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A B S T R A C T 

The early growth of black holes (BHs) in high-redshift galaxies is likely feedback re gulated. While radiativ e feedback has been 

e xtensiv ely studied, the role of mechanical feedback has received less scrutiny to date. Here, we use high-resolution parsec-scale 

hydrodynamical simulations to study jet propagation and its effect on 100 M � BH accretion in the dense, low-metallicity 

gas expected in early protogalaxies. As the jet propagates, it shocks the surrounding gas forming a jet cocoon. The cocoon 

consists of a rapidly cooling cold phase at the interface with the background gas and an o v erpressured subsonic phase of reverse 

shock-heated gas filling the interior. We vary the background gas density and temperature, BH feedback efficiency, and the jet 

model. We found that the width of the jet cocoon roughly follows a scaling derived by assuming momentum conservation in the 

jet-propagation direction and energy conservation in the lateral directions. Depending on the assumed gas and jet properties, the 

cocoon either stays elongated to large radii or isotropizes before reaching the Bondi radius, forming a nearly spherical bubble. 

Lower jet velocities and higher background gas densities result in self-regulation to higher momentum fluxes and elongated 

cocoons. In all cases, the outward cocoon momentum flux balances the inward inflowing gas momentum flux near the Bondi 

radius, which ultimately regulates BH accretion. The time-averaged accretion rate al w ays remains below the Bondi rate, and 

exceeds the Eddington rate only if the ambient medium is dense and cold, and/or the jet is weak (low velocity and mass loading). 
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1  I N T RO D U C T I O N  

The origin of supermassive black holes (SMBHs) with masses of 

� 10 9 M �, powering bright quasars observed in the first billion 

years after the big bang (redshifts z � 6; see e.g. Bosman 2022 for 

an up-to-date compilation) remains an unsolved puzzle. Proposed 

explanations range from rapid, super-Eddington growth of stellar- 

mass seed black holes (BHs), the ‘direct collapse’ of a supermassive 

star, to runaway mergers between stellar-mass objects, as well 

as more exotic phenomena (see e.g. Inayoshi, Visbal & Haiman 

2020 ; Volonteri, Habouzit & Colpi 2021 , for recent comprehensive 

re vie ws). 

One promising scenario is for a low-mass seed BH to grow at 

rates well abo v e the fiducial Eddington rate Ṁ Edd ≡ L Edd /εc 
2 (where 

L Edd is the Eddington luminosity, c is the speed of light, and ε is a 

radiati ve ef ficiency). Indeed, small-scale simulations of BH accretion 

show that BHs surrounded by dense gas can accrete at rates up to at 

least ∼ 100 Ṁ Edd (e.g. Jiang, Stone & Davis 2014 ; Sadowski et al. 

2014 ). Ho we ver, feedback from the BH accretion itself poses possible 

obstacles to sustaining such rapid growth. Even in the presence of 

dense ambient gas, allowing rapid fuelling, radiative feedback on 

large scales tends to make the accretion episodic, with a strongly 

� E-mail: kungyisu@gmail.com 

suppressed time-averaged accretion rate (e.g. Milosavljevi ́c et al. 

2009 ; Park & Ricotti 2011 ). BH radiation may also outright eject gas 

from the shallow gravitational potential of its low-mass parent halo, 

preventing rapid accretion (Alvarez, Wise & Abel 2009 ). On the other 

hand, these deleterious radiative effects may be a v oided in the hyper- 

Eddington regime, in which radiation is trapped and cannot exert 

large-scale feedback (Inayoshi, Haiman & Ostriker 2016 ; Takeo, 

Inayoshi & Mineshige 2020 ). 

In addition to radiative feedback, mechanical feedback presents 

another potential obstacle to rapid and sustained BH growth. While 

such mechanical feedback has been less explored in the high-redshift 

context, it is well established to play a crucial role in galaxy formation 

and evolution at lower redshifts. Active galactic nucleus (AGN) 

feedback is known to quench star formation in massive galaxies and 

clusters, keeping them ‘red and dead’ o v er a significant fraction of 

cosmic time. Among the different forms of AGN feedback, e xtensiv e 

galaxy-scale simulations have shown that AGN jet models are, in 

principle, capable of quenching a galaxy and stopping the cooling 

flows (e.g. Dubois et al. 2010 ; Gaspari, Brighenti & Temi 2012 ; 

Yang, Sutter & Ricker 2012 ; Li & Bryan 2014 ; Li et al. 2015 ; Prasad, 

Sharma & Babul 2015 ; Yang & Reynolds 2016 ; Bourne & Sijacki 

2017 ; Ruszkowski, Yang & Zweibel 2017 ; Martizzi et al. 2019 ; Su 

et al. 2020 ). Observational studies also infer that AGNs can provide 

an energy budget comparable to the cooling rate (B ̂ ırzan et al. 2004 ). 

There are also observations of unambiguous cases of AGNs expelling 
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g as from g alaxies, injecting thermal energy via shocks or sound 

waves, via photoionization and Compton heating, or via ‘stirring’ the 

circumgalactic medium (CGM) and intracluster medium (ICM). This 

can create ‘bubbles’ of hot plasma with non-negligible relativistic 

components, which are ubiquitous around massive galaxies (see e.g. 

Fabian 2012 ; Hickox & Alexander 2018 , for a detailed re vie w). In 

Su et al. ( 2021 ) and Su et al. (in preparation), we carried out a broad 

parameter study of AGN jets in 10 12 − 10 15 M � clusters and found a 

subset of models which inflate a sufficiently large cocoon with a long 

enough cooling time that these jets can quench the central galaxy. 

In addition to the thoroughly studied cases of SMBHs in massive 

galaxies, various studies also suggested AGN feedback in much 

smaller dwarf galaxies and from intermediate-mass BHs ( M acc ∼

10 2 − 10 5 M �; Nyland et al. 2017 ; Bradford et al. 2018 ; Penny 

et al. 2018 ; Dickey et al. 2019 ; Manzano-King, Canalizo & Sales 

2019 ), some of which are observed in the form of AGN jets (e.g. 

Greene, Ho & Ulvestad 2006 ; Wrobel & Ho 2006 ; Wrobel et al. 2008 ; 

Mezcua & Lobanov 2011 ; Nyland et al. 2012 ; Reines & Deller 2012 ; 

Webb et al. 2012 ; Mezcua et al. 2013a , b , 2015 , 2018a , b ; Reines et al. 

2014 ;Mezcua, Suh & Ci v ano 2019 ). Unsurprisingly, AGN feedback 

can also affect the growth of these smaller BHs, alter the surrounding 

gas properties, and play a significant role in sculpting the galaxy 

the y liv e in, especially in dwarfs and high-redshift galaxies (Wellons 

et al. 2022 ). Eventually, a self-regulating scenario of accretion and jet 

propagation might occur (e.g. L ́opez-C ́amara, De Colle & Moreno 

M ́endez 2019 ). 

Observations also find SMBHs ( M acc � 10 5 M �) at high-redshift 

( z � 4) with jetted AGN quasars (e.g. Sbarrato et al. 2021 , 2022 ). 

It is unclear whether a ∼100 M � BH, which can be presumed to 

produce jets, as well, if it is fed at super-Eddington rates, could 

sustain rapid growth on to an SMBH. Recent work has addressed this 

problem in slightly different contexts, either investigating the impact 

of wider-angle outflows produced at larger radii in the accretion flow 

(e.g. Takeo et al. 2020 ), or by utilizing galaxy-scale simulations 

to assess the growth of larger BHs ( > 10 4 M �) with a jet (e.g. 

Regan et al. 2019 ; Massonneau et al. 2022 ). This work aims to study 

how AGN jets affect accretion on to 100 M � ‘seed’ BHs in dense, 

low-metallicity gas, mimicking conditions expected in high-redshift 

protogalaxies. Additionally, we study in detail the physics of how 

jet-inflated cocoons propagate to large radii and self-regulate BH 

accretion, using analytic models to interpret our simulation results. 

In galaxy-scale simulations, including in our own previous work 

(e.g. Su et al. 2020 , 2021 ; Torrey et al. 2020 ; Wellons et al. 2022 ), both 

AGN feedback and BH accretion have been implemented with sub- 

grid prescriptions. Models based on Bondi–Hoyle accretion (Bondi 

1952 ; Springel, Di Matteo & Hernquist 2005 ) and accretion via 

gravitational torques (Hopkins & Quataert 2011 ; Angl ́es-Alc ́azar 

et al. 2017 ) involve assumptions about gas properties, which might 

not al w ays be valid, especially in the presence of an unresolved jet. To 

better address this question, in this work, we model a cloud of gas with 

systematically varied properties around the BH at sufficiently high 

resolution (with the minimum gravitational force softening at least 

1000 times less than the Bondi radius), to resolve the gravitational 

capture of individual gas particles (Hopkins et al. 2016 ; Angl ́es- 

Alc ́azar et al. 2021 ). 1 We also implement various jet models to study 

ho w they af fect BH accretion and ho w the jet propagates to a larger 

radius. Although the jets in this study are launched at a much smaller 

scale, the initial jet itself remains sub-grid relative to the scales we can 

1 The exact fueling in the accretion disc depends on unresolved plasma physics 

(e.g. Cho & Narayan 2022 ) and remains sub-grid. 

resolve. This work also addresses how sub-grid jet models launched 

on different scales connect to each other. We also parametrize the 

results of our simulations in order to provide the ef fecti ve long-term 

time-av eraged accretion rate, giv en different gas properties be yond 

the Bondi radius and with different jet models. We delineate the 

parameter space of gas and jet properties o v er which super-Eddington 

growth may occur. 

The rest of this paper is organized as follows. In Section 2 , we 

summarize our initial conditions (ICs), BH accretion model, and 

the AGN jet parameters we surv e y, and we describe our numerical 

simulations. We present the results with different jet velocities, 

which show the most dramatic differences, in Section 3 . We develop 

a toy model describing the regulation of different jet models in 

different environments in Section 4 . We present a suite of additional 

simulations with varying model parameters and compare the results 

with the toy model in Section 5 . We compare our study to several 

other recent works, and summarize the implications of our findings 

in Section 6 . We enumerate our main conclusions in Section 7 . We 

include a set of simulations exploring numerical choices, as well as 

resolution studies, in Appendix A . 

2  M E T H O D O L O G Y  

We perform simulations of a box of gas under the effect of 

jet feedback from a 100 M � BH. Our simulations use GIZMO 
2 

(Hopkins 2015 ), in its meshless finite mass (MFM) mode, which 

is a Lagrangian mesh-free Godunov method, capturing advantages 

of both grid-based and smoothed-particle hydrodynamics (SPH) 

methods. Numerical implementation details and e xtensiv e tests are 

presented in a series of methods papers for, e.g. hydrodynamics 

and self-gravity (Hopkins 2015 ). All of our simulations employ the 

FIRE-2 implementation of cooling (followed from 10 to 10 10 K), 

including the effects of photoelectric and photoionization heating, 

collisional, Compton, fine-structure, recombination, atomic, and 

molecular cooling (following Hopkins et al. 2018 ). Note that we 

impose a temperature floor at T ∞ , which will be specified in the 

ICs (and systematically varied), assuming other feedback processes 

not included in these simulations keep the gas from cooling further. 

