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ABSTRACT

Most observed stars are part of a multiple star system, but the formation of such systems and the role of environment and various
physical processes is still poorly understood. We present a suite of radiation-magnetohydrodynamic simulations of star-forming
molecular clouds from the STARFORGE project that include stellar feedback with varied initial surface density, magnetic fields,
level of turbulence, metallicity, interstellar radiation field, simulation geometry and turbulent driving. In our fiducial cloud, the
raw simulation data reproduces the observed multiplicity fractions for Solar-type and higher mass stars, similar to previous
works. However, after correcting for observational incompleteness the simulation underpredicts these values. The discrepancy
is likely due to the lack of disc fragmentation, as the simulation only resolves multiples that form either through capture or core
fragmentation. The raw mass distribution of companions is consistent with randomly drawing from the initial mass function
for the companions of > 1M, stars. However, accounting for observational incompleteness produces a flatter distribution
similar to observations. We show that stellar multiplicity changes as the cloud evolves and anticorrelates with stellar density.
This relationship also explains most multiplicity variations between runs, i.e. variations in the initial conditions that increase
stellar density (increased surface density, reduced turbulence) also act to decrease multiplicity. While other parameters, such as
metallicity, interstellar radiation, and geometry significantly affect the star formation history or the IMF, varying them produces

no clear trend in stellar multiplicity properties.

Key words: MHD —turbulence — binaries: general —stars: formation —stars: statistics.

1 INTRODUCTION

Stars form in highly clustred environments (Lada & Lada 2003), and
both young and older stellar populations have a significant fraction of
multiples, which are defined as bound systems of two or more stars.
The likelihood of a star being in a multiple is observed to increase
monotonically with mass (see reviews of Duchéne & Kraus 2013;
Lee et al. 2020 and references therein). It is generally understood that
multiple systems form either during the star-forming phase of the
parent cloud, where the dominant channels are the fragmentation of
a protostellar core (Goodwin, Whitworth & Ward-Thompson 2004)
or disc (Adams, Ruden & Shu 1989), or through dynamical evolution
during the dissolution of the cluster (Kouwenhoven et al. 2010;
Parker & Meyer 2014).

The detailed multiplicity properties of a stellar system are charac-
terized by several metrics, which are usually defined as a function of
the mass of the most massive star, i.e. the primary, in the system. One
commonly measured property is the mass ratio g of the secondary to
the primary mass. For Solar-type stars, the mass ratio distribution is
statistically consistent with a flat distribution (Raghavan et al. 2010)
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for most of the companion mass range, except for two features: a
lack of brown dwarf-scale companions (‘brown dwarf desert’, see
e.g. Kraus et al. 2008) and an excess of companions at near-unity
mass ratio (‘twins’, see El-Badry et al. 2019). Other metrics concern
the orbits of the companions, which can be characterized with the
orbital period/semimajor axis and orbital eccentricity distributions.
The semimajor axis distribution of Solar-type stars is well-described
by a lognormal distribution that peaks around 100 au (Raghavan
et al. 2010). The eccentricity distribution f{e) for companions of
Solar-type stars with separations > 50 au follows fle) ~ 1.2¢ + 0.4
and in general eccentricity increases with orbital period (Tokovinin &
Kiyaeva 2016).

There has been significant theoretical effort to explain these
observations, mainly through detailed hydrodynamical simulations.
Simulations of star cluster formation show good agreement with ob-
served multiplicity statistics (Bate 2009a, 2012; Krumholz, Klein &
McKee 2012; Li, Klein & McKee 2018; Lee et al. 2019) using
different combinations of physical processes. Unfortunately, the
dynamic range of simulations is unavoidably limited, leading to
either insufficient resolution to resolve close binary formation (e.g.
Mathew & Federrath 2021) or low number statistics due to the small
cloud size (e.g. Rohde et al. 2021). Thus pinpointing the key physics
is challenging.
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Note that most simulations only follow the star-forming phase of
the cluster evolution, so they in fact predict the multiplicity of stars
close to formation. Both observations (Duchéne 1999; Kraus et al.
2008, 2011; Tobin et al. 2016, 2022) and simulations suggest that
stars are born in complex, multiple systems that dynamically evolve
(e.g. ejection of stars) causing multiplicity to drop (Goodwin &
Kroupa 2005; Goodwin et al. 2007; Kaczmarek, Olczak & Pfalzner
2011) and the period/separation distribution to shift to shorter peri-
ods/closer separations (Kroupa 1995; Marks, Kroupa & Oh 2011).
This can be understood as the result of wide-separation binaries
becoming unbound due to either internal dynamical evolution or by
interacting with external tidal fields, the latter of which also increases
the average binding energy between the remaining stars. In general,
dynamical interactions cause strongly bound binaries to be even
more bound (i.e. ‘harden’), while the separation of weakly bound
companions increases (Heggie 1975).

To date most simulations have attempted to recover the observed
multiplicity properties without conducting a detailed parameter study
on how their initial conditions (ICs) might affect multiplicity (see
Lee et al. 2019 for an exception). In this work, we present the
first comprehensive analysis of how cloud properties affect stellar
multiplicity properties. We use simulations from the STAR FORma-
tion in Gaseous Environments (STARFORGE) project! that include
all relevant physical processes of star formation. These radiation-
magnetohydrodynamic (RMHD) simulations achieve a dynamic
range in mass resolution that allow us to simulate the detailed evolu-
tion of molecular clouds while following the formation of individual
low-mass stars (see Grudi¢ et al. 2021a, henceforth referred to as
the Methods Paper). In this study, we analyse a set of runs with
varied initial cloud surface density, level of turbulence, magnetic
field strength, metallicity and interstellar radiation field (ISRF) and
compare them to a fiducial run with parameters representing a
typical Milky Way molecular cloud [similar to Grudi¢ et al. (2022),
henceforth referred to as Paper 1]. We focus on the evolution of
multiplicity properties from the onset of star formation until cloud
disruption.

The paper is structured as follows: Section 2 provides a brief
overview of the code (for details on numerical methods as well as tests
see the Methods Paper) and the ICs of the runs. We present our results
for the fiducial run in Section 3 and compare them with observations.
In Section 4, we explore how multiplicity properties change in
response to variations in the initial parameters. An analysis of the
clustering properties, the star formation history and the initial mass
functions of these runs are presented in Guszejnov et al. (2022a,b),
henceforth referred to as Paper II and Paper I1I, respectively. We
discuss the implications of our results to observations and future
work in Section 5. Finally, we present our conclusions in Section 6.

2 NUMERICAL METHODS

2.1 The STARFORGE simulations

For this work, we utilize simulations from the STARFORGE project,
which are run with the GIzMO code.? A full description and presen-
tation of the STARFORGE methods including a variety of tests and
algorithm details are given in the Methods Paper. We only briefly
summarize the key points here. Note that in this work we use the same
physics modules as Paper I and our fiducial run uses identical ICs

Uhttp://www.starforge.space
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as the run presented there. Readers familiar with the STARFORGE
simulation methods should skip ahead to Section 2.2 where we define
the various metrics used in this study.

2.1.1 Physics

We simulate star-forming clouds with the GIzMO code (Hopkins
2015) using the Lagrangian meshless finite-mass (MFM) method for
magnetohydrodynamics (Hopkins & Raives 2016), assuming ideal
MHD. Individual stars in the simulations are represented by sink
particles. Once they form they follow the protostellar evolution model
from Offner et al. (2009), extended past the main sequence by the
mass-loss and stellar lifetime prescriptions presented in Methods
Paper.

The presented STARFORGE runs utilize the radiative cooling and
thermochemistry module from Hopkins et al. (2022) that contains de-
tailed metallicity-dependent cooling and heating physics, including
recombination, thermal bremsstrahlung, metal lines, molecular lines,
fine structure, and dust collisional processes. The cooling module
self-consistently solves for the internal energy and ionization state
of the gas. The simulations co-evolve the gas, dust, and radiation
temperature self-consistently, including the stellar luminosity in var-
ious bands accounting for photon transport, absorption, and emission
using dust opacity. In addition to local sources (i.e. stars), we include
an external heating source at the boundary of the simulation domain
that represents the interstellar radiation field (ISRF).

The simulations account for the dominant stellar feedback pro-
cesses, including protostellar jets, radiative feedback from both
protostars and main-sequence stars, stellar winds and supernovae.
See Paper I and the Methods Paper for details on the numerical
implementations.

2.1.2 Initial conditions and parameters of clouds

We use cloud ICs identical to those presented in Paper 111, so we only
give a short summary here.

We generate our ICs using MakeCloud (Grudic & Guszejnov
2021). Our default IC geometry is the ‘Sphere’ where we initialize the
cloud as a homogeneous sphere near thermal pressure equilibrium
with a low density ambient medium. We apply an initial random
velocity field with a power spectrum of Ej; o< k=% with amplitude
set by the e, = 502 Reioua/(3GM,) turbulent virial parameter. The
cloud is initially threaded by a uniform magnetic field B, whose
strength is set by the normalized mass-to-flux ratio . There is no
external driving in ‘Sphere’ simulations.

