keplerian

at large distances from the black hole. We followed the prescrip-
tion of Gold et al. (2020) and wrote the four-velocity 1-form as

U dxt = —uf™ (—dr + €dgp)

p3/2

- 1+p’

(6)

which is a special case of the general profile (Eq. (C.16))
described in Appendix C.1. This choice gives rise to a mild diver-
gence Q ~ p~!/2 at the poles, but is otherwise well-defined out-
side the horizon. The polar divergence is irrelevant for our mod-
els of thin and thick disks, as they have effectively no emission
from the poles, and it has no noticeable effect even in the limit
of fully spherical emission for infalling matter (Fig. 6 left).
Unit-normalization of the four-velocity (Eq. (6)) requires

circ __ 1

—Uu = .
BN O Y )

N

We note that this circular motion is not geodesic.

2.2.2. Infalling motion

Next, we defined the radially infalling matter component. Here,
we simply assumed that the motion is geodesic, with no
azimuthal angular momentum and an asymptotically vanishing
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Table 1. Parameters of our model.

Symbol Value Property

M 6.2 x10° M, Compact object mass

D 16.9 Mpc Compact object distance

a {0.01,0.94} BH spin parameter

a = tan b, {0.1,1} Disk opening angle
circ/thin {1.5, 5}

Ne:H cffc(}/tgilci{{s 0’ %O;} Max density of electrons
rad/thick {2, 10}

Ten 10" K Max electron temperature

o 0.01 Magnetization

i 160° Inclination angle

Vobs [230,345] GHz Observing frequency

f 100 pas Field of view

NXxXN 20000 x 20 000 Image resolution

Notes. The maximum electron number density varies across models in
order to ensure an observed flux of ~0.5 Jy at 230 GHz. It is expressed
in units of 10° cm™3, with the first and second numbers referring to BH
spins of @ = 0.01 and a = 0.94, respectively. The models are labeled
as follows: “circ” means “circular rotation” (Sect. 2.2.1), “rad” means
“radial infall” (Sect. 2.2.2), “thin” refers to a disk with opening-angle
parameter @ = 0.1, and “thick” to a disk with @ = 1.

velocity. As reviewed in Appendix C, the resulting four-velocity
takes the form

Oy = Ulog®s + 1,0, + Ul By, @®)
where

=4

Upgg = = VET=gD g7,

ufa =97 )

We note that the ¢ component is nonzero due to frame-dragging.

2.2.3. Combined motion

In this paper, we only considered purely circular motion or
purely radial motion, but here we show that it is easy to com-
bine them.

Indeed, one can linearly combine these motions to obtain the
total four-velocity w*d, = u'd; + u'd, + u®d,. Following the
notation of Pu et al. (2016), we introduced Q = u?/u’ and wrote

u" = (1 = Bug,, (10a)
Q= Qe + (1 _,Bq))(Qrad = Qire), (10b)

where 0 < B, < 1 and 0 < B4 < 1 parametrize the superpo-
sition of the circular and radial components (Eqgs. (6) and (8)).
We note that only u/ ; is present in the first equation because
our prescribed orbital four-velocity (Eq. (6)) has vanishing radial
component. Unit-normalization fixes the time component of the
four-velocity to

I N b iU
g + 29152 + g¢¢92 '

and its ¢ component is then given by u? = Qu'.

Again, we will not examine this combined motion here, so
the parameters 5, and 34 will not be discussed in the remainder
of this paper — this section is simply meant to highlight that our
model allows for very general flow dynamics.

QY
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2.3. Parameter choices

In this paper, we are primarily interested in the effects of nonzero
disk thickness, the motion of the emitting material, and the
black hole spin. We thus considered extreme cases correspond-
ing to a thin (e = 0.1) or thick disk (@ = 1), purely azimuthal
(Sect. 2.2.1) or purely radial (Sect. 2.2.2) motion, and low
(a = 0.01) or high (@ = 0.94) spin. The other source param-
eters are fixed to take likely — or at least reasonable — val-
ues for M 87*. We chose an inclination of i = 160° and a
mass-distance pair of M = 6.2 x 10° My and D = 16.9Mpc
(EHT L5; Event Horizon Telescope Collaboration 2019¢). For
the magnetization o, we adopted a low value of 0.01, meaning
that we considered a weakly magnetized disk'. The normaliza-
tions of the electron density and temperature are chosen such that
the 230 GHz flux is on the order of 0.5 Jy for all configurations,
in accord with the analysis (and assumptions) of the 2017 EHT
data (Event Horizon Telescope Collaboration 2019c; EHT LS5).
The model is illustrated in Fig. 2, and all the values of its param-
eters are given in Table 1.

3. Image of the accretion flow
3.1. Ray tracing and image orders

We performed general-relativistic ray tracing in the Kerr space-
time with the model described in Sect. 2. We used the open-
source code GYOTO (Vincent et al. 2011) to trace null geodesics
backwards in time from a distant observer. The code integrates
the radiative transfer equation along the null geodesics to evolve
the specific intensity I, across the accretion flow. The output
is an image, that is, a map of I,. As discussed in Appendix D,
the GYOTO integration parameters are chosen to ensure the high-
est possible numerical precision for the ray tracing and radiative
transfer computations, while maintaining a reasonable computa-
tion time.

We will frequently differentiate between image orders. The
Oth-order (n = 0) primary image is defined as the image pro-
duced by selecting the part of each null geodesic that extends
from the observer screen to its first angular turning point (follow-
ing the ray backwards into the geometry). The 1st-order (n = 1)
image is produced by selecting the part of each null geodesic
that extends between its first and second angular turning points,
and likewise the 2nd-order (n = 2) image arises by retaining the
contributions from the portion of each geodesic between its sec-
ond and third angular turning points; we did not consider higher
image orders. These image orders are illustrated in Fig. 2, and
Appendix E describes the technical details of their computation.

3.2. Resulting images

The images of our models for spins @ = 0.01 and a = 0.94 are
presented in Figs. 3 and 4, respectively. All of them share the
same qualitative appearance, and they all display the three main
features of black hole images:

— A central dark area, whose size depends on the astrophysi-
cal assumptions (e.g., Gralla et al. 2019; Chael et al. 2021).

! A commonly made distinction for black hole accretion flows is that

between Standard and Normal Evolution (SANE) versus a Magnetically
Arrested Disk (MAD). Prior investigations of high-order photon rings
have focused on the MAD regime (Johnson et al. 2020; Chael et al.
2021), and we are able to qualitatively reproduce these results using
strongly magnetized (oo = 1) thin disks (¢ = 0.1). Throughout this
paper, we adopted a weaker magnetization oo = 0.01 corresponding to
the SANE regime (see, e.g., Fig. 1 of Porth et al. 2019).
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Fig. 2. Density profiles of the “thick” (@ = 1, left) and “thin” (@ = 0.1, right) disk models we consider. The plots display the poloidal (p, z) plane,
with all azimuthal angles ¢ projected to one single point in the plane. The filled black area is the black hole event horizon. The solid black lines
delineate the region in which bound photon orbits exist (the “photon shell”), with the circular-equatorial orbits (prograde and retrograde) indicated
by black dots. The red color scale encodes the log-scale profile of the electron number density, with a floor set at 1% of the maximum density
(this floor is only applied to this figure for readability; it is not applied in our model). The two solid red contours correspond to a density of 1%
and 10% of the maximum. The dashed red lines enclose the points located at a height less than 3s, above the equatorial plane, where s, is the
standard deviation of the Gaussian distribution controlling the electron number density above the equator (Eq. (3)). In the right panel, we also
show a high-order null geodesic in green, with blue letters marking the distant observer’s screen (S) and the two 6 turning points (7 and 73)
along the geodesic. Very sharp changes of direction appear at the 6 turning points. These are due to the 2D projection in the (p, z) plane of the
three spatial dimensions of the null geodesic. The geodesic represented in 3D space would look perfectly smooth. The n = 0 part of the geodesic
extends between S and T, the n = 1 between T and T, and the n = 2 between T, and the black hole. The yellow arrows highlight the portions

p (M)

of the null geodesic that are responsible for most of the n = 0, n = 1, and n = 2 emission.

