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A B S T R A C T 

Most observed stars are part of a multiple star system, but the formation of such systems and the role of environment and various 

physical processes is still poorly understood. We present a suite of radiation-magnetohydrodynamic simulations of star-forming 

molecular clouds from the STARFORGE project that include stellar feedback with varied initial surface density, magnetic fields, 

level of turbulence, metallicity, interstellar radiation field, simulation geometry and turbulent driving. In our fiducial cloud, the 

raw simulation data reproduces the observed multiplicity fractions for Solar-type and higher mass stars, similar to previous 

works. Ho we ver, after correcting for observational incompleteness the simulation underpredicts these values. The discrepancy 

is likely due to the lack of disc fragmentation, as the simulation only resolves multiples that form either through capture or core 

fragmentation. The raw mass distribution of companions is consistent with randomly drawing from the initial mass function 

for the companions of > 1 M � stars. Ho we ver, accounting for observ ational incompleteness produces a flatter distribution 

similar to observations. We show that stellar multiplicity changes as the cloud evolves and anticorrelates with stellar density. 

This relationship also explains most multiplicity variations between runs, i.e. variations in the initial conditions that increase 

stellar density (increased surface density, reduced turbulence) also act to decrease multiplicity. While other parameters, such as 

metallicity, interstellar radiation, and geometry significantly affect the star formation history or the IMF, varying them produces 

no clear trend in stellar multiplicity properties. 
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1  I N T RO D U C T I O N  

Stars form in highly clustred environments (Lada & Lada 2003 ), and 

both young and older stellar populations have a significant fraction of 

multiples, which are defined as bound systems of two or more stars. 

The likelihood of a star being in a multiple is observed to increase 

monotonically with mass (see re vie ws of Duch ̂ ene & Kraus 2013 ; 

Lee et al. 2020 and references therein). It is generally understood that 

multiple systems form either during the star-forming phase of the 

parent cloud, where the dominant channels are the fragmentation of 

a protostellar core (Goodwin, Whitworth & Ward-Thompson 2004 ) 

or disc (Adams, Ruden & Shu 1989 ), or through dynamical evolution 

during the dissolution of the cluster (Kouwenho v en et al. 2010 ; 

Parker & Meyer 2014 ). 

The detailed multiplicity properties of a stellar system are charac- 

terized by several metrics, which are usually defined as a function of 

the mass of the most massive star, i.e. the primary , in the system. One 

commonly measured property is the mass ratio q of the secondary to 

the primary mass. For Solar-type stars, the mass ratio distribution is 

statistically consistent with a flat distribution (Raghavan et al. 2010 ) 

� E-mail: guszejnov.david@gmail.com 

for most of the companion mass range, except for two features: a 

lack of brown dwarf-scale companions (‘brown dwarf desert’, see 

e.g. Kraus et al. 2008 ) and an excess of companions at near-unity 

mass ratio (‘twins’, see El-Badry et al. 2019 ). Other metrics concern 

the orbits of the companions, which can be characterized with the 

orbital period/semimajor axis and orbital eccentricity distributions. 

The semimajor axis distribution of Solar-type stars is well-described 

by a lognormal distribution that peaks around 100 au (Raghavan 

et al. 2010 ). The eccentricity distribution f ( e ) for companions of 

Solar-type stars with separations > 50 au follows f ( e ) ≈ 1.2 e + 0.4 

and in general eccentricity increases with orbital period (Tokovinin & 

Kiyae v a 2016 ). 

There has been significant theoretical effort to explain these 

observations, mainly through detailed hydrodynamical simulations. 

Simulations of star cluster formation show good agreement with ob- 

served multiplicity statistics (Bate 2009a , 2012 ; Krumholz, Klein & 

McKee 2012 ; Li, Klein & McKee 2018 ; Lee et al. 2019 ) using 

different combinations of physical processes. Unfortunately, the 

dynamic range of simulations is una v oidably limited, leading to 

either insufficient resolution to resolve close binary formation (e.g. 

Mathew & Federrath 2021 ) or low number statistics due to the small 

cloud size (e.g. Rohde et al. 2021 ). Thus pinpointing the key physics 

is challenging. 
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Note that most simulations only follow the star-forming phase of 

the cluster evolution, so they in fact predict the multiplicity of stars 

close to formation. Both observations (Duch ̂ ene 1999 ; Kraus et al. 

2008 , 2011 ; Tobin et al. 2016 , 2022 ) and simulations suggest that 

stars are born in complex, multiple systems that dynamically evolve 

(e.g. ejection of stars) causing multiplicity to drop (Goodwin & 

Kroupa 2005 ; Goodwin et al. 2007 ; Kaczmarek, Olczak & Pfalzner 

2011 ) and the period/separation distribution to shift to shorter peri- 

ods/closer separations (Kroupa 1995 ; Marks, Kroupa & Oh 2011 ). 

This can be understood as the result of wide-separation binaries 

becoming unbound due to either internal dynamical evolution or by 

interacting with external tidal fields, the latter of which also increases 

the average binding energy between the remaining stars. In general, 

dynamical interactions cause strongly bound binaries to be even 

more bound (i.e. ‘harden’), while the separation of weakly bound 

companions increases (Heggie 1975 ). 

To date most simulations have attempted to reco v er the observ ed 

multiplicity properties without conducting a detailed parameter study 

on how their initial conditions (ICs) might affect multiplicity (see 

Lee et al. 2019 for an exception). In this work, we present the 

first comprehensive analysis of how cloud properties affect stellar 

multiplicity properties. We use simulations from the STAR FORma- 

tion in Gaseous Environments (STARFORGE) project 1 that include 

all rele v ant physical processes of star formation. These radiation- 

magnetohydrodynamic (RMHD) simulations achieve a dynamic 

range in mass resolution that allow us to simulate the detailed evolu- 

tion of molecular clouds while following the formation of individual 

low-mass stars (see Grudi ́c et al. 2021a , henceforth referred to as 

the Methods Paper). In this study, we analyse a set of runs with 

varied initial cloud surface density, level of turbulence, magnetic 

field strength, metallicity and interstellar radiation field (ISRF) and 

compare them to a fiducial run with parameters representing a 

typical Milky Way molecular cloud [similar to Grudi ́c et al. ( 2022 ), 

henceforth referred to as Paper I]. We focus on the evolution of 

multiplicity properties from the onset of star formation until cloud 

disruption. 

The paper is structured as follows: Section 2 provides a brief 

o v erview of the code (for details on numerical methods as well as tests 

see the Methods Paper) and the ICs of the runs. We present our results 

for the fiducial run in Section 3 and compare them with observations. 

In Section 4 , we explore how multiplicity properties change in 

response to variations in the initial parameters. An analysis of the 

clustering properties, the star formation history and the initial mass 

functions of these runs are presented in Guszejnov et al. ( 2022a , b ), 

henceforth referred to as Paper II and Paper III, respectively. We 

discuss the implications of our results to observations and future 

work in Section 5 . Finally, we present our conclusions in Section 6 . 

2  N U M E R I C A L  M E T H O D S  

2.1 The STARFORGE simulations 

For this work, we utilize simulations from the STARFORGE project, 

which are run with the GIZMO code. 2 A full description and presen- 

tation of the STARFORGE methods including a variety of tests and 

algorithm details are given in the Methods Paper. We only briefly 

summarize the key points here. Note that in this work we use the same 

physics modules as Paper I and our fiducial run uses identical ICs 

1 ht tp://www.st arforge.space 
2 ht tp://www.tapir.calt ech.edu/ ∼phopkins/Site/GIZMO.html 

as the run presented there. Readers familiar with the STARFORGE 

simulation methods should skip ahead to Section 2.2 where we define 

the various metrics used in this study. 

2.1.1 Physics 

We simulate star-forming clouds with the GIZMO code (Hopkins 

2015 ) using the Lagrangian meshless finite-mass (MFM) method for 

magnetohydrodynamics (Hopkins & Raives 2016 ), assuming ideal 

MHD. Individual stars in the simulations are represented by sink 

particles. Once they form they follow the protostellar evolution model 

from Offner et al. ( 2009 ), extended past the main sequence by the 

mass-loss and stellar lifetime prescriptions presented in Methods 

Paper. 

The presented STARFORGE runs utilize the radiative cooling and 

thermochemistry module from Hopkins et al. ( 2022 ) that contains de- 

tailed metallicity-dependent cooling and heating physics, including 

recombination, thermal bremsstrahlung, metal lines, molecular lines, 

fine structure, and dust collisional processes. The cooling module 

self-consistently solves for the internal energy and ionization state 

of the gas. The simulations co-evolve the gas, dust, and radiation 

temperature self-consistently, including the stellar luminosity in var- 

ious bands accounting for photon transport, absorption, and emission 

using dust opacity. In addition to local sources (i.e. stars), we include 

an external heating source at the boundary of the simulation domain 

that represents the interstellar radiation field (ISRF). 

The simulations account for the dominant stellar feedback pro- 

cesses, including protostellar jets, radiative feedback from both 

protostars and main-sequence stars, stellar winds and supernovae. 

See Paper I and the Methods Paper for details on the numerical 

implementations. 

2.1.2 Initial conditions and parameters of clouds 

We use cloud ICs identical to those presented in Paper III, so we only 

give a short summary here. 

We generate our ICs using MakeCloud (Grudic & Guszejnov 

2021 ). Our default IC geometry is the ‘ Sphere ’ where we initialize the 

cloud as a homogeneous sphere near thermal pressure equilibrium 

with a low density ambient medium. We apply an initial random 

velocity field with a power spectrum of E k ∝ k −2 with amplitude 

set by the αturb ≡ 5 σ 2 R cloud /(3 GM 0 ) turbulent virial parameter. The 

cloud is initially threaded by a uniform magnetic field B z whose 

strength is set by the normalized mass-to-flux ratio μ. There is no 

external driving in ‘ Sphere’ simulations. 