We assume a metallicity of 10 −4 Z �, which may be expected in the 

protogalaxies hosting the first stellar-mass BH seeds, and which is 

suf ficiently lo w that metal cooling abo v e 10 3 K (the lo west v alue of 

T ∞ that we adopt) is negligible. 

2.1 Initial conditions 

Ideally, we would evolve the BH accretion within the context of 

a cosmological simulation that resolves the gas dynamics at high 

redshift (e.g. as done for minihaloes by Alvarez et al. 2009 ). Ho we ver, 

giv en the v ery large uncertainties in high-redshift conditions, we 

instead approximate the physical conditions near the BH as a uniform 

patch of gas, in order to model the centre of an atomic cooling halo. 

This allows us to systematically vary the gas properties in order to 

understand how these impact the BH regulation. In particular, the IC 

we adopt is a uniform 3D-box of uniformly distributed gas particles 

with constant density and temperature, which we denote n ∞ and T ∞ . 

A 100 M � BH is placed at the centre of the box. As mentioned abo v e, 

the initial metallicity of the gas is set to a very low value (10 −4 Z �). 

2 A public version of this code is available at ht tp://www.tapir.calt ech.ed 

u/∼phopkins/Site/GIZMO.html. 
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To achieve a higher resolution in the vicinity of the BH, 

where the accretion occurs and the o v erall re gulation is deter- 

mined, and in the vicinity of the jet, we use a hierarchical super- 

Lagrangian refinement scheme (Su et al. 2020 , 2021 ) to reach 

∼ 1 . 4 × 10 −6 M �( n ∞ / 10 4 cm 
−3 ) mass resolution around the z -axis 

where the jet is launched, much higher than many previous global 

studies (e.g. Weinberger et al. 2017 ; Su et al. 2021 ). The mass 

resolution decreases as a function of distance from the z -axis ( r 2d ), 

roughly proportional to r 2d for r 2d > 2.5 × 10 −2 pc. The numerical 

details are summarized in Table 1 . The highest resolution region is 

where r 2d is smaller than r 2d = 2.5 × 10 −3 pc unless otherwise stated. 

A resolution study is presented in Appendix A . 

2.2 BH accretion 

As discussed in the introduction, BH accretion is not modelled with 

the Bondi assumption, but instead is determined by following the 

gravitational capture of gas (Hopkins et al. 2016 ; Angl ́es-Alc ́azar 

et al. 2021 ) directly, and implementing its subsequent accretion on 

to the BH via an α-disc prescription (see below). A gas particle is 

accreted if it is gravitationally bound to the BH and the estimated 

apocentric radius is smaller than r acc . 
3 This sink radius r acc is set 

to 3 × 10 −5 to 1.5 × 10 −4 pc according to the BH neighbourhood 

gas density. In more detail, the sink radius r acc is set to be a radius 

from the BH enclosing 96 ‘weighted’ neighborhood gas particles but 

capped to be within (3 × 10 −5 to 1.5 × 10 −4 pc). 

Although we follow the gas down to distances very close to the 

BH, we do not model the accretion disc itself, but instead adopt a 

simple α-disc model. The accreted gas adds to the α-disc mass ( M α , 

which is initially set to zero). The mass in the α-disc is then supplied 

to the BH at the rate 

Ṁ acc = M α/t disc . (1) 

We assume a constant t disc = 1000 yr from an estimated 

viscous time-scale of a Shakura & Sunyaev ( 1973 ) disc, as- 

suming the accretion disc is at 10 4 K, as t disc ∼ t ff M 
2 /α ∼

1000 yr ( M acc / 100 M �) 1 / 2 ( α/ 0 . 1 ) −1 
(

r acc / 10 −4 pc 
)1 / 2 

, where t ff is 

the free-fall time at r acc and M is the Mach number of gas in the 

α-disc. In Appendix A , we explore the impact of varying t disc . 

2.3 Jet models 

We adopt a jet model following Su et al. ( 2021 ). In brief, a jet 

is launched with a particle-spawning method, which creates new 

gas cells (’resolution elements’) to represent the jet material. The 

spawned particles have a fixed initial mass, temperature, and velocity, 

which sets the specific energy of the jet. With this method we 

have better control of the jet properties, as launching using particle 

spawning depends less on local gas properties than when depositing 

energy/momentum based on the distribution of neighboring gas 

elements. 4 We can also enforce a higher resolution for the jet 

elements, allowing light jets to be accurately modelled. The spawned 

gas particles have a mass resolution as indicated in Table 1 and are 

3 This provides a scale for the sub-grid accretion model and for the α-disc 

model. 
4 The traditional method usually does a particle neighbour search from the 

BH and dumps the designated energy and momentum into these gas particles. 

Therefore, the effect will depend on the local gas properties and the exact 

geometric distribution. See Wellons et al. ( 2022 ) for a comparison of different 

methods. 

forbidden to de-refine (merge into a common gas element) before 

they decelerate to 10 per cent of the launch velocity. Two particles 

are spawned in opposite z -directions at the same time when the 

accumulated jet mass flux reaches twice the target spawned particle 

mass, so linear momentum is al w ays exactly conserved. Initially, the 

spawned particle is randomly placed on a sphere with a radius of r 0 , 

which is either 10 −5 pc or half the distance between the BH and the 

closest gas particle, whichever is smaller. If the particle is initialized 

at a position ( r 0 , θ0 , φ0 ) in spherical polar coordinates, and the jet 

opening-angle of a specific model is θop (say = 1 ◦, which is the case 

for our jet model), the polar angle of the initial velocity direction of 

the jet will be set at θ v = 2 θop θ0 / π . With this, the projected paths of 

any two particles will not intersect. 

We parametrize the jet mass flux with a constant feedback mass 

fraction 

Ṁ jet = ηm , fb Ṁ acc , (2) 

so the feedback energy and momentum fluxes are 

Ė jet = ηm , fb Ṁ acc 

(

1 

2 
V 

2 
jet + 

3 kT jet 

2 μ

)

, 

Ṗ jet = ηm , fb Ṁ acc V jet , (3) 

where V jet is the adopted jet velocity and μ is the mean particle 

mass. Initially, the jet has a negligible thermal component ( T jet = 

10 4 K). We emphasize that this is the velocity and mass loading at 

our jet-launching scale in the simulation, which is several orders of 

magnitude larger than the gravitational radius. The adopted velocity 

and ηm, fb depends on details which we do not resolve, such as plasma 

physics processes involving the interaction of jet and gas, so we leave 

them as free parameters. As we will show later, the formation of the 

pressurized cocoon is a result of shock heating of the jet with the 

surrounding gas. We tested ηm, fb from 0.005 to 100. Most of the 

runs adopt ηm, fb = 0.05, but as we will show in our result later, the 

jet fluxes are what actually get regulated and ηm, fb just decides how 

much the BH should accrete to achieve such a flux. Our ignorance 

of the true value of this parameter means that the actual growth rate 

of the BH is not well constrained by our results (although the jet 

properties are). 

3  TWO  M O D E S  O F  J E T  P RO PAG AT I O N  

Before exploring all of the simulations that we have run, we first 

focus on a set of three simulations all with the same fiducial 

background gas properties ( n ∞ = 10 4 cm 
−3 and T ∞ = 10 4 K) and 

feedback mass fraction ( ηm, fb = 0.05), but varying the jet velocity, 

ranging from 3000 to 30 000 km s −1 . These models are denoted as 

‘ η5e-2–vj3e3–n1e5–T1e4’, ‘ η5e-2–vj1e4–n1e5–T1e4’ (I,II,III), and 

‘ η5e-2–vj3e4–n1e5–T1e4’. These velocity variations result in very 

different jet cocoons and, as we will see, guide our development of 

a simple model which will explain how the jet evolves when we 

modify other parameters (such as the background gas properties). 

3.1 Cocoon morphology 

Fig. 1 shows the morphology of the cocoon for the three different jet 

velocities, depicting the resulting density and temperature distribu- 

tions. In this work, we refer to the cocoon as the whole pressurized 

region shock-heated by the jet. Note that, in these figures, the hot 

jet gas is most clearly visible, but this is surrounded by a region of 

shocked ambient material. We use the term ‘cocoon’ to refer to the 

combination of both regions. The BH accretion and resulting jet are 
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Table 1. Physics variations of all simulations. 

Numerical details Feedback parameters Efficiency Background gas Resulting averaged accretion rate and fluxes 

Model 	 T Box size m max 
g m jet ηm, fb V jet T jet ηP ηE n ∞ T ∞ 〈 Ṁ acc 〉 

〈 ̇M acc 〉 
Ṁ Bondi 

〈 ̇M acc 〉 
Ṁ Edd 

〈 ̇E jet 〉 

Ė Edd 

(kyr) (pc) (M �) (M �) 

(km 

s −1 ) (K) (cm −3 ) (K) (M � yr −1 ) 

Fiducial 

η5e-2–vj1e4–n1e5–T1e4 (I,II,III) a 100 0.4 1.4e-6 1e-7 0.05 1e4 1e4 1.6e-3 2.7e-5 1e5 6e3 0.7-1.5e-7 2.1-4.6e-3 0.031-0.067 0.87-1.9e-5 

Feedback mass fraction 

η5e-3–vj1e4–n1e5–T1e4 100 0.4 1.4e-6 1e-7 0.005 1e4 1e4 1.6e-4 2.7e-6 1e5 6e3 9.4e-7 2.9e-2 0.42 1.2e-5 

η5e-1–vj1e4–n1e5–T1e4 100 0.4 1.4e-6 1e-7 0.5 1e4 1e4 1.6e-2 2.7e-4 1e5 6e3 1.3e-8 4e-4 5.8e-3 1.6e-5 

η1e2–vj1e4–n1e5–T1e4 100 0.4 1.4e-6 1e-7 99 1e4 1e4 3.3 5.5e-2 1e5 6e3 7.1e-11 2,2e-6 3.2e-5 8.9e-8 

Jet velocity 

η5e-2–vj3e3–n1e5–T1e4 90 0.8 1.4e-6 1e-7 0.05 3e3 1e4 5e-4 2.5e-6 1e5 6e3 1e-5 0.31 4.5 1.1e-4 

η5e-2–vj3e4–n1e5–T1e4 100 0.4 1.4e-6 1e-7 0.05 3e4 1e4 5e-3 2.5e-4 1e5 6e3 8.9e-9 2.7e-4 4.0e-3 1e-5 

Thermal jet 

η5e-2–Tj3e9–n1e5–T1e4 100 0.4 1.4e-6 1e-7 0.05 3e3 3e9 5e-4 2.7e-5 1e5 6e3 2.4e-8 7.4e-4 0.011 3.0e-6 

Gas density 

η5e-2–vj3e3–n1e2–T1e4 100 0.4 1.4e-9 1e-10 0.05 1e4 1e4 1.6e-3 2.7e-5 1e2 6e3 1.6e-11 4.9e-4 7.2e-6 2e-9 

η5e-2–vj3e3–n1e3–T1e4 100 0.4 1.4e-8 1e-9 0.05 1e4 1e4 1.6e-3 2.7e-5 1e3 6e3 2.3e-10 7.0e-4 1.0e-4 2.9e-8 