— A bright, narrow ring produced by strongly lensed pho-
tons that execute multiple orbits around the black hole on their
way to the observer. This thin ring can be decomposed into a
series of n = 1,2,... photon rings (often collectively referred
to as “the photon ring”), each of which is a lensed image of
increasingly higher order n of the accretion disk. These subrings,
which are observable, exponentially converge to the theoretical
critical curve, which is not (Bardeen 1973). The geometry of
the critical curve is a pure function of the black hole mass and
spin and of the observer inclination. However, the geometry and
flux of observable photon rings still depend on the astrophysical
assumptions (e.g., Paugnat et al. 2022).

— A thick annular region of primary emission (produced
by n = 0 photons travelling “straight” from the source to the
observer, without orbiting around the black hole) that strongly
depends on the astrophysical assumptions. In our images, it lies
primarily within the thin photon ring.

For each of the models in Figs. 3 and 4, we present the full
image (left column) and images of the n = 1 and n = 2 rings only
(second and third columns). The right column displays intensity
along horizontal and vertical (i.e., perpendicular and parallel to
the spin axis) cuts of the full image, zoomed in around the n = 2
contribution, which is also displayed by itself. Clearly, the details
of the n = 2 contribution are quite sensitive to the astrophysical
assumptions. We now analyze the origin of these differences.

3.3. Intensity contribution from the n = 2 ring

Let us consider first the low-spin images, whose n = 2 contribu-
tions are shown in the rightmost column of Fig. 3. Two features

are noteworthy: (i) the left and right peaks are of approximately
equal intensity; (ii) the peaks in the models of radially infalling
matter have lower intensity overall. Feature (i) is a consequence
of the weak frame-dragging at low spin, which implies that the
left and right geodesics follow a very similar path through the
flow (Fig. 5 top panel). The suppressed intensity of the radial
case relative to the circular case arises from a difference in their
redshift factors that can be attributed to a complicated interplay
of various competing effects, which we now explore in detail.

To this end, we define a local increment of specific intensity
loaded onto any given geodesic via radiative transfer. First, we
introduce a local emissivity j, and absorptivity «,, as well as the
Planck function B,, which depends only on the local tempera-
ture and which equals (by virtue of Kirchhoff’s law) the ratio of
emission to absorption. We also need the optical depth

T, = f a,ds,
optical path

where the integral is taken over the portion of the ray connecting
the source to the observer, so that exp(—7,) is the transmission.
The local intensity increment then reads

(12)

oI, = I [1—exp(—a,ds)] x exp (-1,) X ¢° (13a)
a,
= B, [1 —exp (—a,ds)| xexp (-1,) X ¢° (13b)
—— =
self-absorbed local emission ~ transmission  redshift
~ B,exp (-1, ¢, (13¢)
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Fig. 3. Images and photon rings at 230 GHz. Three leftmost columns: inner 50 pas of the low-spin (a = 0.01) brightness temperature maps. The
two left columns share the same linear color scale, which goes up to a brightness temperature of 3.7 x 10'° K. The third column is in logarithmic
scale, with the overall scale varying across panels to enable better visualization. The total specific flux of each image, as well as the maximum
brightness temperature of each n = 2 image (in units of 10° K), are indicated in yellow font. The white dashed curve in the left column shows
the primary image of the equatorial event horizon. Rightmost column: Horizontal (red) and vertical (blue) cuts of the full and n = 2 brightness
temperature profiles, centered around the n = 2 peaks regions. The temperature ratios r between the two n = 2 peaks are provided.

where ds is the increment of length along the ray as measured by
the emitter, and g denotes the redshift factor

_ Uobs * Pobs

Uem * Pem

(14)

Here, uopsjem denotes the four-velocity of the observer or emitter
and pobs/em the photon momentum at the observer or emitter. All
the quantities appearing in Eq. (13) depend on the local value
of the emission frequency, which itself depends on the observed
redshift, which in turn depends on the flow dynamics.
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To illustrate this, we show in the top row of Fig. 5 some of
the geodesics that most contribute to the n = 2 peaks visible in
the rightmost column of Fig. 3. For the circular-thin model, these

light rays collect much more intensity than the analogous
light rays for the radial-thin model, whose contributions are
greatly suppressed by the redshift factor. This explains point
(i1) above.

To summarize, the heights of the n = 2 peaks appearing in
the rightmost columns of Figs. 3 and 4 are controlled by three
factors that contribute to the RHS of Eq. (13), namely:

1. The emission, which in our model depends mostly on
radius, as it is highly concentrated near the equatorial plane (near
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Fig. 4. Same as Fig. 3 for high spin (¢ = 0.94). The radial-thin and radial-thick horizontal cuts do not show the left peak of the n = 2 ring because
it is too small to be visible (the associated temperature ratios are r = 10* and r = 10%). The right column has a different scale compared to Fig. 3.

the n = 2 equatorial crossing of each light ray); however, it also
depends on frequency and therefore redshift (see 3. below);

2. The absorption and transmission, which behave similarly
to the emission, with the important difference that they are non-
local, as they depend on the full history of the geodesic as it
travels from the n = 2 emission site to the observer;

3. The redshift, which has a complicated dependence on
radius (the gravitational redshift is linked to the metric and blows
up at the horizon), as well as on the relative orientation of the
emitted photon and emitting particle velocity.

The interplay of these three ingredients strongly depends on
the observing frequency, on the dynamics of the flow, on the
local physical conditions at the emission site (density, magnetic
field, temperature), as well as on the physical conditions along
the complete path followed by the photons. It is therefore not
a simple task to predict the properties of the n 2 contri-
bution, and simulations are certainly the only way to investi-
gate them. Figure 5 provides the typical values of these three

quantities in the region of n 2 emission for each of our
models.

At high spin, the n = 2 peaks (shown in the rightmost column
of Fig. 4) are very different from their nonrotating counterparts.
They also display two striking features: (i) in stark contrast with
the nonrotating case, the left and right peaks in the horizontal
cuts (perpendicular to the spin vector, shown in red) have very
different heights, indicating a large brightness asymmetry in the
image; (ii) this brightness asymmetry ratio (the intensity ratio of
the two horizontal peaks) is extremely high for the radial models.

These features can be understood by examining the bottom
row of Fig. 5, which shows that the left and right geodesics in
the high-spin case probe very different parts of the inner flow,
resulting in a different collected intensity. This is closely related
to the fact that as black hole spin increases, the critical curve
is both distorted (from a circle) and displaced (relative to the
primary radiation, see, e.g., Chan et al. 2013 Fig. 5 left panel):
since the n = 2 photon ring shares these properties, the left and
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circ thin

a=0.01

Vem=440 GHZ
em=4.8e-7
tr=0.17
g3=0.12
61,=9.8e-9

0.6, 61,=4.5e-10

Vem=275 GHz, em=2.6e-7
tr=0.0025, g*=0.57, 61,=3.7e-10

Vem=350 GHz
em=3.9e-7
tr=5e-4
g3=0.27
61,=5.3e-11

rad thin
1a=0.94

Vem=2.9 THz
em=3.8e-5
n tr=1e-6
g’=5e-3
61,=1.9e-13

right geodesics visit different parts of the flow, which in turn
leads to the large horizontal (perpendicular-to-spin) brightness

4 6 8

10 0 2
X (M)

asymmetry of the n = 2 ring. This explains point (i) above.