We also run a simulations using the ‘ Box ’ geometry, a periodic 

box with externally driven turbulence whose side length L box gives 

the box a volume equal to that of a Sphere cloud model of similar 

mass. The box is initialized with a uniform density and stationary gas 

and then ‘stirred’ for five global freefall times 
(

t ff ≡
√ 

3 Ã
32 GÄ0 

)

, to 

achieve saturated MHD turbulence. An important difference between 

the Sphere and Box runs is that in the latter case the magnetic field is 

enhanced by dynamo action during the stirring phase (e.g. Federrath 

et al. 2011 ; Tricco, Price & Federrath 2016 ). 

Table 1 shows the target parameters for the runs we present in 

this paper. The input parameters are the cloud mass M 0 , size R 0 , 

turbulent virial parameter αturb , normalized magnetic mass-to-flux 

ratio μ, metallicity Z , and the energy density of the ISRF e ISRF 

(note that initial temperature is set by the ISRF). Similar to Paper 

I our fiducial cloud satisfies the observed Milky Way cloud mass–

size relation (e.g. Larson 1981 ; Lada & Dame 2020 , specifically 
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Table 1. Simulations used in this paper described with STARFORGE label conventions. Top : Physics modules included, see Methods Paper for details on the 

individual physics modules. Bottom : ICs of our simulated clouds, where M 0 , R cloud , and αturb . μ, Z , and e ISRF are the initial cloud mass, size, virial parameter, 

mass to magnetic flux ratio, metallicity, and the energy density of the ISRF, respectively. Note these runs explicitly evolve the radiation field so the initial 

gas–dust temperature is set by the ISRF. We also report the initial 3D turbulent velocity dispersion σ , thermal virial parameter αth , total virial parameter α, 

Alfv ́en Mach number M A , plasma β, magnetic virial parameter αB , as well as the relative Jeans, sonic, and magnetic mass scales (note that these are all defined 

assuming as 10 K gas temperature, see section 2 in Guszejnov et al. 2020 for definitions). Note that Box runs have slightly different initial parameters (e.g. Mach 

number and virial parameter) due to the non-exact scaling of the turbulent driving, so the values shown here are the target values that are to be reached at the end 

of the initial turbulent driving phase of 5 crossing times. In the last two column, we show the final star formation efficiency (SFE = M ∗/ M 0 ) and the disruption 

time for the Sphere runs, see Paper III for detailed star formation histories. For the fiducial run these columns also show the standard variations between the 

three runs that were run with different initial turbulent realizations. 

Physics label Thermodynamics MHD Protostellar jets Stellar radiation Stellar winds & SNe 

C M J RT W Non-isothermal, RHD (C) Ideal (M) Included (J) Included (RT) Included (W) 

Input parameters Deri v ed parameters Results 

Cloud label M 0 
M �

R cloud 
pc 

L box 
pc αturb μ Z 

Z �
e ISRF 

e ISRF , solar 
σ

km s −1 αth α M A β αB 
M Jeans 
M 0 

M sonic 
M 0 

M � 
M 0 SFE [per 

cent] 

t disrupt / t ff 

M2e4 (fiducial) 2 × 10 4 10 2 4.2 1 1 3.2 0.008 2.03 10 0.78 0.02 3 × 10 −3 7 × 10 −5 0.1 9 ± 0.3 1.6 ± 0.2 

M2e4 (Box) 2 × 10 4 16 2 4.2 1 1 3.2 0.008 2.03 10 0.78 0.02 3 × 10 −3 7 × 10 −5 0.1 

M2e4 R3 2 × 10 4 3 2 4.2 1 1 5.8 0.008 2.02 10 0.23 0.02 5 × 10 −4 7 × 10 −6 0.1 14 2.0 

M2e4 R30 2 × 10 4 30 2 4.2 1 1 1.9 0.02 2.04 10 2.3 0.02 1 × 10 −2 6 × 10 −4 0.1 1 1.7 

M2e4 a1 2 × 10 4 10 1 4.2 1 1 2.3 0.008 1.03 10 0.78 0.02 3 × 10 −3 4 × 10 −5 0.1 11 1.2 

M2e4 a4 2 × 10 4 10 4 4.2 1 1 4.5 0.008 4.03 10 0.78 0.02 3 × 10 −3 1 × 10 −4 0.1 4 2.1 

M2e4 mu1.3 2 × 10 4 10 2 1.3 1 1 3.2 0.008 2.21 3.1 0.078 0.2 3 × 10 −3 7 × 10 −5 0.4 7 2.0 

M2e4 mu0.4 2 × 10 4 10 2 0.42 1 1 3.2 0.008 4.01 3.1 0.0078 2 3 × 10 −3 7 × 10 −5 4 5 2.2 

M2e4 ISRF10 2 × 10 4 10 2 4.2 1 10 3.2 0.008 2.03 10 0.78 0.02 3 × 10 −3 7 × 10 −5 0.1 10 1.6 

M2e4 ISRF100 2 × 10 4 10 2 4.2 1 100 3.2 0.008 2.03 10 0.78 0.02 3 × 10 −3 7 × 10 −5 0.1 11 1.3 

M2e4 Z01 2 × 10 4 10 2 4.2 0.1 1 3.2 0.008 2.03 10 0.78 0.02 3 × 10 −3 7 × 10 −5 0.1 7 1.1 

M2e4 Z001 2 × 10 4 10 2 4.2 0.01 1 3.2 0.008 2.03 10 0.78 0.02 3 × 10 −3 7 × 10 −5 0.1 4 1.6 

assuming 	 ≡ M 0 /ÃR 
2 
cloud = 63M 

⊙ pc −2 ). The cloud is marginally 

bound ( αturb = 2) and begins in thermal equilibrium with the ISRF. 

The initial gas metallicity is assumed to be equal to the solar value. 

For the initial magnetization, we assume −E mag / E grav = 0.01, which 

translates to μ = 4.2. The STARFORGE simulations, we use have 

a mass resolution of 
m = 10 −3 M �, making the mass function 

incomplete stars with masses below 0 . 1 M �, which we omit from our 

analysis (see Paper III for a convergence test). Sphere runs continue 

until stellar feedback quenches star formation and subsequently 

disrupts the cloud (see Fig. 1 ). In the case of the Box runs the 

periodic boundary conditions trap both radiation and cloud material, 

so we terminate the run when the box becomes saturated by stellar 

radiation. 

2.2 Multiplicity calculation and metrics 

To derive multiplicity statistics in our simulation snapshots we first 

need to identify bound systems. We do so by using the hierarchical 

algorithm introduced by Bate ( 2012 ), which has the following steps: 

(i) Calculate the binding energy between all pairs of stars. 

(ii) Find the most bound pair (i.e. having the lowest total energy) 

and replace it with a single point mass with the same total mass and 

momentum, located at the centre of mass of the remo v ed pair. 

(iii) Recursively repeat steps 1 and 2 until no more bound stars are 

left, with the exception that we do not combine pairs if the resulting 

bound aggregate would consist of more than 4 individual stars. If 

such an aggregate is the most bound pair at any point, we proceed to 

the next most bound pair, terminating if no other bound pair exists. 

Using the abo v e algorithm, we produce a list of bound systems. 

For each star in these systems, we assign one of the following labels: 

(i) Unbound : The star is not bound to any other stars. 

(ii) Primary : The star is the most massive (primary) star of a 

multiple star system. 

(iii) Non-primary : The star is part of a multiple star system, but it 

is not the primary star. 

Following the definitions from the literature (e.g. Duch ̂ ene & 

Kraus 2013 ), we introduce a set of multiplicity metrics (summarized 

in Table 2 ), starting with the multiplicity fraction (MF): 

MF ≡
B + T + Q 

S + B + T + Q 
, (1) 

where S , B , T , and Q are the number of single, binary, triple, and 

quadruple systems whose primary star is in mass bin M . Similarly, 

we introduce the companion frequency (CF): 

CF ≡
B + 2 T + 3 Q 

S + B + T + Q 
, (2) 

which is the average number of companions in systems with primary 

mass of M . Due to the relatively small number of high-mass stars 

in the simulations ( ∼30 have > 10 M � out of ∼2000 stars), the 

uncertainty of MF and CF can be significant in high-mass bins. We 

estimate the errors using a Bayesian method where we assume the 

number of multiples and companions follow a binomial and Poisson 

distribution, respectively, see Appendix A for details. 

For companions, we characterize the companion separation as the 

semimajor axis a with respect to the primary using the well-known 

two-body solution to the Kepler problem that yields 

a = 
GM 1 M 2 

2 E total 
, (3) 

where G is the gravitational constant, M 1 and M 2 are the masses of 

the primary and companion stars, and E is the kinetic + gravitational 
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Figure 1. Surface density maps for M2e4 (our fiducial run), which is an M 0 = 2 × 10 4 M � mass cloud resolved with M 0 / 
 m = 2 × 10 7 initial gas cells (see 

Table 1 ) at different times, from the beginning of the simulation until cloud disruption. The colour scale is logarithmic, and the circles represent sink particles 

(stars) that form in high-density regions where fragmentation can no longer be resolved. The size of the circles increases with mass, and their colour changes 

from red ( M ∼ 0 . 1 M �), green ( M ∼ 1 M �) to blue ( M ∼ 10 M �). This simulation resolves a dynamic range from ∼20 pc down to ∼30 au and evolves until 

stellar feedback quenches star formation and disrupts the cloud. 

Table 2. List of multiplicity properties used throughout the paper along with 

their definition. 