η5e-2–vj3e3–n1e4–T1e4 100 0.4 1.4e-7 1e-8 0.05 1e4 1e4 1.6e-3 2.7e-5 1e4 6e3 3.5e-9 1.1e-3 1.6e-3 4.4e-7 

η5e-2–vj3e3–n1e6–T1e4 40 0.8 1.4e-5 1e-6 0.05 1e4 1e4 1.6e-3 2.7e-5 1e6 6e3 1.3e-5 4e-2 5.8 1.6e-3 

Gas temperature 

η5e-2–vj3e3–n1e5–T1e3 50 3.2 1.4e-6 1e-7 0.05 1e4 1e4 1.6e-3 2.7e-5 1e4 6e3 1.9e-6 4.2e-3 0.85 2.4e-4 

η5e-2–vj3e3–n1e5–T1e5 12 0.08 1e-8 8e-10 0.05 1e4 1e4 1.6e-3 2.7e-5 1e4 1e5 4.4e-9 3.0e-2 2.0e-3 5.5e-7 

Notes. This is a partial list of simulations studied here with different jet and background gas parameters. The columns list: (1) Model name: The naming of each model starts with the feedback mass fraction, 

followed by the jet velocity in km s −1 for kinetic jet or jet temperature in K for thermal dominant jet. The final two numbers labels the background gas density in cm −3 and background gas temperature in K. (2) 

	 T : Simulation duration (all shorter than the free-fall time for constant n ∞ gas without a BH). (3) Box size of the simulation. (4) m max 
g : The highest mass resolution. (5) m max 

jet : The mass resolution of the spawned 

jet particles. (6) ηm, fb : The feedback mass fraction. (7) V jet : The initial jet velocity at spawn. (8) T jet : The initial jet temperature at spawn. (9) ηp : The feedback momentum efficiency ( ̇P jet / Ṁ jet c). (10) ηp : The 

feedback energy efficiency ( ̇E jet / Ṁ jet c 
2 ). (11) n ∞ : The background gas density. (12) T ∞ : The background gas temperature. (13) 〈 Ṁ acc 〉 : The resulting time-averaged accretion rate (at the endpoint in Fig. 2 ). (14) 

〈 Ṁ acc 〉 / Ṁ Bondi : The same value o v er Bondi accretion rate. (15) 〈 Ṁ acc 〉 / Ṁ Edd : The same value o v er the Eddington accretion rate ( Ṁ Edd ≡ L̇ Edd / 0 . 1 c 
2 ). (16) 〈 ̇E jet 〉 / ̇E Edd : Jet energy flux o v er Eddington luminosity. 

a We run three variations of the same run with different random seeds for the stochastic injection of jet particles (labelled as I, II, III) to characterize the impact of this stochasticity. Unless specified otherwise, in the 

rest of this paper we refer to run I. 
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Figure 1. The number density (lower half of each panel) and temperature (upper half of each panel) morphology of the runs varying the jet velocity from 3000 

to 30 000 km s −1 ( η5e-2–vj3e3–n1e5–T1e4, η5e-2–vj1e4–n1e5–T1e4, and η5e-2–vj3e3–n1e5–T1e4) and keeping everything else constant. We show 2D slices 

from 3D snapshots, selected at the time when the cocoon has reached its maximum height. The red dotted circle indicates the Bondi radius in each panel. We see 

that low jet velocities result in elongated cocoons, while high velocities produce a more spherical bubble-like morphology, and propagate to a shorter distance. 

highly episodic (see Fig. 2 ), and as a result, the length and the width 

of the jet cocoon are also time-dependent. We choose a snapshot 

where each cocoon reaches its maximum height in order to show 

the differences most clearly. This figure shows that the propagation 

of the jet cocoon varies primarily in length. The run with a lower 

jet velocity has a much more elongated jet cocoon, reaching a much 

larger distance. On the other hand, the higher velocity runs result in 

a roughly isotropic bubble-shaped cocoon. The higher the velocity, 

the shorter the distance the jet cocoon reaches. 

Qualitatively, this is primarily because a lower velocity jet with 

lower specific energy regulates itself to a higher mass and momentum 

flux (for reasons we will discuss below). The higher mass and 

momentum flux jet can punch through to a much larger radius, 

consistent with what we see in galaxy scale jet simulations (e.g. 

Krause 2003 ; Guo 2015 ; Su et al. 2021 ; Weinberger et al. 2022 ). We 

will provide a more quantitative scaling for the propagation of the 

jet cocoon with jet models and the initial external gas density and 

temperature in Section 4 . 

These jet cocoons reach only ∼ 0 . 1 pc scales. We emphasize that 

these are generated by a 100 M � BH and should not be directly 

compared with the jet cocoon or bubble from an SMBH, which can 

reach several tens of kpc. As we will discuss later (Section 5.5 ) in 

the derived scaling from a simple model we develop, an SMBH will 

imply much higher jet fluxes and will reach much further in a similar 

environment. 

3.2 Black hole accretion rate and jet energy flux 

Fig. 2 shows the resulting BH accretion rate, jet mass flux, momentum 

flux, and energy flux as a function of time for the same set of runs. 

The latter quantity is the cumulativ e-av erage from the beginning of 

the run t = 0 to the given time to reduce the noise. With a feedback 

mass fraction of ηm, fb = 0.05, the BH accretion rate roughly regulates 

to 2 Ṁ bond , ∼ 0 . 02 − 0 . 03 Ṁ bond , and ∼ 0 . 002 Ṁ bond for jet velocities 

of 3000, 10 000, and 30 000 km s −1 , respectively. We also see that 

the higher the jet velocity, the more short-term variability there is 

throughout the simulations (a period of ∼3, 10, 50 k yr, respectiv ely), 

a topic we will return to in Section 5.6 . 

Consistent with what we saw in Section 3.1 , a low-velocity 

jet regulates to a much higher mass and momentum flux, which 

is responsible for the more elongated cocoon. The 10 000 and 

30 000 km s −1 runs, both of which have cocoons that isotropize 

at small radius, roughly regulate to a similar jet energy flux, meaning 

that Ṁ jet ∝ V 
−κv 

jet with κv ∼ 2–2.5. The lowest velocity run (3000 km 

s −1 ), on the other hand, results in an even higher energy flux, 

qualitatively consistent with the much larger volume of the cocoon 

we see in Fig. 1 . The lower velocity runs ( V jet ≤ 10 000 km s −1 ) 

roughly have Ṁ jet ∝ V 
−κv 

jet , with κv ∼ 3.5–4. We will explore the 

reason behind the different behaviour and scalings of the high and 

low velocity jets in the next section. 

4  A  SIMPLE  M O D E L  F O R  J E T  P RO PAG AT I O N  

A N D  C O C O O N  F O R M AT I O N  

In the previous section, we found that when we varied the jet velocity, 

the jets all self-regulated, but this could result either in a nearly 

spherical, or in a highly elongated cocoon. Here, we develop a simple 

analytic model based on this dichotomy and then, in the next section, 

we will use it to understand self-regulation when other parameters, 

such as the background gas properties, are changed. 

4.1 Jet propagation 

We begin by re vie wing the scaling which controls the cocoon shape 

before, in the next section, connecting this back to the accretion and 

hence o v erall self-re gulation. 

4.1.1 Elongated jet cocoon – before the cocoon isotropizes 

We start by assuming the jet cocoon roughly follows a cylindrical 

geometry. As shown in Fig. 3 , closer to where jets are launched, 

the propagation of the jet qualitati vely follo ws from momentum 

conservation in the z -direction (e.g. Begelman & Cioffi 1989 ; Su 

et al. 2021 ), 

A c V z ρ∞ V z = 
1 

2 
Ṁ jet V jet , (4) 

where A c = πR 
2 
cocoon is the cross-section of the pressurized cylinder 

(cocoon), V z ≡ d z cocoon /d t is the expansion velocity of the cocoon in 

the polar directions, Ṁ jet is the jet’s initial mass flux, and V jet is the 

initial jet velocity. 

The evolution in the perpendicular direction is, instead, dictated 

by energy conservation, as the build-up of an o v erpressured cocoon 

driv es lateral e xpansion. The resulting e xpansion then pushes the 
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Figure 2. From top to bottom, the panels show (i, ii) the BH accretion rate, 

(iii) jet mass flux, (iv) momentum flux, and (v) energy flux in runs varying 

the jet velocity from 3000 to 30 000 km s −1 (labelled as ‘ η5e-2–vj3e3–

n1e5–T1e4’, ‘ η5e-2–vj1e4–n1e5–T1e4’, and ‘ η5e-2–vj3e3–n1e5–T1e4’ in 

Table 1 ). Note that I, II, and III in the name label the same runs with different 

random seeds to show the range of stochastic variations. The second, third, 

and fourth panels show cumulative averages from the beginning of the run 

up to the specific time of the run. The lower velocity jet model results in a 

much higher BH accretion rate and jet mass, momentum, and energy fluxes. 

The higher velocity jets (10 000 and 30 000 km s −1 ) regulate themselves to a 

similar jet energy flux values. 

surrounding gas. The equations describing the conservation of energy 

and momentum flux can be written as 

A tot V R, Hot 

(

1 

2 
ρc V 

2 
R, Hot 

)

= 
γ

2 
( Ṁ jet V 

2 
jet ) , 

V 
2 
R, Hot ρc = V 

2 
R ρ∞ (5) 

where A tot = 4 πβR cocoon z cocoon is the lateral surface area of the 

same region, z cocoon is the height to which the jet reaches, V R , Hot 

is the immediate post-shock velocity of the hot cocoon gas, V R ≡

d R cocoon /d t is the expansion velocity of the cocoon in the mid-plane 

direction, β is an order-of-unity geometric factor for the surface 

area of the cocoon with respect to an ideal cylindrical geometry, 

and γ ≡ Ė expansion / ̇E kin ∝ Ė jet / ̇E kin ≡ f −1 
kin is the ratio of the energy 

flux in the perpendicular direction (proportional to the total injected 

energy Ė jet ) to the injected kinetic energy flux. Energy conservation 

is appropriate for the (initial) lateral expansion despite the strong 

cooling that can occur at the interface between the hot and cold gas 

within the cocoon. The total amount of cooling at this interface is 

proportional to its area (i.e. A c ) and so is negligible compared with 

the jet energy flux at early times. 

In this expression, ρc is the cocoon gas density, which we will 

assume depends on the jet velocity and the background gas properties 

as 

ρc ∝ ρζ
∞ T 

ξ
∞ V 

δ
jet . (6) 

where ζ , ξ , and δ are exponents that we will determine later. 

Assuming the cocoon is pressurized by strong shocks (where ρpost ∼

2 ρpre and v post ∼ 0.5 v pre ), γ is roughly 

γsuper−sonic ∼
Ė post−shock 

Ė pre −shock 

Ė pre −shock 

Ė jet 

Ė jet 

Ė kin 

∼
ρpost v 

3 
post 

ρpre v 3 pre 

× (1 − f loss ) f 
−1 
kin 

∼
1 

16 
× (1 − f loss ) f 

−1 
kin � 

1 

16 
f −1 

kin . (7) 

Therefore, we assume γ is a constant for the remainder of the paper. 