We also run a simulations using the ‘Box’ geometry, a periodic
box with externally driven turbulence whose side length Ly, gives
the box a volume equal to that of a Sphere cloud model of similar
mass. The box is initialized with a uniform density and stationary gas

and then ‘stirred’ for five global freefall times (tff =,/ 3235!)0 ), to

achieve saturated MHD turbulence. An important difference between
the Sphere and Box runs is that in the latter case the magnetic field is
enhanced by dynamo action during the stirring phase (e.g. Federrath
et al. 2011; Tricco, Price & Federrath 2016).

Table 1 shows the target parameters for the runs we present in
this paper. The input parameters are the cloud mass M, size Ry,
turbulent virial parameter o, normalized magnetic mass-to-flux
ratio p, metallicity Z, and the energy density of the ISRF eisrp
(note that initial temperature is set by the ISRF). Similar to Paper
I our fiducial cloud satisfies the observed Milky Way cloud mass—
size relation (e.g. Larson 1981; Lada & Dame 2020, specifically
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Table 1. Simulations used in this paper described with STARFORGE label conventions. Top: Physics modules included, see Methods Paper for details on the
individual physics modules. Bottom: ICs of our simulated clouds, where My, R¢ioud, and awrb- 14, Z, and ersrr are the initial cloud mass, size, virial parameter,
mass to magnetic flux ratio, metallicity, and the energy density of the ISRF, respectively. Note these runs explicitly evolve the radiation field so the initial
gas—dust temperature is set by the ISRF. We also report the initial 3D turbulent velocity dispersion o, thermal virial parameter ay,, total virial parameter «,
Alfvén Mach number M 4, plasma 8, magnetic virial parameter ag, as well as the relative Jeans, sonic, and magnetic mass scales (note that these are all defined
assuming as 10 K gas temperature, see section 2 in Guszejnov et al. 2020 for definitions). Note that Box runs have slightly different initial parameters (e.g. Mach
number and virial parameter) due to the non-exact scaling of the turbulent driving, so the values shown here are the target values that are to be reached at the end
of the initial turbulent driving phase of 5 crossing times. In the last two column, we show the final star formation efficiency (SFE = M.,./M) and the disruption
time for the Sphere runs, see Paper III for detailed star formation histories. For the fiducial run these columns also show the standard variations between the
three runs that were run with different initial turbulent realizations.

Physics label Thermodynamics MHD Protostellar jets Stellar radiation Stellar winds & SNe
CMJRT-W Non-isothermal, RHD (C) Ideal (M) Included (J) Included (RT) Included (W)

Input parameters Derived parameters Results
Cloud label ,\ﬁg R Lo gy, 7o e g «  Ma B ap B Meic M SFElper fosupdti

cent]

M2e4 (fiducial) 2x 10 10 2 4.2 1 1 32 0.008  2.03 10 078 002 3x1073 7x107° 0.1 9403 1.6+02
M2ed (Box) 2 % 10* 16 2 42 1 1 32 0008 203 10 078 002 3x107% 7x107° 0.1
M2e4_R3 2x 100 3 2 4.2 1 1 5.8 0.008  2.02 10 023 002 5x10* 7x10°° 0.1 14 2.0
M2e4_R30 2x10* 30 2 42 1 1 1.9 0.02 2.04 10 23 002 1x107%2 6x107* 0.1 1 1.7
M2ed.al 2x 10 10 1 4.2 1 1 23 0008 1.03 10 078 002 3x1073 4x107° 0.1 11 1.2
M2ed_ad 2x 10 10 4 42 1 1 45 0.008  4.03 10 078 002 3x107% 1x10™* 0.1 4 2.1
M2e4_mul.3 2x 10 10 2 1.3 1 1 32 0008 221 31 0078 02 3x107% 7x107° 0.4 7 2.0
M2ed_mu0.4 2x 10" 10 2 042 1 1 32 0008 401 3.1 00078 2 3x 1073 7x107° 4 5 22
M2e4_ISRF10 2x10* 10 2 42 1 10 32 0.008 2.03 10 078 002 3x1073 7x107° 0.1 10 1.6
M2ed _ISRF100 2x 10" 10 2 42 1 100 32 0008 203 10 078 002 3x107 7x107° 0.1 11 1.3
M2e4_Z01 2x10* 10 2 42 0.1 1 32 0.008 2.03 10 078 002 3x1073 7x107° 0.1 7 1.1
M2ed_Z001 2x 10" 10 2 42 001 1 32 0008 203 10 078 002 3x107% 7x107° 0.1 4 1.6

assuming ¥ = Mo/ R34 = 63M pc?). The cloud is marginally (ii) Primary: The star is the most massive (primary) star of a

bound (oyy, = 2) and begins in thermal equilibrium with the ISRF.
The initial gas metallicity is assumed to be equal to the solar value.
For the initial magnetization, we assume —E,y/Egroy = 0.01, which
translates to . = 4.2. The STARFORGE simulations, we use have
a mass resolution of Am = 107 M, making the mass function
incomplete stars with masses below 0.1 M), which we omit from our
analysis (see Paper III for a convergence test). Sphere runs continue
until stellar feedback quenches star formation and subsequently
disrupts the cloud (see Fig. 1). In the case of the Box runs the
periodic boundary conditions trap both radiation and cloud material,
so we terminate the run when the box becomes saturated by stellar
radiation.

2.2 Multiplicity calculation and metrics

To derive multiplicity statistics in our simulation snapshots we first
need to identify bound systems. We do so by using the hierarchical
algorithm introduced by Bate (2012), which has the following steps:

(i) Calculate the binding energy between all pairs of stars.

(ii) Find the most bound pair (i.e. having the lowest total energy)
and replace it with a single point mass with the same total mass and
momentum, located at the centre of mass of the removed pair.

(iii) Recursively repeat steps 1 and 2 until no more bound stars are
left, with the exception that we do not combine pairs if the resulting
bound aggregate would consist of more than 4 individual stars. If
such an aggregate is the most bound pair at any point, we proceed to
the next most bound pair, terminating if no other bound pair exists.

Using the above algorithm, we produce a list of bound systems.
For each star in these systems, we assign one of the following labels:

(1) Unbound: The star is not bound to any other stars.

multiple star system.
(iii) Non-primary: The star is part of a multiple star system, but it
is not the primary star.

Following the definitions from the literature (e.g. Duchéne &
Kraus 2013), we introduce a set of multiplicity metrics (summarized
in Table 2), starting with the multiplicity fraction (MF):

B+T
MF = +7T+Q

=S B T10 ¢y
+B+T+0

where S, B, T, and Q are the number of single, binary, triple, and
quadruple systems whose primary star is in mass bin M. Similarly,
we introduce the companion frequency (CF):

B+2T +3
CF = +2T +3Q

=STBE+T+ 0 @)
+B+T+0Q

which is the average number of companions in systems with primary
mass of M. Due to the relatively small number of high-mass stars
in the simulations (~30 have > 10M¢ out of ~2000 stars), the
uncertainty of MF and CF can be significant in high-mass bins. We
estimate the errors using a Bayesian method where we assume the
number of multiples and companions follow a binomial and Poisson
distribution, respectively, see Appendix A for details.

For companions, we characterize the companion separation as the
semimajor axis a with respect to the primary using the well-known
two-body solution to the Kepler problem that yields

_ GM\M,

3)
2Elolal

where G is the gravitational constant, M; and M, are the masses of
the primary and companion stars, and E is the kinetic + gravitational

MNRAS 518, 4693-4712 (2023)
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Oyr

Figure 1. Surface density maps for M2e4 (our fiducial run), which is an My = 2 x 10* M@ mass cloud resolved with Mo/Am =2 x 107 initial gas cells (see
Table 1) at different times, from the beginning of the simulation until cloud disruption. The colour scale is logarithmic, and the circles represent sink particles
(stars) that form in high-density regions where fragmentation can no longer be resolved. The size of the circles increases with mass, and their colour changes
fromred (M ~ 0.1 M), green (M ~ 1 M) to blue (M ~ 10 M). This simulation resolves a dynamic range from ~ 20 pc down to ~ 30 au and evolves until

stellar feedback quenches star formation and disrupts the cloud.

Table 2. List of multiplicity properties used throughout the paper along with
their definition.

