Distributed Learning of Fully Connected Neural Networks using
Independent Subnet Training

Binhang Yuan Cameron R. Wolfe Chen Dun
Rice University Rice University Rice University
by8@rice.edu crwl3@rice.edu cd46@rice.edu
Yuxin Tang Anastasios Kyrillidis Chris Jermaine

Rice University
yuxin.tang@rice.edu

ABSTRACT

Distributed machine learning (ML) can bring more computational
resources to bear than single-machine learning, thus enabling re-
ductions in training time. Distributed learning partitions models
and data over many machines, allowing model and dataset sizes be-
yond the available compute power and memory of a single machine.
In practice though, distributed ML is challenging when distribution
is mandatory, rather than chosen by the practitioner. In such sce-
narios, data could unavoidably be separated among workers due
to limited memory capacity per worker or even because of data
privacy issues. There, existing distributed methods will utterly fail
due to dominant transfer costs across workers, or do not even apply.

We propose a new approach to distributed fully connected neu-
ral network learning, called independent subnet training (IST), to
handle these cases. In IST, the original network is decomposed into
a set of narrow subnetworks with the same depth. These subnet-
works are then trained locally before parameters are exchanged to
produce new subnets and the training cycle repeats. Such a nat-
urally “model parallel” approach limits memory usage by storing
only a portion of network parameters on each device. Additionally,
no requirements exist for sharing data between workers (i.e., sub-
net training is local and independent) and communication volume
and frequency are reduced by decomposing the original network
into independent subnets. These properties of IST can cope with
issues due to distributed data, slow interconnects, or limited device
memory, making IST a suitable approach for cases of mandatory dis-
tribution. We show experimentally that IST results in training times
that are much lower than common distributed learning approaches.

PVLDB Reference Format:

Binhang Yuan, Cameron R. Wolfe, Chen Dun, Yuxin Tang, Anastasios
Kyrillidis, and Chris Jermaine. Distributed Learning of Fully Connected
Neural Networks using Independent Subnet Training. PVLDB, 15(8): 1581 -
1590, 2022.

doi:10.14778/3529337.3529343

PVLDB Artifact Availability:
https://github.com/BinhangYuan/IST_Release.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 8 ISSN 2150-8097.
doi:10.14778/3529337.3529343

Rice University
anastasios@rice.edu

1581

Rice University
cmj4@rice.edu

1 INTRODUCTION

Distributed training of neural networks (NN) over a compute cluster
is a common task in modern computing systems [12, 19, 31, 46, 56].
Sometimes, it is the case that distributed training is a choice, and
the practitioner is fully in control of the training environment.
Namely, practitioners opt for distribution with the goal of using
extra hardware to lower the wall-clock time to convergence, or
to allow more resources (such as memory or CPU/GPU cycles) to
be brought to bear on the problem of training a model. Consider
the task of training a model such as GPT-3 [6], which requires
on the order of 1000 years of GPU time to train. Thousands of
GPUs can be used to lower the time to weeks or months. In such a
training scenario, the different sites or compute units are typically
connected with a high-speed network, and the hardware is often
carefully tailored to the task of distributed training.

However, there are other cases where distribution is mandatory
and the hardware may be sub-optimal—very far from the idealized
environment a company such as OpenAl uses to train GPT-3. For
example, consider a case where the training dataset is fragmented
across several locations and organizations with privacy mandates
preventing the possibility of centralized computing [15, 17, 59, 65,
85]. The training set may be large, and stored across hundreds of
machines [11, 18, 32, 45, 53, 55, 74].

Here, the data sits where it happens to sit, and the computing
environment is often not under the practitioners’ control, forc-
ing NN training to be conducted over a less-than-ideal hardware
setup (e.g., too many compute nodes, CPUs, low-end GPUs, low-
bandwidth interconnects, etc.). Such scenarios arise often in practice
[8,9, 41]. Even NN training on public compute clouds (e.g., Amazon
EC2!) suffers from the combination of slow interconnects with
high-performance GPUs [50].

We argue that common methods of distributing ML computa-
tions cannot be expected to handle such non-ideal environments
gracefully, and new methods are needed. In distributed NN training,
existing methods are roughly categorized into model parallel and
data parallel methodologies. In practice, data parallel methodolo-
gies are most commonly used and supported due to their ease of
implementation [1, 52]. In model parallel training [19, 31], portions
of the NN are partitioned across different compute nodes, while, in
the latter [27, 54, 84], the complete NN is updated with different
data on each compute node. Data parallel methods suffer when

1899 of cloud-based deep learning projects are executed on EC2, according to Amazon’s
marketing materials.

https://doi.org/10.14778/3529337.3529343
https://github.com/BinhangYuan/IST_Release
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3529337.3529343
https://www.acm.org/publications/policies/artifact-review-and-badging-current

bandwidth is limited because they must transfer an entire model
to each site in order to synchronize the computation. For a large
model with many parameters, this is not a reasonable requirement.
However, in typical mandatory distribution scenarios, model par-
allel methods are not a reasonable option, either. When data are
sharded across sites, model parallel computing implies that different
parts of a model can only be updated to reflect the data present
at any given node. For these parts to stay synchronized, very fine-
grained communication is required. Thus, neither data parallel nor
model parallel is fully capable of handling mandatory distribution
scenarios.