From the equations abo v e, we can solve for the time dependence 

of V R and R cocoon as 

V R = 

(

γ 2 

72 πβ2 

)1 / 6 

Ṁ 
1 / 6 
jet ρ

1 / 6 
c ρ−1 / 3 

∞ V 
1 / 2 

jet t −1 / 3 

R cocoon = 

(

81 γ 2 

512 πβ2 

)1 / 6 

Ṁ 
1 / 6 
jet ρ

1 / 6 
c ρ−1 / 3 

∞ V 
1 / 2 

jet t 2 / 3 (8) 

and the time dependence of V z and z cocoon as 

V z = 

(

8 β

9 πγ

)1 / 3 

Ṁ 
1 / 3 
jet ρ

−1 / 6 
c ρ−1 / 6 

∞ t −2 / 3 

z cocoon = 

(

24 β

πγ

)1 / 3 

Ṁ 
1 / 3 
jet ρ

−1 / 6 
c ρ−1 / 6 

∞ t 1 / 3 . (9) 

In particular, the opening angle of the resulting cocoon scales as 

R cocoon 

z cocoon 
= 

γ z cocoon 

16 β

(

2 πρc V jet 

Ṁ jet 

)1 / 2 

. (10) 

We have assumed that the jet starts such that R cocoon < z cocoon , but 

as the cocoon propagates, for a fixed Ṁ jet , eventually, it becomes 
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Figure 3. A cartoon picture of the jet cocoon propagation and the two possible cocoon morphologies as a result of different jet parameters, background gas 

density, and temperature. The left-hand panel shows the isotropic ‘bubble’ case where r iso < r Bondi . The right-hand panel shows the elongated ‘cocoon’ case 

where r iso > r Bondi . The blue arrow represents the jet. Each half oval indicates the jet cocoon at a given time. The grey dashed line indicates the resulting o v erall 

ef fecti ve cocoon shape of a continuous jet injection by ‘linking’ the cocoon shock-front at each time. 

(quasi-)isotropic ( R cocoon ∼ z cocoon ); this occurs at a time given by 

t iso = 

( 

2 15 Ṁ jet ρ∞ 

πV 
3 

jet ρ
2 
c 

) 1 / 2 
(

β2 

3 γ 2 

)

≈ 660 yr × (1 − f loss ) 
−2 f 2 kin 

(

n̄ 

10 5 cm −3 

)−1 / 2 

×
(

Ṁ jet 

5 × 10 −9 M � yr −1 

)1 / 2 (
V J 

10 4 km s −1 

)−3 / 2 

, (11) 

and at a cocoon height of (see Fig. 3 ) 

z iso ≡ r iso = 

(

Ṁ jet 

2 πρc V jet 

)1 / 2 (
16 β

γ

)

≈ 1 . 3 × 10 −3 pc (1 − f loss ) 
−1 f kin ×

(

n̄ 

10 5 cm −3 

)−1 / 2 

×
(

Ṁ jet 

5 × 10 −9 M � yr −1 

)1 / 2 (
V J 

10 4 km s −1 

)−1 / 2 

. (12) 

4.1.2 Isotropic bubble – after the cocoon isotropizes 

After the cocoon isotropizes, the momentum no longer dominates 

the jet propagation as V R grows larger than V z . The whole cocoon 

becomes an energy-driv en e xpanding bubble as shown in the outer 

part of Fig. 3 . In this case, 

4 πR 
2 ρc V 

3 
R, Hot = 

γ ′ 

2 
Ṁ jet V 

2 
jet 

V 
2 
R, Hot ρc = V 

2 
R ρ∞ , (13) 

where γ ′ ≡ Ė expansion / ̇E kin . Note that this matches equation ( 5 ) 

assuming R cocoon = z cocoon up to an order-of-unity geometry factor, 

which we treat in a very approximate manner. Again assuming 

supersonic shocks, then γ ′ ∼ γ supersonic . Equation ( 13 ) has the 

solution: 

V R = 

( 

9 γ ′ Ṁ jet V 
2 

jet ρ
1 / 2 
c 

200 πρ
3 / 2 
∞ 

) 1 / 5 

( t − t iso ) 
−2 / 5 

R = 

( 

125 γ ′ Ṁ jet V 
2 

jet ρ
1 / 2 
c 

216 πρ
3 / 2 
∞ 

) 1 / 5 

( t − t iso ) 
3 / 5 . (14) 

4.2 Feedback self-regulation 

Turning to the physics of self-regulation, we note that, at the Bondi 

radius R Bondi = GM acc /c 
2 
s , the inflowing mass flux goes as 

Ṁ Bondi = 
e 3 / 2 πρ∞ G 

2 M 
2 

c 3 s 
(15) 

and the inflowing momentum flux goes as 

Ṗ Bondi = Ṁ Bondi V ff | R Bondi = 
e 3 / 2 πρ∞ G 

2 M 
2 
acc 

c 2 s 
. (16) 

Regulation will occur when the jet cocoon produces a momentum 

flux which matches this. Ho we ver, if the momentum flux is very 

anisotropic such that the z component of momentum flux Ṗ z , cocoon 

is much larger than the momentum flux perpendicular to the jet 

Ṗ R , cocoon , the extra momentum in the z -direction is insufficient, by 

itself, to stop the accretion. Therefore, we argue that regulation 

happens when the isotropic component of the jet cocoon or bubble 

momentum flux matches the inflowing momentum flux at the Bondi 

radius. 

4 πρ∞ R 
2 
Bondi V 

2 
iso , Bondi = 

e 3 / 2 πρ∞ G 
2 M 

2 
acc 

c 2 s 
, (17) 

where V iso, Bondi is the isotropic component of the cocoon velocity at 

the Bondi radius. We estimate the isotropic component of the cocoon 

velocity as V iso ≡
√ 

2 min ( V R , V Z ). We explain how we estimate its 

value under different conditions as follows. 



Self-regulation of early BH accretion via jets 4265 

MNRAS 520, 4258–4275 (2023) 

4.2.1 z iso > R Bondi 

As shown in the right-hand part of Fig. 3 , if the jet cocoon isotropizes 

at a radius larger than the Bondi radius ( z iso > R Bondi ), V z > V R when 

R reaches R Bondi , we estimate the isotropic component of velocity at 

the Bondi radius to be 

V iso , Bondi = 

√ 

2 V R | R Bondi 

∝ Ṁ 
1 / 4 
jet V 

3 / 4 
jet R 

−1 / 2 
Bondi ρ

1 / 4 
c ρ−1 / 2 

∞ . (18) 

From equations ( 17 ) and ( 18 ), we find that the jet mass flux regulates 

to 

Ṁ jet ∝ M 
2 
acc ρ

2 
∞ ρ

−1 
c V 

−3 
jet 

∝ M 
2 
acc ρ

2 −ζ
∞ T −ξ

∞ V 
−3 −δ

jet . (19) 

4.2.2 z iso < R Bondi 

On the other hand, as shown in the left-hand part of Fig. 3 , if z iso 

< R Bondi , the cocoon can also become an isotropic bubble before 

reaching the Bondi radius. Therefore, equation ( 13 ) in this case gives 

V iso , Bondi = 

( 

γ ′ Ṁ jet V 
2 

jet ρ
1 / 2 
c 

8 πρ
3 / 2 
∞ R 

2 
Bondi 

) 1 / 3 

. (20) 

From equations ( 17 ) and ( 20 ), we see that the jet mass flux in this 

case regulates to 

Ṁ jet ∝ M 
2 
acc ρ

3 / 2 
∞ ρ

−1 / 2 
c V 

−2 
jet c 

−1 
s 

∝ M 
2 
acc ρ

(3 −ζ ) / 2 
∞ V 

−2 −δ/ 2 
jet T −(1 + ξ ) / 2 

∞ . (21) 

4.3 Cocoon or bubble at the Bondi Radius? 

The jet cocoon will be elongated at the Bondi radius if z iso > R Bondi 

or, from equation ( 12 ), if 

Ṁ jet > 

(

πγ 2 R 
2 
Bondi 

128 β2 

)

ρc V jet ∼ ρζ
∞ T 

ξ
∞ V 

1 + δ
jet . (22) 

Otherwise, it isotropizes before reaching the Bondi radius. We next 

list which of these two scenarios is realized for different parameter 

values, as follows. 

(i) Jet velocity: This mass flux criterion scales as V jet , but the mass 

fluxes are regulated to a negative power of V jet in both the cocoon 

(equation 19 ) and bubble (equation 21 ) cases, as δ is small (as we 

measured in simulation). Therefore the lower the jet velocity, the 

narrower the cocoon at the Bondi radius. We emphasize that the ‘jet 

velocity’, V jet here is the velocity at the jet launching scale in our 

simulation, ∼10 −5 pc, which is six orders of magnitude larger than 

the Schwarzschild radius. This velocity therefore strongly depends 

not only on the unresolved launching of a relativistic jet but also on 

the interaction between the jet and the gas on an unresolved scale. 

We will discuss this further in Section 6.3 . 

(ii) Gas density: If ζ (from equation 6 ) is smaller than 1 (which 

is the case, as will be shown later in Section 5.2 ), then Ṁ jet has a 

superlinear dependence on n ∞ for both the elongated cocoon and 

isotropic bubble cases. The separation between the two cases, on the 

other hand, has Ṁ jet scaling linearly with n ∞ (equation 22 ). From 

the same argument as abo v e, the higher the background density, the 

more elongated the jet cocoon. 

(iii) Gas temperature: If ξ (from equation 6 ) is close to zero 

(which is the case as will be shown later in Section 5.2 ), the Ṁ jet in 

the elongated cocoon case will have little dependence on T ∞ , while 

the bubble case will have a scaling of Ṁ jet ∝ T −0 . 5 
∞ . The separation 

between the two cases has a negligible dependence of Ṁ jet on T ∞ , 

(equation 22 ). From the same argument abo v e, if the background 

temperature increases, the cocoon shape either remains the same or 

becomes slightly more bubble-like. 

5  SIMU LATIO N  RESULTS:  C O C O O N  

R E G U L AT I O N  A N D  BL ACK  H O L E  AC C R E T I O N  

Armed with a better understanding of the physics of jet regulation 

from the simple scalings obtained in the previous section, we next 

turn to a more complete examination of the simulation results. We 

begin by demonstrating that the isotropic momentum is key to self- 

regulation, before discussing first the cocoon’s properties, and then 

the BH accretion rate and growth. 

5.1 The self-regulation of the cocoon by its isotropic 

momentum flux 

We first explicitly demonstrate that, in the simulations, the isotropic 

component of the cocoon momentum flux (as defined in equations 18 

and 20 ) is roughly regulated to the inflow momentum flux, assuming 

a Bondi value. We note that the ‘regulation’ is a dynamic process and 

happens on average at the Bondi radius according to the background 

gas properties rather than the cocoon gas properties. The reason is 

that most accretion happens while the jet is off (not at its maximum 

fluxes), when the gas around the BH becomes cold again. Each row 

in Fig. 4 shows the variation of a specific parameter ( Ṁ jet , v jet , n ∞ , 

T ∞ , and T jet ). There are three kinds of momentum flux plotted in 

each panel. The first is the injected jet momentum, time-averaged 

o v er the duration of each run, which is coloured red. 