Property Definition

M, Mass of the primary (i.e. most massive) star in the system

q = MIM, Mass ratio of a companion to the primary

MF MF for stars of M), primary mass, see equation (1)

CF CF for stars of M,, primary mass, see equation (2)

a Semimajor axis of companion’s orbit, see equation (3)
Orbital period of the companion, see equation (4)

e Eccentricity of companion’s orbit, see equation (5)

energy of the system. Similarly, we calculate the orbital period P as

a3
P=2n{ ———m—. 4
G(M, + M>)

To compute these quantities for higher order systems, we adopt the
orbit and mass of the highest level subsystem that contains the chosen
star but not the primary, see Fig. 2 for an illustration. For each orbit,
we also calculate the corresponding eccentricity

h?
e=\————-—-1, (5)
\ aG(M, + M,)

MNRAS 518, 4693-4712 (2023)

Primary

Figure 2. Cartoon illustration of the definition of orbits for each companion
in a quadruple system. When calculating the semimajor axes or orbital
periods for a companion, we take the orbit of the highest level subsystem that
contains the chosen star but not its companion. We substitute the properties
of these subsystems into equations (3)—(4). To calculate the semimajor axis
or eccentricity distribution in Sections 3 and 4, we count the semimajor axis
between all subsystems. Here, this would mean the orbits with semimajor
axes of ay, ap, and as.
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Figure 3. Basic multiplicity properties at the end of the simulation in the fiducial run (M2e4) with a grey shaded region showing the mass range potentially
affected by the 0.1 M completeness limit of the simulations. Lef: Fraction of stars in different boundedness categories. Middle and Right: MF and CF as
a function of primary stellar mass, showing the raw simulation values (solid) and the distributions after removing temporary companions, low mass-ratio
companions and both. Shaded regions show the 1o uncertainties, which are estimated using equations (A3)—(AS5) for MF and CF, respectively. Observed values
are taken from the review of Offner et al. (2022). For an analysis of trends see Section 3 in the main text.

where & is the specific relative angular momentum of the two-body
system.

To compare these metrics with observations, we apply two
corrections to the ‘raw’ multiplicity properties of the simulations.
First, all companions with mass ratio ¢ < 0.1 are ignored, as most
observations are incomplete in this regime, see Moe & Di Stefano
(2017) henceforth referred to as MDS17. We note that the exact
choice of the cut-off ¢ value can significantly affect the CF at the
high-mass end of the IMF, since there are many Solar-type compan-
ions around > 10 M, stars in our simulations. When specifically
comparing the properties of simulated and observed Solar-type stars,
we account for observational incompleteness by discarding shorter
period companions (logP < 4.5,ora < 30 au) for which observations
are incomplete for ¢ < 0.5 and low-¢ longer period binaries (5.9 <
logP < 6.7, or 150 < a/au < 400), which are only detectable for
q > 0.2 (see fig. 28 in MDS17). The second correction, we apply
removes all short-lived companions from the distribution, i.e. stars
that have only been companions to their primaries for Zomp < 100 kyr
or have not yet completed two orbits. This correction removes binary
assignments that are the result of chance alignments between stars
(i.e. cases where the pairwise comparison considers two stars bound
but they are not when accounting for all interactions), see Section 3
for details. Source confusion is likely only important in crowded
regions, and indeed, we find that this correction has a relatively minor
effect on the statistics. Note that we report the ‘raw’ simulation values
unless specified otherwise.

Finally, we also examine the multiplicity properties of young stel-
lar objects (YSOs). Observed YSOs are classified according to their
spectral energy distributions (Dunham et al. 2014), which requires
radiative transfer post-processing (e.g. Offner et al. 2012). Instead,
we take a simpler approach and define YSOs in the simulation as
stars (sink particles) that are younger than 0.5 Myr, as 0.5 Myr is
approximately the Class 0 + Class I lifetime (Dunham et al. 2014).

3 MULTIPLICITY PROPERTIES FOR THE
FIDUCIAL CLOUD

We run our fiducial cloud (M2e4) until star formation is quenched,
and the cloud is fully disrupted by stellar feedback (see Fig. 1).
We identify star systems in all snapshots of the run using the method

outlined in Section 2.2. Unless stated otherwise we show multiplicity
properties at the end of the simulation, when star formation has
quenched and the cloud has been fully disrupted.

The left-hand panel of Fig. 3 shows the fraction of stars in different
boundedness categories (see Section 2.2) as a function of mass. As
expected we find that massive stars (> 5 M) are more likely to be
primary stars. We find that, up to companion masses of ~10 Mg,
20 per cent of stars are companions to more massive primary stars.
These statistics derive from the fact that most high-mass stars are
in multiple systems, while most low-mass stars are not. The middle
and right-hand panels of Fig. 3 show that the MF and CF increase
with the primary mass and are qualitatively similar to the observed
values. Note for stars with masses below 1 M both the MF and
CF are affected by the 0.1 M completeness limit of the simulation;
the simulation does not resolve brown dwarfs. Removing short-lived
companions has a mild effect on both MF and CF. Applying an
observationally motivated ¢ > 0.1 cut-off, however, significantly
reduces both the MF and CF for high-mass stars. This is because
many high-mass stars in the simulations have Solar-type companions,
such that the system mass ratio falls just below the cut-off. Overall,
we find that after corrections the simulations produce qualitatively
similar but significantly lower values than those observed for both
MF and CF.

3.1 Companion properties

Observations find the distribution of the companion mass ratio g
is mostly flat for Solar-type stars, except for a peak at near-equal
masses (Raghavan et al. 2010; Offner et al. 2022). Fig. 4 shows
that in our simulation the distribution is not flat and exhibits a peak
at ¢ ~ 0.2. Comparing with the normalized stellar mass function
of the simulation, i.e. the IMF, we find that the companion mass
ratio distribution for Solar-type stars is consistent with random
sampling from the IMF. After applying a correction for observational
incompleteness of short period, low-mass ratio companions (based
on MDS17) the distribution becomes flatter with a marginal peak
at g ~ 0.2. Note that this marginal peak is dominated by low-
mass ratio, short-period companions so the significance of the peak
strongly depends on the estimated observational completeness limit,
which MDS17 estimated to be 25 per cent. After these corrections

MNRAS 518, 4693-4712 (2023)
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Figure 4. Distribution of the companion mass ratio g for Solar-type stars
in the fiducial run, using a similar notation to Fig. 3, where we account for
observational incompleteness reported in MDS17. Bars show the Poisson
error of the distributions in key bins. For a fixed primary mass each ¢ value
corresponds to a stellar mass scale, so we plot the < 1 M, part of the stellar
mass distribution (IMF, dashed line). We also show the observations for
Solar-type binaries from Raghavan et al. (2010). A grey shaded region shows
the mass ratio range potentially affected by the 0.1 M completeness limit
of the simulation. Overall the g-distribution before corrections is consistent
with random sampling the IMF (dashed line) and only shows significant
differences after removing low ¢ value companions. After all corrections
are applied the distribution is much closer to the observed flat trend, with a
significant absence of near-equal mass companions.

the distribution is qualitatively consistent with the observed trend,
except for the lack of peak at unity mass ratio.

Fig. 5 shows the period/semimajor axis distribution for all stars, as
well as for Solar-type and massive (> 5 M) stars only. In all cases,
we find a peak close to the gravitational softening length (~ 20 au),

Log Period [Days]
0.0 25 5.0 7.5 10.0 125

Log Period [Days]
4 6 8 10

below which gravitational forces are artificially weakened. Above
this value the number of companions declines with distance. Note that
removing temporary companions significantly reduces the number
of wide binaries, while removing low-mass ratio companions affects
all scales. Note that in the case of Solar-type stars removing g < 0.1
companions have little effect as we ignore all brown dwarfs in the
simulation as they are below the completeness limit of the simulations
presented in this work. However, observations of Solar-type and
lower mass stars are incomplete for higher values of ¢ (Offner et al.
2022). Fig. 5 also shows the result if we also account for observational
incompleteness of Solar-type stars for ¢ < 0.5 companions with
< 30 au separations. After these corrections, the simulation quali-
tatively agrees with observations from MDS17 for wide binaries,
but the pile-up at the gravitational softening scale, which is likely
numerical, prevents a detailed comparison (e.g. comparing the
statistical significance of the apparent peak at 100 au for Solar-type
stars).