Independent subnet training. In response to this, we propose
independent subnet training (IST), a novel distributed training tech-
nique on fully connected NNs that combines techniques from model
and data parallel training to maximize communication efficiency.
Inspired by dropout [66] and approximate matrix multiplication
[25], IST decomposes fully-connected NN layers by distributing
the neurons disjointly across different sites, forming a group of
subnets. Then, each of these subnets is trained independently for
one or more local stochastic gradient descent (SGD) iterations be-
fore synchronization [47]. After synchronization, parameters are
re-distributed based on a new, random neuron sampling, and the
local subnet training process repeats.

IST focuses upon the distributed training of NNs with fully-
connected layers. Such a focus has also applications in diverse
NN architectures (e.g., convolutional NNs [33]): the majority of
NN models typically contain large, fully-connected layer, and such
layers typically dominate the total number of parameters. As such,
IST can be applied to the fully-connected portion of the networks
to yield a performance speedup; see Sec. 3.

In cases of mandatory distribution, model parallel training is
impractical because it requires that all data is present on the server
that passes data into the network’s input module.? Furthermore, we
claim that, under mandatory distribution, IST is more capable than
techniques like data parallel training due to its ability to reduce
communication volume and memory usage to cope with hardware
limitations. Synchronization in IST is simply an exchange of pa-
rameters between sites® (i.e., no parameters are shared between
subnets) and no synchronization is required during local updates,
thus reducing per-step communication volume on multiple fronts.
Furthermore, IST limits its memory usage by only sending a small
portion of its parameters to each device, which prevents model
capacity from being limited by the memory of a single device.
Contributions. Our proposal aggressively reduces the commu-
nication bottlenecks that plague the scalability of most popular
methods of distributed NN training. As such, IST is most beneficial
for training networks with fully-connected layers in cases of manda-
tory distribution, where training is highly-distributed and hardware
is less-than-ideal. The key contributions of our work can be sum-
marized as follows.

2If data is fragmented across many machines, model parallel training would struggle
greatly to visit the entire dataset during training, as the input module is only stored
on a single node and all data used during a particular training round must be present
on this node.

3Each node in an n-machine cluster will receive a fraction between iz and ﬁ of total
model parameters under IST, while data parallel training requires all model weights to
be communicated between machines.

1582

e We propose IST, a distributed training methodology that com-
bines ideas from model and data parallel training by breaking the
original NN into a set of disjoint subnetworks that are distributed,
locally trained, and re-assembled per iteration.
We evaluate IST on speech recognition, image classification (CI-
FAR10 and full ImageNet*), and large-scale product recommen-
dation tasks. Using bandwidth-optimal ring all-reduce [72], IST
is shown to improve time-to-convergence by as much as 10X in
comparison to a state-of-the-art implementation of data parallel
training and “vanilla” local SGD [47] (i.e., the only practically
viable options under mandatory distribution), as well as surpass
the performance of the widely-used ensemble learning method.
e We demonstrate that IST, by enabling models with larger embed-
ding dimensions (i.e., too large for data parallel training) to be
trained, is capable of solving an “extreme” product recommenda-
tion task with improved generalization.
o Finally, we theoretically show that such IST decomposition still
guarantees sublinear convergence to a first-order stationary point
on expectation under common assumptions.

2 TRAINING VIA INDEPENDENT SUBNETS
2.1 Methodology

Notation. Assume n sites in a distributed system. Let f; denote
that vector of activations at layer . f; denotes the set of activations
at the final or “top” layer of the network, and f denotes the feature
vector that is input into the network. Assume that the number of
neurons at layer [is Nj. Let £(w, -) denote the loss function of a NN
with parameter w. Given samples X := {x;, yi}iq:p we aim to find a
w* that minimizes the empirical loss over a set of labeled examples:

q
Z € (w, {x1,y:}) -

i=1

w* € arg min : (1)
woq

Although (1) can be solved in numerous ways [26, 42, 60, 71, 80],
nearly all NN training is accomplished using some variant of SGD.
Here, n > 0 is the learning rate and i; denotes a subset of training
examples from X.

Constructing Subnets. IST is a distributed training regime that
randomly partitions hidden neurons via uniform assignment to
one of n possible compute nodes. Neurons assigned to the same
compute node form a “subnet”. Then, the weights of the full NN are
partitioned accordingly based on the active neurons for each subnet.
Hidden neurons are assigned to exactly one subnet to ensure that
i) all neurons are included in training and ii) the same neuron is
not simultaneously partitioned to multiple subnets.

Subnet construction is depicted in Figure 1 for a two-hidden-
layer NN distributed across n = 2 compute nodes. Input and output
layers are fully utilized at all sites. Notably, certain parameters are
not partitioned to any subnet within multi-layer NNs.> However, in
contrast to ensemble-style techniques, IST randomly samples new
subnets frequently throughout the learning process, ensuring that

“We underline the use of the full ImageNet dataset [14, 43] that includes 14,197,122
images, divided into 21,841 classes.