Property Definition 

M p Mass of the primary (i.e. most massive) star in the system 

q ≡ M / M p Mass ratio of a companion to the primary 

MF MF for stars of M p primary mass, see equation ( 1 ) 

CF CF for stars of M p primary mass, see equation ( 2 ) 

a Semimajor axis of companion’s orbit, see equation ( 3 ) 

P Orbital period of the companion, see equation ( 4 ) 

e Eccentricity of companion’s orbit, see equation ( 5 ) 

energy of the system. Similarly, we calculate the orbital period P as 

P = 2 Ã

√ 

a 3 

G ( M 1 + M 2 ) 
. (4) 

To compute these quantities for higher order systems, we adopt the 

orbit and mass of the highest level subsystem that contains the chosen 

star but not the primary, see Fig. 2 for an illustration. For each orbit, 

we also calculate the corresponding eccentricity 

e = 

√ 

h 2 

aG ( M 1 + M 2 ) 
− 1 , (5) 

Figure 2. Cartoon illustration of the definition of orbits for each companion 

in a quadruple system. When calculating the semimajor axes or orbital 

periods for a companion, we take the orbit of the highest level subsystem that 

contains the chosen star but not its companion. We substitute the properties 

of these subsystems into equations ( 3 )–( 4 ). To calculate the semimajor axis 

or eccentricity distribution in Sections 3 and 4 , we count the semimajor axis 

between all subsystems. Here, this would mean the orbits with semimajor 

axes of a 1 , a 2 , and a 3 . 
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Figure 3. Basic multiplicity properties at the end of the simulation in the fiducial run ( M2e4 ) with a grey shaded region showing the mass range potentially 

affected by the 0 . 1 M � completeness limit of the simulations. Left : Fraction of stars in different boundedness categories. Middle and Right : MF and CF as 

a function of primary stellar mass, showing the raw simulation values (solid) and the distributions after removing temporary companions, low mass-ratio 

companions and both. Shaded regions show the 1 σ uncertainties, which are estimated using equations ( A3 )–( A5 ) for MF and CF, respectiv ely. Observ ed values 

are taken from the re vie w of Offner et al. ( 2022 ). For an analysis of trends see Section 3 in the main text. 

where h is the specific relative angular momentum of the two-body 

system. 

To compare these metrics with observations, we apply two 

corrections to the ‘raw’ multiplicity properties of the simulations. 

First, all companions with mass ratio q < 0.1 are ignored, as most 

observations are incomplete in this regime, see Moe & Di Stefano 

( 2017 ) henceforth referred to as MDS17. We note that the exact 

choice of the cut-off q value can significantly affect the CF at the 

high-mass end of the IMF, since there are many Solar-type compan- 

ions around > 10 M � stars in our simulations. When specifically 

comparing the properties of simulated and observed Solar-type stars, 

we account for observational incompleteness by discarding shorter 

period companions (log P < 4.5, or a < 30 au ) for which observations 

are incomplete for q < 0.5 and low- q longer period binaries (5.9 < 

log P < 6.7, or 150 < a /au < 400), which are only detectable for 

q > 0.2 (see fig. 28 in MDS17). The second correction, we apply 

remo v es all short-liv ed companions from the distribution, i.e. stars 

that have only been companions to their primaries for t comp < 100 kyr 

or have not yet completed two orbits. This correction remo v es binary 

assignments that are the result of chance alignments between stars 

(i.e. cases where the pairwise comparison considers two stars bound 

but they are not when accounting for all interactions), see Section 3 

for details. Source confusion is likely only important in crowded 

regions, and indeed, we find that this correction has a relatively minor 

effect on the statistics. Note that we report the ‘raw’ simulation values 

unless specified otherwise. 

Finally, we also examine the multiplicity properties of young stel- 

lar objects (YSOs). Observed YSOs are classified according to their 

spectral energy distributions (Dunham et al. 2014 ), which requires 

radiative transfer post-processing (e.g. Offner et al. 2012 ). Instead, 

we take a simpler approach and define YSOs in the simulation as 

stars (sink particles) that are younger than 0.5 Myr, as 0.5 Myr is 

approximately the Class 0 + Class I lifetime (Dunham et al. 2014 ). 

3  MULTIPLICITY  PROPERTIES  F O R  T H E  

F I D U C I A L  C L O U D  

We run our fiducial cloud ( M2e4 ) until star formation is quenched, 

and the cloud is fully disrupted by stellar feedback (see Fig. 1 ). 

We identify star systems in all snapshots of the run using the method 

outlined in Section 2.2 . Unless stated otherwise we show multiplicity 

properties at the end of the simulation, when star formation has 

quenched and the cloud has been fully disrupted. 

The left-hand panel of Fig. 3 shows the fraction of stars in different 

boundedness categories (see Section 2.2 ) as a function of mass. As 

expected we find that massive stars ( > 5 M �) are more likely to be 

primary stars. We find that, up to companion masses of ∼10 M �, 

20 per cent of stars are companions to more massive primary stars. 

These statistics derive from the fact that most high-mass stars are 

in multiple systems, while most low-mass stars are not. The middle 

and right-hand panels of Fig. 3 show that the MF and CF increase 

with the primary mass and are qualitatively similar to the observed 

values. Note for stars with masses below 1 M � both the MF and 

CF are affected by the 0 . 1 M � completeness limit of the simulation; 

the simulation does not resolve brown dwarfs. Removing short-lived 

companions has a mild effect on both MF and CF. Applying an 

observ ationally moti v ated q > 0.1 cut-of f, ho we ver, significantly 

reduces both the MF and CF for high-mass stars. This is because 

many high-mass stars in the simulations have Solar-type companions, 

such that the system mass ratio falls just below the cut-off. Overall, 

we find that after corrections the simulations produce qualitatively 

similar but significantly lower values than those observed for both 

MF and CF. 

3.1 Companion properties 

Observations find the distribution of the companion mass ratio q 

is mostly flat for Solar-type stars, except for a peak at near-equal 

masses (Raghavan et al. 2010 ; Offner et al. 2022 ). Fig. 4 shows 

that in our simulation the distribution is not flat and exhibits a peak 

at q ∼ 0.2. Comparing with the normalized stellar mass function 

of the simulation, i.e. the IMF, we find that the companion mass 

ratio distribution for Solar-type stars is consistent with random 

sampling from the IMF. After applying a correction for observational 

incompleteness of short period, low-mass ratio companions (based 

on MDS17) the distribution becomes flatter with a marginal peak 

at q ∼ 0.2. Note that this marginal peak is dominated by low- 

mass ratio, short-period companions so the significance of the peak 

strongly depends on the estimated observational completeness limit, 

which MDS17 estimated to be 25 per cent. After these corrections 
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Figure 4. Distribution of the companion mass ratio q for Solar-type stars 

in the fiducial run, using a similar notation to Fig. 3 , where we account for 

observational incompleteness reported in MDS17. Bars show the Poisson 

error of the distributions in ke y bins. F or a fix ed primary mass each q value 

corresponds to a stellar mass scale, so we plot the < 1 M � part of the stellar 

mass distribution (IMF, dashed line). We also show the observations for 

Solar-type binaries from Raghavan et al. ( 2010 ). A gre y shaded re gion shows 

the mass ratio range potentially affected by the 0 . 1 M � completeness limit 

of the simulation. Overall the q -distribution before corrections is consistent 

with random sampling the IMF (dashed line) and only shows significant 

differences after removing low q value companions. After all corrections 

are applied the distribution is much closer to the observed flat trend, with a 

significant absence of near-equal mass companions. 

the distribution is qualitatively consistent with the observed trend, 

except for the lack of peak at unity mass ratio. 

Fig. 5 shows the period/semimajor axis distribution for all stars, as 

well as for Solar-type and massive ( > 5 M �) stars only. In all cases, 

we find a peak close to the gravitational softening length ( ∼ 20 au ), 

below which gravitational forces are artificially weakened. Abo v e 

this value the number of companions declines with distance. Note that 

removing temporary companions significantly reduces the number 

of wide binaries, while removing low-mass ratio companions affects 

all scales. Note that in the case of Solar-type stars removing q < 0.1 

companions have little effect as we ignore all brown dwarfs in the 

simulation as they are below the completeness limit of the simulations 

presented in this work. Ho we ver, observ ations of Solar-type and 

lower mass stars are incomplete for higher values of q (Offner et al. 

2022 ). Fig. 5 also shows the result if we also account for observational 

incompleteness of Solar-type stars for q < 0.5 companions with 

< 30 au separations. After these corrections, the simulation quali- 

tatively agrees with observations from MDS17 for wide binaries, 

but the pile-up at the gravitational softening scale, which is likely 

numerical, prevents a detailed comparison (e.g. comparing the 

statistical significance of the apparent peak at 100 au for Solar-type 

stars). 

In addition to the semimajor axis distribution, it is instructive to 

see the separation distribution between primaries and companions, 

which we define as the instantaneous 3D distance between the pair 

positions. The stars, particularly just after formation, are not on 

stable orbits with a well-defined semimajor axis and pair separations 

and may evolve rapidly (Offner et al. 2010 ; Lee et al. 2019 ) as 

shown in Fig. 6 . We compare the separation at formation between 

primaries and their companions with their separations at the end of the 

simulation. The former quantity reflects the ICs and characteristics 

of the mechanism by which the multiples form. Fig. 7 shows the 

distributions for both separation metrics for massive ( > 5 M �) and 

lower mass ( < 2 M �) primaries. We find that most companions 

in the simulations formed between 1000 and 10000 au from their 

primaries, which is the expectation for multiples formed via turbulent 

fragmentation (Fisher 2004 ; Offner et al. 2010 , 2016 ; Guszejnov, 

Hopkins & Krumholz 2017 ). As a result of dynamical interactions 

most of these companions end up with much closer separations 

than their initial birth separation (see Fig. 6 ). A significant fraction 

of companions migrate inwards until they reach scales at which 

gravitational softening impacts the dynamics, creating a peak in the 

distribution near the gravitational softening length. There is no clear 

trend in this behaviour with regards to the companion mass ratio q : 

massive companions are as likely to ‘spiral in’ as lower mass ones. 

