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ABSTRACT

Distributed machine learning (ML) can bring more computational

resources to bear than single-machine learning, thus enabling re-

ductions in training time. Distributed learning partitions models

and data over many machines, allowing model and dataset sizes be-

yond the available compute power and memory of a single machine.

In practice though, distributed ML is challenging when distribution

is mandatory, rather than chosen by the practitioner. In such sce-

narios, data could unavoidably be separated among workers due

to limited memory capacity per worker or even because of data

privacy issues. There, existing distributed methods will utterly fail

due to dominant transfer costs across workers, or do not even apply.

We propose a new approach to distributed fully connected neu-

ral network learning, called independent subnet training (IST), to

handle these cases. In IST, the original network is decomposed into

a set of narrow subnetworks with the same depth. These subnet-

works are then trained locally before parameters are exchanged to

produce new subnets and the training cycle repeats. Such a nat-

urally łmodel parallelž approach limits memory usage by storing

only a portion of network parameters on each device. Additionally,

no requirements exist for sharing data between workers (i.e., sub-

net training is local and independent) and communication volume

and frequency are reduced by decomposing the original network

into independent subnets. These properties of IST can cope with

issues due to distributed data, slow interconnects, or limited device

memory, making IST a suitable approach for cases of mandatory dis-

tribution. We show experimentally that IST results in training times

that are much lower than common distributed learning approaches.
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1 INTRODUCTION

Distributed training of neural networks (NN) over a compute cluster

is a common task in modern computing systems [12, 19, 31, 46, 56].

Sometimes, it is the case that distributed training is a choice, and

the practitioner is fully in control of the training environment.

Namely, practitioners opt for distribution with the goal of using

extra hardware to lower the wall-clock time to convergence, or

to allow more resources (such as memory or CPU/GPU cycles) to

be brought to bear on the problem of training a model. Consider

the task of training a model such as GPT-3 [6], which requires

on the order of 1000 years of GPU time to train. Thousands of

GPUs can be used to lower the time to weeks or months. In such a

training scenario, the different sites or compute units are typically

connected with a high-speed network, and the hardware is often

carefully tailored to the task of distributed training.

However, there are other cases where distribution is mandatory

and the hardware may be sub-optimalÐvery far from the idealized

environment a company such as OpenAI uses to train GPT-3. For

example, consider a case where the training dataset is fragmented

across several locations and organizations with privacy mandates

preventing the possibility of centralized computing [15, 17, 59, 65,

85]. The training set may be large, and stored across hundreds of

machines [11, 18, 32, 45, 53, 55, 74].

Here, the data sits where it happens to sit, and the computing

environment is often not under the practitioners’ control, forc-

ing NN training to be conducted over a less-than-ideal hardware

setup (e.g., too many compute nodes, CPUs, low-end GPUs, low-

bandwidth interconnects, etc.). Such scenarios arise often in practice

[8, 9, 41]. Even NN training on public compute clouds (e.g., Amazon

EC21) suffers from the combination of slow interconnects with

high-performance GPUs [50].

We argue that common methods of distributing ML computa-

tions cannot be expected to handle such non-ideal environments

gracefully, and new methods are needed. In distributed NN training,

existing methods are roughly categorized into model parallel and

data parallel methodologies. In practice, data parallel methodolo-

gies are most commonly used and supported due to their ease of

implementation [1, 52]. In model parallel training [19, 31], portions

of the NN are partitioned across different compute nodes, while, in

the latter [27, 54, 84], the complete NN is updated with different

data on each compute node. Data parallel methods suffer when

189% of cloud-based deep learning projects are executed on EC2, according to Amazon’s
marketing materials.
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bandwidth is limited because they must transfer an entire model

to each site in order to synchronize the computation. For a large

model with many parameters, this is not a reasonable requirement.

However, in typical mandatory distribution scenarios, model par-

allel methods are not a reasonable option, either. When data are

sharded across sites, model parallel computing implies that different

parts of a model can only be updated to reflect the data present

at any given node. For these parts to stay synchronized, very fine-

grained communication is required. Thus, neither data parallel nor

model parallel is fully capable of handling mandatory distribution

scenarios.

Independent subnet training. In response to this, we propose

independent subnet training (IST), a novel distributed training tech-

nique on fully connected NNs that combines techniques frommodel

and data parallel training to maximize communication efficiency.

Inspired by dropout [66] and approximate matrix multiplication

[25], IST decomposes fully-connected NN layers by distributing

the neurons disjointly across different sites, forming a group of

subnets. Then, each of these subnets is trained independently for

one or more local stochastic gradient descent (SGD) iterations be-

fore synchronization [47]. After synchronization, parameters are

re-distributed based on a new, random neuron sampling, and the

local subnet training process repeats.

IST focuses upon the distributed training of NNs with fully-

connected layers. Such a focus has also applications in diverse

NN architectures (e.g., convolutional NNs [33]): the majority of

NN models typically contain large, fully-connected layer, and such

layers typically dominate the total number of parameters. As such,

IST can be applied to the fully-connected portion of the networks

to yield a performance speedup; see Sec. 3.

In cases of mandatory distribution, model parallel training is

impractical because it requires that all data is present on the server

that passes data into the network’s input module.2 Furthermore, we

claim that, under mandatory distribution, IST is more capable than

techniques like data parallel training due to its ability to reduce

communication volume and memory usage to cope with hardware

limitations. Synchronization in IST is simply an exchange of pa-

rameters between sites3 (i.e., no parameters are shared between

subnets) and no synchronization is required during local updates,

thus reducing per-step communication volume on multiple fronts.