SParameters are only active within a subnet if both input and output neurons associated
with that parameter are sampled in the same subnet. For NNs with a single hidden
layer, all parameters are included in some subnet because input and output neurons
are shared across compute nodes.

Figure 1: Schematic depiction of a two-hidden-layer NN being trained with IST across two nodes. Each layer’s neurons are
partitioned randomly to a single node, excluding input and output neurons (i.e., these are shared between sites). The first two
iterations of IST are depicted, but the same process of sampling, training, and aggregating subnets repeats until convergence.

all parameters have a high likelihood of being trained sufficiently
after several subnet groups have been sampled.

Subnet output is computed by masking (i.e., setting to zero)
inactive neurons and scaling remaining activations by a factor of
n? (i.e., to counteract neuron removal with uniform probability %)
Such a forward pass, which is formalized in Appendix A, provides an
unbiased estimate of the full NN forward pass (excluding activation
functions). Furthermore, performing uniform sampling of neurons
independently at each layer yields sublinear convergence to a first-
order stationary point on expectation; see Appendix B. Thus, we
adopt this uniform sampling policy in IST due to its unbiased nature
and rigorous theoretical guarantees.

Distributing Subnets. The n subnets produced by IST are disjoint,
meaning that no model parameters are simultaneously partitioned
to multiple subnets. As a result, when distributed to a separate
compute node, subnets i) require no cross-site communication
during their forward pass, and ii) only require a fraction # of
layer parameters to be sent to each compute node. Thus, subnets
can be distributed to separate compute nodes without significant
communication overhead and trained with no dependence upon other
subnets—an approach that is adopted directly within IST.

Training Subnets. For training, IST sends each of the n subnets
to a separate compute node and performs J iterations of local SGD
[47]. After such independent training iterations, subnet parameters
are copied back into the full NN, where no collisions occur because
the parameter partition is disjoint. Then, a new group of subnets
is constructed through random sampling (i.e., a “re-sampling” of
network parameters) and the process repeats.

Unlike ensemble methods that independently train each subnet
and aggregate parameters into the full NN once at the end of train-
ing, IST re-samples subnets frequently and trains them for a shorter
number of iterations between re-samplings. Such re-sampling is
necessary to avoid the accumulation of random effects, as the ex-
pected input to a neuron—despite being unbiased—will shift after
backpropagation. Such a shift may be inconsistent across sites,

1583

because subnets are trained on data samples from the same distri-
bution; but, re-sampling—which is not present within ensemble
methods—guards against such an occurrence.

2.2 Additional Considerations

Correcting Distributional Shift. The analysis of the unbiased
subnet forward pass in Appendix A does not consider the NN’s
non-linear activation function.® Within IST, the inputs to each sub-
net neuron are sub-sampled and scaled by a factor of n? to unbias
the neuron’s activation, which increases the standard deviation of
the input to each neuron by a factor of n. As a result, extreme input
values are more likely to be observed during training (i.e., when us-
ing subnets) than during deployment. To correct this distributional
mismatch, we remove the n? correction factor and instead compute
the mean y and standard deviation o of the inputs to each neuron
during training and transform subnet output as x = (x — y)/o
before passing it through the non-linear activation function. After
training is complete, we compute p and o for each neuron over a
small subset of training data using the full network—these values
can then be used when the network is deployed.

Although this approach is similar to batch normalization [36],
the motivation for its use is much different. Namely, while batch
normalization maintains a non-saturated range of neuron input
during training to accelerate convergence and improve generaliza-
tion, IST will not work in the absence of such normalization. The
distributional shift encountered when deploying the network must
be corrected, making this modification an essential component of
IST, rather than an aid to model training and performance.

Other Architectures. IST can be extended to common network
architectures (e.g., convolutional NNs) by applying IST only to fully-
connected layer(s) within the network (i.e., these exist within most
modern convolutional NN architectures). Here, the fully-connected
layers would be decomposed as described previously, while the rest

®E[x] = b does not imply that E[f(x)] ~ f(b) for some random variable x when f
is non-linear.

of the network is broadcast to every site during training. Such an
approach has significant benefits, as fully-connected layers tend to
contain a large portion of network parameters.” Thus, improving
the efficiency of distributed training over fully-connected layers
benefits the distributed training process for the entire network.

2.3 Analysis

IST reduces communication overhead in comparison to data parallel
training approaches, which broadcast all parameters across sites
during each round of training. Measuring the inflow to each site,
the total network traffic of data parallel training per gradient step
is (in floating point numbers transferred):

t
Z nN;—_1Nj.
i=1
In contrast, in IST, each site receives current parameters every J
gradient steps (i.e., assuming J iterations of local SGD are performed
between re-sampling rounds). Furthermore, subsampling the NN
into multiple subnets further reduces the communication cost of IST
because input/ouput layers are partitioned (not broadcast) across
nodes and each node receives only a % ratio of other network
parameters. The total network traffic of IST per gradient step is:
1
NoNi +]Nt—1Nt + Z
i=1
Similarly, IST reduces computational resource utilization in com-
parison to data parallel. Given the FLOPs required by matrix multi-
plications during forward/backward steps, in “classical” data paral-
lel training, the number of FLOPS required per gradient step is:

Ni-1N;
nxJ '

I
4% BNi-1N;.
i=1
In contrast, the number of FLOPS gradient step within IST is:

1
Ni_iN;
4BNyNj + 4BN;_1 Ny + 4B Z Rl kALl
n
i=1

Note that this computational reduction indicates that training

models with IST reduces memory requirements, which enables the
training of larger models as shown in Sec. 3.
Convergence Guarantees. We show that the IST decomposition
guarantees convergence to a first-order stationary point on expecta-
tion in the distributed setting. Namely, under common assumptions
of smoothness, Lipschitz continuity of the objective, and stochastic
error boundedness, IST converges sublinearly to a bounded error
region around a stationary point; see Appendix B.