Figure 5. Left : Semimajor axis/orbital period distribution for star systems in the fiducial run ( M2e4 ), using the same notation as Fig. 3 . A vertical line represents 

the 20 au gravitational softening length of the simulation. Middle and Right : Same but for Solar-type and massive ( > 5 M �) primaries only, also showing the 

corresponding observations from MDS17. Note that for Solar-type stars, we account for observational incompleteness based on MDS17. 
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Figure 6. Separation of companions to their primary stars for a small sample 

of systems in the fiducial run as a function of the age of the bound system 

(note that the stars can form before the system becomes bound, hence the 

ne gativ e time values). Note that simulation snapshots are 
t snap ≈ 7 kyr apart, 

distorting the orbits of low separation companions. Overall, we find that most 

companions form at larger distances ( ∼ 10 4 au ) and become bound almost 

immediately, then reach a stable orbit within ∼ 0 . 5 Myr . 

Like prior numerical studies, we find that the separation evolution 

happens on a relatively short time-scale of < 0 . 5 Myr . Note that 

a few companions appear to have initial separations of � 10 2 au . 

Due to the snapshot time increment ( ≈ 7 kyr ), we do not have the 

separations at the moment of formation and, consequently, these short 

distances likely represent early rapid dynamical evolution, rather than 

formation on these scales. Note that if the simulation included the 

formation of multiples from unstable disks, we would expect to see 

a larger number of companions forming at such short separations. 

In addition to the semimajor axis, we calculate the eccentricity of 

each orbit. In Fig. 8 , we compare our results with the observations of 

Tokovinin & Kiyae v a ( 2016 ), who examined companions of Solar- 

type stars with > 50 au separation, which is abo v e the ∼ 20 au 

gravitational softening length of the simulation. We find good 

agreement for all eccentricity values with the raw data. Ho we ver, 

applying all corrections leads to a deficit of companions in the 0.4 < 

e < 0.8 range. 

The simulation tracks the angular momentum accreted by sink 

particles (stars), allowing us to analyse the spin alignment between 

stars and their companions. Note that the simulation does not allow 

stars to lose angular momentum via outflows or magnetic braking, 

so this total accreted angular momentum is significantly higher than 

the angular momentum of stars. Additionally, sink particles accrete 

angular momentum material from larger spatial scales than what may 

be actually accreted at the stellar surface, potentially leading to an 

o v erestimation of the accreted angular momentum. Nevertheless, the 

direction of the accreted angular momentum is a reasonable proxy 

for the direction of the stellar spin. Fig. 9 shows the distribution of 

the angle between the spins of the primary star and its companions 

for both high ( > 5 M �) and lower mass primaries ( < 2 M �). We 

find that in both cases companions are not randomly oriented, but 

instead are preferentially aligned with their primaries, a potential sign 

that these multiples formed via core fragmentation, ho we ver, prior 

work found a significantly weaker preference for spin alignment 

(Lee et al. 2019 ). Ho we ver, massi ve primaries have a wider angle 

distribution, i.e. their spin is less likely to be aligned with that of 

their companions, which can be explained either by massive stars 

Figure 7. Separation between primary and companions in the fiducial simulation at the snapshot just after the stars form and at the end of the simulation. 

Results are shown separately for high mass ( > 5 M �, left) and lower mass ( < 2 M �, right) primary stars. The symbols in the main scatter plot are coloured 

according to the companion mass ratio q in the system at the end of the simulation. The distributions of the individual metrics are shown abo v e their respectiv e 

axes. A horizontal line shows the gravitational softening length of the simulation, which is also the exclusion radius of sink particles (i.e. no stars can form 

closer than this) denoted by a vertical line. There are still a few stars that appear to have formed at shorter distances, but this is just an artefact of us relying 

on discrete snapshots of the simulation ( 
t snap ≈ 7 kyr ). Note that we are showing the data after having applied the corrections for both low mass ratio and 

temporary companions. 
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Figure 8. Distribution of the companion eccentricities for Solar-type stars 

in the fiducial run, using a similar notation to Fig. 3 , where we account 

for observational incompleteness reported in MDS17. We also show the 

observations for Solar-type stars from Tokovinin & Kiyae v a ( 2016 ). Overall, 

the eccentricity distribution in the simulation is consistent with observations 

before corrections, but show a lack of companions at e ∼ 0.7 after corrections. 

acquiring companions that formed in different regions or by the fact 

that massive stars accrete from a gas reservoir much larger than the 

initial core they form in. 

In Fig. 10 , we compare the primordial spin misalignment angle 

with the final value obtained at the end of the simulation. Taking the 

at-formation misalignment between companion and primary would 

yield similar results to random alignment as the spin direction of 

sink particles changes rapidly during the initial accretion. That is 

why we define primordial misalignment as the angle when the mass 

Figure 10. Misalignment angle between primaries and companions in the 

fiducial simulation at the snapshot just after the stars form and at the end of the 

simulation. The primordial misalignment angle is calculated at the time when 

the mass of the companion exceeds 0 . 08 M �. The symbols and colourbar are 

set identical to those in Fig. 7 . Companions are preferentially aligned even in 

the early, primordial stage, and become even more aligned by the time star 

formation ends. 

of the companion exceeds the mass scale of brown dwarfs (0 . 08 M �). 

Although companions tend to be aligned with their primary at both 

times, the primordial misalignment is closer to random. This is due 

to companions that accrete simultaneously with their primary star, 

bringing their spins closer to alignment. 

3.2 Time evolution of multiplicity properties 

Observations suggest that multiplicity evolves through dynamical 

interactions, such that o v er time systems lose members. Fig. 11 

Figure 9. Distribution of the misalignment angle between primaries and companions for high mass ( > 5 M �, left) and lower mass ( < 2 M �, right) primary 

stars, using the same notation as Fig. 3 . We also show the distribution expected from randomly aligned companions. Overall, companions tend to be more 

aligned with their primaries compared to a random distribution, while massive stars exhibit slightly more misalignment. 
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Figure 11. MF of Solar-type stars that are no longer accreting (i.e. will 

remain Solar-type until the end of the simulation) as a function of time in the 

fiducial ( M2e4 ) run. For reference, we include the observed value for field 

stars from Raghavan et al. ( 2010 ). 

sho ws the e volution of the MF for Solar-type stars in the fiducial 

run that have stopped accreting. We find a general decreasing trend, 

where Solar-type stars are much more likely to be primaries at the 

start of star formation than at later times. To produce this trend 

Solar-type stars must lose their companions as they age, or stars 

born at later times must have lower multiplicity. Fig. 12 shows 

the formation rate of Solar-type stars and their multiplicity as a 

function of age. Note that Figs 11 and 12 concern slightly different 

stellar populations: Fig. 11 looks at Solar-type stars that have stopped 

accreting, while Fig. 12 follows the multiplicity of stars throughout 

their lifetime. The MF remains roughly constant as the stars age, but 

the CF decreases. This means that trinary and quaternary systems 

containing Solar-type stars lose some companions o v er time but are 

unlikely to lose their last companion. This implies that most stars that 

form in a multiple system (e.g. not the earliest forming ones), stay 

in a multiple system. This result is consistent with prior numerical 

studies (e.g. Lee et al. 2019 ) and will hold as long as the initial 

fraction of high-order systems is low and stellar densities are not too 

high. These changes, ho we ver, are relati vely minor compared to the 

differences in both the MF and CF between stars born at different 

times. We find that among the first Solar-type stars that form about 

40 per cent are primaries; among the last ones to form only 20 per cent 

are. 

A likely explanation for later forming stars having lower multi- 

plicity is that they form in a different environment. Fig. 1 shows that 

the cloud undergoes global collapse and most star clusters merge to 

form one massive cluster surrounded by dense gas, until feedback 

from the stars expel the gas, weakening the gravitational potential 

well and leading to the expansion of the cluster (Paper II). The first 

stars form in relative isolation along filaments, while later stars form 

near existing star clusters. To examine how the ‘crowdedness’ of 

the birth environment affects multiplicity we define the birth stellar 

density , which we take to be the stellar mass density around the 32 

nearest neighbors of a newly formed star. Fig. 13 shows how this 

initial stellar mass density increases with time and starts to decline 

after 5 Myr when the cloud begins to disrupt and star formation is 

quenched in the central cluster (see Fig. 1 ). The remaining gas-free 

clusters are gravitationally unbound and disperse (Paper II). The 

other panels of Fig. 13 show that both the MF and CF for Solar-type 

stars decline with increasing stellar mass density at formation. This 

can be attributed to the higher likelihood of dynamical interactions 

(as there are more stars nearby), allowing for the newly formed star 

to be either captured by an existing star (increasing the multiplicity 

of earlier stars relative to later formed ones) or ejected from the gas 

reservoir. 

3.3 Multiplicity of YSOs 

Fig. 14 shows the evolution of the YSO properties in the fiducial 

simulation. The number of YSOs, which we define to be stars 

younger than 0.5 Myr, essentially traces the star formation rate. 