We note that for the vertical cuts (parallel to the spin vector,
shown in blue in the rightmost column of Fig. 4), the brightness
asymmetry is much milder. This makes sense because at high
spin, the distortion and displacement of the critical curve and
n = 2 ring primarily act in the direction orthogonal to the spin.

The extreme horizontal brightness asymmetry obtained in
models of radial infall can be attributed to a strong absorption of
the n = 2 radiation along one of the geodesics, as well as to an
extreme redshift effect due to the fact that the n = 2 emission is
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3.4. Intensity cuts

models.

6 8

X (M)

Fig. 5. Origin of n = 2 emission. We show geodesics corresponding to the maximum intensity of the n = 2 ring of each model along a horizontal
cut, on the left (blue) and right (red) sides of the image (see inset of the upper-left panel). The accretion flow and spin parameters are specified in
the upper-left corner of each panel. The blue and red ellipses encircle the region emitting most of the n = 2 photons loaded onto each geodesic.
The blue geodesic is abruptly cut in the lower-right panel because the medium becomes optically too thick (defined in the code as a transmission
smaller than 10~%). For each ellipse, the local values of the emitted frequency (Ve ), self-absorbed emission (em, in cgs units), transmission (tr),
and redshift factor (¢°) are provided, as well as the resulting increment of specific intensity 61, (see Eq. (13) for the definition of these quantities).

loaded onto the left geodesic (in blue in Fig. 5 lower-right panel)
very close to the event horizon. This explains point (ii) above.

We conclude this section by revisiting the framework proposed
in the introduction, in which realistic models are regarded as
lying on a continuum between the shadow and wedding cake
extremes. To this end, here we discuss intensity cuts of all the
models analyzed in this paper, starting with the extreme models
(spherical and equatorial) and then moving on to our thick-disk
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Fig. 6. Intensity cuts for our models. We display cuts along the directions perpendicular to spin (red) and parallel to spin (blue) for spin a = 0.01
for the various thick-disk models used in this article (four central panels), as well as for a spherical model obtained from the thick-disk model in
the limit of large disk thickness (fop left panel). The size of the critical curve (thin line) and of the primary (n = 0) image of the equatorial horizon

(thick line) are shown in green.

3.4.1. Extreme models: spherical and equatorial

Figure 1 of the introduction presents the intensity cuts of two
analytical models that are not based on the thick-disk model that
we develop here. These two models are defined as follows:

— The spherical infall model consists of a spherically sym-
metric distribution of emitting matter located everywhere out-
side the event horizon. This matter is falling into the black hole
with four-velocity defined in Sect. 2.2.2. The number density and
temperature of the emitting fluid were chosen at the event hori-
zon and evolve with radius following the power laws defined
in Eq. 3) (i.e., ne(r) o« r~2, Te(r) o r~'). The magnetic field
was prescribed by demanding that the magnetization o defined
in Eq. (4) remain constant, at the same value as in our thick-disk
model, o = 0.01. We considered thermal synchrotron emission
and ignored self-absorption.

— The equatorial orbiting model is that of GLM 20 with an
ad-hoc emission profile (their emission model 1). There is also
no absorption considered in this model.

3.4.2. Canonical thick-disk models

We now discuss the intensity cuts of our four canonical thick-
disk models, which are displayed in Fig. 6. We focus on the case
of low spin, as the high-spin case is qualitatively similar.

The “spherical limit” in the top-left panel is the @ — oo
limit of our disk model with radially infalling matter. This large-
thickness limit of our thick-disk model exactly coincides with
the spherical infall model discussed in the previous subsection.

The only difference is that in the upper-left panel of Fig. 6,
we take synchrotron self-absorption into account. This spheri-
cal limit is similar to the models used by Falcke et al. (2000) and
Narayan et al. (2019), except that we self-consistently include
absorption in our model of synchrotron emission.

The @ — 0 limit of our thick-disk is numerically tricky, and
the emission profile of the analytical equatorial model depicted
in Fig. 1 differs from that obtained with our thick-disk models.
For this reason, we do not show an “equatorial limit” intensity
cut in Fig. 6.

Figure 6 shows a continuum of models spanning a large
parameter space, from near-equatorial to spherical emission, and
from circularly orbiting matter to radially infalling matter. We
highlight a few important observations:

— The radial spherical model (top left) shows a prominent
photon ring surrounding a large shadow that essentially occupies
the full interior of the critical curve. The existence of the shadow
is due to the strong redshift effect on the radiation emitted by
matter that falls toward the black hole?. The spherical model is
the only case where the intensity profile does not decompose into
discrete layers (n = 0, 1, 2).

— Our thick-disk models produce a wide range of profiles that
interpolate between the spherical limit and the equatorial model
depicted in Fig. 1. Like the equatorial model, these models all
produce intensity profiles that decompose into distinct n = 0 and

2 Null geodesics arriving inside the critical curve have no radial turning
points so the emitted radiation is directed toward increasing radii, while
the emitter is heading toward decreasing radii, giving rise to strong red-
shift suppression of the observed intensity via the “headlight™ effect.
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Table 2. Key features of the visibility amplitudes of the various models considered at vops = 230 GHz.

A&A 667, A170 (2022)

Model 40GA 100GA n=1 n=2
4 = 001 circular thin 9.2mly 2.4 mly (150 GA, 1 mly) (1400 GA, 25 uly)
10 mJy 2.7mly (140 G4, 2 mly) (1300 G4, 20 ply)
4 = 001 radial thin 144mly 22mly (54 G4, 10mly) (800 G2, 10dy)
12 mly 3.3 mly (65GA4, 7.5mly) (900 GA, 5.6 uly)
4 = 0.01 circular thick 8.6 mly 2.4 mly (54 G4, 6.8 mly) (650 GA, 55 uly)
7.7mly 2.8 mly (44 G2, 7.7 mly) (650G, 43.2 uly)
4 = 001 radial thick 122ml]y  22mly  (35GA4, 14.4mly) (660 G2, 23 uly)
112mly 2.1mly (34GA,12.8mly)  (660GA, 14.9 uly)
4 = 0.94 circular thin 120mJy  2.0mlJy (112G4, 1.8 mly) (700 G4, 57 (dy)
11.2ml]y  1.8mly (N/A, N/A) (N/A, N/A)
4 = 0.94 radial thin 104mly 13mly (44.2GA,9.7ml]y) (896Ga4, 0.25 uly)
7.1 mly 1.4 mly (54 G4, 5.5mly) (N/A, N/A)
4 = 0.94 circular thick 10.7mJy 1.8 mly (54 G4, 6 mly) (328 G, 180 uly)
7.3 mly 0.7ml]y  (63.8GA4, 3.5mly) (N/A, N/A)
4 = 0.94 radial thick 7.4 mly 0.6mlJy (34.4GA, 10.0mlJy) (847GA4, 0.01 uly)
6.2mly 0.5mly  (34.4GAa, 7.3 mly) (N/A, N/A)

Notes. For each model, we list the visibility amplitude |V (i, )| at u = 40 GA and 100 G4, as well as the baseline thresholds b,(¢) and b,(¢) (and
the corresponding visibility amplitudes) past which the n = 1 and n = 2 contributions start to dominate the signal (Eq. (15)). For each model, two
lines are provided, corresponding to a baseline polar angle ¢ = 90° (aligned with spin, upper line) or ¢ = 0° (perpendicular to spin, lower line).
The percent level p of Eq. (15) is 5% everywhere, except for the numbers in red, where it is set to 10% (in these cases, the ring never dominates
according to the 5% criterion). The “N/A” in the n = 2 column for the high-spin cases at ¢ = 0° mean that the n = 2 signal never dominates even

for p = 10%.

n = 1 contributions. The n = 2 photon ring is also clearly present
for all the circular models; in the radial models, it is also present
but (as discussed above) weaker and less easily discerned. The
contrast between the photon rings and the n = 0 emission is
stronger for the radial models because their n = 0 contribution
is strongly suppressed (by the same redshift effect that produces
a shadow in the spherical model). As a consequence, the central
brightness depression is larger in the radial models than in the
circular models; for the latter, as for the equatorial model, the
central dark region is restricted to the interior of the apparent
equatorial horizon.