3 EMPIRICAL EVALUATION

In this section, we design a set of experiments that showcase the
potential benefits of the IST approach under cases of mandatory
distribution with limited hardware capabilities. In these cases, we
assume slow networks connections with CPUs or GPUs (possibly
with limited memory) available on each node. We consider a wide

"Consider the full ImageNet dataset [21, 44] for a deep model like ResNet50: the
convolutional layers have 17,614,016 parameters (67.2MB, 28.2%), whereas the fully-
connected layer has 44,730,368 parameters (170.6MB, 71.8%) that utilized in IST.

1584

variety of learning tasks and network architectures (i.e., both fully-
connected NNs and more complex NNs that contain fully-connected
layers).

3.1 Setup and Details

As previously mentioned, model parallel training is not appropriate
for mandatory distribution, as all needed data must be stored on the
node that houses the network’s input module. Furthermore, due to
the assumption of limited memory on each device, our experiments
typically consider shallow, fully-connected NNs with wide hidden
layers.® Popular model parallel training packages (e.g., Gpipe [34])
struggle to perform well on wide models with few layers, providing
further evidence that model parallel training is not the proper
training approach when distribution is mandatory. As such, we
adopt local SGD [47], data parallel training, and ensemble learning
as our major experimental baselines.

Experimental Settings. We consider the following scenarios:

o Google Speech Commands [69]: We learn a 2-layer network of
4096 neurons and a 3-layer network of 8192 neurons to recog-
nize 35 labeled keywords from audio waveforms (in contrast
to the 12 keywords in prior reports [69]). We represent each
waveform as a 4096-dimensional feature vector [67].

Image classification on CIFAR10 and full ImageNet [33, 63]: We
train the Resnet18 model over CIFAR10, and the VGG12 model
over full ImageNet (see Section 2.2 for a discussion of IST and
non-fully connected architectures). Note that we include the
complete ImageNet dataset with all 21, 841 categories and
report the top-10 accuracy [24, 43, 58].

Amazon-670k [5]: We train a 2-layer, fully-connected neural
network, which accepts a 135, 909-dimensional input feature,
and generates a prediction over 670, 091 output labels.

We train Google speech and Resnet18 on CIFAR10 on three AWS

CPU clusters, with 2, 4, and 8 CPU instances (m5.2x1large). We
train the VGG model on full ImageNet and Amazon-670k extreme
classification network on three AWS GPU clusters, with 2, 4, and 8
GPU machines (p3.2x1large). Our choice of AWS was deliberate,
as it is a common platform for distributed training and presents
the common challenge faced by many consumers—distributed ML
without a super-fast interconnect.
Distributed Implementation Notes. We implement a distributed
parameter server for IST in PyTorch. We compare IST to the PyTorch
implementation of data parallel learning. We also adapt the PyTorch
data parallel learning to realize local SGD [47] and ensemble learn-
ing, where learning occurs locally for a number of iterations before
synchronizing. For ensemble learning, this synchronization only
occurs once at the end of training.

For the CPU experiments, we use PyTorch’s gloo backend. For
the GPU experiments, data parallel learning and local SGD use Py-
Torch’s nccl backend, which leverages the most advanced Nvidia
collective communication library (the set of high-performance
multi-GPU and multi-node collective communication primitives op-
timized for NVIDIA GPUs). Nccl implements ring-based all-reduce

8The memory usage of IST scales linearly with increasing network depth, but small
portions of each hidden layer can be partitioned to each subnet in order to limit
increased memory usage due to larger hidden layers.

Table 1: The time (in seconds) to reach various levels of accuracy.