In addition to the semimajor axis distribution, it is instructive to
see the separation distribution between primaries and companions,
which we define as the instantaneous 3D distance between the pair
positions. The stars, particularly just after formation, are not on
stable orbits with a well-defined semimajor axis and pair separations
and may evolve rapidly (Offner et al. 2010; Lee et al. 2019) as
shown in Fig. 6. We compare the separation at formation between
primaries and their companions with their separations at the end of the
simulation. The former quantity reflects the ICs and characteristics
of the mechanism by which the multiples form. Fig. 7 shows the
distributions for both separation metrics for massive (> 5M¢)) and
lower mass (< 2M¢)) primaries. We find that most companions
in the simulations formed between 1000 and 10000 au from their
primaries, which is the expectation for multiples formed via turbulent
fragmentation (Fisher 2004; Offner et al. 2010, 2016; Guszejnov,
Hopkins & Krumholz 2017). As a result of dynamical interactions
most of these companions end up with much closer separations
than their initial birth separation (see Fig. 6). A significant fraction
of companions migrate inwards until they reach scales at which
gravitational softening impacts the dynamics, creating a peak in the
distribution near the gravitational softening length. There is no clear
trend in this behaviour with regards to the companion mass ratio g:
massive companions are as likely to ‘spiral in” as lower mass ones.
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Figure 5. Left: Semimajor axis/orbital period distribution for star systems in the fiducial run (M2e4), using the same notation as Fig. 3. A vertical line represents
the 20 au gravitational softening length of the simulation. Middle and Right: Same but for Solar-type and massive (> 5 M) primaries only, also showing the
corresponding observations from MDS17. Note that for Solar-type stars, we account for observational incompleteness based on MDS17.
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Figure 6. Separation of companions to their primary stars for a small sample
of systems in the fiducial run as a function of the age of the bound system
(note that the stars can form before the system becomes bound, hence the
negative time values). Note that simulation snapshots are Afgyap & 7 kyr apart,
distorting the orbits of low separation companions. Overall, we find that most
companions form at larger distances (~ 10* au) and become bound almost
immediately, then reach a stable orbit within ~ 0.5 Myr.

Like prior numerical studies, we find that the separation evolution
happens on a relatively short time-scale of < 0.5 Myr. Note that
a few companions appear to have initial separations of < 10%au.
Due to the snapshot time increment (& 7 kyr), we do not have the
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separations at the moment of formation and, consequently, these short
distances likely represent early rapid dynamical evolution, rather than
formation on these scales. Note that if the simulation included the
formation of multiples from unstable disks, we would expect to see
a larger number of companions forming at such short separations.

In addition to the semimajor axis, we calculate the eccentricity of
each orbit. In Fig. 8, we compare our results with the observations of
Tokovinin & Kiyaeva (2016), who examined companions of Solar-
type stars with > 50 au separation, which is above the ~ 20au
gravitational softening length of the simulation. We find good
agreement for all eccentricity values with the raw data. However,
applying all corrections leads to a deficit of companions in the 0.4 <
e < 0.8 range.

The simulation tracks the angular momentum accreted by sink
particles (stars), allowing us to analyse the spin alignment between
stars and their companions. Note that the simulation does not allow
stars to lose angular momentum via outflows or magnetic braking,
so this total accreted angular momentum is significantly higher than
the angular momentum of stars. Additionally, sink particles accrete
angular momentum material from larger spatial scales than what may
be actually accreted at the stellar surface, potentially leading to an
overestimation of the accreted angular momentum. Nevertheless, the
direction of the accreted angular momentum is a reasonable proxy
for the direction of the stellar spin. Fig. 9 shows the distribution of
the angle between the spins of the primary star and its companions
for both high (> 5M) and lower mass primaries (< 2Mg). We
find that in both cases companions are not randomly oriented, but
instead are preferentially aligned with their primaries, a potential sign
that these multiples formed via core fragmentation, however, prior
work found a significantly weaker preference for spin alignment
(Lee et al. 2019). However, massive primaries have a wider angle
distribution, i.e. their spin is less likely to be aligned with that of
their companions, which can be explained either by massive stars
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Figure 7. Separation between primary and companions in the fiducial simulation at the snapshot just after the stars form and at the end of the simulation.
Results are shown separately for high mass (> 5 Mg, left) and lower mass (< 2 My, right) primary stars. The symbols in the main scatter plot are coloured
according to the companion mass ratio ¢ in the system at the end of the simulation. The distributions of the individual metrics are shown above their respective
axes. A horizontal line shows the gravitational softening length of the simulation, which is also the exclusion radius of sink particles (i.e. no stars can form
closer than this) denoted by a vertical line. There are still a few stars that appear to have formed at shorter distances, but this is just an artefact of us relying
on discrete snapshots of the simulation (Afgyap &~ 7kyr). Note that we are showing the data after having applied the corrections for both low mass ratio and

temporary companions.
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Figure 8. Distribution of the companion eccentricities for Solar-type stars
in the fiducial run, using a similar notation to Fig. 3, where we account
for observational incompleteness reported in MDS17. We also show the
observations for Solar-type stars from Tokovinin & Kiyaeva (2016). Overall,
the eccentricity distribution in the simulation is consistent with observations
before corrections, but show a lack of companions at e ~ 0.7 after corrections.

acquiring companions that formed in different regions or by the fact
that massive stars accrete from a gas reservoir much larger than the
initial core they form in.

In Fig. 10, we compare the primordial spin misalignment angle
with the final value obtained at the end of the simulation. Taking the
at-formation misalignment between companion and primary would
yield similar results to random alignment as the spin direction of
sink particles changes rapidly during the initial accretion. That is
why we define primordial misalignment as the angle when the mass
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Figure 10. Misalignment angle between primaries and companions in the
fiducial simulation at the snapshot just after the stars form and at the end of the
simulation. The primordial misalignment angle is calculated at the time when
the mass of the companion exceeds 0.08 M. The symbols and colourbar are
set identical to those in Fig. 7. Companions are preferentially aligned even in
the early, primordial stage, and become even more aligned by the time star
formation ends.

of the companion exceeds the mass scale of brown dwarfs (0.08 M)).
Although companions tend to be aligned with their primary at both
times, the primordial misalignment is closer to random. This is due
to companions that accrete simultaneously with their primary star,
bringing their spins closer to alignment.

3.2 Time evolution of multiplicity properties

Observations suggest that multiplicity evolves through dynamical
interactions, such that over time systems lose members. Fig. 11
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Figure 9. Distribution of the misalignment angle between primaries and companions for high mass (> 5 M), left) and lower mass (< 2 M), right) primary
stars, using the same notation as Fig. 3. We also show the distribution expected from randomly aligned companions. Overall, companions tend to be more
aligned with their primaries compared to a random distribution, while massive stars exhibit slightly more misalignment.
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fiducial (M2e4) run. For reference, we include the observed value for field
stars from Raghavan et al. (2010).

shows the evolution of the MF for Solar-type stars in the fiducial
run that have stopped accreting. We find a general decreasing trend,
where Solar-type stars are much more likely to be primaries at the
start of star formation than at later times. To produce this trend
Solar-type stars must lose their companions as they age, or stars
born at later times must have lower multiplicity. Fig. 12 shows
the formation rate of Solar-type stars and their multiplicity as a
function of age. Note that Figs 11 and 12 concern slightly different
stellar populations: Fig. 11 looks at Solar-type stars that have stopped
accreting, while Fig. 12 follows the multiplicity of stars throughout
their lifetime. The MF remains roughly constant as the stars age, but
the CF decreases. This means that trinary and quaternary systems
containing Solar-type stars lose some companions over time but are
unlikely to lose their last companion. This implies that most stars that
form in a multiple system (e.g. not the earliest forming ones), stay
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in a multiple system. This result is consistent with prior numerical
studies (e.g. Lee et al. 2019) and will hold as long as the initial
fraction of high-order systems is low and stellar densities are not too
high. These changes, however, are relatively minor compared to the
differences in both the MF and CF between stars born at different
times. We find that among the first Solar-type stars that form about
40 per cent are primaries; among the last ones to form only 20 per cent
are.

A likely explanation for later forming stars having lower multi-
plicity is that they form in a different environment. Fig. 1 shows that
the cloud undergoes global collapse and most star clusters merge to
form one massive cluster surrounded by dense gas, until feedback
from the stars expel the gas, weakening the gravitational potential
well and leading to the expansion of the cluster (Paper II). The first
stars form in relative isolation along filaments, while later stars form
near existing star clusters. To examine how the ‘crowdedness’ of
the birth environment affects multiplicity we define the birth stellar
density, which we take to be the stellar mass density around the 32
nearest neighbors of a newly formed star. Fig. 13 shows how this
initial stellar mass density increases with time and starts to decline
after 5 Myr when the cloud begins to disrupt and star formation is
quenched in the central cluster (see Fig. 1). The remaining gas-free
clusters are gravitationally unbound and disperse (Paper II). The
other panels of Fig. 13 show that both the MF and CF for Solar-type
stars decline with increasing stellar mass density at formation. This
can be attributed to the higher likelihood of dynamical interactions
(as there are more stars nearby), allowing for the newly formed star
to be either captured by an existing star (increasing the multiplicity
of earlier stars relative to later formed ones) or ejected from the gas
reservoir.