4. Visibility signatures

One of the motivations for this paper is the prospect of an
experimental detection of the n = 2 photon ring via its long-
baseline “ringing” in the Fourier plane, which might be observ-
able with future space-based VLBI missions (Johnson et al.
2020; Pesce et al. 2019; Gralla 2020; Gralla & Lupsasca 2020c;
GLM 20). To check whether such a feature would be observ-
able in our models, we computed the visibility along cuts in the
Fourier plane in the directions parallel and perpendicular to the
spin axis. Following GLM 20, we leveraged the projection-slice
theorem to simplify the calculation. For a given orientation, we
determined the line integrals on all lines perpendicular to the ori-
entation (a 1D cut of the Radon transform of the image), and we
Fourier transformed this 1D function to find the desired cut of
the 2D Fourier transform, which is the radio visibility. The mag-
nitude of this 1D complex visibility is the visibility amplitude,
which we will simply refer to as the visibility. In the same way
that we extracted from the full image its n = 1 and n = 2 compo-
nents, we will compute the full Fourier transform and its n = 1
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and n = 2 components. Our Fourier transform conventions agree
with GLM 20.

Table 2 shows the main features of the visibilities associated
to the various models considered in this study. In particular, it
provides the visibility amplitude level at 40 and 100 G4, as well
as the baseline thresholds (and corresponding visibility levels)
past which the n = 1 and n = 2 rings start to dominate the signal.
These thresholds were called b; and b, in Paugnat et al. (2022).

The following criterion is used to define when the nth ring
starts to dominate the visibility. The full image decomposes into
layers indexed by n, I,(x) = Iy(x) + I;(x) + I(x) + ..., and the
full visibility V(u) = Vo(u) + Vi(m) + Vo(u) +. .. does too, by lin-
earity of the Fourier transform. We considered a sliding baseline
window u ~ u,, of fixed width 10 GA, which is approximately
twice the photon ring diameter. At each angle ¢ in the baseline
plane, we computed over this window u ~ u, the mean visi-
bility (|V(u, 9)|),, of the full image /,(x) and the mean visibil-
ity (|V,(u, p)|),, of the nth ring image I,(x) only. We defined the
baseline threshold b,(¢) past which the nth ring dominates the
visibility to be the shortest baseline window u,, = b, (¢) such that
the percentage difference between these two means dips below a
given threshold p:

(Va(u, @)D — IV (u, @)
AV, @)D

We will generally take p = 5%, unless otherwise stated.

We again focus our comments on the n = 2 ring signature.
In all low-spin models, the n = 2 ring clearly dominates the
signal on sufficiently long baselines u > b,, with the threshold
b, ranging from ~600 to 1400 GA. The corresponding visibility
amplitude displays clear oscillations at levels varying between
~ 10 and 50 WJy (see Table 2 and Fig. 7). Thus, these low-spin

nth ring dominates
onu 2 b,(¢) = u,.

(15)
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Fig. 7. Visibility amplitude profiles for all low-spin (a = 0.01) models. The full profile |V (u, )| is shown in black, the n = 1 profile |V;(u, p)| in
green, and the n = 2 profile |V, (u, ¢)| in red. The four upper panels correspond to an orientation ¢ = 0° (perpendicular to the spin axis, L), and
the four lower panels to an orientation ¢ = 90° (parallel to the spin axis, ||). The accretion flow model is specified in the top-right corner of each
panel.
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Fig. 8. Same as Fig. 7 for the high-spin (a = 0.94) models. In all models, the n = 2 signal is very weak at ¢ = 0° (orientation perpendicular to the
spin axis) due to the strong frame-dragging effect at high spin (see text for details). The vertical scale is different for the two lower right panels.

A170, page 12 of 20



F. H. Vincent et al.: Images and photon ring signatures of thick disks around black holes

Table 3. Same as Table 2, but at vq,s = 345 GHz.

Model 40GA  100GA n=1 n=2
4= 0.94 circular thin_116MJy  25mly (112G, 1.8mly) (455G, 176uly)
30.1mly 64mly  (83GA 8.6mly)  (593Ga, 150 uly)
' — 0.94 radial thin 157mly 4.1mly (344GA, 185mly) (377 Ga, 209 uly)
242mly 3.6mly (344G, 263mly) (397 Ga, 110 uly)
o 0.94 circular thick /™Y 15mly  (35GL54mly) (384G, 140ly)
186mly 49mly  (45G4, 18 mly) (254 GA, 372 uly)
o 0.94 radial thick _133mJy  35mly  (35GA, 17.4mly) (284G, 227 uly)
194mly 1.6mly (35GA,232mly)  (374G4, 1004y)

Notes. Only high-spin models are considered.

models match the idealized models considered in GLM 20 and
Paugnat et al. (2022) reasonably well.

At high spin, by contrast, it is only on the baseline oriented
parallel to the spin axis (¢ = 90°) that the n = 2 ring clearly dom-
inates the signal (see the four lower panels of Fig. 8). However,
even at this orientation, the models of radially infalling matter
produce a very weak visibility amplitude in the n = 2-dominated
regime ~0.01-0.1 wJy. This is directly related to the low height
of the n = 2 peaks in the rightmost column of Fig. 4: the blue
profiles for the two models of radial infall display a contrast with
the n = 1 radiation of ~100—-1000.

On baselines perpendicular to the spin axis (¢ = 0°), all the
high-spin models produce a very weak n = 2 signal, with essen-
tially no oscillation at long baselines (see four upper panels of
Fig. 8). This is the reason why some numbers are missing in
Table 2: these entries correspond to cases in which the n = 2
oscillation is vanishingly small. To understand this effect, recall
that the oscillations in visibility amplitude are caused by “inter-
ference” between opposite peaks in the image, with t he ampli-
tude of the oscillation set by the smaller of the two (Eq. (7) in
Gralla 2020). Given that all high-spin, spin-perpendicular cuts
display a large brightness asymmetry between the two n = 2
peaks (see the red profiles of the rightmost column in Fig. 4),
the resulting visibility cuts exhibit essentially no oscillations
associated with the n = 2 ring. This asymmetry between the
n 2 peaks is itself due to the interplay between absorp-
tion and redshift effects on the various parts of the n = 2 ring
(see Sect. 3.3), as illustrated by the geodesics plotted in the bot-
tom row of Fig. 5.