Google Speech 2 Layer

Data Parallel Local SGD IST
Accuracy 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node
0.63 118 269 450 68 130 235 35 28 24
0.75 759 1708 2417 444 742 1110 231 167 192
Google Speech 3 Layer
Data Parallel Local SGD IST
Accuracy 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node
0.63 376 1228 1922 182 586 1115 76 141 300
0.75 4534 9340 14886 2032 4107 6539 812 664 1161
CIFAR10 Resnet18
Data Parallel Local SGD IST
Accuracy 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node
0.85 21775 13689 6890 18769 12744 7020 15093 7852 5241
0.90 54002 38430 17853 36891 22198 12157 33345 16798 13425
Full ImageNet VGG12
Data Parallel Local SGD IST
Accuracy 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node 2 Node 4 Node 8 Node
0.20 108040 278542 504805 6900 14698 30441 3629 4379 5954
0.26 225911 393279 637188 15053 22055 39439 6189 7711 10622
Google Speech 2 Layer Google Speech 3 Layer 0.05 CIEAR10 Resnet Full ImageNet VGG
0.8 ‘ 0.8 . >0.35)
0.90 7 / ;
307 /// 307 /= 20.85 o030 7
o — DataParallel g U — DataParallel g oo Data Parallel O | — Data Parallel
206 Local SGD - 20 206 Local SGD-20 5 VY- localsGp-10 & 0-25 Local SGD - 10
S — localSGD-40 ¢ ™* — LocalsGD-40 §0.75 —— Local SGD-20 4 .20 —— Local SGD - 20
Tos — LocalsGD-60 T o —— LocalSGD-60 < 0.70 —— localSGD-40 O —— Local SGD - 40
2 —— IST - 20 i = IST - 20 g 0.65 —— IST- 10 g 0.15 —— IST - 80
0.4 —— IST - 40 Fo0.4 —— IST - 40 ~ 0.60 —— IST - 20 2.0.10 —— |ST - 120
IST - 60 IST - 60 0.55/ / IST - 40 ° : IST - 160
J] /7
03" ot 107 103 03790z 10° 107 0507 10 005707 105 10
Time(s) Time(s) Time(s) Time(s)

Figure 2: Test accuracy versus time. 2-/3- layer Google speech models are trained using an 8-CPU cluster; Resnet18 on CIFAR10
is trained using 4-CPU cluster; VGG12 on full ImageNet is trained using a 8-GPU cluster. The number after local SGD or IST

legend represents the local update iterations.

[72], which is used in well-known distributed learning systems
such as Horovod [62].

IST cannot use the nccl backend because it does not support
the scatter operator required to implement IST. As a result, IST
must use the gloo backend (meant for CPU-based learning), which
is a serious handicap but does not reflect any intrinsic flaw of the
method—high-performance GPU libraries simply lack support for
required operations.

3.2 Results and Analysis

Convergence speed. While IST can process data quickly (i.e.,
due to previously-described improvements in communication effi-
ciency), there are questions regarding its statistical efficiency and
generalization performance in comparison to baseline methods.

Figure 2 plots the hold-out test accuracy for selected benchmarks as
a function of time, while Table 1 shows the training time required
for IST and relevant baselines to reach specified levels of hold-out
test accuracy.

Our results generally indicate that IST achieves high accuracy
on the test set much faster than other frameworks. For example,
in reaching an accuracy of 77% with a 2-layer, fully-connected
network, IST exhibits a 4.2x speedup compared to local SGD and a
10.6x speedup compared to data parallel. Similarly, IST exhibits a
6.1x speedup compared to local SGD and a 16.6X speedup compared
to data parallel in reaching the same accuracy with a 3-layer model.
Note that the above improvements were observed even though
IST was handicapped by its use of the gloo backend for its GPU
implementation.

1585

Table 2: Final accuracy on each benchmark.

Data Parallel Local SGD IST
Speech 2 layer 0.7938 0.7998 0.8153
Speech 3 layer 0.7950 0.7992 0.8327
CIFAR10 0.9128 0.9087 0.9102
Full Imagenet 0.3688 0.3685 0.3802

Table 3: Test accuracy on Google Speech Commands.

2L 3L
Compute Nodes ayer ayer
IST Ensemble IST Ensemble
2 Node 0.82 0.82 0.84 0.74
4 Node 0.79 0.80 0.82 0.71
8 Node 0.76 0.77 0.78 0.70

Because CPUs were used for training on CIFAR10, the network

was less of a bottleneck and all methods were able to scale, thus
slightly negating the advantages of IST. Despite reaching 90% accu-
racy slower on an 8-CPU cluster, however, IST was still the fastest
to reach 85% accuracy. Furthermore, for the full ImageNet data
set, the communication bottleneck using AWS is so severe that the
smaller clusters were always faster. At each cluster size, IST was
still the fastest option.
Trained model accuracy. In Table 2 we give the final accuracy of
each method, trained on a 2-node cluster in various experimental
settings. As can be seen, despite partitioning the full networks into
several independently-trained subnets, IST achieves better final ac-
curacy in comparison to data parallel and local SGD training on all
datasets except for CIFAR10. On the CIFAR10 dataset, IST achieves
test accuracy 0.26% lower than data parallel training, but outpe-
forms local SGD. Furthermore, IST continues to achieve high final
accuracy as the number of compute nodes is increased, as shown
in Table 3. Thus, IST achieves highly-comparable or improved final
accuracy in comparison to local SGD, data parallel, and ensemble-
based training in all settings, revealing that the partitioning strategy
of IST does not deteriorate the network’s ability to match or exceed
the accuracy achieved by baseline methodologies.