Furthermore, IST limits its memory usage by only sending a small

portion of its parameters to each device, which prevents model

capacity from being limited by the memory of a single device.

Contributions. Our proposal aggressively reduces the commu-

nication bottlenecks that plague the scalability of most popular

methods of distributed NN training. As such, IST is most beneficial

for training networks with fully-connected layers in cases of manda-

tory distribution, where training is highly-distributed and hardware

is less-than-ideal. The key contributions of our work can be sum-

marized as follows.

2If data is fragmented across many machines, model parallel training would struggle
greatly to visit the entire dataset during training, as the input module is only stored
on a single node and all data used during a particular training round must be present
on this node.
3Each node in an 𝑛-machine cluster will receive a fraction between 1

𝑛2
and 1

𝑛 of total

model parameters under IST, while data parallel training requires all model weights to
be communicated between machines.

• We propose IST, a distributed training methodology that com-

bines ideas from model and data parallel training by breaking the

original NN into a set of disjoint subnetworks that are distributed,

locally trained, and re-assembled per iteration.

• We evaluate IST on speech recognition, image classification (CI-

FAR10 and full ImageNet4), and large-scale product recommen-

dation tasks. Using bandwidth-optimal ring all-reduce [72], IST

is shown to improve time-to-convergence by as much as 10× in

comparison to a state-of-the-art implementation of data parallel

training and łvanillaž local SGD [47] (i.e., the only practically

viable options under mandatory distribution), as well as surpass

the performance of the widely-used ensemble learning method.

• We demonstrate that IST, by enabling models with larger embed-

ding dimensions (i.e., too large for data parallel training) to be

trained, is capable of solving an łextremež product recommenda-

tion task with improved generalization.

• Finally, we theoretically show that such IST decomposition still

guarantees sublinear convergence to a first-order stationary point

on expectation under common assumptions.

2 TRAINING VIA INDEPENDENT SUBNETS

2.1 Methodology

Notation. Assume 𝑛 sites in a distributed system. Let 𝑓𝑙 denote

that vector of activations at layer 𝑙 . 𝑓𝑡 denotes the set of activations

at the final or łtopž layer of the network, and 𝑓0 denotes the feature

vector that is input into the network. Assume that the number of

neurons at layer 𝑙 is 𝑁𝑙 . Let ℓ (𝑤, ·) denote the loss function of a NN

with parameter𝑤 . Given samples 𝑋 := {𝑥𝑖 , 𝑦𝑖 }
𝑞
𝑖=1, we aim to find a

𝑤★ that minimizes the empirical loss over a set of labeled examples:

𝑤★ ∈ argmin
𝑤

1

𝑞

𝑞
∑

𝑖=1

ℓ (𝑤, {𝑥𝑖 , 𝑦𝑖 }) . (1)

Although (1) can be solved in numerous ways [26, 42, 60, 71, 80],

nearly all NN training is accomplished using some variant of SGD.

Here, 𝜂 > 0 is the learning rate and 𝑖𝑡 denotes a subset of training

examples from 𝑋 .

Constructing Subnets. IST is a distributed training regime that

randomly partitions hidden neurons via uniform assignment to

one of 𝑛 possible compute nodes. Neurons assigned to the same

compute node form a łsubnetž. Then, the weights of the full NN are

partitioned accordingly based on the active neurons for each subnet.

Hidden neurons are assigned to exactly one subnet to ensure that

𝑖) all neurons are included in training and 𝑖𝑖) the same neuron is

not simultaneously partitioned to multiple subnets.

Subnet construction is depicted in Figure 1 for a two-hidden-

layer NN distributed across 𝑛 = 2 compute nodes. Input and output

layers are fully utilized at all sites. Notably, certain parameters are

not partitioned to any subnet within multi-layer NNs.5 However, in

contrast to ensemble-style techniques, IST randomly samples new

subnets frequently throughout the learning process, ensuring that

4We underline the use of the full ImageNet dataset [14, 43] that includes 14,197,122
images, divided into 21,841 classes.
5Parameters are only active within a subnet if both input and output neurons associated
with that parameter are sampled in the same subnet. For NNs with a single hidden
layer, all parameters are included in some subnet because input and output neurons
are shared across compute nodes.
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Figure 1: Schematic depiction of a two-hidden-layer NN being trained with IST across two nodes. Each layer’s neurons are

partitioned randomly to a single node, excluding input and output neurons (i.e., these are shared between sites). The first two

iterations of IST are depicted, but the same process of sampling, training, and aggregating subnets repeats until convergence.

all parameters have a high likelihood of being trained sufficiently

after several subnet groups have been sampled.

Subnet output is computed by masking (i.e., setting to zero)

inactive neurons and scaling remaining activations by a factor of

𝑛2 (i.e., to counteract neuron removal with uniform probability 1
𝑛 ).

Such a forward pass, which is formalized inAppendix A, provides an

unbiased estimate of the full NN forward pass (excluding activation

functions). Furthermore, performing uniform sampling of neurons

independently at each layer yields sublinear convergence to a first-

order stationary point on expectation; see Appendix B. Thus, we

adopt this uniform sampling policy in IST due to its unbiased nature

and rigorous theoretical guarantees.