As the cloud disrupts around 6 Myr star formation quenches and the 

YSO count decreases. To compare with the observations of Tobin 

et al. ( 2016 , 2022 ), we calculate the MF of YSOs by taking only 

systems where all members are YSOs and have a semimajor axis 

between 20 and 10 4 au. We find that the YSO multiplicity in our 

Figure 12. Left : Distribution of formation times for Solar-type stars in the fiducial run. Coloured regions show the formation time bins in which the multiplicity 

properties are calculated in the other panels. Middle and right : The evolution of MF and CF as a function of age for Solar-type stars in various formation time 

bins. Note that any apparent discrepancy with Fig. 11 is due to the different selection criteria since Fig. 11 looks at stars that have already stopped accreting. For 

an analysis of trends see Section 3 in the main text. 
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Figure 13. Left : Median stellar mass density around newly formed stars in the fiducial run. The stellar mass density is calculated using the 32 nearest 

neighbours. Shaded regions show the 25th and 75th percentiles. Middle and right : MF and CF in different stellar density bins. Shaded regions show the 1 σ

sampling uncertainties (see Appendix A for details). The range of observed values for Solar-type field stars from Raghavan et al. ( 2010 ) is also shown. 

Figure 14. Properties of YSOs in the fiducial run, showing the number and 

MF of YSOs o v er time. Shaded rectangles show the observ ed multiplicity 

values by Tobin et al. ( 2022 ) for Class 0 and I protostars in Orion and Perseus, 

while the transparent blue shaded regions show the 1 σ sampling uncertainty 

of the YSO MF. To make the plot easier to read, we apply a 100 kyr rolling 

average. 

simulation is comparable to that of Class I protostars in Orion. This 

is consistent with their expected ages of ∼0.1–0.5 Myr (Dunham et al. 

2014 ). 

4  EFFECTS  O F  INITIAL  C O N D I T I O N  

VA R I AT I O N S  O N  MULTIPLICITY  

In addition to our fiducial run we carry out a suite of simulations 

to explore the effects of ICs on multiplicity properties. We test for 

variations in the following initial parameters: the initial cloud surface 

density, virial parameter, magnetization, metallicity, as well as the 

ISRF and turbulent driving; see Table 3 for specifics. These runs use 

the same turbulent initialization seed. In our analysis, we also include 

two additional runs with the fiducial parameters but with different 

seeds, which provide a baseline of significance for variations between 

the runs. 

To make the comparisons simpler all values shown in this sec- 

tion are the raw simulation results without corrections to remo v e 

short-lived or low-mass ratio companions. 

4.1 Initial level of turbulence 

We compare three runs with dif ferent le vels of turbulence as 

parametrized by the turbulent virial parameter αturb . The runs all use 

the same initial turbulent seed, except for the fiducial run ( αturb = 

2), for which we show the results for two additional initial turbulent 

realizations. The change in velocity dispersion for the different αturb 

runs is achieved by scaling the initial velocity fields of the fiducial 

run (see Table 1 ). Fig. 15 shows that both the MF and CF increases 

for M > M � stars with increasing turbulence, similar to the results 

of Cunningham et al. ( 2018 ), although the changes are comparable 

to the variations for different turbulent realizations. 

Except for a change in normalization (due to different star 

formation efficiencies among the clouds), the shape of the semimajor 

axis distribution is qualitatively similar. We find that increasing 

the level of turbulence shifts the peak of the misalignment angle 

distributions toward 90 deg, similar to the distribution shape resulting 

from uncorrelated primary and companion spins. This suggests the 

higher global turbulence reduces the angular momentum correlation 

on smaller scales. 

Increasing the initial turbulence delays star formation, but other- 

wise the MF of Solar-type stars follows a similar decreasing trend. 

All runs show decreasing multiplicity with birth stellar density, and 

the trends agree within 1 σ error, but the highest achieved density 

decreases with the level of turbulence. This means that the increase 

in multiplicity with stronger turbulence could be explained by the 

more turbulent clouds having o v erall lower stellar densities. 

4.2 Cloud surface density 

Cloud surface density is thought to be a key parameter of star 

formation (Krumholz & McKee 2008 ; Fall, Krumholz & Matzner 

2010 ; Grudi ́c et al. 2021b ) due to its influence on the dynamics 

of fragmentation and impact on stellar feedback. In addition to 

our fiducial cloud ( M2e4 ), which has a surface density similar to 

the MW average ( 	 = 63 M � pc 2 ) we run clouds with 10 times 

higher and lower values ( M2e4 R3 , M2e4 R30 ). Note that these 

runs hav e v ery different final star formation efficiencies (1, 9, and 
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Table 3. List of parameter variations investigated in Section 4 and the relevant IC labels from Table 1 . 

Parameter Default value Tested variations Labels 

Initial turbulence αturb = 2 (Marginal boundedness) ×0.5, ×2 M2e4 a1 , M2e4 a4 

Surface density 	 = 63 M � pc −2 (MW average) ×10, ×0.1 M2e4 R3 , M2e4 R30 

Mass-to-flux ratio μ = 4.2 (1 per cent relative magnetic energy) ×0.3, ×0.1 M2e4 mu1.3 , M2e4 mu0.4 

Interstellar Radiation (ISRF) Solar-circle values (Habing 1968 ; Draine 1978 ) ×10, ×100 M2e4 ISRF10 , M2e4 ISRF100 

Metallicity Z = Z � ×0.1, ×0.01 M2e4 Z01 , M2e4 Z001 

Figure 15. Multiplicity properties for dif ferent le vels of initial turbulence ( M2e4 a1 , M2e4 , M2e4 a4 ). The curves do not include corrections for short lived 

or low-mass ratio companions. For the fiducial M2e4 IC, we plot the results from three separate runs that have identical global parameters but different initial 

turbulent realizations. The top row shows the MF (left), CF (middle), and the distribution of the semimajor axis for Solar-type stars (right). For MF and CF 

coloured shaded regions show the 1 σ sampling errors, which are not plotted for the fiducial M2e4 runs. A grey shaded region shows the mass range potentially 

affected by the 0 . 1 M � completeness limit of the simulation. In the semimajor axis distribution, the vertical line marks the gravitational softening length of 

the simulations. The bottom row shows the misalignment angle distribution (left), the evolution of multiplicity for Solar-type stars that are no longer accreting 

(middle) and the MF for Solar-type stars as a function of birth stellar density (right). The multiplicity time evolution in the middle panel is normalized to the 

initial cloud freefall time to make comparisons between runs easier. In the left-hand panel, a dotted line shows the angle difference distribution resulting from a 

purely random draw of companion spins. Shaded regions show the 1 σ sampling errors, similar to the top row. 

14 per cent in order of increasing surface density). Thus, the low 

surface density run ( M2e4 R30 ) has about a factor 10 fewer stars 

than the other runs, making its multiplicity metrics significantly more 

uncertain. 

Fig. 16 compares the multiplicity properties across our runs with 

different initial surface density. We find that increasing surface 

density leads to lower MFs and companion frequencies for higher 

mass stars as well as a much more pronounced peak in the semimajor 

axis distribution near the gravitational softening length ( ∼ 20 au ). 

Increasing the initial cloud surface density does not affect the 

spin alignment between primaries and their companions (bottom 

left panel of 16 ); ho we ver, the lo w surface density run sho ws an 

essentially flat distribution. As in all previously discussed runs, the 

MF of Solar-type stars decreases with time, which can be explained 

by the increasing stellar density around newly forming stars. We 

find that the relationship between the birth stellar density and the 

MF is similar between the runs, and their cut-of f v alue increases 

with initial surface density. This also provides an explanation as 

to why both MF and CF decrease with increasing surface density: 

the denser the cloud, the higher the stellar density, leading to more 

dynamical interactions and thus lower multiplicity at the end of the 

simulations. 
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Figure 16. Same as Fig. 15 but for different initial cloud surface densities ( M2e4 R3 , M2e4 , M2e4 R30 ). 

4.3 Cloud magnetization 

Star formation efficiency (SFE) is sensitive to the cloud mean 

magnetic field (e.g. Padoan, Haugbølle & Nordlund 2012 ), with 

efficiency decreasing with stronger fields (Paper III). This result 

suggests multiplicity might also depend on the magnetic field. In this 

section, we present runs for clouds with increasing initial magnetic 

fields, corresponding to initial normalized mass-to-flux ratios μ of 

4.2, 1.3, and 0.4 ( M2e4 , M2e4 mu1.3 , M2e4 mu0.4 , see Table 1 ). 

Fig. 17 shows that the strong field cloud has a significantly higher 

MF for Solar-type stars, an effect proposed by prior work (Lee et al. 

2019 ). Ho we ver, there is essentially no change difference between 

the fiducial, weak ( μ = 4.2) and intermediate ( μ = 1.3) field runs. 

For all three cases there are no significant variations in either the 

semimajor axis distribution or the distribution of the misalignment 

angle. The increased magnetic fields provide significant support to 

the cloud against collapse, which delays star formation. Apart from 

this delay, the MF of Solar-type stars follows a similar declining trend 

with time. The weak and intermediate field runs provide a similar 

relationship between the birth stellar density and the MF, while 

the highly magnetized run has significantly higher multiplicities at 

similar stellar densities. In Guszejnov et al. ( 2020 ), we show that 

regardless of the initial magnetic field strength, the magnetic energy 

density at high densities follow the same trend ( v Alfv ́e n ∼ c s ), due to 

the turbulent magnetic dynamo. This means that the effects of the 

global initial magnetic field do not propagate to densities higher than 

ÄB > B 
2 
0 / ( μ0 c s ), where B 0 , c s , and μ0 are the initial magnetic field 

strength, the sound speed, and the vacuum permeability, respectively. 

So the initial magnetic field only influences multiplicity properties if 

ÄB is comparable to the densities of star-forming cores. 