As previously mentioned, IST also enables models to be trained
that are too large to be handled by a single device. In cases of
mandatory distribution, such a property is useful for training suffi-
ciently large models despite limited memory on individual compute
nodes. To demonstrate the utility of this property of IST, we study
the relationship between embedding dimension and test accuracy
for fully-connected models trained on the Amazon-670K recom-
mendation task in an 8-GPU cluster. As shown in Table ??, IST is
able to scale to larger model sizes without exceeding the memory
capacity of individual nodes. Such scalability enables a > 15% test
accuracy improvement in comparison to data parallel training, thus
demonstrating that IST allows models with sufficient capacity to
be trained despite the restricted memory of each device.
Comparison to Ensemble Learning. IST intermittently aggre-
gates subnet parameters and re-samples a new group of subnets
for independent training. Although ensemble learning trivially im-
proves communication efficiency and wall-clock training time (i.e.,

1586

due to utilizing fewer synchronizations), re-sampling is necessary
for achieving high network performance. To show this, we perform
tests with ensemble learning—i.e., training a group of subnet-sized
models independently and aggregating their parameters once at the
end of training—and IST on the Google Speech Commands dataset;
see Table 3.

Ensemble learning and IST perform similarly for two-layer net-
works 2.2. Such comparable performance is expected because i)
two-layer networks are separable [13] (i.e., each hidden neuron
contributes independently to network output without inter-neuron
interaction) and ii) all parameters within the one-hidden-layer NN
are partitioned to some subnet. In such a simplified case, ensem-
ble learning is able to performing well by independently learning
meaningful neuron representations that can be aggregated into the
global network.

For deeper networks, no re-sampling during training leads nu-

merous network parameters to be excluded from the learning pro-
cess and allows random effects to accumulate throughout training,
thus drastically deteriorating ensemble learning performance. As
such, IST significantly outperforms ensemble learning with three-
layer networks (e.g., 10% absolute improvement with n = 2 compute
nodes), revealing that IST has a significant performance advantage
relative to ensemble learning for complex, multi-layer network
architectures. Thus, although ensemble learning is faster to com-
plete a fixed number of training epochs, it cannot yield comparable
performance to networks trained with IST.
Discussion. There are a few takeaways from the experimental
results. First, as expected, IST is able to process far more data in a
short amount of time than the other distributed training algorithm.
Interestingly, we find that the IST speedups in CPU clusters are more
significant than that in GPU clusters. There are two reasons for this.
First, for GPU clusters, IST suffers from its use of PyTorch’s gloo
backend, compared to the all-reduce operator provided by nccl.
Second, since the GPU provides a very high level of computation,
there is less benefit to be realized from the reduction in FLOPS per
gradient step using IST (as the GPU does not appear to be compute
bound).

It is interesting that some of the frameworks actually do worse
with additional machines, especially with a fast GPU. This illustrates
a significant problem with distributed learning. Unless a super-fast
interconnect is used (and such interconnects are not available from
typical cloud providers), it can actually be detrimental to add addi-
tional machines, as the added cost of transferring data can actually
result in slower running times. We see this clearly in Table 1, where
the state-of-the-art PyTorch data parallel implementation (and the
local SGD variant) does significantly worse with more machines.
IST shows the best potential to utilize additional machines without
actually becoming much slower or slower to reach high accuracy.

Finally, we note that various compression schemes can be used to
increase the bandwidth of the interconnect (e.g., gradient sparsifica-
tion [2], quantization [3], sketching [37], and low-rank compression
[68]). However, these methods could be used with any framework—
including IST. We conjecture that while compression may allow
effective scaling to larger clusters, it would not affect the efficacy
of IST.

Table 4: Precision @1, @3, @5 on Amazon 670k.

Data Parallel IST
Dim. @1 @3 @5 @1 @3 @5
512 0.386 0.345 0.316 0.396 0.360 0.331
1024 Fail to handle 0.409 0.369 0.339
1536 Fail to handle 0.432 0.391 0.361
2048 Fail to handle 0.437 0.394 0.364
2560 Fail to handle 0.438 0.394 0.366

4 RELATED WORK

Data parallelism often suffers from the high bandwidth costs to
communicate gradient updates between workers. Quantized SGD
[3, 16, 22, 30, 35, 61, 70] and sparsified SGD [2] both address this.
Quantized SGD uses lossy compression to quantize the gradients.
Sparsified SGD reduces the exchange overhead by transmitting the
gradients with maximal magnitude. Such methods are orthogonal
to IST, and could be used in combination with it.

Recently, there has been a series of papers on using parallelism
to “Solve the YY learning problem in XX minutes”, for ever-decreasing
values of XX [14, 29, 64, 73, 76—78]. Often these methods employ
large batches. It is generally accepted—though still debated [23]—
that large batch training converges to “sharp minima”, hurting
generalization [20, 39, 75]. Further, achieving such results seems to
require teams of PhDs utilizing special-purpose hardware: there is
no approach that generalizes well without extensive trial-and-error.

Distributed local SGD [49, 81, 82, 86] updates the parameters,
through averaging, only after several local steps are performed per
compute node. This reduces synchronization and thus allows for
higher hardware efficiency [82]. IST uses a similar approach but
makes the local SGD and each synchronization round less expen-
sive. Recent approaches [47] propose less frequent synchronization
towards the end of the training, but they cannot avoid it at the
beginning.