Distributing Subnets. The 𝑛 subnets produced by IST are disjoint,

meaning that no model parameters are simultaneously partitioned

to multiple subnets. As a result, when distributed to a separate

compute node, subnets 𝑖) require no cross-site communication

during their forward pass, and 𝑖𝑖) only require a fraction 1
𝑛2 of

layer parameters to be sent to each compute node. Thus, subnets

can be distributed to separate compute nodes without significant

communication overhead and trained with no dependence upon other

subnetsÐan approach that is adopted directly within IST.

Training Subnets. For training, IST sends each of the 𝑛 subnets

to a separate compute node and performs 𝐽 iterations of local SGD

[47]. After such independent training iterations, subnet parameters

are copied back into the full NN, where no collisions occur because

the parameter partition is disjoint. Then, a new group of subnets

is constructed through random sampling (i.e., a łre-samplingž of

network parameters) and the process repeats.

Unlike ensemble methods that independently train each subnet

and aggregate parameters into the full NN once at the end of train-

ing, IST re-samples subnets frequently and trains them for a shorter

number of iterations between re-samplings. Such re-sampling is

necessary to avoid the accumulation of random effects, as the ex-

pected input to a neuronÐdespite being unbiasedÐwill shift after

backpropagation. Such a shift may be inconsistent across sites,

because subnets are trained on data samples from the same distri-

bution; but, re-samplingÐwhich is not present within ensemble

methodsÐguards against such an occurrence.

2.2 Additional Considerations

Correcting Distributional Shift. The analysis of the unbiased

subnet forward pass in Appendix A does not consider the NN’s

non-linear activation function.6 Within IST, the inputs to each sub-

net neuron are sub-sampled and scaled by a factor of 𝑛2 to unbias

the neuron’s activation, which increases the standard deviation of

the input to each neuron by a factor of 𝑛. As a result, extreme input

values are more likely to be observed during training (i.e., when us-

ing subnets) than during deployment. To correct this distributional

mismatch, we remove the 𝑛2 correction factor and instead compute

the mean 𝜇 and standard deviation 𝜎 of the inputs to each neuron

during training and transform subnet output as 𝑥 = (𝑥 − 𝜇)/𝜎

before passing it through the non-linear activation function. After

training is complete, we compute 𝜇 and 𝜎 for each neuron over a

small subset of training data using the full networkÐthese values

can then be used when the network is deployed.

Although this approach is similar to batch normalization [36],

the motivation for its use is much different. Namely, while batch

normalization maintains a non-saturated range of neuron input

during training to accelerate convergence and improve generaliza-

tion, IST will not work in the absence of such normalization. The

distributional shift encountered when deploying the network must

be corrected, making this modification an essential component of

IST, rather than an aid to model training and performance.

Other Architectures. IST can be extended to common network

architectures (e.g., convolutional NNs) by applying IST only to fully-

connected layer(s) within the network (i.e., these exist within most

modern convolutional NN architectures). Here, the fully-connected

layers would be decomposed as described previously, while the rest

6
E[𝑥 ] = 𝑏 does not imply that E[𝑓 (𝑥) ] ≈ 𝑓 (𝑏) for some random variable 𝑥 when 𝑓
is non-linear.
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of the network is broadcast to every site during training. Such an

approach has significant benefits, as fully-connected layers tend to

contain a large portion of network parameters.7 Thus, improving

the efficiency of distributed training over fully-connected layers

benefits the distributed training process for the entire network.

2.3 Analysis

IST reduces communication overhead in comparison to data parallel

training approaches, which broadcast all parameters across sites

during each round of training. Measuring the inflow to each site,

the total network traffic of data parallel training per gradient step

is (in floating point numbers transferred):

𝑡
∑

𝑖=1

𝑛𝑁𝑖−1𝑁𝑖 .

In contrast, in IST, each site receives current parameters every 𝐽

gradient steps (i.e., assuming 𝐽 iterations of local SGD are performed

between re-sampling rounds). Furthermore, subsampling the NN

into multiple subnets further reduces the communication cost of IST

because input/ouput layers are partitioned (not broadcast) across

nodes and each node receives only a 1
𝑛 ratio of other network

parameters. The total network traffic of IST per gradient step is:

𝑁0𝑁1 + 𝑁𝑡−1𝑁𝑡

𝐽
+

𝑙
∑

𝑖=1

𝑁𝑖−1𝑁𝑖

𝑛 × 𝐽
.

Similarly, IST reduces computational resource utilization in com-

parison to data parallel. Given the FLOPs required by matrix multi-

plications during forward/backward steps, in łclassicalž data paral-

lel training, the number of FLOPS required per gradient step is:

4

𝑙
∑

𝑖=1

𝐵𝑁𝑖−1𝑁𝑖 .

In contrast, the number of FLOPS gradient step within IST is:

4𝐵𝑁0𝑁1 + 4𝐵𝑁𝑡−1𝑁𝑡 + 4𝐵

𝑙
∑

𝑖=1

𝑁𝑖−1𝑁𝑖

𝑛
.

Note that this computational reduction indicates that training

models with IST reduces memory requirements, which enables the

training of larger models as shown in Sec. 3.

Convergence Guarantees. We show that the IST decomposition

guarantees convergence to a first-order stationary point on expecta-

tion in the distributed setting. Namely, under common assumptions

of smoothness, Lipschitz continuity of the objective, and stochastic

error boundedness, IST converges sublinearly to a bounded error

region around a stationary point; see Appendix B.