4.4 Cloud metallicity 

Metallicity is a key property of interstellar gas, which directly sets its 

thermodynamic behaviour, so it is expected to have a major impact 

on star formation (Krumholz 2014 ). In this section, we present three 

runs with decreasing initial gas metallicities, corresponding to Solar, 

10 per cent of Solar and 1 per cent of Solar values ( M2e4 , M2e4 Z01 

and M2e4 Z001 , respectively, see Table 1 ). 

We find that metallicity significantly affects the star formation 

process, notably it shifts the IMF to significantly higher masses 

(see Paper III for details). Ho we ver, Fig. 18 sho ws that v arying the 

metallicity of the gas has no clear effect on either the MF or the 

CF, similar to the results of Bate ( 2019 ). While the normalization 

of the semi-major axis distribution is affected by the differences in 

the o v erall SFE, its shape appears to be similar between the three 

runs. Decreasing the metallicity mildly flattens the misalignment 

angle distribution, i.e. makes antiparallel companions slightly more 

likely. The evolution of the MF for Solar-type stars declines similarly 

for the fiducial and the 10 per cent Solar metallicity runs, but for 

the 1 per cent run we find significantly lower multiplicities and 

an increasing trend instead of a decreasing one. The relationship 

between the MF and the birth stellar density is also different between 

the runs; in the low-metallicity clouds there is no clear relationship 

between the two quantities. 

4.5 Interstellar Radiation Field 

The ISRF is set by the radiation of previously formed stars in 

the local galactic environment. The ISRF varies as a function of 
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Figure 17. Same as Fig. 15 but for different levels of initial magnetization ( M2e4 , M2e4 mu1.3 , M2e4 mu0.4 ). 

the galactocentric radius, so clouds located closer to the galactic 

centre experience higher ISRFs. Thus, the radiative environment 

is expected to vary significantly between star-forming regions. We 

compare the multiplicity properties in three runs with progressively 

higher background radiation fields, starting from our fiducial run, 

which adopts the Solar-circle value of 1 Draine ( M2e4 ), followed by 

runs with 10 times ( M2e4 ISRF10 ) and 100 times ( M2e4 ISRF100 ) 

higher radiation energy densities, see Table 1 . 

We find that increasing the ISRF increases the gas temperature 

and shifts the IMF to mildly higher masses (see Paper III for details). 

Ho we ver, Fig. 19 sho ws a mild increase in both the MF and the 

CF at high masses. The increased ISRF has little effect on the 

semimajor axis or the misalignment angle distributions. Similar to the 

case of metallicity variations, the mildly increased ISRF run shows 

similar MF evolution for Solar-type stars while M2e4 ISRF100 

shows a qualitatively different evolution where MF increases with 

time. Nevertheless, the three simulations show a similar relationship 

between the stellar densities at formation and MF, although the MF 

is consistently lower for M2e4 ISRF100 . Note that this is also the 

run with the most shift in the IMF towards higher masses, which 

likely affects the comparisons of Solar-type stars. 

4.6 Cloud setup and turbulent driving (Box versus Sphere) 

We note in Section 2.1.2 that there are several common assumptions 

in the literature for the geometry and boundary conditions of 

simulated star-forming clouds. In this section, we compare the 

results of a periodic Box configuration relative to our fiducial Sphere 

run. The Box runs differ from the fiducial run in two important 

aspects. First, periodic boundary conditions lead to both an order- 

of-magnitude shallower gravitational potential (Federrath & Klessen 

2012 ) and prevent the escape of radiation and gas. Secondly, the 

Box setup starts from a self-consistent, pre-stirred state, and this 

external driving continues throughout the run, providing energy for 

turbulent modes on the box scale that cascade down to smaller scales. 

To disentangle the effects of these tw o f actors, we compare three 

M2e4 runs (Table 1 ): (1) our fiducial Sphere run, (2) a Box run with 

continuous external driving, and (3) a Box run where we turn off the 

driving after the initial ‘stirring’ phase. 

We find that the periodic boundary conditions have little effect 

on multiplicity properties when comparing the ‘Sphere’ and ‘Box, 

decaying’ runs, whose results agree within 1 σ uncertainty for MF, 

CF, the semimajor axis and the misalignment angle distributions (see 

Fig. 20 ). There is a difference in the length of the initial transient 

in the evolution of the MF of Solar-type stars. This delay is likely 

due to the stronger initial turbulent support in the Box run, since the 

periodic boundary conditions weaken the gravitational potential. As 

turbulence decays the ‘Box, decaying’ run starts following the same 

trend as the fiducial Sphere run. 

Turbulent dri ving, ho we ver, has a significant effect on the MF and 

CF, leading to significantly higher values for both MF and CF on all 

mass scales. This is the only run in our parameter study that shows a 

change in sub-solar multiplicities. We attribute this difference to the 

turbulent driving, which weakens gravitational focusing and leads 

to lower stellar densities in star-forming regions. In other words, 

star formation is more distributed, which reduces the frequency of 
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Figure 18. Same as Fig. 15 but for different levels of initial gas metallicity ( M2e4 , M2e4 Z01 , M2e4 Z001 ). 

dynamical interactions thus leading to higher multiplicities on all 

mass scales. 

We find that all three runs exhibit a similar relationship between 

the birth stellar density and the MF, but the Box run with turbulent 

driving has a lower maximum density, consistent with the higher 

multiplicity values we find for that run. 

5  DISCUSSION  

5.1 Multiplicity in the fiducial simulated cloud 

Similar to previous simulations in the literature (i.e. Bate 2009b , 

2012 ; Krumholz et al. 2012 ; Mathew & Federrath 2021 ) our 

simulations reproduce the rising trend with mass in both the MF 

and CF. We find that the simulations match recent observations 

(Offner et al. 2022 ) at all but the lowest mass scales (Fig. 21 ). 

The discrepancy at low masses can be explained by our choice 

of ignoring all brown dwarfs during the identification of multi- 

ples, moti v ated by the completeness limit of the simulation being 

at ∼ 0 . 1 M �. 

We find that the multiplicity properties of stars depend on their 

formation time, i.e. early forming stars tend to have more companions 

than those that form near the end of the star formation process 

(Fig. 12 ). We find that the primary cause of this decrease is not 

stars losing companions, i.e. through dynamical interactions (Heggie 

1975 ), but that later forming stars are born with fewer companions. 

We show that there is a correlation between multiplicity (i.e. MF 

and CF) and the birth stellar density. This allows us to explain the 

decreasing trend with formation time, as locally collapsing regions 

merge and form a dominant, central, gas rich cluster, in which 

stars form at much higher stellar densities than in the early phase 

( < 4 Myr ) of cloud evolution when they formed along filaments 

(Fig. 1 ). In this dense stellar environment dynamical interactions 

with other stars are much more likely, leading to newly formed 

stars being captured by existing ones, as well as companions being 

ejected. 

Similar numerical works in the literature mostly report only these 

‘raw’ values (e.g. Bate 2012 , 2019 ; Mathew & Federrath 2021 ) 

without correcting for observational completeness limits and chance 

alignments that the algorithm mistakenly identifies as a multiple star 

system. In this work, we apply two simple corrections to account 

for these effects: we ignore companions with mass ratios below 

most observational completeness limits ( q < 0.1) and those that 

are not bound to their companion for at least 100 kyr and two 

full orbits. We find that the combined effects of these corrections 

dramatically reduces the number of companions for > 1 M � stars 

and consequently lower MF abo v e a few M � (as these stars tend to 

have lower q companions). Overall this means that our simulations 

underpredict both the MF and CF compared to observations. One 

possible explanation for this discrepancy is that stars in our simula- 

tions lose companions due to the inaccurate short-range gravitational 

forces in the simulation (i.e. having finite gravitational softening). We 

find this explanation to be unlikely as we find a pile-up of companions 

at the gravitational softening length (Figs 5 –7 ), the net effect of the 

gravitational softening is likely to increase the number of compan- 

ions by trapping them at that length-scale and preventing violent, 
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Figure 19. Same as Fig. 15 but for different levels of ISRF ( M2e4 , M2e4 ISRF10 , M2e4 ISRF100 ). 

short-range N -body interactions that could eject companions. 3 A 

more likely explanation is the apparent lack of stable protostellar 

discs in the simulations. This means that from three main pathways 

of binary formation (core fragmentation, disc fragmentation, and 

capture, see Tohline 2002 ; Kouwenho v en et al. 2010 ) our simulation 

is missing disc fragmentation, which could concei v ably make up for 

the missing companions relative to observations (Kratter & Lodato 

2016 ). Furthermore, the presence of protostellar discs would push 

companions mass ratios towards unity (see e.g. Kratter et al. 2010 ; 

Farris et al. 2014 ; Duffell et al. 2020 ). In addition, removal of angular 

momentum by magnetic breaking tends to drive accretion on to 

the more massive primary (Zhao & Li 2013 ), thereby decreasing 

the mass ratio. Thus, the influence of discs and inclusion of non- 

ideal MHD together would likely shift currently small mass ratios 

abo v e the q = 0.1 limit, significantly increasing MF and CF at the 

high-mass end after correcting for observational incompleteness (i.e. 

the difference between the ‘raw’ and ‘corrected’ results in Fig. 3 

would be smaller). Finally, it is possible that our choice of ICs (i.e. 

geometry and turbulent driving) is the main cause of the discrepancy 

(see Section 5.2 ). This explanation is further supported by the fact 

3 This can be understood by noting that in the highly softened limit R < <ε for 

softening length ε, the form of the gravitational force law becomes g ( R ) = 

GM ( < R ) /R 2 ≈ ( 4 π/ 3 ) GÄR for any softening kernel corresponding to a 

mass distribution with a flat central density Ä. Hence stars orbiting deep within 

the softening kernel behave as if connected by springs obeying Hooke’s law, 

which has a stable solution expressible as normal eigenmodes for all N , in 

stark contrast to the chaotic Keplerian N -body problem. 

that we find good agreement between the Box run and the semi- 

analytical core fragmentation model of Guszejnov et al. ( 2017 ), 

which follows only core fragmentation and has similar initial and 

boundary conditions (see Fig. 21 ). Note that Guszejnov et al. ( 2017 ) 

ignore dynamical interactions, which is likely the explanation for 

the slightly higher multiplicity values it predicts relative to the Box 

run. After correcting for observational biases, the Box results agree 

well with the observed MF and CF for M > M � stars, which is also 

the mass range unaffected by the 0 . 1 M � completeness limit of the 

simulation. 