Finally, asynchrony avoids SGD synchronization cost [19, 51,
57, 83]. It has been used in distributed-memory systems, such as
DistBelief [19] and the Project Adam [42]. While such systems,
asymptotically, show nice convergence rate guarantees, there seems
to be growing agreement that unconstrained asynchrony does not
always work well [10], and it seems to be losing favor in practice.

Overall, the goal of such distributed training methods is to
lower the wall-clock time-to-convergence with the addition of
extra hardware. As such, empirical analysis of these methods is
often conducted using state-of-the-art computing hardware with
high-bandwidth interconnects. Even with access to such an ideal
environment, however, data parallel approaches struggle to scale.
In particular, per-node compute requirements are reduced while
synchronization costs remain constant or increase, leading to cases
where the addition of more nodes makes training slower as commu-
nication costs begin to dominate the training procedure. This issue
could theoretically be mitigated with the use of larger batches, but
such an approach often degrades statistical efficiency and leads to
poor generalization [14, 28, 29, 48, 64, 73, 76-78].

5 CONCLUSION

In this work, we propose independent subnet training for distributed
training of neural networks. By stochastically partitioning the

1587

model into non-overlapping subnets, IST reduces the communi-
cation overhead for model synchronization, and the computation
workload of forward-backward propagation for a thinner model on
each worker. This results in two advances: i) IST significantly accel-
erates the training process comparing with standard data parallel
approaches for distributed learning, and ii) IST scales to large mod-
els that cannot be learned using standard data parallel approaches.

A IST IS AN UNBIASED ESTIMATOR

We formalize subnet construction in IST with a set of neuron mem-

bership indicators mlj € {0, 1} at each layer [where s ranges over

the n compute nodes and i ranges over all the neurons in layer

1. m®) contains a binary mask for subnet s across all layers and

neurons. For each entry ml(si)

(s) _ 4712
Li ~ 1=
;sl.) =1 (i.e., neurons are partitioned to exactly

one subnet) and E[ml(sl,) ml(f)l l.]

,avalue of {0, 1} is assigned with mar-

ginal probability P[m % to exactly one of the n subnets,
implying that >,; m

(i.e., sampling is independent
at each layer).

Using these constructions, we can define the forward pass of
subnet s at layer [as

fl(s) =n? (ml(s> o} (Wl (ml(f)l @ﬁ_l))) (2)
where © denotes the Hadamard product, W} is the weight matrix
between layers [— 1 and /, and fl(s) = S(fl<s)) (i.e., * and * denote

representations before and after the non-linear activation function
8). To gather the activations produced by each subnet into a sin-
gle vector, we sum over subnet activations as fl =2]‘;(S) . The
Hadamard products in (2) mask out neuron activations—both in
];l(s) and fj_;—that are not relevant to subnet s.”

Interestingly, if fj_; is an unbiased estimator of the full network
output f* , then f; is an unbiased estimator of W} f¥,- To show
this, we consider the jth entry of

w3 m o (Wi (m?) 0 fig)).
N
for which the expectation can be written as
3 1 ~
55 Vs £ 3 iz
s i s i
= Z ‘/Vll,j,iﬁtl,i
i

which is precisely the jth entry in Wi f* .

(s)

(s)
Lir

E 1-1,i

B CONVERGENCE GUARANTEES FOR IST

We will discuss the convergence behavior of IST in this section.
Given space constraints, we do not give a proof of the central
Theorem and corollary; those are left to the full version of the
paper [79].

Consider minimizing ¢(w) = % 1 ti(w) as in Equation 1. Our
analysis adopts six assumptions, labeled AssumpTION 1 through
ASSUMPTION 6.

%In practice, such masking is not actually performed. Rather, we partition the weight
matrix such that inactive neurons are never computed.

AssumPTION 1. (L;j-smoothness) Given component ¢; of £ function,
there exists constant L; > 0 such that for every wi, wy € RP we have
that:

(IVE&i(w1) = VEi(w2)ll2 < Li - [[w1 — wall2
or, equivalently,
L;
6i(w2) < 6(wi) + (Ve (wi), wa — wi) + 2 [lwi — wal3.
Further, define Lyax = max; L;.

ASSUMPTION 2. (Q-Lipschitz continuity) Given £ function, there
exists constant Q > 0 such that for every wi, wa € RP we have that:

[£(w1) — L(w2)| < Q- [lw1 — wzll2
or, equivalently, ||V€(w)|l2 < O, Yw e RP,

AssumpTION 3. (Error Bound) Let w* denote the global optimum
of t. Then, under the Error Bound assumption, there exists constant
u > 0 such that for every w € RP we have that:

IVe(w)llz > pllw* = wlz
Per [38], Error Bound = Polyak-Lojasiewicz inequality.
ASSUMPTION 4. (Stochastic gradient variance) such that
B, [I1V8, (w)I3] < M+ MelIVe(w)l,

wheret;, is a randomly selected component from the sum % g ti(w).

Note that we make the distinction between the general indexing
term i and the randomly selected index per SGD round, i;. We follow
the problem formulation in [40] on compressed iterates, where IST
performs the following motions:

e Given model wy at iteration ¢, we generate a mask M : R —
R? such that:

Wi . .

—, with probability &,
Mw))y=4 &7 N

0, with probability 1 — &.