3 EMPIRICAL EVALUATION

In this section, we design a set of experiments that showcase the

potential benefits of the IST approach under cases of mandatory

distribution with limited hardware capabilities. In these cases, we

assume slow networks connections with CPUs or GPUs (possibly

with limited memory) available on each node. We consider a wide

7Consider the full ImageNet dataset [21, 44] for a deep model like ResNet50: the
convolutional layers have 17,614,016 parameters (67.2MB, 28.2%), whereas the fully-
connected layer has 44,730,368 parameters (170.6MB, 71.8%) that utilized in IST.

variety of learning tasks and network architectures (i.e., both fully-

connected NNs andmore complex NNs that contain fully-connected

layers).

3.1 Setup and Details

As previously mentioned, model parallel training is not appropriate

for mandatory distribution, as all needed data must be stored on the

node that houses the network’s input module. Furthermore, due to

the assumption of limited memory on each device, our experiments

typically consider shallow, fully-connected NNs with wide hidden

layers.8 Popular model parallel training packages (e.g., Gpipe [34])

struggle to perform well on wide models with few layers, providing

further evidence that model parallel training is not the proper

training approach when distribution is mandatory. As such, we

adopt local SGD [47], data parallel training, and ensemble learning

as our major experimental baselines.

Experimental Settings. We consider the following scenarios:

• Google Speech Commands [69]: We learn a 2-layer network of

4096 neurons and a 3-layer network of 8192 neurons to recog-

nize 35 labeled keywords from audio waveforms (in contrast

to the 12 keywords in prior reports [69]). We represent each

waveform as a 4096-dimensional feature vector [67].

• Image classification on CIFAR10 and full ImageNet [33, 63]: We

train the Resnet18 model over CIFAR10, and the VGG12 model

over full ImageNet (see Section 2.2 for a discussion of IST and

non-fully connected architectures). Note that we include the

complete ImageNet dataset with all 21, 841 categories and

report the top-10 accuracy [24, 43, 58].

• Amazon-670k [5]: We train a 2-layer, fully-connected neural

network, which accepts a 135, 909-dimensional input feature,

and generates a prediction over 670, 091 output labels.

We train Google speech and Resnet18 on CIFAR10 on three AWS

CPU clusters, with 2, 4, and 8 CPU instances (m5.2xlarge). We

train the VGG model on full ImageNet and Amazon-670k extreme

classification network on three AWS GPU clusters, with 2, 4, and 8

GPU machines (p3.2xlarge). Our choice of AWS was deliberate,

as it is a common platform for distributed training and presents

the common challenge faced by many consumersÐdistributed ML

without a super-fast interconnect.

Distributed ImplementationNotes.We implement a distributed

parameter server for IST in PyTorch.We compare IST to the PyTorch

implementation of data parallel learning. We also adapt the PyTorch

data parallel learning to realize local SGD [47] and ensemble learn-

ing, where learning occurs locally for a number of iterations before

synchronizing. For ensemble learning, this synchronization only

occurs once at the end of training.

For the CPU experiments, we use PyTorch’s gloo backend. For

the GPU experiments, data parallel learning and local SGD use Py-

Torch’s nccl backend, which leverages the most advanced Nvidia

collective communication library (the set of high-performance

multi-GPU and multi-node collective communication primitives op-

timized for NVIDIA GPUs). Nccl implements ring-based all-reduce

8The memory usage of IST scales linearly with increasing network depth, but small
portions of each hidden layer can be partitioned to each subnet in order to limit
increased memory usage due to larger hidden layers.
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Table 1: The time (in seconds) to reach various levels of accuracy.

Google Speech 2 Layer

Data Parallel Local SGD IST

Accuracy 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node

0.63 118 269 450 68 130 235 35 28 24

0.75 759 1708 2417 444 742 1110 231 167 192

Google Speech 3 Layer

Data Parallel Local SGD IST

Accuracy 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node

0.63 376 1228 1922 182 586 1115 76 141 300

0.75 4534 9340 14886 2032 4107 6539 812 664 1161

CIFAR10 Resnet18

Data Parallel Local SGD IST

Accuracy 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node

0.85 21775 13689 6890 18769 12744 7020 15093 7852 5241

0.90 54002 38430 17853 36891 22198 12157 33345 16798 13425

Full ImageNet VGG12

Data Parallel Local SGD IST

Accuracy 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node

0.20 108040 278542 504805 6900 14698 30441 3629 4379 5954

0.26 225911 393279 637188 15053 22055 39439 6189 7711 10622
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Figure 2: Test accuracy versus time. 2-/3- layer Google speechmodels are trained using an 8-CPU cluster; Resnet18 on CIFAR10

is trained using 4-CPU cluster; VGG12 on full ImageNet is trained using a 8-GPU cluster. The number after local SGD or IST

legend represents the local update iterations.

[72], which is used in well-known distributed learning systems

such as Horovod [62].

IST cannot use the nccl backend because it does not support

the scatter operator required to implement IST. As a result, IST

must use the gloo backend (meant for CPU-based learning), which

is a serious handicap but does not reflect any intrinsic flaw of the

methodÐhigh-performance GPU libraries simply lack support for

required operations.

3.2 Results and Analysis

Convergence speed. While IST can process data quickly (i.e.,

due to previously-described improvements in communication effi-

ciency), there are questions regarding its statistical efficiency and

generalization performance in comparison to baseline methods.