For all primary masses, we find that the mass ratio distribution 

in the fiducial run is consistent with randomly drawing companions 

from the initial mass function of the simulation (Fig. 4 ). For Solar- 

type stars, correcting for chance alignments leads to lower values at 

lower mass ratios ( q < 0.2). Observations find the q-distribution of 

Solar-type stars is flat (Raghavan et al. 2010 ) with an slight peak 

at q ≈ 1 (see MDS17). This uniform distribution is inconsistent 

with randomly drawing from the observed MW IMF, but it should 

be noted that the discrepancy is only significant at q ≈ 0.2. Note 

that these observations are incomplete in this mass ratio range for 

short-period binaries, i.e. for companions with periods log P /d < 

4.5 the observations are only complete for q > 0.5 (see fig. 28 in 

MDS17). After applying this correction to our results, we find a 

flatter distribution with a marginal peak around q ≈ 0.2. This peak 

is dominated by low- q companions at the softening length from 

their primary, so its significance strongly depends on the applied 

observational completeness limit. Similarly, we find that the agree- 

ment between the simulation and observations impro v es for both the 

semimajor axis and the eccentricity distributions after all corrections 
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Figure 20. Same as Fig. 15 for runs using fiducial M2e4 parameters but with different initial and boundary conditions (‘Sphere’, ‘Box’, and ‘Box, decaying’). 

Figure 21. Left : MF as a function of primary mass in this work (both Sphere and driven Box runs, without corrections), in RHD simulations from Bate ( 2019 ), 

in semi-analytical predictions from Guszejnov et al. ( 2017 ) and in observ ations (Of fner et al. 2022 ). 1 σ uncertainties are shown with either coloured shaded 

regions or errorbars, while a grey shaded region shows the mass range potentially affected by the 0 . 1 M � completeness limit of the simulation. For high-mass 

stars, the Box results agree well with the semi-analytical core fragmentation model of Guszejnov et al. ( 2017 ) and the RHD simulations of Bate ( 2019 ), while 

observations fall between the values in the Sphere and Box runs. Middle and right : MF and CF values for the driven Box run, using a similar notation as Fig. 3 . 

Unlike the Sphere run shown in Fig. 3 , the Box run results after corrections agree well with observations for both MF and CF (for stars with masses abo v e M �). 

Discrepancies at lower masses are likely due to the 0 . 1 M � completeness limit of the simulation. 

are applied. Ho we ver, applying this correction significantly reduces 

the MF and CF for Solar-type stars, increasing the discrepancy with 

observations. It should be noted that the aforementioned ‘pile-up’ 

of companions at the gravitational softening length ( ∼ 20 au ) plays 

an out-sized role in this dramatic change (see Fig. 5 ). As previously 

noted we are unable to correct this pile-up as companions could 

spiral into shorter periods, be ejected or relax to longer orbits. 

Correcting for the observational bias for Solar-type stars (based on 

MDS17) remo v es these companions, which implicitly assume that 

they either migrate to smaller scales or are ejected from the system. 

Furthermore, observations find a significant fraction of binaries 

ha ve near -equal mass (twin) companions, which are missing in our 
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Table 4. Summary of results from Section 4 , showing the trends in the final SFE, the shape of the IMF, the average at formation stellar density and a general 

description on how multiplicity properties are affected (see Figs 15 –20 for details). Note that in case of the Box geometry there is no final SFE as the simulation 

is terminated when the periodic box is filled with an unphysical level of radiation. 

Parameter Final SFE IMF change Stellar density Effect on multiplicity properties 

Initial turbulence ( αturb ↑ ) ↓ Negligible ↓ MF ↑ , CF ↑ ; spins more likely to be random 

Surface density ( 	↑ ) ↑ Negligible ↑ MF ↓ , CF ↓ ; more companions at softening length 

Mass-to-flux ratio ( μ↓ ) ↓ Steeper slope ↓ MF ↑ , CF ↑ ; variations only present in μ = 0.42 run 

Metallicity ( Z ↓ ) ↓ Mild → shift No trend MF, CF no longer correlated with stellar density; spins more likely 

to be random 

Interstellar radiation (ISRF ↑ ) mild ↑ Mild → shift ↑ Mild MF ↑ , CF ↑ at high masses 

Geometry (Box versus Sphere) N/A Negligible No trend Mild MF ↑ , CF ↑ at high masses 

Turbulent driving N/A Steeper slope ↓ MF ↑ , CF ↑ for all masses 

simulations. This is likely due to the lack of long-lived protostellar 

discs, as disc fragmentation is more likely to produce near-equal 

mass companions (Kratter et al. 2010 ), as discs allow companions to 

‘steal’ mass from the primary star. Disc accretion would also cause 

mass to be more equally distributed for secondaries that formed from 

turbulent fragmentation and migrated into or to close proximity of 

the primary’s disc (Duffell et al. 2020 ). 

We track the angular momentum accreted by stars in the simulation 

and use its direction as a proxy for the direction of the spin of 

the star, as stars (i.e. sink particles) in the simulation can not lose 

angular momentum. Protostars are thought to inherit the angular 

momentum of their natal core, which would naturally lead to most 

binaries having similar spin alignments. Observations have found 

multiple protobinary systems where the protostellar outflows are 

misaligned (Lee et al. 2016 ). We find that the distribution of the 

misalignment angle (i.e. angle between spins of the primary and its 

companions) is peaked towards lo wer v alues, i.e. companions tend 

to be aligned with their host stars (see Fig. 9 ), exhibiting a less 

random distribution than prior results Offner et al. ( 2016 ) and Lee 

et al. ( 2019 ). The distribution is fairly wide, and there is a significant 

number of companions with antiparallel spin alignments. We find that 

the companions of more massive stars tend to be less aligned than 

companions of lower mass stars and that spin alignment increases 

o v er time. Fig. 7 shows that massive stars are slightly more likely to 

have companions that formed at large distances ( ∼ 10 5 au ∼ 1 pc ), 

making their spin directions more likely to be unrelated. Also, high- 

mass stars accrete from a significantly larger gas reservoir o v er a 

longer accretion time period rather than a more localized gas ‘core’ 

(Paper I), and thus are less likely to have companions with aligned 

angular momentum vectors. Such misalignment has been found in 

recent observations of massive protostars (Avison et al. 2021 ). While 

multiple systems formed via turbulent fragmentation are less likely to 

have aligned spins compared to those formed by disc fragmentation 

(Offner et al. 2016 ; Lee et al. 2019 ), systems that accrete from 

the same limited gas reservoir apparently still exhibit some spin 

correlation. 

5.2 Connecting cloud properties and multiplicity 

We analyse a suite of simulations where the initial properties of the 

cloud are varied (Table 3 ) and find that most multiplicity properties 

are insensitive to global cloud parameters. We find that multiplicity 

properties (i.e. MF and CF) can significantly vary between runs with 

identical global parameters but different turbulent realizations (see 

Section 4 ), making it challenging to identify weaker trends. Note 

that observations are only able to constrain variations to changes 

in metallicity, as other properties of the natal cloud are not readily 

available once star formation ends. Moe, Kratter & Badenes ( 2019 ) 

showed that the multiplicity of Solar-type stars decreases with 

metallicity, due to a relative lack of close binaries. 

These trends are summarized in Table 4 , note that the changes 

in the final SFE and the shape of the IMF are investigated in 

detail in Paper III, here we just state the results. Similar to Bate 

( 2019 ), we find that the initial cloud metallicity has no clear effect 

on multiplicity v alues, e ven though observations show a strong 

anticorrelation (Moe et al. 2019 ). A possible explanation is that other 

cloud parameters (e.g. surface density) co-vary with metallicity for 

the observed multiples. Note that this trend was shown for close 

binaries only, which our simulation underpredict due to the lack of 

disc formation, which could also explain the discrepancy. We find 

that in most runs changes in the MF and CF coincide with an opposite 

change in the stellar mass density around newly formed stars. This 

provides a potential explanation of these trends as an increasing 

stellar density means a higher chance for dynamical interactions, 

disrupting existing binaries and making it harder for newly formed 

stars to capture a companion. In our simulations, an increase in the 

initial turbulence or continuous driving both weaken gravitational 

focusing in the cloud, leading to lower stellar densities. Starting 

from lower initial gas densities has a trivially similar effect. Overall, 

we find that multiplicity properties are sensitive to a different set of 

ICs than the IMF (see Paper III). 

We note that changing the initial surface density dramatically 

affected the fraction of companions at or below the gravitational 

softening length, implying that the surface density of the natal 

cloud likely influences the period distribution. Although we find no 

monotonic trend in either MF or CF with increasing initial magnetic 

field strength, we note that the run with the strongest field produces 

significantly higher multiplicity values, similar to the results of Lee 

et al. ( 2019 ). 

The spins of companions in all our simulations are more aligned 

than random pairings with their primaries, ho we ver, se veral initial 

parameters affect this distribution. Increased initial turbulence and re- 

duced surface density both lead to more randomized spin alignments. 