The second kind of momentum flux is the time-averaged cocoon 

momentum flux. The blue line shows its total value, the pink line 

the isotropic component, and the cyan line the z component. More 

specifically, we define the cocoon momentum flux by summing the 

gas particles as 

〈 P out 〉 = 

∑ 

r i = r ±δr ,T i > 1 . 2 T ∞ ,v r, > 0 

m i v 
2 
r,i 

δr 

〈 P out, z 〉 = 

∑ 

r i = r ±δr ,T i > 1 . 2 T ∞ ,v z,i ·sign ( z) > 0 

m i v 
2 
z,i 

δr 

〈 P out, R 〉 = 

∑ 

r i = r ±δr ,T i > 1 . 2 T ∞ ,v r2 d,i > 0 

m i v 
2 
r2 d,i 

δr 

〈 P out, iso 〉 = min ( P out , 2 P out, R , 2 P out, z ) , (23) 

where m i is the particle mass, T i is the temperature, r i is the particle’s 

3D radial position, v r , i is the 3D radial velocity, v z, i is the z-velocity, 

and v r 2 d , i is the lateral velocity. 

The third kind of momentum flux is the estimated inflowing 

momentum flux assuming a Bondi density profile 

ρ ∼

{ 
ρ∞ for r > R Bondi 

ρ∞ 

(

r 
R Bond 

)−3 / 2 
for r < R Bondi 

(24) 

multiplied by the 4 πr 2 v 2 ff . Note that v in ∼ V ff does not hold far beyond 

R Bondi , so we only plot this curve out to ∼3 R Bondi . We immediately 

see that the isotropic component of the momentum flux (pink curves) 

is roughly regulated to the Bondi inflowing momentum flux (green 

curves) at the Bondi radius (vertical line) (within a factor of 2). More 

specifically, the runs can be separated into two categories – z iso > 

R Bondi (cocoon-like at R Bondi ) and z iso < R Bondi (bubble-like at R Bondi ). 
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Figure 4. The comparison of time-averaged momentum fluxes from the simulations. Three types of momentum flux are shown: (i) the average jet momentum 

flux (red), (ii) the cocoon momentum flux, with blue, cyan, and pink lines showing the total cocoon flux, its z-component, and the isotropic component 

( min ( ̇P out , 2 ̇P out, R , 2 ̇P out, z ), see equation 23 and Fig. 3 ), respectively, and (iii) finally the estimated inward Bondi momentum flux (green). The vertical line in 

each plot marks the Bondi radius. The isotropic component of the outward cocoon momentum flux matches the inward Bondi momentum flux at the Bondi 

radius. Runs with elongated cocoons ( v = 3000 km s −1 and n = 10 6 cm −3 ) have the z-component of their cocoon fluxes roughly match the jet momentum 

flux es (momentum-driv en) and are much larger than the isotropic components. Runs with b ubble-shaped cocoons all ha v e their cocoon momentum flux es 

(energy-driven) higher than the jet momentum fluxes. 

Cross-referencing the morphological plots in Fig. 1 (for the 

simulations with jet velocity variation) and Fig. 5 (for the simulations 

varying n ∞ , T ∞ , and T jet ), both the 3000 km s −1 and n = 10 6 cm 
−3 

runs fall clearly in the first category (elongated cocoons). In these 

runs, the z-direction momentum flux is roughly equi v alent to the jet 

momentum flux, indicating a momentum-conserving propagation. 

Both are much larger than the isotropic component of the cocoon 

momentum flux until well beyond the Bondi radius, where the two 
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Figure 5. The density and temperature morphology of the other runs varying the other parameters. Higher density runs have much larger and more elongated jet 

cocoons. Lower temperature runs have a much larger Bondi radius, so the cocoon also reaches further. A thermal energy dominant jet results in a quasi-spherical 

bubble-shaped cocoon. 

components become comparable. The z-direction momentum flux is 

also larger than the inflowing momentum flux (assuming a Bondi 

value) at the Bondi radius. The isotropic component of the cocoon 

momentum flux, on the other hand, matches the inflowing momentum 

flux. In fact, they not only match at the Bondi radius, but they 

also match until the jet cocoon isotropizes, at a several times larger 

distance. This is primarily because the isotropic component of the 

velocity roughly scales as r −1/2 (see equation 18 ), identical to the 

scaling of the free-fall velocity. 

The higher velocity runs ( V jet > 10000 km s −1 ), lower density runs 

( n ∞ � 10 4 cm 
−3 ) and thermal jet runs clearly fall in the second 

category (see also Figs 1 and 5 ). In this scenario, the cocoon 

isotropizes at a radius much smaller than the Bondi radius, and 

the isotropic component and the z-component become comparable 

o v er most of the plotted range. They are both larger than the input 

jet momentum flux as the propagation is energy-driven (i.e. by the 

thermal velocity, rather than the jet’s bulk velocity; see Section 4.1 ). 

Ho we v er, the y still match the inflowing momentum flux assuming 

the Bondi value. 

The regulation of the isotropic component of the cocoon mo- 

mentum flux to the Bondi value at R Bondi is clearly reproduced in 

these results. When changing the background gas temperature by 

two orders of magnitude, the Bondi radius also differs by two orders 

of magnitude, and the two values still match. 

5.2 Thermal phase structure of the cocoon/bubble gas 

Before jumping into the implications of this regulation for BH 

accretion, we will first need to understand how the cocoon phase 

structure depends on the jet model and gas properties. This is reflected 

in the power-law index in equation ( 6 ) and enters the regulation of 

the jet mass flux and accretion rate in equations ( 19 ) and ( 21 ). 

Fig. 6 shows the phase structure of the fiducial run η5e-2–vj1e4–

n1e5–T1e4 in the temperature – V iso (isotropic component of cocoon 

velocity) plane. The top panel is mass-weighted, showing the phase 

distribution, while the bottom panel is momentum-flux-weighted, 

showing which phase contributes the most to the outflowing mo- 

mentum flux. There are clearly two phases present as labelled by 

the horizontal lines. The first is the hot phase, which consists of 

the reverse-shocked hot gas filling the volume of the cocoon, and is 

primarily trans- to subsonic-turbulent. The second, colder, phase is 

roughly at the background gas temperature and density and slightly 

abo v e the cooling floor. The gas in this phase is at the ‘mixing layer’ 

of the cocoon and surrounding gas, which is already cold. The second 

panel shows that both phases have a roughly equivalent contribution 

to the outflowing cocoon momentum flux, while most of the mass is 

in the cold phase. 

Fig. 6 shows that the cocoon gas has properties different from 

the background gas. Fig. 7 shows an estimate of how the cocoon 

gas properties depend on the background gas properties at the 

Bondi radius, where the regulation happens. This is represented 

as ζ and ξ in equation ( 6 ). We note that the dependence on the 

jet velocity is weak ( δ ∼ 0), so we do not explicitly show it 

here. Given what we saw in Fig. 6 , we fit for the gas proper- 

ties of the whole cocoon (estimated as T > 1 . 2 T ∞ , shown with 

green lines), the cool-mixing-layer phase (1 . 2 T ∞ < T < 3 . 6 T ∞ ; 

blue lines), and the hot cocoon gas ( T > 3 . 6 T ∞ ; red lines). We 

include only gas with V iso > 0. While averaging the cocoon gas 

properties, we volume-weighted the density and pressure while 

mass-weighting the temperature and entropy. We emphasize that 

this yields only an approximate estimate of the power-law index, 

as each jet model goes through multiple cycles of feedback and the 

cocoon consists of multiphase gas. To look at o v erall behaviour, 

we average over all times and the multiphase cocoon gas at the 

Bondi radius, and fit a straight line through the results (in logarithmic 

quantities). 

We see from the left-hand panel that the cold-mixing-layer gas 

generally follows the background gas temperature and density. On 

the other hand, the hot cocoon gas follows a constant entropy trend, 

as the reverse-shock heated gas has its properties set largely by 
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Figure 6. The phase structure of the cocoon gas ( T > 1 . 2 T ∞ ) in the 

temperature versus isotropic velocity component plane ( V iso ∼
√ 

2 V 2d ). The 

top panel is mass-weighted, and the lower panel is momentum-flux-weighted 

(isotropic component). The cocoon consists of a reverse-shocked, trans- to 

subsonic, turbulent hot phase and a cold mixing layer phase slightly abo v e 

the cooling floor (labelled by the horizon lines). The two phases contribute 

roughly equally to the isotropic cocoon momentum flux. Most of the mass, 

on the other hand, is in the cold phase. The hottest temperatures roughly 

correspond to the shock temperature implied by the jet velocity. 

the jet model instead of the background gas properties. We find a 

scaling approximately n c ∝ n ζ∞ with ζ � 0.9, consistent with our 

claim in Section (ii) that the higher the background density, the more 

elongated the cocoon. 

The right-hand panel shows that the cocoon gas, in either phase, 

scales only weakly with the background temperature. Again, the 

cold-mixing-layer gas roughly matches the background gas temper- 

ature since the y hav e both already cooled to the temperature floor 

( T ∞ ). On the other hand, the hot phase has a steeper than linear 

scaling with the background temperature. Overall, we find a scaling 

of n c ∝ T ξ∞ with ξ � 0. This is also roughly consistent with our claim 

in Section (iii) that, if ξ is smaller than 0, the higher the background 

temperature, the more ‘isotropic’ the jet cocoon (Section (iii)). 

5.3 The black hole accretion rate and jet mass flux 

Having determined how the cocoon properties depend on the back- 

ground gas density and temperature, we can finally see whether the 

implied regulation of our jet and the resulting BH accretion rate 

in our simple model can qualitativ ely e xplain what we see in the 

simulations. Fig. 8 shows the time-averaged jet mass flux in all of the 

runs, with each panel showing the variation of a specific parameter. 

Figure 7. The dependence of the cocoon gas density, temperature, entropy, 

and pressure on background gas properties (the former e v aluated at the Bondi 

radius). The red, blue, and green dots and lines correspond to the hot, cold, and 

combined phases. The dots are from each simulation and the lines are fitted 

power laws with the index ( κ) labelled. The cocoon is defined for simplicity 

as all gas with T > 1.2 T ∞ . We find n c ∝ n 
ζ
∞ T 

ξ
∞ with ζ � 0.9 and ξ ∼ 0. 

We plot only the jet mass flux for ease of comparison with our simple 

model, but it should be kept in mind that this is directly proportional 

to the BH accretion rate (simply scaled by a constant factor η−1 
m , fb , 

which is ∼20 for most runs). 

The first panel shows that the jet mass flux is independent of the 

feedback mass fraction. The jets in these runs have the same specific 

energy, so the same jet mass flux means the same momentum and 

energy flux, which implies a very similar cocoon propagation. With 

the lower feedback mass fraction, the BH accretes more to provide an 

equi v alent le vel of feedback. This holds until the required accretion 

rate is much larger than the Bondi accretion rate, in which case the 

jet model will fail to self-regulate. That scenario is not within the 

parameter space we simulate here. 