Figure 2 plots the hold-out test accuracy for selected benchmarks as

a function of time, while Table 1 shows the training time required

for IST and relevant baselines to reach specified levels of hold-out

test accuracy.

Our results generally indicate that IST achieves high accuracy

on the test set much faster than other frameworks. For example,

in reaching an accuracy of 77% with a 2-layer, fully-connected

network, IST exhibits a 4.2× speedup compared to local SGD and a

10.6× speedup compared to data parallel. Similarly, IST exhibits a

6.1× speedup compared to local SGD and a 16.6× speedup compared

to data parallel in reaching the same accuracy with a 3-layer model.

Note that the above improvements were observed even though

IST was handicapped by its use of the gloo backend for its GPU

implementation.
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Table 2: Final accuracy on each benchmark.

Data Parallel Local SGD IST

Speech 2 layer 0.7938 0.7998 0.8153

Speech 3 layer 0.7950 0.7992 0.8327

CIFAR10 0.9128 0.9087 0.9102

Full Imagenet 0.3688 0.3685 0.3802

Table 3: Test accuracy on Google Speech Commands.

Compute Nodes
2 Layer 3 Layer

IST Ensemble IST Ensemble

2 Node 0.82 0.82 0.84 0.74

4 Node 0.79 0.80 0.82 0.71

8 Node 0.76 0.77 0.78 0.70

Because CPUs were used for training on CIFAR10, the network

was less of a bottleneck and all methods were able to scale, thus

slightly negating the advantages of IST. Despite reaching 90% accu-

racy slower on an 8-CPU cluster, however, IST was still the fastest

to reach 85% accuracy. Furthermore, for the full ImageNet data

set, the communication bottleneck using AWS is so severe that the

smaller clusters were always faster. At each cluster size, IST was

still the fastest option.

Trained model accuracy. In Table 2 we give the final accuracy of

each method, trained on a 2-node cluster in various experimental

settings. As can be seen, despite partitioning the full networks into

several independently-trained subnets, IST achieves better final ac-

curacy in comparison to data parallel and local SGD training on all

datasets except for CIFAR10. On the CIFAR10 dataset, IST achieves

test accuracy 0.26% lower than data parallel training, but outpe-

forms local SGD. Furthermore, IST continues to achieve high final

accuracy as the number of compute nodes is increased, as shown

in Table 3. Thus, IST achieves highly-comparable or improved final

accuracy in comparison to local SGD, data parallel, and ensemble-

based training in all settings, revealing that the partitioning strategy

of IST does not deteriorate the network’s ability to match or exceed

the accuracy achieved by baseline methodologies.

As previously mentioned, IST also enables models to be trained

that are too large to be handled by a single device. In cases of

mandatory distribution, such a property is useful for training suffi-

ciently large models despite limited memory on individual compute

nodes. To demonstrate the utility of this property of IST, we study

the relationship between embedding dimension and test accuracy

for fully-connected models trained on the Amazon-670K recom-

mendation task in an 8-GPU cluster. As shown in Table ??, IST is

able to scale to larger model sizes without exceeding the memory

capacity of individual nodes. Such scalability enables a > 15% test

accuracy improvement in comparison to data parallel training, thus

demonstrating that IST allows models with sufficient capacity to

be trained despite the restricted memory of each device.

Comparison to Ensemble Learning. IST intermittently aggre-

gates subnet parameters and re-samples a new group of subnets

for independent training. Although ensemble learning trivially im-

proves communication efficiency and wall-clock training time (i.e.,

due to utilizing fewer synchronizations), re-sampling is necessary

for achieving high network performance. To show this, we perform

tests with ensemble learningÐi.e., training a group of subnet-sized

models independently and aggregating their parameters once at the

end of trainingÐand IST on the Google Speech Commands dataset;

see Table 3.

Ensemble learning and IST perform similarly for two-layer net-

works 2.2. Such comparable performance is expected because 𝑖)

two-layer networks are separable [13] (i.e., each hidden neuron

contributes independently to network output without inter-neuron

interaction) and 𝑖𝑖) all parameters within the one-hidden-layer NN

are partitioned to some subnet. In such a simplified case, ensem-

ble learning is able to performing well by independently learning

meaningful neuron representations that can be aggregated into the

global network.

For deeper networks, no re-sampling during training leads nu-

merous network parameters to be excluded from the learning pro-

cess and allows random effects to accumulate throughout training,

thus drastically deteriorating ensemble learning performance. As

such, IST significantly outperforms ensemble learning with three-

layer networks (e.g., 10% absolute improvement with𝑛 = 2 compute

nodes), revealing that IST has a significant performance advantage

relative to ensemble learning for complex, multi-layer network

architectures. Thus, although ensemble learning is faster to com-

plete a fixed number of training epochs, it cannot yield comparable

performance to networks trained with IST.

Discussion. There are a few takeaways from the experimental

results. First, as expected, IST is able to process far more data in a

short amount of time than the other distributed training algorithm.

Interestingly, we find that the IST speedups in CPU clusters aremore

significant than that in GPU clusters. There are two reasons for this.

First, for GPU clusters, IST suffers from its use of PyTorch’s gloo

backend, compared to the all-reduce operator provided by nccl.