3.3 Multiplicity of YSOs

Fig. 14 shows the evolution of the YSO properties in the fiducial
simulation. The number of YSOs, which we define to be stars
younger than 0.5 Myr, essentially traces the star formation rate.
As the cloud disrupts around 6 Myr star formation quenches and the
YSO count decreases. To compare with the observations of Tobin
et al. (2016, 2022), we calculate the MF of YSOs by taking only
systems where al/l members are YSOs and have a semimajor axis
between 20 and 10* au. We find that the YSO multiplicity in our
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Figure 12. Left: Distribution of formation times for Solar-type stars in the fiducial run. Coloured regions show the formation time bins in which the multiplicity
properties are calculated in the other panels. Middle and right: The evolution of MF and CF as a function of age for Solar-type stars in various formation time
bins. Note that any apparent discrepancy with Fig. 11 is due to the different selection criteria since Fig. 11 looks at stars that have already stopped accreting. For

an analysis of trends see Section 3 in the main text.
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Figure 14. Properties of YSOs in the fiducial run, showing the number and
MF of YSOs over time. Shaded rectangles show the observed multiplicity
values by Tobin et al. (2022) for Class 0 and I protostars in Orion and Perseus,
while the transparent blue shaded regions show the 1o sampling uncertainty
of the YSO MF. To make the plot easier to read, we apply a 100 kyr rolling
average.

simulation is comparable to that of Class I protostars in Orion. This
is consistent with their expected ages of ~0.1-0.5 Myr (Dunham et al.
2014).

4 EFFECTS OF INITIAL CONDITION
VARIATIONS ON MULTIPLICITY

In addition to our fiducial run we carry out a suite of simulations
to explore the effects of ICs on multiplicity properties. We test for
variations in the following initial parameters: the initial cloud surface
density, virial parameter, magnetization, metallicity, as well as the
ISRF and turbulent driving; see Table 3 for specifics. These runs use
the same turbulent initialization seed. In our analysis, we also include
two additional runs with the fiducial parameters but with different
seeds, which provide a baseline of significance for variations between
the runs.

MNRAS 518, 4693-4712 (2023)

To make the comparisons simpler all values shown in this sec-
tion are the raw simulation results without corrections to remove
short-lived or low-mass ratio companions.

4.1 Initial level of turbulence

We compare three runs with different levels of turbulence as
parametrized by the turbulent virial parameter o,,. The runs all use
the same initial turbulent seed, except for the fiducial run (yw =
2), for which we show the results for two additional initial turbulent
realizations. The change in velocity dispersion for the different oy,
runs is achieved by scaling the initial velocity fields of the fiducial
run (see Table 1). Fig. 15 shows that both the MF and CF increases
for M > M, stars with increasing turbulence, similar to the results
of Cunningham et al. (2018), although the changes are comparable
to the variations for different turbulent realizations.

Except for a change in normalization (due to different star
formation efficiencies among the clouds), the shape of the semimajor
axis distribution is qualitatively similar. We find that increasing
the level of turbulence shifts the peak of the misalignment angle
distributions toward 90 deg, similar to the distribution shape resulting
from uncorrelated primary and companion spins. This suggests the
higher global turbulence reduces the angular momentum correlation
on smaller scales.

Increasing the initial turbulence delays star formation, but other-
wise the MF of Solar-type stars follows a similar decreasing trend.
All runs show decreasing multiplicity with birth stellar density, and
the trends agree within 1o error, but the highest achieved density
decreases with the level of turbulence. This means that the increase
in multiplicity with stronger turbulence could be explained by the
more turbulent clouds having overall lower stellar densities.

4.2 Cloud surface density

Cloud surface density is thought to be a key parameter of star
formation (Krumholz & McKee 2008; Fall, Krumholz & Matzner
2010; Grudi¢ et al. 2021b) due to its influence on the dynamics
of fragmentation and impact on stellar feedback. In addition to
our fiducial cloud (M2e4), which has a surface density similar to
the MW average (¥ = 63 M pc?) we run clouds with 10 times
higher and lower values (M2e4_R3, M2e4_R30). Note that these
runs have very different final star formation efficiencies (1, 9, and
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Table 3. List of parameter variations investigated in Section 4 and the relevant IC labels from Table 1.

Parameter Default value Tested variations Labels
Initial turbulence b = 2 (Marginal boundedness) x0.5, x2 M2e4_al, M2e4_ad
Surface density % =63Mgp pc~2 (MW average) %10, x0.1 M2e4_R3, M2e4_R30
Mass-to-flux ratio = 4.2 (1 per cent relative magnetic energy) x0.3, x0.1 M2e4 _mul.3, M2e4_mu(.4
Interstellar Radiation (ISRF)  Solar-circle values (Habing 1968; Draine 1978) x10, x 100 M2e4 ISRF10, M2e4_ISRF100
Metallicity Z=12y x0.1, x0.01 M2e4 701, M2e4_7Z.001
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Figure 15. Multiplicity properties for different levels of initial turbulence (M2e4_al, M2e4, M2e4_ad). The curves do not include corrections for short lived
or low-mass ratio companions. For the fiducial M2e4 IC, we plot the results from three separate runs that have identical global parameters but different initial
turbulent realizations. The top row shows the MF (left), CF (middle), and the distribution of the semimajor axis for Solar-type stars (right). For MF and CF
coloured shaded regions show the 1o sampling errors, which are not plotted for the fiducial M2e4 runs. A grey shaded region shows the mass range potentially
affected by the 0.1 M) completeness limit of the simulation. In the semimajor axis distribution, the vertical line marks the gravitational softening length of
the simulations. The bottom row shows the misalignment angle distribution (left), the evolution of multiplicity for Solar-type stars that are no longer accreting
(middle) and the MF for Solar-type stars as a function of birth stellar density (right). The multiplicity time evolution in the middle panel is normalized to the
initial cloud freefall time to make comparisons between runs easier. In the left-hand panel, a dotted line shows the angle difference distribution resulting from a
purely random draw of companion spins. Shaded regions show the 1o~ sampling errors, similar to the top row.

14 percent in order of increasing surface density). Thus, the low
surface density run (M2e4_R30) has about a factor 10 fewer stars
than the other runs, making its multiplicity metrics significantly more
uncertain.

Fig. 16 compares the multiplicity properties across our runs with
different initial surface density. We find that increasing surface
density leads to lower MFs and companion frequencies for higher
mass stars as well as a much more pronounced peak in the semimajor
axis distribution near the gravitational softening length (~ 20 au).
Increasing the initial cloud surface density does not affect the
spin alignment between primaries and their companions (bottom

left panel of 16); however, the low surface density run shows an
essentially flat distribution. As in all previously discussed runs, the
MF of Solar-type stars decreases with time, which can be explained
by the increasing stellar density around newly forming stars. We
find that the relationship between the birth stellar density and the
MF is similar between the runs, and their cut-off value increases
with initial surface density. This also provides an explanation as
to why both MF and CF decrease with increasing surface density:
the denser the cloud, the higher the stellar density, leading to more
dynamical interactions and thus lower multiplicity at the end of the
simulations.
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Figure 16. Same as Fig. 15 but for different initial cloud surface densities (M2e4_R3, M2e4, M2e4_R30).

4.3 Cloud magnetization

Star formation efficiency (SFE) is sensitive to the cloud mean
magnetic field (e.g. Padoan, Haugbglle & Nordlund 2012), with
efficiency decreasing with stronger fields (Paper III). This result
suggests multiplicity might also depend on the magnetic field. In this
section, we present runs for clouds with increasing initial magnetic
fields, corresponding to initial normalized mass-to-flux ratios p of
4.2, 1.3, and 0.4 (M2e4, M2e4_mul.3, M2e4_mu0.4, see Table 1).

Fig. 17 shows that the strong field cloud has a significantly higher
MF for Solar-type stars, an effect proposed by prior work (Lee et al.
2019). However, there is essentially no change difference between
the fiducial, weak (u = 4.2) and intermediate (1« = 1.3) field runs.
For all three cases there are no significant variations in either the
semimajor axis distribution or the distribution of the misalignment
angle. The increased magnetic fields provide significant support to
the cloud against collapse, which delays star formation. Apart from
this delay, the MF of Solar-type stars follows a similar declining trend
with time. The weak and intermediate field runs provide a similar
relationship between the birth stellar density and the MF, while
the highly magnetized run has significantly higher multiplicities at
similar stellar densities. In Guszejnov et al. (2020), we show that
regardless of the initial magnetic field strength, the magnetic energy
density at high densities follow the same trend (vafen ~ ¢5), due to
the turbulent magnetic dynamo. This means that the effects of the
global initial magnetic field do not propagate to densities higher than
Pp > Bé /(uocs), where By, ¢y, and ju are the initial magnetic field
strength, the sound speed, and the vacuum permeability, respectively.
So the initial magnetic field only influences multiplicity properties if
pp is comparable to the densities of star-forming cores.
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4.4 Cloud metallicity

Metallicity is a key property of interstellar gas, which directly sets its
thermodynamic behaviour, so it is expected to have a major impact
on star formation (Krumholz 2014). In this section, we present three
runs with decreasing initial gas metallicities, corresponding to Solar,
10 per cent of Solar and 1 per cent of Solar values (M2e4,M2e4_Z.01
and M2e4_Z001, respectively, see Table 1).