The effects of surface density and turbulence can be potentially 

explained by the changes in how distributed star formation is 

within the cloud. Higher surface density or weaker turbulent support 

enhance the gravitational focusing of the parent cloud, leading to 

the formation of more massive and denser clusters (Guszejnov 

et al. 2022a ). In a denser environment dynamical interactions are 

more common, so stars are more likely to both lose their original 

companions and capture ne w ones. Lo wering the metallicity also 

leads to an increase in the randomness of spin alignment. This 

trend can potentially be explained by low Z leading to higher 

gas temperatures, which makes protostellar cores larger, which 
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leads (on average) to increased initial separation between compan- 

ions that form through core fragmentation, making alignment less 

likely. 

5.3 Caveats 

While the simulation presented here are the current state-of-the- 

art for simulating star-forming clouds, like other simulations in 

the literature STARFORGE employs a large number of significant 

approximations and assumptions to make the simulations computa- 

tionally tractable (see the Methods Paper for detailed discussions). 

In particular, the runs used here have an ∼ 30 au Jeans-resolution, 

i.e. fragmentation on scales smaller than this are not resolved. This 

has dramatic effects on the formation of protostellar discs, causing 

the simulation to potentially miss close binaries that formed from 

disc fragmentation and o v erestimate stellar masses. Furthermore, the 

simulations have a ∼ 20 au gravitational softening length that creates 

a ‘pile-up’ of companions at this scale in the semimajor axis/period 

distribution (see Fig. 5 ). 

The simulations treat MHD in the ideal limit, assuming perfect 

coupling between the neutral gas and the magnetic fields. This 

approximation becomes invalid on the scale of protostellar discs, 

preventing the formation of long-lived protostellar discs and the 

formation of binaries through disc fragmentation. Also, we show 

that the initial and boundary conditions of the cloud can affect 

multiplicity properties, so for a more predictive simulation a self- 

consistent connection to larger scales is required. 

6  C O N C L U S I O N S  

In this work, we analyse the stellar multiplicity properties in the 

STARFORGE radiation-magnetohydrodynamic simulations. These 

simulations follow the evolution of mid-sized molecular clouds 

( M = 20000 M �) taking into account gravity, gas thermodynamics, 

turbulence, magnetic fields, and radiation as well as stellar feedback 

processes (jets, radiation, winds, and SNe). The simulation suite 

consists of our fiducial cloud with MW average properties ( 	 = 

63 M � pc −2 , αturb = 2) and 12 clouds where we varied one of the 

ICs (see Table 1 ). 

We qualitatively reproduce the observed MFs and companion 

frequencies for stellar masses significantly abo v e the 0 . 1 M � com- 

pleteness limit of the simulation. Previous works in the literature 

hav e dra wn similar conclusions for simulations with less physics (i.e. 

Bate 2012 does not include MHD or jets) and smaller cloud sizes (i.e. 

Mathew & Federrath 2021 ). While the raw simulation results match 

well with observations, when we correct for observational incom- 

pleteness and chance alignments, we find that the fiducial simulation 

underpredicts both the MF and the CF due to the significant fraction 

of low-mass ratio ( q < 0.1) companions. This discrepancy can be 

explained by the simulation missing a key formation channel for 

binaries: disc fragmentation. Our simulations treat MHD in the ideal 

limit of perfect gas-field coupling, which leads to efficient magnetic 

breaking and greatly suppresses the formation of protostellar discs. 

This means that multiples in the simulation can only form either 

through the fragmentation of turbulent cores or the dynamical 

capture of a companion. Furthermore, discs have been shown to 

regulate the accretion of binaries and drive the system towards 

higher mass ratios, which likely explains the large fraction of low q 

companions. Note that the multiplicity is sensitive to the simulation 

setup, such that our periodic box simulations that include external 

turbulent driving can reproduce observed values after accounting for 

observational incompleteness. Overall we conclude that capturing 

both disc fragmentation and having a realistic model for external 

driving are necessary for future simulations that aim to study stellar 

multiplicity. 

We show that the multiplicity properties evolve over time. The 

primary reason for the evolution is not stars losing their companions, 

but that early forming stars have significantly higher multiplicities 

than those that form near the end of the simulation. We find an inverse 

correlation between the stellar density around newly formed stars and 

their future multiplicity. This relationship can explain the trend in the 

MF and CF with several initial parameters. Specifically higher initial 

turbulence and lower cloud surface density both lead to lower stellar 

densities, and we find that these runs have higher multiplicity values 

for all masses. Also, replenishing turbulence (i.e. externally driving 

the turbulence in the cloud) significantly increases multiplicity values 

and lowers stellar densities. Despite having significant effects on the 

IMF, varying the metallicity or the ISRF showed no clear trend in 

either the MF or CF. 

We find that most companions form at 1000 –10000 au from their 

primaries, then ‘spiral in’ within < 1 Myr and settle at a much shorter 

orbital separation. A significant fraction of companions ‘pile-up’ 

at the gravitational softening length, which prevents any further 

hardening of these binaries. We find that the fraction of companions 

at these length-scales increases for higher initial surface densities, 

i.e. the average companion separation is smaller in higher density 

clouds. 

The mass distribution of companions in the simulation agrees with 

random sampling from the IMF for both low- and high-mass stars. 

This appears to be in contradiction to observations, which find a flat 

distribution for Solar-type stars (Raghavan et al. 2010 ). However, 

applying corrections for observational incompleteness dramatically 

flattens the distribution. This change is due to the high number of low- 

mass, short-period companions close to the gravitational softening 

length. 

The spins of companions tend to be aligned with their primaries 

in the simulation, although the distribution is wide. Increasing 

turbulence or decreasing metallicity shifts the distribution towards 

random alignment. 

Overall, our simulations allow us to predict the multiplicity statis- 

tics arising from either common core fragmentation or dynamical 

capture, with significantly better statistics than any previous work. 

In future work, we will run simulations that account for all three 

channels of multiple formation by including non-ideal MHD effects 

and having significantly lower gravitational softening lengths ( ∼au). 

A combined analysis of those results with the ones presented in this 

paper will give a detailed picture of the roles each formation channel 

plays in the formation of multiples. 
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AP PENDIX  A :  ESTIMATING  MU LTIPL ICIT Y  

E R RO R S  

Although the STARFORGE simulation are (to date) the largest full 

physics star formation simulations that follo w indi vidual stars, they 

still represent relatively small molecular clouds, with our fiducial run 

having M 0 = 2 × 10 4 M �, similar to the small GMCs in the Solar- 

neighbourhood (e.g. Taurus). Thus they only form a small number 

of massive stars, which naturally leads to high sampling errors. In 

this Appendix, we present a simple Bayesian model to estimate this 

error. 
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A1 Multiplicity fraction 

Let’s assume that in a certain mass bin, we have N primaries and we 

find k of them to be in multiples. This naturally leads to the estimate 

that the MF for that mass bin is MF = k / N . One would be tempted 

to estimate the uncertainty in MF by simply calculating the standard 

variations for a Poisson( k / N ) or binomial( N , k / N ) distribution. These, 

ho we ver, both fail in the k → 0 limit. Instead, we use Bayes theorem 

to calculate the conditional probability density function f ( p | N , k ): 

f ( p| N, k)d p = P ( MF ∈ [ p, p + dp] | N, k) , (A1) 

where P (... | ...) denotes conditional probability. Let us assume that k 

is chosen from a binomial( N , p ) distribution (i.e. of N systems each 

has p chance of being a multiple) and use a uniform prior, i.e. P (MF 

∈ [ p , p + d p ]) = d p . From Bayes theorem it follows that 

f ( p| N, k ) = 
( N + 1)! 

( N − k )! k ! 
p 

k (1 − p) N−k . (A2) 

For our estimate of MF we take the most likely value, which is simply 

k / N (alternatively one could also use the mean value, which is ( k + 

1)/( N + 2)). For the error, we take the standard variation, which is 

σ 2 
MF ( N, k) = 

∫ 1 

0 

p 
2 f ( p| N, k) −

(
∫ 1 

0 

pf ( p| N, k) 

)2 

= 
( k + 2)( k + 1) 

( N + 3)( N + 2) 
−

(

k + 1 

N + 2 

)2 

= 
( N − k + 1)( k + 1) 

( N + 3)( N + 2) 2 
. (A3) 

Note that for N � 1 and k � 1 the abo v e equation simplifies to 

σ 2 
MF ( N, k) ≈ k( N − k) /N 

3 , equal to what the naive binomial ( N , 

k / N ) assumption would give. 

A2 Companion frequency 

We estimate the error of the CF similarly to the approach we used to 

compute the error of the MF, but we instead assume that the number 

of companions follows a Poisson distribution with mean value λ. 

For λ, we adopt a uniform prior on [0,3] as we don’t have any stars 

with more than three companions. Since the sum of similar Poisson 

variables also follows a Poisson distribution, we can easily construct 

the conditional probability density function g ( λ| N , k ) for N systems 

with k companions in total, which yields 

g ( λ| N, k ) = 
Nk ! 

γ ( k + 1 , 3 N ) 

λk N 
k e −λN 

k ! 
, (A4) 

where γ ( x , y ) = 
∫ x 

0 t 
y−1 e −t d t is the lower incomplete gamma func- 

tion. As with MF we take the most likely value as our estimate for 

the CF, so CF = k / N . Using g ( λ| N , k ) we estimate the error with the 

standard variation, which yields 

σ 2 
CF ( N, k) = 

∫ 3 

0 

λ2 g ( λ| N, k ) −

(
∫ 3 

0 

λg ( λ| N, k ) 

)2 

= 
γ ( k + 3 , 3 N ) 

N 2 γ ( k + 1 , 3 N ) 
−

(

γ ( k + 2 , 3 N ) 

N γ ( k + 1 , 3 N ) 

)2 

. (A5) 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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