Second, since the GPU provides a very high level of computation,

there is less benefit to be realized from the reduction in FLOPS per

gradient step using IST (as the GPU does not appear to be compute

bound).

It is interesting that some of the frameworks actually do worse

with additional machines, especially with a fast GPU. This illustrates

a significant problem with distributed learning. Unless a super-fast

interconnect is used (and such interconnects are not available from

typical cloud providers), it can actually be detrimental to add addi-

tional machines, as the added cost of transferring data can actually

result in slower running times. We see this clearly in Table 1, where

the state-of-the-art PyTorch data parallel implementation (and the

local SGD variant) does significantly worse with more machines.

IST shows the best potential to utilize additional machines without

actually becoming much slower or slower to reach high accuracy.

Finally, we note that various compression schemes can be used to

increase the bandwidth of the interconnect (e.g., gradient sparsifica-

tion [2], quantization [3], sketching [37], and low-rank compression

[68]). However, these methods could be used with any frameworkÐ

including IST. We conjecture that while compression may allow

effective scaling to larger clusters, it would not affect the efficacy

of IST.
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Table 4: Precision @1, @3, @5 on Amazon 670k.

Data Parallel IST

Dim. @1 @3 @5 @1 @3 @5

512 0.386 0.345 0.316 0.396 0.360 0.331
1024 Fail to handle 0.409 0.369 0.339
1536 Fail to handle 0.432 0.391 0.361
2048 Fail to handle 0.437 0.394 0.364
2560 Fail to handle 0.438 0.394 0.366

4 RELATED WORK

Data parallelism often suffers from the high bandwidth costs to

communicate gradient updates between workers. Quantized SGD

[3, 16, 22, 30, 35, 61, 70] and sparsified SGD [2] both address this.

Quantized SGD uses lossy compression to quantize the gradients.

Sparsified SGD reduces the exchange overhead by transmitting the

gradients with maximal magnitude. Such methods are orthogonal

to IST, and could be used in combination with it.

Recently, there has been a series of papers on using parallelism

to łSolve the YY learning problem in XXminutesž, for ever-decreasing

values of XX [14, 29, 64, 73, 76ś78]. Often these methods employ

large batches. It is generally acceptedÐthough still debated [23]Ð

that large batch training converges to łsharp minimaž, hurting

generalization [20, 39, 75]. Further, achieving such results seems to

require teams of PhDs utilizing special-purpose hardware: there is

no approach that generalizes well without extensive trial-and-error.

Distributed local SGD [49, 81, 82, 86] updates the parameters,

through averaging, only after several local steps are performed per

compute node. This reduces synchronization and thus allows for

higher hardware efficiency [82]. IST uses a similar approach but

makes the local SGD and each synchronization round less expen-

sive. Recent approaches [47] propose less frequent synchronization

towards the end of the training, but they cannot avoid it at the

beginning.

Finally, asynchrony avoids SGD synchronization cost [19, 51,

57, 83]. It has been used in distributed-memory systems, such as

DistBelief [19] and the Project Adam [42]. While such systems,

asymptotically, show nice convergence rate guarantees, there seems

to be growing agreement that unconstrained asynchrony does not

always work well [10], and it seems to be losing favor in practice.

Overall, the goal of such distributed training methods is to

lower the wall-clock time-to-convergence with the addition of

extra hardware. As such, empirical analysis of these methods is

often conducted using state-of-the-art computing hardware with

high-bandwidth interconnects. Even with access to such an ideal

environment, however, data parallel approaches struggle to scale.

In particular, per-node compute requirements are reduced while

synchronization costs remain constant or increase, leading to cases

where the addition of more nodes makes training slower as commu-

nication costs begin to dominate the training procedure. This issue

could theoretically be mitigated with the use of larger batches, but

such an approach often degrades statistical efficiency and leads to

poor generalization [14, 28, 29, 48, 64, 73, 76ś78].

5 CONCLUSION

In this work, we propose independent subnet training for distributed

training of neural networks. By stochastically partitioning the

model into non-overlapping subnets, IST reduces the communi-

cation overhead for model synchronization, and the computation

workload of forward-backward propagation for a thinner model on

each worker. This results in two advances: 𝑖) IST significantly accel-

erates the training process comparing with standard data parallel

approaches for distributed learning, and 𝑖𝑖) IST scales to large mod-

els that cannot be learned using standard data parallel approaches.

A IST IS AN UNBIASED ESTIMATOR

We formalize subnet construction in IST with a set of neuron mem-

bership indicators𝑚
(𝑠)

𝑙,𝑖
∈ {0, 1} at each layer 𝑙 where 𝑠 ranges over

the 𝑛 compute nodes and 𝑖 ranges over all the neurons in layer

𝑙 .𝑚 (𝑠) contains a binary mask for subnet 𝑠 across all layers and

neurons. For each entry𝑚
(𝑠)

𝑙,𝑖
, a value of {0, 1} is assigned with mar-

ginal probability P[𝑚
(𝑠)

𝑙,𝑖
= 1] = 1

𝑛 to exactly one of the 𝑛 subnets,

implying that
∑

𝑠𝑚
(𝑠)

𝑙,𝑖
= 1 (i.e., neurons are partitioned to exactly

one subnet) and E[𝑚
(𝑠)

𝑙,𝑖′
𝑚

(𝑠)

𝑙−1,𝑖
] = 1

𝑛2 (i.e., sampling is independent

at each layer).