In the second panel, we vary the kinetic fraction by varying the 

jet temperature and velocity while keeping the total specific energy 

the same. The lower kinetic fraction run has most of the energy in a 

thermal component, isotropizing the cocoon essentially at the launch 

of the jet. Moreo v er, since its cocoon has never been in a momentum 

conserving phase, it does not reach far beyond the Bondi radius. It 

can clearly be seen in the last rows of Figs 4 and 5 that, although 

the isotropic component of the cocoon momentum flux matches the 

Bondi value at the Bondi radius in both the thermal and kinetic jets, 
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Figure 8. The dependence of the jet mass flux ( Ṁ jet ) on the adopted jet 

model and background gas properties. The lines sho w po wer-law fits, with 

the index ( κ) labelled. The number in the parenthesis is an estimate from the 

toy model and the fit to the cocoon gas-phase dependence in Fig. 7 . 

the cocoon momentum flux decays more steeply beyond the Bondi 

radius. As a result, much less energy is ‘wasted’ beyond the Bondi 

radius, so both the jet mass flux and BH accretion rates regulate to a 

lo wer v alue. 

In the simulations where we vary the jet velocity (centre left panel), 

the cocoon density depends weakly on the jet velocity, as mentioned 

in Section 5.2 . Therefore equation ( 19 ) ( z iso > R Bondi ) predicts a 

scaling of Ṁ ∝ V 
−3 

jet , and equation ( 21 ) ( z iso < R Bondi ) predicts a 

scaling of Ṁ ∝ V 
−2 

jet . These scaling relations roughly match what we 

see in Fig. 8 . We plot the scaling relations fit to all of the runs with 

velocities � 10 4 km s −1 (more elongated cocoon), and with velocities 

� 10 4 km s −1 (more bubble-like). As expected, the fits for the more 

elongated cocoon predict a steeper jet velocity dependence than the 

isotropic bubble case. It is also slightly steeper than what we predict 

from our simple model, but we re-emphasize that we are fitting a line 

to a small number of points and this result should be seen as a rough 

estimate. 

When we vary the gas temperature (centre-right panel), we find 

a scaling relation Ṁ jet ∼ T −1 . 2 
∞ . This is qualitatively consistent but 

a bit steeper than our model (equations 21 and 19 with ξ ∼ 0), 

which implies a scaling to V jet with a power-law index of 0 to −0.18 

(cocoon) or −0.5 to −0.7 (bubble). 

Finally, when we vary the gas density (bottom left panel), the 

cocoon gas density depends on the background gas density as n c ∝ 

n δ∞ with δ � 0.9. Therefore equations ( 21 ) and ( 19 ) predict Ṁ jet ∝ n α∞ 

with α � 1.1. We plot the scaling relations fit to the runs with 

density � 10 4 km s −1 (more elongated cocoon), and with density � 

10 4 km s −1 (more bubble-like). The first scenario has a similar scaling 

relation to our toy model. The latter case results in a somewhat steeper 

slope, which qualitatively agrees with our toy model but is steeper 

than predicted. 

5.4 The growth of the black hole 

We indicate the mean time-averaged BH accretion rate of each 

model in Table 1 . The runs with the highest accretion rate are, 

unsurprisingly, the runs with the lowest feedback mass fraction 

( ηm, fb = 0.005), the lowest relative specific energy (that is the lowest 

jet velocity, V jet = 3000 km s −1 ), the highest background density 

( n ∞ = 10 6 cm 
−3 ), and the lowest temperature ( T ∞ = 10 3 K ). They 

can all accrete at super-Eddington rates at their peak, reaching an 

accretion rate of (10 −6 − 10 −5 ) M � yr −1 or (0.4–6) Ṁ Edd on average, 

where the reference Eddington accretion rate relates to the Eddington 

luminosity as Ṁ Edd ≡ L Edd / 0 . 1 c 
2 (although we remind readers that 

we are not treating radiative feedback in this work). In our surveyed 

parameter space, the presence of jet feedback suppresses the accre- 

tion rate below the Bondi rate by factors ranging from ∼2 × 10 −4 up 

to 0.7. Note that there is a strong time variability of the BH accretion 

rate and the resulting jet fluxes (see Fig. 2 ). We emphasize the strong 

dependence of the BH growth rate on the jet feedback efficiency, 

which is determined by V jet and ηm, fb , parametrize the sub-resolution 

physics. We only run the simulations for < 10 5 yr, so none of the BHs 

grow significantly during the short periods co v ered by the simula- 

tions. Nevertheless, these results indicate that, for at least some of our 

model parameters, the BH could grow to very large masses in cosmo- 

logically short times if it continues to be surrounded by high-density 

gas. 

We can express the ratio Ṁ acc / Ṁ Edd using the scalings predicted 

by our toy model, normalized to the fiducial parameter choices, as 

Ṁ acc 

Ṁ Edd 

∼ 0 . 05 
(ηm , BH 

0 . 05 

)−1 
(

V jet 

10 4 km s −1 

)−2 to −3 

×
( n ∞ 

10 5 cm −3 

)1 . 1 
(

T ∞ 

10 4 K 

)−0 . 6 

, (25) 

where the exponent of V jet ranges from 2 (for r iso < r Bondi ) to 3 (for 

r iso > r Bondi ). Assuming the separation of the two cases is roughly at 

V jet ∼ 10 4 kms −1 , we plot the estimated BH accretion rate in Fig. 9 . 

On top of the toy-model prediction, we indicate the results from 

our runs with circles coloured with their measured values, and they 

show a qualitative agreement. We also show a set of dashed lines 

showing the parameters for which the estimated time needed for a 

100 M � BH to grow to 10 9 M � ( t 1 e 9 ) is 10 7 , 10 8 , 10 9 , and 10 10 

yr. Since we only performed simulations for a single BH mass, 

100 M �, in this study, this requires extrapolating the time-averaged 

accretion rates to higher BH masses. The calculation of t 1 e 9 assumes 

Ṁ acc ∝ M 
2 
acc (corresponding to a fixed fraction of the Bondi rate, with 

fixed background gas properties) throughout the evolution. This is 

moti v ated by the M acc dependence of Ṁ jet predicted in our toy model 

(see equations 19 and 21 ) but will be left for future study to verify with 

simulations with different BH masses. For a less optimistic estimate, 

the calculation of t E 1 e9 instead assumes Ṁ acc ∝ M acc (corresponding to 

a fixed fraction of the Eddington rate) throughout the e volution. Gi ven 

the assumptions abo v e and the estimated accretion rate of each case 

at Ṁ acc = 100 M �, part of the parameter space can have a 100 M �
BH growing to a 10 9 M � SMBH at high redshift. We emphasize 

that these are crude estimations. The underlying assumptions of a 

fixed fraction of Bondi accretion and the constant background gas 

properties are subject to verification in future work. 
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Figure 9. The predicted Ṁ acc / Ṁ Edd from the scaling of our toy model, 

assuming a normalization to the fiducial runs. Runs with low background gas 

temperature ( T ∞ ), high background gas density ( n ∞ ), low jet velocity ( V jet ), 

or low feedback mass fraction ( ηm, jet ) result in super-Eddington accretion. We 

also labelled with white dotted lines where the momentum efficiency ( ηp ) and 

energy efficiency ( ηE ) each equal to 0.1. The results from the simulations are 

shown as circles, coloured with the measured value. They show a qualitative 

agreement with the toy model. The dashed lines show the parameters for 

which the estimated time required for a 100 M � BH to grow to 10 9 M � ( t 1 e 9 ) 

is 10 7 , 10 8 , 10 9 , and 10 10 yr. The calculation of t B 1 e9 assumes Ṁ acc ∝ M 2 acc 
(black, fixed fraction of Bondi rate with fixed background gas properties) 

throughout the evolution. The calculation of t E 1 e9 adopts a less optimistic 

extrapolation of the BH accretion rate. 

Ṁ acc ∝ M acc (red, fixed fraction of the Eddington rate) throughout the 

evolution. 

5.5 Jet cocoon height 

As we saw in Fig. 5 , all of the jets simulated in this paper reach only 

to ∼0.1 pc. Some of the cases isotropize at even shorter heights. We 

emphasize that this is ultimately the result of our choice of a 100 M �
BH. Supposing that our toy model holds for any BH mass (subject 

to verification in future work), we can combine equations ( 12 ) and 

( 25 ) (with Ṁ acc dependence) as 

z iso ∝ M acc V 
−1 . 5 t o −2 

jet T −0 . 3 
∞ . (26) 

Therefore, the isotropic height scales roughly with the BH mass. 

Besides, a jet cocoon propagates until reaching a height where the 

integrated cooling rates within the jet cocoon balance the jet energy 

flux es. Giv en that most of the cooling happens at the mixing layer, 

we can write down 

Ė jet ∝ z 2 max δ�n 
2 
∞ � ( T ∞ ) , (27) 

Figure 10. The normalized (divided by the maximum value) power spectrum 

of the BH accretion history (from the first panel of Fig. 2 ). The green and red 

vertical lines are the free-fall time at the Bondi radius for 6 × 10 3 K and ×10 3 

K gas. The corresponding value for ×10 5 K is outside the plotted range (right 

end). The grey line is the viscous time-scale of the α-disc. The lower jet 

velocity run results in a more elongated cocoon, which reaches a larger 

distance, and has longer term variability. The run with cooler background gas 

also has a larger Bondi radius, so the BH accretion rate also has longer term 

variability. 

where δ� is the mixing layer thickness. Accordingly, the maximum 

height a jet cocoon reaches, z max ∝ M acc , again, scales roughly with 

the BH mass. Our result for a 100 M � BH, therefore, does not 

conflict with observations of narrow jet cocoons reaching kpc scales 

produced by an SMBH. 

Moreo v er, a high density is unrealistic to stay constant to such 

larger radii. For more massive systems, jets will propagate into a 

lower density, while getting fuelled by the central more dense gas. 

From equation ( 10 ), this can make the jet more collimated by keeping 

Ṁ jet constant while lowering ρc (this should not be confused with 

our earlier statement that a higher background density will result in 

a more collimated jet, which is a result of self-regulation as the jet 

flux scales superlinearly with the background density). 

5.6 Jet duty cycle 

Besides regulating the BH accretion rate and jet mass flux, the 

various jet models and background gas properties also affect the 

feedback cycle period. A run with a more elongated jet cocoon that 

propagates to a larger distance will result in longer term variability in 

the accretion rate. This can be seen in the left-hand panel of Fig. 10 , 

where we quantify the normalized (i.e. divided by its maximum 

v alue) po wer spectrum of the BH accretion rate in the runs with 

different velocities. We clearly see that the slower the jet velocity, 

the more elongated the jet cocoon becomes and the more the power 

spectrum shifts to longer periods (lower frequencies). The reason for 

this behaviour is simply that, when the jet reaches a larger distance, 

the time-scale of the regulation (i.e. the free-fall time) becomes 

longer. 

Similarly, changing the gas temperature also impacts the distance 

that the cocoon reaches. In the right-hand panel of Fig. 10 , we see 

that the higher temperature run, which has the smaller Bondi radius, 

has a power spectrum shifted to shorter periods. 