To summarize what we have discussed so far, the n = 2 peaks
in the intensity cuts displayed in the rightmost column of Figs. 3
and 4 have two features of fundamental importance: (i) the ratio
of flux in the n = 2 image I,(x) relative to the total flux in the
full image I,(x) controls the average strength of the visibility
in the n = 2-dominated regime; (ii) the brightness asymme-
try (intensity ratio) between the left and right (or top and bot-
tom) peaks in the n = 2 image cuts controls the amplitude of
the visibility oscillations in the n = 2-dominated regime. These
empirical observations are in perfect agreement with the analyt-
ical study of Gralla (2020). They allow one to guess whether a
model will produce a strong n = 2 signal by simply comput-
ing a high-resolution intensity cut along a given orientation in
the image plane, which is very cheap in terms of computational
resources.

The fact that the n 2 signal is absent from the spin-
perpendicular visibility in the high-spin models is problematic
from an experimental perspective. However, since absorption

is the main culprit in suppressing the n = 2 contribution,
one might expect the signal to reappear at higher observa-
tion frequencies, where absorption is lower. While we have so
far restricted our attention to the present-EHT observation fre-
quency veps = 230GHz, we can also consider a higher fre-
quency Vops = 345 GHz of planned future VLBI observations
(Doeleman et al. 2019; EHT L2). Table 3 provides the same
information as Table 2, for the high-spin models observed at
Vobs = 345 GHz. This higher frequency contains a clear n = 2
signal in all cases, and the associated visibility level is in the
regime ~100wJy that is considered potentially observable by
GLM 20. The stronger n = 2 signal at higher frequency is also
readily seen in the image cross-sections. For example, Fig. 9 dis-
plays intensity cuts for the circular-thin model at these two fre-
quencies, and the higher-order peaks are clearly much sharper at
345 GHz.

5. Conclusion

In this article, we studied the images and visibility amplitude
profiles of a variety of models of geometrically thin and thick
disks, including the effects of absorption. We found that the size
of the central brightness depression depends strongly on astro-
physical assumptions, and that the photon ring is generically dis-
crete rather than smooth, supporting the “wedding cake” heuris-
tic over the “black hole shadow” paradigm. We also studied the
long-baseline visibility amplitude, focusing on the signature of
the n = 2 photon ring of M 87*. Although the n = 2 signal is
always clear at low spin at 230 GHz, it can disappear at high spin
due to a combination of frame-dragging and absorption along the
line of sight. However, at 345 GHz, we find a clear n = 2 signal
even at high spin, because the absorption is less prominent at this
higher frequency.

We thus find that 345 GHz is a promising target for future
space-VLBI observations of the photon ring of M 87*. How-
ever, we emphasize that this conclusion applies only for the par-
ticular astrophysical conditions that we have considered herein.
Alternative reasonable choices of inclination, total compact flux,
magnetization, density profile, etc., may very well lead to a
different conclusion. We also cannot discount the possibility
that the source geometry is qualitatively different, consisting for
instance of a tilted disk (e.g., White et al. 2020), a jet-dominated
profile (e.g., Kawashima et al. 2021), or emission from current
sheets (e.g., Crinquand et al. 2022). Finally, we should keep in
mind that the source itself may be variable in ways that we
do not understand and cannot predict. For example, the total
compact source flux density appears to have varied by a factor
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Fig. 9. Intensity cuts dependence with observing frequency. We display
here cuts along directions perpendicular (red) and parallel (blue) to spin
for the circular-thin model at high spin, for two observing frequencies:
230 GHz and 345 GHz. The emission region is more optically thin at
345 GHz, so the higher-order peaks are more pronounced. In particu-
lar, the n = 2 left peak of the spin-perpendicular case is very sharp at
345 GHz, and fully absorbed at 230 GHz (see green ellipses).

of 2 across a decade of VLBI observations, which would influ-
ence the density scale and hence the system optical depth
(Wielgus et al. 2020). It is therefore of paramount importance
to extend our analysis to a larger astrophysical parameter space
covering all reasonable possibilities for the source.
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Appendix A: Relativistic thermal synchrotron
emission and absorption
The synchrotron power per unit frequency emitted by a single

ultrarelativistic electron is well-known (see Rybicki & Lightman
1979, Sec. 6.2) to be

dE e’Bsinf [ v
— = \3——F Al
drdv mc? Verit ) (A-D
where

3 . eB
Verit = E'yzvcyclo sin 6, Veyelo = m (A2)

Here, y denotes the Lorentz factor of the electron, 6 the angle
between the direction of emission and the magnetic field, and

°° 2281 (2) X3 forx < 1,
F(.X) = xf K5/3(u)du = T (_i)
¥ ‘/73 for x > 1,

with Ks;3(u) a modified Bessel function of the second kind. We
note that in these formulas, we have identified the pitch angle
between the magnetic field and the direction of the electron’s
velocity with the emission angle #, which is a valid approxima-
tion for ultrarelativistic electrons (Rybicki & Lightman 1979).
We also note that the derivation of Eq. (A.1) is essentially built
on the strong beaming effect of the gyrating ultrarelativistic elec-
trons, which is thus taken into account from the very start in this
treatment.
The associated thermal synchrotron emissivity is

(A.3)

E 3Bsi °
i = d :ﬁe sm@f F v %dy, (Ad)
drdvdVdQ  4r mc? 0 Verit ) dy
where
) 12
d Yy -1
dne _ &(_)exp _l) (AS)
dy O K, (e;!) CH

is the relativistic thermal (Maxwell-Jiittner) distribution, K;(u) is
a modified Bessel function of the second kind, ®, = kgT./mc? is
the dimensionless electron temperature, and the factor of (4m)™!
implicitly assumes an isotropic distribution of the electrons’
momenta. We note that the integral over y in Eq. (A.4) is eval-
uated over the range [0, o), even though physically, y > 1.
Extending the range of integration to include the interval [0, 1]
simplifies the computation of the integral, while maintaining a
good accuracy (as we will see below). Using the asymptotic
expansions of F(x) for x <« 1 and x > 1, the emissivity (A.4)
may be analytically expressed as (see, e.g., Leung et al. 2011)

ERry X' forX <1,

i, ~ e A
Iy \/zﬂezvs _x1/3 ( 6)

neer for X > 1,

€

where

v 2 2 .
X= o Vs = §chclo®e sin 6. (A7)

Leung et al. (2011) also provide a fitting function that bridges
these two asymptotic regimes:

\2re?v,
"3k, (7')

.approx _
v =

(XI/Z + 211/12)(1/6)2 X" (A.8)

To summarize, Eq. (A.8) is derived under the following list
of approximations: we assume the electrons are ultrarelativistic
and their population isotropic, we slightly extend the integration
bounds on y, and we match the asymptotic expansions of F(x).

In our ray tracing code, we use the formula (A.8) for the
emissivity, averaged over the emission direction 6:

() = L f jrorgq = 1 f " Gin ade,
4 2 Jo

where dQ = sin #d0d¢ and the emissivity is independent of the
azimuthal angle ¢.

The exact expression for the emissivity, free from the above
approximations, is (see Leung et al. 2011 for details)

(A.9)

2netv 7+ dn.
j?,xact — f _j'n(y)_dy, (A.10)

c|cos 6| ; v B dy
where n_ = - Vl |sin 8] and

cyclo
Veyclo Veyclo 2 22

n=2= £ [cos 6| (nyT) —sin“ 6@

Y:(n) = , (A.11)

sin®

where 7 is the integer that is being summed over in Eq. (A.10).
The dimensionless function 7,(y) is given in terms of the Bessel
function of the first kind J,,(z) and its derivative J;(z) by

Tu@) = IMLQF + NI, (A.12a)
0—
M = w, z= et sin 6 sin a, (A.12b)
sin 6 Veyelo
1 vV,
N = Bsina, cosag = _ I roycle . (A.12¢)
Bcosb Yy v

The sum over n in Eq. (A.10) accounts for the helical
motion of electrons along magnetic field lines, which makes
each electron emit at every multiple of its Doppler-shifted
gyrofrequency.