Using these constructions, we can define the forward pass of

subnet 𝑠 at layer 𝑙 as

𝑓
(𝑠)

𝑙
= 𝑛2

(

𝑚
(𝑠)

𝑙
⊙
(

𝑊𝑙

(

𝑚
(𝑠)

𝑙−1
⊙ 𝑓𝑙−1

)))

(2)

where ⊙ denotes the Hadamard product,𝑊𝑙 is the weight matrix

between layers 𝑙 − 1 and 𝑙 , and 𝑓
(𝑠)

𝑙
= S(𝑓

(𝑠)

𝑙
) (i.e., ·̂ and ·̄ denote

representations before and after the non-linear activation function

S). To gather the activations produced by each subnet into a sin-

gle vector, we sum over subnet activations as 𝑓𝑙 =

∑

𝑠 𝑓
(𝑠)

𝑙
. The

Hadamard products in (2) mask out neuron activationsÐboth in

𝑓
(𝑠)

𝑙
and 𝑓𝑙−1Ðthat are not relevant to subnet 𝑠 .9

Interestingly, if 𝑓𝑙−1 is an unbiased estimator of the full network

output 𝑓 ★
𝑙−1

, then 𝑓𝑙 is an unbiased estimator of𝑊𝑙 𝑓
★

𝑙−1
. To show

this, we consider the 𝑗th entry of

𝑛2
∑

𝑠

𝑚
(𝑠)

𝑙
⊙
(

𝑊𝑙

(

𝑚
(𝑠)

𝑙−1
⊙ 𝑓𝑙−1

))

,

for which the expectation can be written as

E

[

𝑛2
∑

𝑠

∑

𝑖

∑

𝑖′

𝑊𝑙,𝑗,𝑖𝑚
(𝑠 )

𝑙,𝑖′
𝑚

(𝑠 )

𝑙−1,𝑖
𝑓𝑙−1,𝑖

]

= 𝑛2
∑

𝑠

∑

𝑖

1

𝑛2
𝑊𝑙,𝑗,𝑖E

[

𝑓𝑙−1,𝑖
]

=

∑

𝑖

𝑊 𝑙
𝑙,𝑗,𝑖 𝑓

★

𝑙−1,𝑖

which is precisely the 𝑗th entry in𝑊𝑙 𝑓
★

𝑙−1
.

B CONVERGENCE GUARANTEES FOR IST

We will discuss the convergence behavior of IST in this section.

Given space constraints, we do not give a proof of the central

Theorem and corollary; those are left to the full version of the

paper [79].

Consider minimizing ℓ (𝑤) = 1
𝑛

∑𝑛
𝑖=1 ℓ𝑖 (𝑤) as in Equation 1. Our

analysis adopts six assumptions, labeled Assumption 1 through

Assumption 6.

9In practice, such masking is not actually performed. Rather, we partition the weight
matrix such that inactive neurons are never computed.
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Assumption 1. (𝐿𝑖 -smoothness) Given component ℓ𝑖 of ℓ function,

there exists constant 𝐿𝑖 > 0 such that for every𝑤1,𝑤2 ∈ R𝑝 we have

that:

∥∇ℓ𝑖 (𝑤1) − ∇ℓ𝑖 (𝑤2)∥2 ≤ 𝐿𝑖 · ∥𝑤1 −𝑤2∥2

or, equivalently,

ℓ𝑖 (𝑤2) ≤ ℓ𝑖 (𝑤1) + ⟨∇ℓ𝑖 (𝑤1),𝑤2 −𝑤1⟩ +
𝐿𝑖
2 ∥𝑤1 −𝑤2∥

2
2 .

Further, define 𝐿max := max𝑖 𝐿𝑖 .

Assumption 2. (𝑄-Lipschitz continuity) Given ℓ function, there

exists constant 𝑄 > 0 such that for every𝑤1,𝑤2 ∈ R𝑝 we have that:

|ℓ (𝑤1) − ℓ (𝑤2) | ≤ 𝑄 · ∥𝑤1 −𝑤2∥2

or, equivalently, ∥∇ℓ (𝑤)∥2 ≤ 𝑄, ∀𝑤 ∈ R𝑝 .

Assumption 3. (Error Bound) Let𝑤★ denote the global optimum

of ℓ . Then, under the Error Bound assumption, there exists constant

𝜇 > 0 such that for every𝑤 ∈ R𝑝 we have that:

∥∇ℓ (𝑤)∥2 ≥ 𝜇∥𝑤★ −𝑤 ∥2

Per [38], Error Bound ≡ Polyak-Łojasiewicz inequality.

Assumption 4. (Stochastic gradient variance) such that

E𝑖𝑡

[

∥∇ℓ𝑖𝑡 (𝑤)∥22
]

≤ 𝑀 +𝑀𝑓 ∥∇ℓ (𝑤)∥22,

where ℓ𝑖𝑡 is a randomly selected component from the sum 1
𝑛

∑𝑛
𝑖=1 ℓ𝑖 (𝑤).

Note that we make the distinction between the general indexing

term 𝑖 and the randomly selected index per SGD round, 𝑖𝑡 . We follow

the problem formulation in [40] on compressed iterates, where IST

performs the following motions:

• Given model𝑤𝑡 at iteration 𝑡 , we generate a maskM : R𝑝 →

R
𝑝 such that:

(M(𝑤𝑡 ))𝑖 =

{

𝑤𝑡,𝑖

𝜉
, with probability 𝜉,

0, with probability 1 − 𝜉 .