6  DISCUSSION  

6.1 The sur v ey ed feedback efficiency 

In this work, we parametrize an AGN feedback model with V jet , 

T jet , and ηm, jet . Ef fecti vely we could re-parametrize each model with 

V jet and the feedback energy and momentum efficiencies, which are 
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defined as 

ηp ≡
Ṗ jet 

Ṁ acc c 
= 

Ṁ jet V jet 

Ṁ acc c 

ηE ≡
Ė jet 

Ṁ acc c 2 
= 

Ṁ jet V 
2 

jet 

2 Ṁ acc c 2 
. (28) 

We ef fecti v ely did a v ery broad surv e y of the energy efficienc y ηE 

from 2.7 × 10 −6 − 0.055, and momentum fluxes ηP from 1.6 × 10 −4 

− 3.3. All our runs and the scaling from our toy model can be 

re-parametrized with these efficiencies (as labelled in Table 1 and 

Fig. 9 ). Ho we ver, we found the current labelling results in a simpler 

scaling in the model, as they are the rele v ant v ariables in our toy 

model. 

We emphasize that ( V jet , T jet , ηm, jet ) or ( V jet , ηp , ηE ) are merely 

parametrizing our ignorance of the sub-resolution physics. In the 

literature, the momentum and energy efficiencies ηp and ηE are 

often considered within one de x abo v e and below 0.1, and often 

with a maximum value around 1, depending on the BH spin and 

accretion disc model (e.g. De Villiers et al. 2005 ; Tchekhovsk o y, 

Narayan & McKinney 2011 ; McKinney, Tchekhovsk o y & Bland 

ford 2012 ; Sadowski et al. 2016 ). However, these values are often 

measured in GRMHD simulations at the BH horizon scale, with 

Ṁ acc measured right around the black horizon. The Bondi solution 

has a constant Ṁ acc across the wide radial range within the Bondi 

radius, but mass-loss to winds and outflows generally result in Ṁ acc 

decreasing monotonically towards inner radii. This lowers both the 

ef fecti ve jet energy and momentum efficiencies, as the BH accretion 

rate is much smaller than the Ṁ acc calculated at the resolution scale. 

For instance, the typical scaling of Ṁ ∝ r 1 / 2 found in radiation- 

hydrodynamical simulations (e.g. Guo et al. 2022 ; Hu et al. 2022 , 

and references therein) implies ef fecti vely ∼3 orders of magnitude 

suppression of the efficiency in our definition, given the 6 orders 

of magnitude from our sink radius to the BH horizon. Earlier work 

also predicts a scaling of Ṁ ∝ r 0 . 4 −0 . 8 , which can be slightly steeper 

(Yuan & Narayan 2014 ). Moreo v er, how the flux of the jet varies 

as it reaches our launching scale is subject to the sub-grid gas 

properties, which change the thermalization rate of kinetic energy, 

cooling physics, and kinematics. The range of these efficiencies can 

possibly be larger than most studies in the literature co v er. 

Given the above complexities, instead of having a set of runs 

attempting to parametrize the possible ef fecti ve ef ficiencies at our 

jet launching scale given a certain efficiency measured at the BH 

horizon scale, we instead intentionally co v er a v ery wide possible 

parameter space at our jet launching scale. The relations of these runs 

to a relativistic jet at the black-horizon scale and the jet propagation 

in the scales in between will be left for a future study. Our chosen 

set of runs may also be more suitable to validate our toy model, as 

the y co v er orders of magnitude ranges for each parameter. 

6.2 Comparison with previous works 

Regan et al. ( 2019 ) used the adaptive mesh refinement (AMR) 

hydrodynamics code ENZO to investigate feedback from bipolar jets, 

expected to be produced during super-Eddington accretion episodes, 

focusing on how the jet feedback impacts BH growth. They found that 

the jets periodically e v acuate the central ∼0.1pc region, and accretion 

then resumes after a free-fall time. Overall, we here find a similar 

behaviour, although there are several differences between our setups 

and our results. Regan et al. ( 2019 ) utilize a cosmological simulation, 

and adopt an initial seed BH mass of 16 000 M �, with an initial 

accretion rate of ∼ 10 −2 M � yr −1 , and find that the time-averaged 

accretion rate al w ays stays below the Eddington value. Also, once 

the gas is heated by the jet, they do not resolve the Bondi radius, and 

adopt a modified Bondi accretion rate. By comparison, we here use 

an initially uniform and static cloud, and examine a > 100 times lower 

BH mass, > 100 times lower accretion rate, and a > 100 times higher 

spatial resolution, such that the Bondi radius remains resolved at all 

times. We find that super-Eddington accretion is possible, which may 

be explained by the different parameter choices and/or differences in 

the details in the shapes of the jet-driven cocoons. Another difference 

between our studies is that we examine the cocoon evolution in 

greater detail and offer a physical interpretation of its shape and size, 

as a function of jet and background gas parameters. 

Park & Ricotti ( 2011 ) studied a similar problem regarding ac- 

cretion on to a low-mass BH, but with radiative feedback instead 

of the mechanical jet feedback explored here. They obtain a scal- 

ing of the time-averaged BH accretion rate with background gas 

properties ( Ṁ ∝ T 5 / 2 ∞ for n ∞ ≥ 10 5 cm 
−3 and Ṁ ∝ T 5 / 2 ∞ n 1 / 2 ∞ for 

n ∞ < 10 5 cm 
−3 ), which are different from ours. The primary reason 

is that the radiative feedback they implemented inflates a roughly 

constant temperature bubble around the BH, which is in pressure 

equilibrium with the surrounding cold gas. This is very different from 

the cocoon we see inflated by jet feedback, where the cocoon has a 

more complicated shape as discussed in Section 4 . Park & Ricotti 

( 2011 ) also found a feedback cycle with a well-defined period, while 

we have much more complicated cycles. This can arise from the 

more anisotropic turbulent gas distribution due to the jetted feedback 

or the more complex geometry of the outflows and accretion. The 

fact that we are using 3D simulations, while Park & Ricotti ( 2011 ) 

used 1D and 2D simulations, could also contribute to the difference. 

Ov erall, the time-av eraged accretion rate in P ark & Ricotti ( 2011 ) 

was found to always remain below the Eddington rate, whereas we 

here find super-Eddington accretion in many cases. This suggests that 

jet feedback may be a lesser obstacle to BH growth than radiative 

feedback. 

Takeo et al. ( 2020 ) also studied a similar problem with different 

BH masses (10 and 10 5 M �) and with wider AGN winds on top of 

radiativ e feedback. The y focused on the ‘hyper-Eddington’ re gime, 

such that the Bondi rate exceeds the Eddington rate by several 

orders of magnitude. In practice, they considered either a much 

higher BH mass or a much higher background gas density than 

in our study. They showed that under these conditions, the resulting 

accretion rate can remain close to the Bondi accretion rate and reach 

the prescribed hyper-Eddington values after around a dynamical 

time, when the radiative feedback becomes less important. They 

also found that the accretion rate is insensitive to the feedback 

mass fraction of the mechanical feedback. These latter findings are 

qualitatively similar to what we see in our simulations with the AGN 

jet, despite different initial velocity and initial open-angle. They also 

see momentum conserving wind propagation (constant velocity) all 

the way to beyond Bondi radius, qualitatively similar to what we 

see in our lower velocity jets, which is also expected in our toy 

model. Gi ven the dif ference in the feedback form, BH mass, run time, 

and background Bondi accretion rate, more quantitative comparisons 

would be difficult. 

It is worth also comparing our results with the jets in larger 

scale galaxy simulations, e.g. those presented in Su et al. ( 2021 ). 

A similar qualitative result was found in those galaxy scale studies, 

namely that heavier jets result in much narrower jet cocoons which 

propagate much farther. The toy model describing the jet propagation 

presented in Section 4 also works on galaxy scales with a much 

more massive BH and lower gas density. One important difference 

is the relative strength of radiative cooling, which operates more 
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rapidly in the current simulations. Here, we find significant cooling 

at the contact discontinuity between the shocked jet material and 

the shocked ambient medium, whereas cooling on the cluster and 

galaxy scale is slower and occurs mostly in gas which is not 

shock-heated. 

Massonneau et al. ( 2022 ) also examined the impact of jet feedback 

on BH growth on larger ( ∼kpc scales), in a 10 11 M � dark matter halo 

and found that mildly super-Eddington accretion is possible. They 

found that weaker super-Eddington jets allow for more rapid BH 

growth through more frequent super-Eddington episodes, and also 

that weaker jet feedback efficiency leads to larger BH masses, which 

are consistent with our findings. 

6.3 Connection to other scales 

Part of the moti v ation of this work, where we perform intermediate- 

scale simulations, is to provide insight in connecting galaxy scale 

simulations and GRMHD simulations that can resolve the accretion 

disc. Depending on the galaxy size and the numerical method, the 

finest resolution of the former case is at best ∼0.1 pc, and generally 

much lower (e.g. Wetzel et al. 2016 ; Su et al. 2018 ; Wheeler et al. 

2019 ; Massonneau et al. 2022 ). The outer boundary of the latter 

case is at most ∼1000 r g ( r g is the gravitational radius; e.g. Lalakos 

et al. 2022 ), which is roughly 10 −8 ( M acc / 100 M �) pc, implying a 

� 7 order of magnitude gap for the BH mass we model here. Our 

simulation, with its outer boundary at roughly 0.2 pc and a maximum 

resolution of ∼10 −4 pc fits between these scales, although we note 

that we are still far from ∼1000 r g . 

Unless using GRMHD simulations, which resolve the gravita- 

tional radius, AGN jets are not self-consistently launched but are 

implemented instead with sub-grid prescriptions. Ef fecti vely these 

sub-grid ‘jet models’ attempt to inject the fluxes of a’cocoon’ 

inflated by a jet launched on an even smaller scale. Therefore, 

even identical jet energy, momentum, and mass fluxes can produce 

different physical behaviour when launched on different scales. This 

work provides a framework for coarse-graining jet models launched 

on a smaller scale to the resolution scale of galaxy simulations. The 

toy model described in Section 4 and verified in our simulations 

describes how the cocoon energy, momentum, and mass flux should 

scale as a function of radius. The scalings can be incorporated 

into simulations on different scales for the same sub-grid jet 

model. 

Ef fecti vely, gi ven a certain estimated density ( n ∞ ) and temperature 

( T ∞ ) around a BH, and a jet model ( V jet ) on a small scale, r small , equa- 

tion ( 22 ) can roughly determine whether z iso is larger or smaller than 

R Bondi . Depending on which side it falls, the resulting time-averaged 

Ṁ jet can be estimated through equation ( 19 ) or equation ( 21 ). Note 

that we also need the ζ , ξ , and δ values from the fit results in 

Fig. 7 . Assuming we want to find the ef fecti ve cocoon property at 

a given larger radius, r large , the cocoon expansion either follows 

equations ( 8 ) and ( 9 ) (if r large < r iso ) or equation ( 14 ) (if r large 

> r iso ). Therefore, with the values n ∞ , T ∞ , V jet , ζ , ξ , δ, and Ṁ , 

we find the corresponding cocoon expansion velocity at a specific 

radius r large , which can be used as an ‘ef fecti ve’ coarse-grained jet 

model at that scale. The aforementioned implementation should, 

of course, be explicitly tested in galaxy-scale simulations. Indeed, 

besides the ef fecti v e v elocities, there is also the comple xity of an 

‘ef fecti ve’ jet model, including the temperature, time variability, gas 

cooling, and the exact sampling of the velocity distribution while 

launching the feedback. We leave a thorough investigation of these 

issues, and the construction of a full sub-grid jet recipe, to future 

work. 