The accuracy of the approximation (A.8) can be assessed by
comparing it with the exact expression (A.10). This is done in
Figs. 10 and 11 of Leung et al. (2011), where the relative error
between these two quantities at 6 = 30° and 80° is displayed
as a function of @, and v/veyclo. This error is typically on the
order of a few percent for ®. € [1,10] and v/v¢yclo € [103,10°],
which includes the typical ranges for these parameters in the
inner region of the accretion flow surrounding M87*. Indeed,
the temperature of the source is 7. = 10''K, so ®, ~ 15 (and
the accuracy gets better with increasing ®.), while the mag-
netic field is B ~ 10G, which implies a cyclotron frequency
Veyelo & 107 Hz, so that v/ Veyelo = 10*. On the other hand, the
error typically exceeds 10% when ®, < 1, which means that
the approximation (A.8) does not accurately model the emis-
sion from the outer region of the accretion flow. Nevertheless,
this is not an issue for us because these contributions are neg-
ligible compared to the emission from the inner region of the
flow.

The thermal absorption coefficient is simply related to the
emissivity by Kirchhoft’s law «, = j,/B,, where B, is the Planck
function, so the approximations for the absorption are exactly the
same as for the emission.

A170, page 15 of 20



A&A 667, A170 (2022)

Appendix B: Synchrotron emission profile for M87*
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Fig. B.1. Validity of the approximated emissivity given by Eq. (B.3).
This figure shows the ratio of (X'/2 + 2!/12X1/6)2 to X [or equivalently,
of the emissivity (B.1) to its approximation (B.3)] as a function of mag-
netic field strength B and dimensionless temperature @, fixing sin§ = 1
and v = 230GHz (and neglecting redshift effects). The solid white
curves are level sets of ratios of 1.5, 2 and 3. The dashed red curves
are level sets of the X parameter corresponding to X = 10 and X = 100.

B.1. Thermal synchrotron

Since ©, ~ 15 for M87*, we may assume that @, > 1 for this
source. In that case, the approximation (A.8) for the emissivity

. . . —0 . I
can be further simplified using K;(x) S 2x72. This substitution
results in the further approximation

BO>1

, V27e?veyeto Sin 8
jy xR

27¢c

which is accurate to better than 10% provided that ®, > 1.5, and
to better than 1% provided ®, > 5.
Plugging typical values for M87* yields an estimate for X of

y 1600 (v[Hz]) (10 ) (10}’
" sing \ 1012 )\ B[G])\©. ) °
where the frequency v and magnetic field strength B should be
expressed in Hertz and Gauss, respectively. The factor of 1600
incorporates all the constant terms in the definition (A.7) of X.
Since this expression satisfies X > 1 for all typical values
of M87* parameters, we can further simplify the approximation
(B.1) for the emissivity by taking its X — oo limit. In the regime
X > 1, we may replace (X!/? + 211/12x1/6)2 by X to find

(X172 4 212X U6 X0 g

(B.2)

. O, X>1

\/Eﬂ'ezvc clo sin @ 13
I ———Xe™*

27c ’ (B-3)

ne

which is a slight underestimation because (X'/2 + 2!11/12x1/6)2 jg
always bigger than X. Their precise ratio is plotted as a function
of B and @, in Fig. B.1 and is always of order ~ 1—10 for typical
parameter values for M87%.
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Next, since we are only interested in the overall profile of j,,
we may drop all constant prefactors and write

, \13
-C i
(5o |

where C = (9mc/e)'/? is a constant.

Since we are assuming that the density and temperature fall
off as =2 and r~!, respectively, we may immediately conclude
that the radial dependence of the emissivity is simply given by

Jv(r) o« exp [—X(r)m] ,

provided that we neglect the radial dependence of the frequency,
which is affected by a position-dependent redshift; this is only a
reasonable assumption provided the emission is not too close to
the horizon r = r,, where the redshift diverges.

Returning to the estimate (B.2) for X, and using the assumed
magnetic field fall-off B oc ¥~ [Eq. (4)], we may now write

. 37x10° r\
- Binner(a2

e;inner

neV _x113 nev
< e = - exp
0; 0;

(B.4)

Jv o

(B.5)

- (B.6)
sin @ \ Finner

where we have set v = 230 GHz and once again neglected the
frequency redshift. Here, ripner is the innermost radius of the disk,
while Bipper and O, inner respectively denote the innermost values
of the magnetic field and dimensionless temperature. Hence,

1/3
] . (B.7)

To summarize, Eq. (B.7) is derived under the approximations
listed below Eq. (A.8), together with the following additional
assumptions: we assume that ®, > 1 and X > 1 (which puts us
between the red contours of Fig. B.2), and we prescribe power-
law fall-offs for the density, temperature, and magnetic field as
described in our model (7. o r2, ® o ¥~ !, B oc r~1). Should
the various power-law indices differ from this choice, one could
derive a corresponding correction to Eq. (B.7) starting from the
more general expression (B.4). We reiterate that this approxima-
tion underestimates the emissivity by a factor of a few, and that
its quality increases with X (Fig. B.1).

The thermal-synchrotron emission profile for typical M87*
parameters thus decays exponentially in the radius, with a slope
¢ depending on the exact conditions. Table B.1 lists the values of
{ for our geometrically thin models, and Fig. B.2 displays { as a
function of the magnetic field strength and temperature.

For thermal synchrotron emission, the absorptivity may be
obtained from Kirchhoft’s law as
@, = J

B,(T.)’
where B, (T.) is the Planck function at the local electron temper-
ature T.. At 230 GHz, photons are deep in the Rayleigh-Jeans
regime where hv < kpTe., so that this relation simplifies to

3.7x 10°

r
j(r)ocexp[—{ }’ (=5 o op
v Finner Biﬂner@z;inner sin 6

(B.8)

C2

A B.9
O SkaTor?”! (B.9)

Assuming as usual a temperature profile T o« r~!, we obtain

a,(r) « exp [—{ ] . (B.10)

Finner Tinner

The highly lensed emission originates from small radii 7 2 Fipper,

for which the exponential profiles (B.7) and (B.10) provide good
approximations to the emissivity and absorptivity, respectively.
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10

80 100

Fig. B.2. Values of the parameter { [Eq. (B.7)] as a function of the
magnetic field strength B and dimensionless temperature ©.. Here, we
fix sinf = 1. Our models always stay in the part of the plane located
above the dashed horizontal red line (®, > 5, where the approximation
(B.1) is good) and below the dashed red contour (X > 10, where the

approximation (B.3) is excellent). The solid white contours are level
sets of .