We find that metallicity significantly affects the star formation
process, notably it shifts the IMF to significantly higher masses
(see Paper I1I for details). However, Fig. 18 shows that varying the
metallicity of the gas has no clear effect on either the MF or the
CF, similar to the results of Bate (2019). While the normalization
of the semi-major axis distribution is affected by the differences in
the overall SFE, its shape appears to be similar between the three
runs. Decreasing the metallicity mildly flattens the misalignment
angle distribution, i.e. makes antiparallel companions slightly more
likely. The evolution of the MF for Solar-type stars declines similarly
for the fiducial and the 10 percent Solar metallicity runs, but for
the 1 percent run we find significantly lower multiplicities and
an increasing trend instead of a decreasing one. The relationship
between the MF and the birth stellar density is also different between
the runs; in the low-metallicity clouds there is no clear relationship
between the two quantities.

4.5 Interstellar Radiation Field

The ISRF is set by the radiation of previously formed stars in
the local galactic environment. The ISRF varies as a function of
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Figure 17. Same as Fig. 15 but for different levels of initial magnetization (M2e4, M2e4_mul.3, M2e4_mu0.4).

the galactocentric radius, so clouds located closer to the galactic
centre experience higher ISRFs. Thus, the radiative environment
is expected to vary significantly between star-forming regions. We
compare the multiplicity properties in three runs with progressively
higher background radiation fields, starting from our fiducial run,
which adopts the Solar-circle value of 1 Draine (M2e4), followed by
runs with 10 times (M2e4_ISRF10) and 100 times (M2e4_ISRF100)
higher radiation energy densities, see Table 1.

We find that increasing the ISRF increases the gas temperature
and shifts the IMF to mildly higher masses (see Paper III for details).
However, Fig. 19 shows a mild increase in both the MF and the
CF at high masses. The increased ISRF has little effect on the
semimajor axis or the misalignment angle distributions. Similar to the
case of metallicity variations, the mildly increased ISRF run shows
similar MF evolution for Solar-type stars while M2e4_ISRF100
shows a qualitatively different evolution where MF increases with
time. Nevertheless, the three simulations show a similar relationship
between the stellar densities at formation and MF, although the MF
is consistently lower for M2e4_ISRF100. Note that this is also the
run with the most shift in the IMF towards higher masses, which
likely affects the comparisons of Solar-type stars.

4.6 Cloud setup and turbulent driving (Box versus Sphere)

We note in Section 2.1.2 that there are several common assumptions
in the literature for the geometry and boundary conditions of
simulated star-forming clouds. In this section, we compare the
results of a periodic Box configuration relative to our fiducial Sphere

run. The Box runs differ from the fiducial run in two important
aspects. First, periodic boundary conditions lead to both an order-
of-magnitude shallower gravitational potential (Federrath & Klessen
2012) and prevent the escape of radiation and gas. Secondly, the
Box setup starts from a self-consistent, pre-stirred state, and this
external driving continues throughout the run, providing energy for
turbulent modes on the box scale that cascade down to smaller scales.
To disentangle the effects of these two factors, we compare three
M2e4 runs (Table 1): (1) our fiducial Sphere run, (2) a Box run with
continuous external driving, and (3) a Box run where we turn off the
driving after the initial ‘stirring’ phase.

We find that the periodic boundary conditions have little effect
on multiplicity properties when comparing the ‘Sphere’ and ‘Box,
decaying’ runs, whose results agree within 1o uncertainty for MF,
CF, the semimajor axis and the misalignment angle distributions (see
Fig. 20). There is a difference in the length of the initial transient
in the evolution of the MF of Solar-type stars. This delay is likely
due to the stronger initial turbulent support in the Box run, since the
periodic boundary conditions weaken the gravitational potential. As
turbulence decays the ‘Box, decaying’ run starts following the same
trend as the fiducial Sphere run.

Turbulent driving, however, has a significant effect on the MF and
CF, leading to significantly higher values for both MF and CF on all
mass scales. This is the only run in our parameter study that shows a
change in sub-solar multiplicities. We attribute this difference to the
turbulent driving, which weakens gravitational focusing and leads
to lower stellar densities in star-forming regions. In other words,
star formation is more distributed, which reduces the frequency of
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Figure 18. Same as Fig. 15 but for different levels of initial gas metallicity (M2e4, M2e4_Z01, M2e4_Z001).

dynamical interactions thus leading to higher multiplicities on all
mass scales.

We find that all three runs exhibit a similar relationship between
the birth stellar density and the MF, but the Box run with turbulent
driving has a lower maximum density, consistent with the higher
multiplicity values we find for that run.

5 DISCUSSION

5.1 Multiplicity in the fiducial simulated cloud

Similar to previous simulations in the literature (i.e. Bate 2009b,
2012; Krumholz et al. 2012; Mathew & Federrath 2021) our
simulations reproduce the rising trend with mass in both the MF
and CF. We find that the simulations match recent observations
(Offner et al. 2022) at all but the lowest mass scales (Fig. 21).
The discrepancy at low masses can be explained by our choice
of ignoring all brown dwarfs during the identification of multi-
ples, motivated by the completeness limit of the simulation being
at~ 0.1 Mgp.

We find that the multiplicity properties of stars depend on their
formation time, i.e. early forming stars tend to have more companions
than those that form near the end of the star formation process
(Fig. 12). We find that the primary cause of this decrease is not
stars losing companions, i.e. through dynamical interactions (Heggie
1975), but that later forming stars are born with fewer companions.
We show that there is a correlation between multiplicity (i.e. MF
and CF) and the birth stellar density. This allows us to explain the
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decreasing trend with formation time, as locally collapsing regions
merge and form a dominant, central, gas rich cluster, in which
stars form at much higher stellar densities than in the early phase
(< 4Myr) of cloud evolution when they formed along filaments
(Fig. 1). In this dense stellar environment dynamical interactions
with other stars are much more likely, leading to newly formed
stars being captured by existing ones, as well as companions being
ejected.

Similar numerical works in the literature mostly report only these
‘raw’ values (e.g. Bate 2012, 2019; Mathew & Federrath 2021)
without correcting for observational completeness limits and chance
alignments that the algorithm mistakenly identifies as a multiple star
system. In this work, we apply two simple corrections to account
for these effects: we ignore companions with mass ratios below
most observational completeness limits (¢ < 0.1) and those that
are not bound to their companion for at least 100 kyr and two
full orbits. We find that the combined effects of these corrections
dramatically reduces the number of companions for > 1M, stars
and consequently lower MF above a few Mg, (as these stars tend to
have lower g companions). Overall this means that our simulations
underpredict both the MF and CF compared to observations. One
possible explanation for this discrepancy is that stars in our simula-
tions lose companions due to the inaccurate short-range gravitational
forces in the simulation (i.e. having finite gravitational softening). We
find this explanation to be unlikely as we find a pile-up of companions
at the gravitational softening length (Figs 5-7), the net effect of the
gravitational softening is likely to increase the number of compan-
ions by trapping them at that length-scale and preventing violent,
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Figure 19. Same as Fig. 15 but for different levels of ISRF (M2e4, M2e4_ISRF10, M2e4_ISRF100).

short-range N-body interactions that could eject companions.> A
more likely explanation is the apparent lack of stable protostellar
discs in the simulations. This means that from three main pathways
of binary formation (core fragmentation, disc fragmentation, and
capture, see Tohline 2002; Kouwenhoven et al. 2010) our simulation
is missing disc fragmentation, which could conceivably make up for
the missing companions relative to observations (Kratter & Lodato
2016). Furthermore, the presence of protostellar discs would push
companions mass ratios towards unity (see e.g. Kratter et al. 2010;
Farris et al. 2014; Duftell et al. 2020). In addition, removal of angular
momentum by magnetic breaking tends to drive accretion on to
the more massive primary (Zhao & Li 2013), thereby decreasing
the mass ratio. Thus, the influence of discs and inclusion of non-
ideal MHD together would likely shift currently small mass ratios
above the ¢ = 0.1 limit, significantly increasing MF and CF at the
high-mass end after correcting for observational incompleteness (i.e.
the difference between the ‘raw’ and ‘corrected’ results in Fig. 3
would be smaller). Finally, it is possible that our choice of ICs (i.e.
geometry and turbulent driving) is the main cause of the discrepancy
(see Section 5.2). This explanation is further supported by the fact

3This can be understood by noting that in the highly softened limit R < < for
softening length €, the form of the gravitational force law becomes g (R) =
GM (< R)/R* ~ (41/3) GpR for any softening kernel corresponding to a
mass distribution with a flat central density p. Hence stars orbiting deep within
the softening kernel behave as if connected by springs obeying Hooke’s law,
which has a stable solution expressible as normal eigenmodes for all N, in
stark contrast to the chaotic Keplerian N-body problem.

that we find good agreement between the Box run and the semi-
analytical core fragmentation model of Guszejnov et al. (2017),
which follows only core fragmentation and has similar initial and
boundary conditions (see Fig. 21). Note that Guszejnov et al. (2017)
ignore dynamical interactions, which is likely the explanation for
the slightly higher multiplicity values it predicts relative to the Box
run. After correcting for observational biases, the Box results agree
well with the observed MF and CF for M > Mg, stars, which is also
the mass range unaffected by the 0.1 M completeness limit of the
simulation.