6.4 Limitations of this work and future prospects 

We emphasize that we have deliberately considered an idealized 

setup, with an initially static cloud with a uniform density and 

temperature. In reality, the gas surrounding the BH could be highly 

turbulent with a non-zero net angular momentum. In addition, in a 

very inhomogeneous environment, the stochastic capture of certain 

ultradense clumps with low relative velocity might play a very 

important role (Shi et al. 2023 ). 

We also consider only one BH mass (see e.g. Regan et al. 

2019 ; Takeo et al. 2020 ; Massonneau et al. 2022 , for similar 

studies with larger BHs). Moreo v er, this work does not include 

magnetic fields, conduction, viscosity, and other plasma physics, 

which may be important on these scales. In particular magnetic 

fields could play a role in collimating jets, especially for the 

Poynting flux-dominated relativistic case (e.g. Bromberg et al. 2014 ). 

The jet model we considered in this work is in the limit where 

a jet becomes more mass-loaded after propagating to a certain 

scale that we can resolve. Therefore, we do not expect such an 

effect to be significant in our case, but it is subject to further 

verification. 

For the feedback itself, we only include jet feedback in this work 

for simplicity, ignoring any radiative feedback (e.g. Park & Ricotti 

2011 ; Regan et al. 2019 ; Takeo et al. 2020 ), which may also play 

an important role in the BH’s neighbourhood. Due to the limitations 

of non-relativistic hydrodynamics, we also limit the jet velocity to 

� 30000 km s −1 . As a relativistic jet propagates further from the 

gravitational radius, it can gradually slow down as more gas gets 

entrained. Moreo v er, when taking into account the self-consistently 

launched jet properties from GRMHD simulations slightly away 

from the jet axis, the average jet velocity also gets much lower 

(Chatterjee et al. 2019 ). The adopted velocities should be reasonable 

at the jet launching scale of our simulations but might not co v er the 

whole possible parameter space in more extreme circumstances. We 

also did not explore models with wider opening-angle AGN winds 

(e.g. Takeo et al. 2020 ). Cosmic rays might be another critical aspect 

of AGN feedback as well (Su et al. 2020 , 2021 ; Wellons et al. 2022 ), 

but are not included here. We will explore these aspects in future 

work. 

We also note that we only focus on the BH growth due to gas 

accretion. There could be many other possible channels for BH 

growth, lik e runaw ay mergers between stellar-mass BHs (e.g. Kroupa 

et al. 2020 ). 

7  C O N C L U S I O N  

In this work, we utilized high-resolution hydrodynamic simulations 

of 0.4–1.6 pc boxes with uniform initial density and temperature 

to study jet propagation and its effect on BH accretion on to a 

100 M � BH in low metallicity dense gas. We found that the isotropic 

component of the cocoon momentum flux regulates the BH accretion 

and the mass, momentum, and energy flux from the AGN jet. We 

summarize our major conclusions as follows: 

(i) After a jet is launched, it inflates a jet cocoon filled with a hot 

reverse shock-heated turbulent gas and a much cooler gas phase at 

the mixing layer with the surrounding gas. 

(ii) At launch, a jet cocoon will propagate, conserving the mo- 

mentum in the jet direction while continuously broadening itself 

through thermal pressure in the lateral directions. Eventually, the 

cocoon expands laterally and the propagation in the jet direction 

slo ws do wn. If the jet cocoon propagates to a suf ficiently large radius, 
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it e ventually e volves into a quasi-spherical bubble. After that, the 

cocoon propagates isotropically in an energy-driven scenario. 

(iii) Depending on the jet and background gas properties, the 

inflated cocoon either isotropizes beyond the Bondi radius (retaining 

an elongated shape), or inside the Bondi radius (becoming spherical 

bubble-like). 

(iv) In either case, the isotropic component of the cocoon momen- 

tum flux (roughly twice the lateral momentum flux if the cocoon 

is elongated) on average matches the inflow momentum flux at the 

Bondi radius, assuming a Bondi-accretion scenario. This, in turn, 

regulates the BH accretion. 

(v) We presented a toy model based on this picture which results 

in a scaling of the BH accretion rate that roughly matches the rate 

found in the simulations. 

(vi) The lower the jet velocity and the higher the background gas 

density, the more elongated the jet cocoon. 

(vii) In addition to the average BH accretion rate and jet mass flux, 

the different jet model and background gas properties also affect the 

accretion history variability. A jet model that produces an elongated 

cocoon propagates to a larger distance and produces longer-time- 

scale variability, while smaller and more spherical bubble-like 

cocoons produce shorter-time-scale variability. Higher T ∞ (smaller 

R Bondi ) also leads to more short-time-scale variability. 

(viii) The runs with the highest accretion rates are those with the 

lowest feedback mass fraction ( ηm, fb = 0.005), the lowest specific 

energy or jet velocity ( V jet = 3000 km s −1 ), the highest density 

( n ∞ = 10 6 cm 
−3 ), or the lowest temperature ( T ∞ = 10 3 K). They, 

on a verage, ha ve super -Eddington accretion, Ṁ acc ∼ 0 . 4 − 6 Ṁ Edd . 

In our surv e yed parameter space, the presence of AGN jets sup- 

presses the Bondi accretion rate by factors from ∼2 × 10 −4 

to 0.6. 

In summary, this work shows how different jet models (and 

background gas properties) result in different cocoon properties and 

accretion rates. Our results suggest that at least initially, stellar-mass 

BHs in so-called atomic cooling haloes may be able to grow at rates 

well abo v e the Eddington rate. Our study also suggests a prescription 

to link simulations on different scales (Section 6.3 ). Many caveats 

and unanswered questions remain (see Section 6.4 ) to be explored in 

future work. 
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APPENDIX:  RESOLUTION  STUDY  A N D  T H E  

VA R I AT I O N S  O F  AC C R E T I O N  M O D E L S  

Fig. A1 summarizes the effects of different choices of sink ra- 

dius and alpha disc model on BH accretion rates Ṁ acc under 

different resolutions. All the runs match our fiducial parameter 

choice ( ζ m, fb = 0.05, V jet = 10 4 km s −1 , n ∞ = 10 5 cm 
−3 , and T ∞ = 

10 4 K ). The first three ro ws sho ws the mo ving-av eraged (o v er 10 

kyr) value to the point at the specific time of the simulation. 

Most simulations are run with different variations of the random 

component to quantify the stochastic effect (different lines in the 

same colour). A list of different simulations is summarized in 

Table A1 . 

Figure A1. The effects of different choices of sink radius and alpha disc 

models on BH accretion rate Ṁ acc under different resolutions. The first three 

ro ws sho w the mo ving-time-av eraged (10 k yr) accretion rates for a range 

of sink radii, resolutions, and alpha disc parameters. To explore stochastic 

variations, we run simulations are run with different variations of the random 

component (different lines in the same colour). With the smallest sink radius 

(0.003 mpc), the random number variations result in a factor of 2–3 span in 

the final results, indicating that stochastic effects are significant. The higher 

resolution runs also result in a factor of 2–3 higher Ṁ acc . The runs with 

a larger sink radius have slightly better convergence and smaller stochastic 

effects ( � 2). The model with alpha discs and different viscous time-scales 

also have accretion rates with differences within a factor of 2, well within 

the stochastic range. The bottom panel shows the real-time Ṁ acc of the runs 

with different viscous time-scales. A shorter viscous time-scale results in 

shorter-term variations. 

With the smallest sink radius (3 × 10 −6 pc), the stochastic effects 

result in a factor of 2–3 span in the final results indicating a 

substantial stochastic effect. The higher resolution runs also result 

in a factor of 2–3 higher Ṁ acc . The small sink radius also leads 

to the occasional formation of a discy structure right around the 

BH at high resolution, which partially contributes to the more 

significant resolution dependence. Given that we do not have the 

proper resolution and physics to model the accretion disc explicitly, 

we shift to a larger sink radius and put in a subgrid α-disc model as 

described in the main paper. 
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Table A1. Physics variations (run at highest resolution) explored in this 

appendix. 

Accretion model 

Model 	 T Box size m max 
g m jet r sink t α

kyr pc M � M � 10 −3 pc kyr 

r sink = 3 × 10 −6 pc 

High res 40–80 0.4 1.7e-7 3e-8 0.003 No 

Low res 100 0.4 1.4e-6 1e-7 0.003 No 

r sink = 3 × 10 −5 − 1 . 5 × 10 −4 pc 

High res 100 0.4 1.7e-7 3e-8 0.03 −0.15 No 

Low res 100 0.4 1.4e-6 1e-7 0.03 −0.15 No 

r sink = 3 × 10 −5 − 1 . 5 × 10 −4 pc + α disc 

100 yr 100 0.4 1.4e-6 1e-7 0.03–0.15 0.1 

1000 yr 100 0.4 1.4e-6 1e-7 0.03–0.15 1 

10000 yr 100 0.4 1.4e-6 1e-7 0.03–0.15 10 

Note. This is a partial list of simulations that explore resolution and 

numerical parameter choice. All simulations are run with ( ζm, fb = 0.05, 

V jet = 10 4 km s −1 , n ∞ = 10 5 cm −3 , and T ∞ = 10 4 K ).Columns list: (1) Model 

name: The naming of each model starts with the feedback mass fraction, 

followed by the jet velocity in km s −1 for kinetic jet or jet temperature in 

K for thermally dominant jets. The final two numbers label the background 

gas density in cm −3 and temperature in K. (2) 	 T : Simulation duration. (3) 

Box size of the simulation.(4) m max 
g : The highest mass resolution.(5) m max 

jet : 

The mass resolution of the spawned jet particles.(6) r sink : Sink radius in 10 −3 

pc.(7) t α : Viscous time-scale for alpha disc in kyr. 

The runs with a larger sink radius (3 × 10 −5 − 1.5 × 10 −4 pc) 5 have 

a slightly smaller dependence on resolution and smaller stochastic 

ef fects (e verything within � 2), partially due to the suppression of an 

artificial discy structure at very small radius. This level of difference 

(even the small sink radius runs) is smaller than the difference caused 

by most of the physics variations Figs 2 and 8 . In our production run, 

we adopt the larger sink radius (3 × 10 −5 to 1.5 × 10 −4 pc). Given 

the smaller resolution dependence with this sink radius, we try to 

match the lower resolution for most of our physical variations for 

lower computational cost. 

The models with alpha disc and different viscous time-scales also 

result in differences within a factor of two, within the stochastic 

range, and roughly have the same accretion rates as the runs without 

an alpha disc. The final row of Fig. A1 shows the real-time Ṁ acc of 

the runs with different viscous time-scales. Shorter time-scale results 

in a shorter-term variation. We adopt t α = 1000 yr in our productive 

runs according to an estimate of the viscous time-scale at the sink 

radius we choose (see Section 2 ). 

5 The sink radius is set to be a radius from the BH enclosing 96 ‘weighted’ 

neighbourhood gas particles but capped to be within (3 × 10 −5 to 1.5 × 10 −4 

pc). 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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