Table B.1. Values of the parameter { in a few of our models. The emis-
sivity profile is approximately exp(—{7/7inner), provided that r is far
enough from the event horizon and redshift effects are neglected.

| Model | ¢ |
a = 0.01 circ-thin | 4.0
a = 0.01 rad-thin | 3.4
a = 0.94 circ-thin | 3.4
a = 0.94 rad-thin | 2.7

B.2. Power-law synchrotron

Although we only study thermal-synchrotron emission in this
paper, it is interesting to also consider a nonthermal population
of electrons (accelerated by magnetic reconnection, for instance)
with synchrotron emission following a power law with index p.
Still following Leung et al. (2011), the emissivity is then

PL _ ezvcyc]o 317/2(p b 1) Sin9
= — -
¢ 2(17 + 1) (yrlni,f - ‘)/maﬁ)

_ ~(p-1)/2
T 3p—-1 r 3p+19 y ’
12 12 Veyclo

where Ymax/min are the maximum or minimum values of the
Lorentz factor for electrons in the distribution and I'(x) the
gamma function. Following the same steps as in the previous
section leads to

e (—

Tinner

(B.11)

—(p+5)/2
) , (B.12)
that is, a power-law emissivity profile depending only on the
power-law index of the electron distribution, and not on the
physical conditions of the flow. For the particular value p = 3,

Ao 12

The power-law absorptivity ot is also provided by

Leung et al. (2011) and also follows a power law that depends
only on the power-law index of the electron distribution. For
p = 3, it behaves as af" oc ¥/, Thus, it appears that the radial
profile of the emissivity and absorptivity can vary significantly
with the choice of electron distribution, and this could in turn
have significant impact on the n = 2 ring signature (see Sec. 3.2).
It would therefore be useful to also investigate this signature in
models with nonthermal emission.

Appendix C: Geometrically thick accretion flows
C.1. Orbiting motion

In this section, we restricted ourselves to the Schwarzschild met-
ric for simplicity. We want to prescribe a four-velocity for circu-
larly orbiting matter in a thick disk. A circular four-velocity u#
and its associated 1-form u, take the general form

s B = u' (8, + QD) (C.1a)
Uyt = —u, (—dr + £dg), (C.1b)
where Q = u?/u’ denotes the angular velocity and £ = —ugy /U

the specific angular momentum of the flow.

C.1.1. Equatorial Keplerian motion

Timelike circular geodesic motion in the equatorial plane (i.e.,
Keplerian motion) is well-known (Bardeen 1973). The four-
velocity takes the form (C.1) with

B r—2 _r

It is obvious from these relations that Keplerian motion is not
allowed inside the photon shell at » = 3. Moreover, Keplerian
motion is only stable outside the innermost stable circular orbit
(ISCO) located at rigco = 6.

Below the ISCO, Cunningham (1975) prescribed that the
geodesic constants of motion —u, and u, (the energy and spin
angular momentum) keep their ISCO value, which ensures that
the flow remains continuous across the ISCO as it spirals into the
horizon. This prescription results in the four-velocity

5 Q=32 (C.2)

ug Pdxt = w0 0dt + updr + uy Cdg, (C.3)

where the (¢, ¢) components uIS¢CO =

" u4(r = risco) take their
Keplerian values from Eq. (C.2) evaluated at the ISCO radius,

while the radial component is fixed by unit-normalization:
2 2
2 ISCO ISCO
Uy =9grr [_1 -4" (ut ) - g¢¢ (M¢ ) ] :
This defines a circular equatorial flow at every radius outside the

event horizon ry: its four-velocity is given by Egs. (C.1)—(C.2)
for r > r1SCO» and by Eq (C3) for rg < r <Trsco-

(C4)

C.1.2. Keplerian thick disk

We now wish to find a natural way of extending the equatorial
Keplerian disk to a geometrically thick configuration.

For cylindrical radii outside the ISCO (p > 6), we simply
defined the specific angular momentum ¢ to take the same value
at every height z above the equator as it does in the equatorial
Keplerian disk model.

A170, page 17 of 20



A&A 667, A170 (2022)

That is, for p > 6, we imposed the axially symmetric profile

o2
{p,z) = —, (C.5)
p—-2
resulting in a circular four-velocity of the type (C.1),
A o2
uguck;>ISCdeH = —u,(p,7) (—dt + 2d¢) s (C.6)
p—
whose unit-normalization fixes the time component to be
o -1/2
_ 1t
_Mr(p, Z) - (_g - (p _ 2)2) ’ (C7)

where we used the fact that g = (rsin6) 2 = p~2. We note that
g" depends on z via the spherical radius r = /p? + z2. It is easy
to check that this quantity is well-defined for p > 6 (i.e., that the
expression in parentheses remains positive).

For cylindrical radii inside the ISCO (p < 6), a natural exten-
sion of the Cunningham (1975) prescription is to require that, at
any given height z, the components u, and u4 keep their ISCO
values for all radii p < 6. That s,

uthick;<ISCdey — u;SCO(Z)dt + ur(p, z)dr + MISCO(Z)d¢, (CS)

1z ¢

where the (7, ¢) components uis(ﬁco(z) = ;90 = prsco,z) are

obtained by evaluating Egs. (C.6)—(C.7) at the ISCO radius
pisco = 6, while the radial component is again fixed by unit-
normalization:

(10,21 = g (<1 = " [P - * [P @[ ). (€9

A simple numerical investigation of this relation reveals that it
quickly turns negative as the height z above the disk increases, so
that this four-velocity is not well-defined. We must therefore find
anew prescription that produces a well-defined flow everywhere.

C.1.3. General thick disk

We will start from a general circular four-velocity of type (C.1),

”/Czirc(p’ 2)dx* = —u,(p,2) (—=dt + £(p)do) ,

which assumes that the specific angular momentum depends

only on cylindrical radius. The function £(p) is undetermined at

this stage, but it is constrained by the requirement that this four-

velocity remain well-defined everywhere outside the horizon.
Its angular velocity is

(C.10)

4 Py £ 2

a=L_7%_L(1_2) (C.11)
ut gttut p2 r

and unit-normalization fixes its time component to be

(L a gep\ V2 1-2/r

w=(~g"-g"C) " =\ T=gp (C.12)

which is well-defined outside the horizon (r > 2) provided that

QL <1, (C.13)
or equivalently [by Eq. (C.11)],

* 2

—2(1——)< 1. (C.14)
o r
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Since p = rsinf, we have p — 2sinf > 0 outside the horizon,
where the condition (C.14) becomes

p3/2

Jp—2sin6

We have thus far imposed no conditions on the function £(p).
At this point, we will assume that it converges to the Newtonian
profile {newion = p'/? at spatial infinity. We also want to consider
a family of profiles that (i) includes the Keplerian profile (C.2)
as a special case and (ii) such that the constraint (C.15) leads to a
simple condition. We are thus naturally led to consider the ansatz

1)l < (C.15)

o2

p+a’

fa(p) =

(C.16)

where « is a real constant such that @ = 2 recovers the Keplerian
profile (C.2). However, we want our profile to be defined at every
spacetime point and to remain free of singularities. We will thus
require that @ > 0, so that the denominator may never vanish.
This also ensures that £ > 0, and reduces condition (C.15) to

(p+a)’ —p+2sinf > 0. (C.17)

Demanding that the discriminant of this quadratic equation be
strictly negative results us in a stronger condition

1
a> -,

7 (C.18)

which is the final condition for our angular momentum profile
to be well-defined everywhere outside the horizon. Following
Gold et al. (2020), we consider @ = 1 in this article. We have
numerically checked that this choice leads to a well-defined four-
velocity even when the spin is nonzero.

Finally, we note that there is still a locus of spacetime where
our chosen profile (C.16) produces singular behavior: the axis
p = 0. Taking the limit p — 0 keeping z > 2 fixed results in

-1/2 1/2
zz(l _z) ’ u¢zp_l/2(1 _%) ’
r

,
so the ¢ component of the four-velocity, as well as the angular
velocity €, diverge in the limit p — 0. Indeed, Eq. (C.11) shows
that the angular velocity grows like Q ~ £p~> ~ p~!/2 near the
axis for the Keplerian £, which behaves as £ ~ p*%2. Hence, any
family £(p) that includes the Keplerian profile as a member must
have a divergent Q near p = 0. However, since the orbiting mod-
els that we consider in this paper always have vanishingly small
emission close to the axis, this pathology never causes problems.