For all primary masses, we find that the mass ratio distribution
in the fiducial run is consistent with randomly drawing companions
from the initial mass function of the simulation (Fig. 4). For Solar-
type stars, correcting for chance alignments leads to lower values at
lower mass ratios (¢ < 0.2). Observations find the g-distribution of
Solar-type stars is flat (Raghavan et al. 2010) with an slight peak
at ¢ ~ 1 (see MDS17). This uniform distribution is inconsistent
with randomly drawing from the observed MW IMEF, but it should
be noted that the discrepancy is only significant at ¢ ~ 0.2. Note
that these observations are incomplete in this mass ratio range for
short-period binaries, i.e. for companions with periods logP/d <
4.5 the observations are only complete for ¢ > 0.5 (see fig. 28 in
MDS17). After applying this correction to our results, we find a
flatter distribution with a marginal peak around g = 0.2. This peak
is dominated by low-g companions at the softening length from
their primary, so its significance strongly depends on the applied
observational completeness limit. Similarly, we find that the agree-
ment between the simulation and observations improves for both the
semimajor axis and the eccentricity distributions after all corrections
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Figure 20. Same as Fig. 15 for runs using fiducial M2e4 parameters but with different initial and boundary conditions (‘Sphere’, ‘Box’, and ‘Box, decaying’).
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Figure 21. Left: MF as a function of primary mass in this work (both Sphere and driven Box runs, without corrections), in RHD simulations from Bate (2019),
in semi-analytical predictions from Guszejnov et al. (2017) and in observations (Offner et al. 2022). 1o uncertainties are shown with either coloured shaded
regions or errorbars, while a grey shaded region shows the mass range potentially affected by the 0.1 M completeness limit of the simulation. For high-mass
stars, the Box results agree well with the semi-analytical core fragmentation model of Guszejnov et al. (2017) and the RHD simulations of Bate (2019), while
observations fall between the values in the Sphere and Box runs. Middle and right: MF and CF values for the driven Box run, using a similar notation as Fig. 3.
Unlike the Sphere run shown in Fig. 3, the Box run results after corrections agree well with observations for both MF and CF (for stars with masses above Mg).
Discrepancies at lower masses are likely due to the 0.1 M completeness limit of the simulation.

are applied. However, applying this correction significantly reduces
the MF and CF for Solar-type stars, increasing the discrepancy with
observations. It should be noted that the aforementioned ‘pile-up’
of companions at the gravitational softening length (~ 20 au) plays
an out-sized role in this dramatic change (see Fig. 5). As previously
noted we are unable to correct this pile-up as companions could
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spiral into shorter periods, be ejected or relax to longer orbits.
Correcting for the observational bias for Solar-type stars (based on
MDS17) removes these companions, which implicitly assume that
they either migrate to smaller scales or are ejected from the system.
Furthermore, observations find a significant fraction of binaries
have near-equal mass (twin) companions, which are missing in our
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Table 4. Summary of results from Section 4, showing the trends in the final SFE, the shape of the IMF, the average at formation stellar density and a general
description on how multiplicity properties are affected (see Figs 15-20 for details). Note that in case of the Box geometry there is no final SFE as the simulation
is terminated when the periodic box is filled with an unphysical level of radiation.

Parameter Final SFE IMF change Stellar density Effect on multiplicity properties

Initial turbulence (b 1) N Negligible N MF+, CF1; spins more likely to be random

Surface density (X1) 1 Negligible 1 MF|, CF|; more companions at softening length

Mass-to-flux ratio (i) N Steeper slope N MF*, CF1; variations only present in ;& = 0.42 run

Metallicity (Z)) N Mild — shift No trend ME, CF no longer correlated with stellar density; spins more likely
to be random

Interstellar radiation (ISRF1) mild 4 Mild — shift 0 Mild MF?, CF1 at high masses

Geometry (Box versus Sphere) N/A Negligible No trend Mild MF*, CF4 at high masses

Turbulent driving N/A Steeper slope 1 MEF*, CF1 for all masses

simulations. This is likely due to the lack of long-lived protostellar
discs, as disc fragmentation is more likely to produce near-equal
mass companions (Kratter et al. 2010), as discs allow companions to
‘steal’ mass from the primary star. Disc accretion would also cause
mass to be more equally distributed for secondaries that formed from
turbulent fragmentation and migrated into or to close proximity of
the primary’s disc (Duffell et al. 2020).

We track the angular momentum accreted by stars in the simulation
and use its direction as a proxy for the direction of the spin of
the star, as stars (i.e. sink particles) in the simulation can not lose
angular momentum. Protostars are thought to inherit the angular
momentum of their natal core, which would naturally lead to most
binaries having similar spin alignments. Observations have found
multiple protobinary systems where the protostellar outflows are
misaligned (Lee et al. 2016). We find that the distribution of the
misalignment angle (i.e. angle between spins of the primary and its
companions) is peaked towards lower values, i.e. companions tend
to be aligned with their host stars (see Fig. 9), exhibiting a less
random distribution than prior results Offner et al. (2016) and Lee
etal. (2019). The distribution is fairly wide, and there is a significant
number of companions with antiparallel spin alignments. We find that
the companions of more massive stars tend to be less aligned than
companions of lower mass stars and that spin alignment increases
over time. Fig. 7 shows that massive stars are slightly more likely to
have companions that formed at large distances (~ 10° au ~ 1 pc),
making their spin directions more likely to be unrelated. Also, high-
mass stars accrete from a significantly larger gas reservoir over a
longer accretion time period rather than a more localized gas ‘core’
(Paper I), and thus are less likely to have companions with aligned
angular momentum vectors. Such misalignment has been found in
recent observations of massive protostars (Avison et al. 2021). While
multiple systems formed via turbulent fragmentation are less likely to
have aligned spins compared to those formed by disc fragmentation
(Offner et al. 2016; Lee et al. 2019), systems that accrete from
the same limited gas reservoir apparently still exhibit some spin
correlation.

5.2 Connecting cloud properties and multiplicity

We analyse a suite of simulations where the initial properties of the
cloud are varied (Table 3) and find that most multiplicity properties
are insensitive to global cloud parameters. We find that multiplicity
properties (i.e. MF and CF) can significantly vary between runs with
identical global parameters but different turbulent realizations (see
Section 4), making it challenging to identify weaker trends. Note
that observations are only able to constrain variations to changes
in metallicity, as other properties of the natal cloud are not readily

available once star formation ends. Moe, Kratter & Badenes (2019)
showed that the multiplicity of Solar-type stars decreases with
metallicity, due to a relative lack of close binaries.

These trends are summarized in Table 4, note that the changes
in the final SFE and the shape of the IMF are investigated in
detail in Paper III, here we just state the results. Similar to Bate
(2019), we find that the initial cloud metallicity has no clear effect
on multiplicity values, even though observations show a strong
anticorrelation (Moe et al. 2019). A possible explanation is that other
cloud parameters (e.g. surface density) co-vary with metallicity for
the observed multiples. Note that this trend was shown for close
binaries only, which our simulation underpredict due to the lack of
disc formation, which could also explain the discrepancy. We find
that in most runs changes in the MF and CF coincide with an opposite
change in the stellar mass density around newly formed stars. This
provides a potential explanation of these trends as an increasing
stellar density means a higher chance for dynamical interactions,
disrupting existing binaries and making it harder for newly formed
stars to capture a companion. In our simulations, an increase in the
initial turbulence or continuous driving both weaken gravitational
focusing in the cloud, leading to lower stellar densities. Starting
from lower initial gas densities has a trivially similar effect. Overall,
we find that multiplicity properties are sensitive to a different set of
ICs than the IMF (see Paper III).

We note that changing the initial surface density dramatically
affected the fraction of companions at or below the gravitational
softening length, implying that the surface density of the natal
cloud likely influences the period distribution. Although we find no
monotonic trend in either MF or CF with increasing initial magnetic
field strength, we note that the run with the strongest field produces
significantly higher multiplicity values, similar to the results of Lee
et al. (2019).