Input and output neurons are always selected in this mask.

• Given mask M(·), we generate the subnetwork as in:

𝑧𝑡 ≡ M(𝑤𝑡 ) ∈ R
𝑝 ,

where 𝑧𝑡Ða compressed version of 𝑤𝑡Ðhas zeros at positions

for deactivated subnetwork weights at iteration 𝑡 and non-zeros

for active weights.

• We perform gradient descent on the compressed 𝑧𝑡 :

𝑤𝑡+1 = 𝑧𝑡 − 𝜂∇ℓ𝑖𝑡 (𝑧𝑡 ),

with 𝜂 the learning rate and 𝑖𝑡 randomly selected from [𝑛].

This setting resembles gradient descent with compressed iterates

(GDCI) [40], but our analysis considers a different function class.

Our final two assumptions are onM(·) with respect to the gradient

of ℓ .

Assumption 5. (Additive gradient error assumption with bounded

energy) Let 𝑤𝑡 be the current model and let 𝑧𝑡 = M(𝑤𝑡 ) be the

compressed model. Consider the stochastic gradient term ∇ℓ𝑖𝑡 (𝑧𝑡 ); we

assume that, on expectation, the following holds:

EM,𝑖𝑡

[

∇ℓ𝑖𝑡 (𝑧𝑡 ) | 𝑤𝑡

]

= ∇ℓ (𝑤𝑡 ) + 𝜀𝑡 ,

for 𝜀𝑡 ∈ R
𝑝 such that ∥𝜀𝑡 ∥2 ≤ 𝐵 for 𝐵 > 0.

Assumption 6. (Norm condition) ∃ 𝜃 ∈ [0, 1) such that:




EM,𝑖𝑡

[

∇ℓ𝑖𝑡 (𝑧𝑡 ) | 𝑤𝑡

]

− ∇ℓ (𝑤𝑡 )






2 = ∥𝜀𝑡 ∥2 ≤ 𝜃 ∥∇ℓ (𝑤𝑡 )∥2,

where𝑤𝑡 and 𝑧𝑡 are current and compressed models, respectively.

The above assumption is commonly used in derivative free opti-

mization [4, 7]. We are now able to derive the following theorem

and corollary, which imply the convergence of IST.

Theorem 1. Let ℓ (𝑤) := 1
𝑛

∑𝑛
𝑖=1 ℓ𝑖 (𝑤) have 𝐿𝑖 -smooth compo-

nents ℓ𝑖 for 𝐿max := max𝑖 𝐿𝑖 , and consider the following recursion:

𝑤𝑡+1 = 𝑧𝑡 − 𝜂∇ℓ𝑖𝑡 (𝑧𝑡 ), where 𝑧𝑡 = M(𝑤𝑡 ).

Suppose M(𝑤𝑡 ) and ℓ satisfy Assumption 5. After 𝑇 iterations for

step size 𝜂 =
1

2𝐿max
, we obtain:

min
𝑡 ∈{0,...,𝑇 }

EM,𝑖𝑡

[

∥∇ℓ (𝑤𝑡 )∥
2
2

]

≤
ℓ (𝑥0)−ℓ (𝑤

★)
𝛼 (𝑇+1)

+ 1
𝛼 ·

(

𝐵𝑄
2𝐿max

+
5𝐿max𝜔

2 · ∥𝑤★∥22 +
𝑀

4𝐿max

)

where the expectation is over the random selection on the compression

operator M(·) and the stochastic selection 𝑖𝑡 , 𝛼 =
1

2𝐿max

(

1 −
𝑀𝑓

2

)

−

5𝜔𝐿max

2𝜇2
, and 𝜔 =

1−𝜉
𝜉

<
𝜇2

10𝐿2max
.

If we exchange the bounded assumption ∥𝜀𝑡 ∥2 ≤ 𝐵 and 𝑄-

Lipschitzness, with the norm condition in Assumption 6, we obtain

the following corollary.

Corollary 1. Let ℓ be 𝐿-smooth, and consider the recursion over

compressed iterates:

𝑤𝑡+1 = 𝑧𝑡 − 𝜂∇ℓ𝑖𝑡 (𝑧𝑡 ), where 𝑧𝑡 = M(𝑤𝑡 ).

We further assume that the operator mask, along with ℓ , satisfy the

norm condition Assumption 6 with parameter 𝜃 ∈ [0, 1). Then, after

running the above recursion for 𝑇 iterations for step size 𝜂 =
1

2𝐿max
,

we obtain:

min
𝑡 ∈{0,...,𝑇 }

EM,𝑖𝑡

[

∥∇ℓ (𝑤𝑡 )∥
2
2

]

≤
ℓ (𝑤0)−ℓ (𝑤

★)
𝛼 (𝑇+1)

+ 1
𝛼 ·

(

5𝐿max𝜔
2 · ∥𝑤★∥22 +

𝑀
4𝐿max

)

where the expectation is over the random selection on the compression

operator M(·) and 𝛼 and 𝜔 are expressed as:

𝛼 =
1

2𝐿max

(

1
2 − 𝜃 −

𝑀𝑓

2

)

−
5𝐿max
2 · 𝜔

𝜇2

𝜔 =

1−𝜉
𝜉

<
𝜇2

5𝐿2max

(

1
2−𝜃−

𝑀𝑓

2

)
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