(C.19)

C.2. Infalling geodesic motion

In this section, we work in the Kerr metric and consider

w8, = u'd; + u'd, + u’d,,
I/t¢ = 0

(C.20a)
(C.20b)

u, = —1,
This four-velocity describes particles that fall into the black hole
from spatial infinity, where they start out with vanishing velocity
and angular momentum. The (¢, ¢) contravariant components are

t 1t 1t

u'=g"u =-g",  u’=g"%u=-4". (C.21)
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We note that u? must be nonzero when the black hole is rotating
(frame-dragging prevents purely radial geodesic infall). Unit-
normalization fixes the r covariant component to be

_l_gtt

where we picked the negative sign of the square root to describe
infall, and then the r contravariant component is

u'=g"u, = —~(-1-g"g".

These formulas are easier to interpret in the Schwarzschild
case, where they simplify to

(C.22)

(C.23)

2\ 2
u' = (1 - —) , u' = —4/-, u? =0. (C.24)
r r
This results in a purely radial velocity (since ug = 0 at zero spin)
dr u
= r = T € = —€, C.25
v=ie = e = e (C.25)

where e, the unit spacelike vector e, = 4,/ /g, and

i \/E( 2)Hw 2
V=—4/—-|1--] =~ -,
r r r

which at spatial infinity reduces to the Newtonian formula for
velocity derived from classical conservation of energy:

(C.26)

%@’)2 - % =0. (C27)

Appendix D: Precision of ray tracing computations

In this section, we examine the strongly lensed null geodesics
in Kerr, that is, those that explore the shell of spherical photon
orbits before escaping to produce high-order images. Their tra-
jectories are very highly bent, as illustrated in Fig. D.1.

Kerr null geodesics obey (e.g., Gralla & Lupsasca 2020a,b)

I—fr" dr _f"o o _ .
Tl VRO Jo xve@®)

where R(r) and ®(6) are radial and angular geodesic potentials,
and the integrals are evaluated along the entire trajectory with
the signs +, flipping at turning points of the radial or angular
motion, which correspond to zeros of their respective potentials.

We considered a geodesic traveling from a source at (ry, ;)
to an observer at (r,, 6,). To assess the precision of our geodesic
integrator, we plot in Fig. D.2 the numerical evolution along the
geodesic of the quantity |I, — Gg|, as well as of the conserved
energy £ = —p,; and azimuthal angular momentum L = p.

These quantities should remain constant along the geodesic,
and the figure shows that their error is consistently below 10713,
except for a peak of 107 in |I, — G| close to an angular turn-
ing point. We have also checked that the radii of the three
equatorial crossings match the analytical formula derived by
Gralla & Lupsasca (2020b), which gives the radius of the equa-
torial crossing after m angular turns in terms of the Jacobi elliptic
sine sn(x|k):

2(1 (m)
F4r3) — r3r4180 (jvr31V427eq —Tolk)
1 (m)
131 —1’418112(5 Vh31Ta2Teq” — oik)

(D.1)

(m) _
Teq =

(D.2)

z (M)

4
2
Teal a0
0 eq,2
-2

-4 \towards obs

4 6 8
p (M)

O A
N

Fig. D.1. A null geodesic of order n = 2 (two 6 turning points), in blue.
The black disk is the event horizon and the yellow lines indicate the
angular turning points 6_ and 6, = m — 6_, which are computed from
the analytical expression for 6_ as a function of black hole spin and the
geodesic constants of motion (see, e.g.,Gralla & Lupsasca 2020a). The
three equatorial crossings of the geodesic are labeled by the black dots.
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Fig. D.2. Precision of the geodesic integration. The figure shows the
evolution of the difference between the initial and current values of the
geodesic constants E = —p, (blue) and L = p, (orange), as well as the
quantity |7, — G| (green), as a function of the integration step. The peak
of |1, — G4| happens close to an angular turning point where the geodesic
evolves in the Kerr spherical null geodesics region.

Here, r;; = r; — rj with {ry, r2, 3, 74} the four roots of the quar-
tic potential R(r) (with exact expressions given in Eq. (A8) of
Gralla & Lupsasca 2020a), and ¥, is the elliptic integral of the
first kind

F, = F(arcsin ! k), k= B (D.3)

r41 31742

The Mino time elapsed up to the m™ equatorial crossing is

2mK — sign (pg) F,
o) = , (D.4)

aN-u-
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where p? is the polar photon momentum at the observer,

2
, 7 _1 n+A4a
A9+;, Ag—z(l— a2 y

(D.5)

are the zeros u = cos® 6 of @(u) in terms of the energy-rescaled
angular momentum A = L/FE and Carter constant 5 = Q/E?, and
coséd, )

U, P
iz ) u-)’ o2l
are an elliptic integral of the first kind and its completion K.
We found that the three numerical and analytical values of
,

eq agree to within 107 — 10> M. We note that the equato-

rial crossing labeled 7°%? in Fig. D.1 occurs after the back-
ward ray traced geodesic has encountered two angular turning
points; this shows that a very high level of numerical precision
is maintained despite the spike in the error |I, — G| at that cross-
ing. Finally, we have compared the value of the radial turning
point 74 (i.e., the minimum value of the radial trajectory) to the
analytical expression given in Eq. (A8d) of Gralla & Lupsasca
(2020a), and found an error < 1078M. All these results lead
us to conclude that our null geodesic integrator is highly accu-
rate, even within the photon shell of bound spherical photon
orbits.

Besides the geodesic integration, GYOTO also integrates
the radiative transfer equation by discretizing the part of the
geodesic that intersects the disk, using a constant step of size
0 = 0.1M. We have checked that reducing this step size by
a factor of 10 changes the observed specific intensity by less
than 0.1%, which is sufficient given that our synchrotron emis-
sivity prescription is only at the percent level of precision
(see App. A).

F, = F(arcsin( (D.6)

(m)
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Appendix E: Image orders

Null geodesics in Kerr can be conveniently parametrized by the
so-called Mino time (Gralla & Lupsasca 2020a,b)

=1 =G, (E.1)

with I, and Gy are defined in Eq. (D.1). Before the first angular
turning point (i.e., between the points S and 7 in Fig. 2), the
Mino time elapsed along the geodesic as it travels backwards
from the observer at 6, to 6 = 6, is (Gralla & Lupsasca 2020b)

() = sign (p)) (G5 - G5)» (E2)
where p? is the polar photon momentum at § = 6;, while
1 . [cosB)\| u;
= - F| arcsin —1, E.3
0= (oroin () ) €3)

and G7 and G, are evaluated at the Gy evaluated at § = 6, and
0 = 8, respectively. We can determine the Mino time 7 elapsed
at the first angular turning point by setting

6, = arccos (i \/ﬂ) ,

while the Mino time elapsed between two successive angular is

+ = sign (pz) , (E4)

(E.5)

The order of any null geodesic is then defined as
o n = (: between the observer and T = 74,
e n=1:betweent=71;and 7 = 7| + Ar,
e n=2 betweent =71, + At and T = 7| + 2AT.
The integration is cut off past n = 2, so as not to pollute the
image by unresolved n > 2 features.

We are thus able to provide not only the full image (con-
taining all layers n < 2), but also individual images of each layer
n € {0, 1,2} consisting of photons loaded onto each null geodesic
at the corresponding order.
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