The spins of companions in all our simulations are more aligned
than random pairings with their primaries, however, several initial
parameters affect this distribution. Increased initial turbulence and re-
duced surface density both lead to more randomized spin alignments.
The effects of surface density and turbulence can be potentially
explained by the changes in how distributed star formation is
within the cloud. Higher surface density or weaker turbulent support
enhance the gravitational focusing of the parent cloud, leading to
the formation of more massive and denser clusters (Guszejnov
et al. 2022a). In a denser environment dynamical interactions are
more common, so stars are more likely to both lose their original
companions and capture new ones. Lowering the metallicity also
leads to an increase in the randomness of spin alignment. This
trend can potentially be explained by low Z leading to higher
gas temperatures, which makes protostellar cores larger, which
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leads (on average) to increased initial separation between compan-
ions that form through core fragmentation, making alignment less
likely.

5.3 Caveats

While the simulation presented here are the current state-of-the-
art for simulating star-forming clouds, like other simulations in
the literature STARFORGE employs a large number of significant
approximations and assumptions to make the simulations computa-
tionally tractable (see the Methods Paper for detailed discussions).

In particular, the runs used here have an ~ 30 au Jeans-resolution,
i.e. fragmentation on scales smaller than this are not resolved. This
has dramatic effects on the formation of protostellar discs, causing
the simulation to potentially miss close binaries that formed from
disc fragmentation and overestimate stellar masses. Furthermore, the
simulations have a ~ 20 au gravitational softening length that creates
a ‘pile-up’ of companions at this scale in the semimajor axis/period
distribution (see Fig. 5).

The simulations treat MHD in the ideal limit, assuming perfect
coupling between the neutral gas and the magnetic fields. This
approximation becomes invalid on the scale of protostellar discs,
preventing the formation of long-lived protostellar discs and the
formation of binaries through disc fragmentation. Also, we show
that the initial and boundary conditions of the cloud can affect
multiplicity properties, so for a more predictive simulation a self-
consistent connection to larger scales is required.

6 CONCLUSIONS

In this work, we analyse the stellar multiplicity properties in the
STARFORGE radiation-magnetohydrodynamic simulations. These
simulations follow the evolution of mid-sized molecular clouds
(M = 20000 M) taking into account gravity, gas thermodynamics,
turbulence, magnetic fields, and radiation as well as stellar feedback
processes (jets, radiation, winds, and SNe). The simulation suite
consists of our fiducial cloud with MW average properties (X =
63Mp pc*Z, Ay = 2) and 12 clouds where we varied one of the
ICs (see Table 1).

We qualitatively reproduce the observed MFs and companion
frequencies for stellar masses significantly above the 0.1 M com-
pleteness limit of the simulation. Previous works in the literature
have drawn similar conclusions for simulations with less physics (i.e.
Bate 2012 does not include MHD or jets) and smaller cloud sizes (i.e.
Mathew & Federrath 2021). While the raw simulation results match
well with observations, when we correct for observational incom-
pleteness and chance alignments, we find that the fiducial simulation
underpredicts both the MF and the CF due to the significant fraction
of low-mass ratio (¢ < 0.1) companions. This discrepancy can be
explained by the simulation missing a key formation channel for
binaries: disc fragmentation. Our simulations treat MHD in the ideal
limit of perfect gas-field coupling, which leads to efficient magnetic
breaking and greatly suppresses the formation of protostellar discs.
This means that multiples in the simulation can only form either
through the fragmentation of turbulent cores or the dynamical
capture of a companion. Furthermore, discs have been shown to
regulate the accretion of binaries and drive the system towards
higher mass ratios, which likely explains the large fraction of low ¢
companions. Note that the multiplicity is sensitive to the simulation
setup, such that our periodic box simulations that include external
turbulent driving can reproduce observed values after accounting for
observational incompleteness. Overall we conclude that capturing
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both disc fragmentation and having a realistic model for external
driving are necessary for future simulations that aim to study stellar
multiplicity.

We show that the multiplicity properties evolve over time. The
primary reason for the evolution is not stars losing their companions,
but that early forming stars have significantly higher multiplicities
than those that form near the end of the simulation. We find an inverse
correlation between the stellar density around newly formed stars and
their future multiplicity. This relationship can explain the trend in the
MF and CF with several initial parameters. Specifically higher initial
turbulence and lower cloud surface density both lead to lower stellar
densities, and we find that these runs have higher multiplicity values
for all masses. Also, replenishing turbulence (i.e. externally driving
the turbulence in the cloud) significantly increases multiplicity values
and lowers stellar densities. Despite having significant effects on the
IME, varying the metallicity or the ISRF showed no clear trend in
either the MF or CF.

We find that most companions form at 1000-10000 au from their
primaries, then ‘spiral in” within <1 Myr and settle at a much shorter
orbital separation. A significant fraction of companions ‘pile-up’
at the gravitational softening length, which prevents any further
hardening of these binaries. We find that the fraction of companions
at these length-scales increases for higher initial surface densities,
i.e. the average companion separation is smaller in higher density
clouds.

The mass distribution of companions in the simulation agrees with
random sampling from the IMF for both low- and high-mass stars.
This appears to be in contradiction to observations, which find a flat
distribution for Solar-type stars (Raghavan et al. 2010). However,
applying corrections for observational incompleteness dramatically
flattens the distribution. This change is due to the high number of low-
mass, short-period companions close to the gravitational softening
length.

The spins of companions tend to be aligned with their primaries
in the simulation, although the distribution is wide. Increasing
turbulence or decreasing metallicity shifts the distribution towards
random alignment.

Overall, our simulations allow us to predict the multiplicity statis-
tics arising from either common core fragmentation or dynamical
capture, with significantly better statistics than any previous work.
In future work, we will run simulations that account for all three
channels of multiple formation by including non-ideal MHD effects
and having significantly lower gravitational softening lengths (~au).
A combined analysis of those results with the ones presented in this
paper will give a detailed picture of the roles each formation channel
plays in the formation of multiples.
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APPENDIX A: ESTIMATING MULTIPLICITY
ERRORS

Although the STARFORGE simulation are (to date) the largest full
physics star formation simulations that follow individual stars, they
still represent relatively small molecular clouds, with our fiducial run
having My = 2 x 10* My, similar to the small GMCs in the Solar-
neighbourhood (e.g. Taurus). Thus they only form a small number
of massive stars, which naturally leads to high sampling errors. In
this Appendix, we present a simple Bayesian model to estimate this
error.
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A1 Multiplicity fraction

Let’s assume that in a certain mass bin, we have N primaries and we
find k of them to be in multiples. This naturally leads to the estimate
that the MF for that mass bin is MF = k/N. One would be tempted
to estimate the uncertainty in MF by simply calculating the standard
variations for a Poisson(k/N) or binomial(N, k/N) distribution. These,
however, both fail in the £ — 0 limit. Instead, we use Bayes theorem
to calculate the conditional probability density function fip|N, k):

f(pIN,k)dp = P(MF € [p, p +dplIN, k), (AD)

where P(...|...) denotes conditional probability. Let us assume that k
is chosen from a binomial(N, p) distribution (i.e. of N systems each
has p chance of being a multiple) and use a uniform prior, i.e. P(MF
€ [p, p + dp]) = dp. From Bayes theorem it follows that

(N +1)!

ml’k(l - p)N (A2)

F(pIN, k) =

For our estimate of MF we take the most likely value, which is simply
k/N (alternatively one could also use the mean value, which is (k +
1)/(N + 2)). For the error, we take the standard variation, which is

2

1 1
Jlﬁf(N,k)=/0 pzf(pIN,k)—</0 pf(pIN,k)>

_ k+DKk+D (k41
_(N+3)(N+2)_(N+2)
C(N—k+Dk+1D)
TN AN +22

(A3)
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Note that for N 3> 1 and k > 1 the above equation simplifies to
o} (N, k)~ k(N — k)/N?3, equal to what the naive binomial (¥,
k/N) assumption would give.

A2 Companion frequency

We estimate the error of the CF similarly to the approach we used to
compute the error of the MF, but we instead assume that the number
of companions follows a Poisson distribution with mean value A.
For A, we adopt a uniform prior on [0,3] as we don’t have any stars
with more than three companions. Since the sum of similar Poisson
variables also follows a Poisson distribution, we can easily construct
the conditional probability density function g(A|N, k) for N systems
with k£ companions in total, which yields

Nk! ANk N

AN k) = :
SINO =038 &

(A4)

where y (x, y) = [ ©*~'e~'dt is the lower incomplete gamma func-
tion. As with MF we take the most likely value as our estimate for
the CF, so CF = k/N. Using g(A|N, k) we estimate the error with the
standard variation, which yields

3 3 2
/ /\zg(/\lN,k)—( / /\g(/\IN,k)>
0 0

_ y(k+3,3N) y(k +2,3N) \?
T N2y(k+1,3N) Ny(k+1,3N)) °

o2 p (N k)

(A5)
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