Input and output neurons are always selected in this mask.
e Given mask M(-), we generate the subnetwork as in:
zZr = M(Wt) € R‘D,

where z;—a compressed version of w;—has zeros at positions
for deactivated subnetwork weights at iteration t and non-zeros
for active weights.
o We perform gradient descent on the compressed z;:
W1 =20 = NV, (21),
with 7 the learning rate and i; randomly selected from [n].

This setting resembles gradient descent with compressed iterates

(GDCI) [40], but our analysis considers a different function class.

Our final two assumptions are on M(-) with respect to the gradient
of £.

AssuMPTION 5. (Additive gradient error assumption with bounded
energy) Let w; be the current model and let z; = M(w;) be the
compressed model. Consider the stochastic gradient term V¢;, (z;); we
assume that, on expectation, the following holds:

Emi, [V, (z0) | we] = VE(we) + &1,

for er € RP such that ||&t]|2 < B for B> 0.

AssUMPTION 6. (Norm condition) 3 0 € [0, 1) such that:
IE A, [Vt (z0) [we] = Ve(wo)l, = lleellz < 011V E(wo)l2.
where w; and z; are current and compressed models, respectively.
The above assumption is commonly used in derivative free opti-

mization [4, 7]. We are now able to derive the following theorem
and corollary, which imply the convergence of IST.

THEOREM 1. Let £(w) := % 1 ti(w) have Li-smooth compo-
nents {; for Lmax := max; L;, and consider the following recursion:
where z; = M(wy).

Suppose M(w;) and ¢ satisfy Assumption 5. After T iterations for
step sizen = ﬁ we obtain:

w1 = 2t — NV, (21),

min__ By, [IVE(we)]15]

te{0,....,T}
L(x)—t(w*) | 1 BQ 5Lmax @ * 12 M
<= ta e T Wl + g

where the expectation is over the random selection on the compression
operator M(-) and the stochastic selection iy, a = # (l - Tf) -
‘max

5@Lmax 1_§ /Jz
200 may =32 < .
il and w 7 0L

If we exchange the bounded assumption ||&l2 < B and Q-
Lipschitzness, with the norm condition in Assumption 6, we obtain
the following corollary.

COROLLARY 1. Let ¢ be L-smooth, and consider the recursion over
compressed iterates:
where z; = M(wy).
We further assume that the operator mask, along with ¢, satisfy the

norm condition Assumption 6 with parameter 0 € [0, 1). Then, after
running the above recursion for T iterations for step sizen = #
max

wri1 = 2t — NV, (1),

we obtain:
min Eaq; [[|[VE(we 2
te{0,...T} M,i, [” ()”2]
L(w)—t(W*) 1 (5Lpaxw *2, M
<= ta (T Wi+ g

where the expectation is over the random selection on the compression
operator M(-) and a and w are expressed as:

M
o=ty (-0) -
1-¢ s
w=— < —F——r—~
g SLanax(%_ _g)
ACKNOWLEDGMENTS

This work is supported by NSF FET:Small no. 1907936, NSF ML-
WiNS CNS no. 2003137 (in collaboration with Intel), NSF CMMI
no. 2037545, NSF CAREER award no. 2145629, and Rice InterDisci-
plinary Excellence Award (IDEA).

1588

uy
&

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
2016. Tensorflow: A system for large-scale machine learning. In 12th { USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 16). 265—
283.

Alham Fikri Aji and Kenneth Heafield. 2017. Sparse communication for dis-
tributed gradient descent. arXiv preprint arXiv:1704.05021 (2017).

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. 2017.
QSGD: Communication-efficient SGD via gradient quantization and encoding.
In Advances in Neural Information Processing Systems. 1709-1720.

A. Berahas, L. Cao, K. Choromanski, and K. Scheinberg. 2019. A theoretical and
empirical comparison of gradient approximations in derivative-free optimization.
arXiv preprint arXiv:1905.01332 (2019).

Kush Bhatia, Kunal Dahiya, Himanshu Jain, Yashoteja Prabhu, and Manik Varma.
[n.d.]. The Extreme Classification Repository: Multi-label Datasets and Code. http:
//manikvarma.org/downloads/XC/XMLRepository.html.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

R. Carter. 1991. On the global convergence of trust region algorithms using
inexact gradient information. SIAM J. Numer. Anal. 28, 1 (1991), 251-265.
Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo,
Yi Zhou, Heiko Ludwig, Feng Yan, and Yue Cheng. 2020. Tifl: A tier-based
federated learning system. In Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing. 125-136.

Zheng Chai, Hannan Fayyaz, Zeshan Fayyaz, Ali Anwar, Yi Zhou, Nathalie
Baracaldo, Heiko Ludwig, and Yue Cheng. 2019. Towards taming the resource
and data heterogeneity in federated learning. In 2019 {USENIX} Conference on
Operational Machine Learning (OpML 19). 19-21.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz.
2016. Revisiting distributed synchronous SGD. arXiv preprint arXiv:1604.00981
(2016).

Mingqing Chen, Rajiv Mathews, Tom Ouyang, and Francoise Beaufays. 2019.
Federated learning of out-of-vocabulary words. arXiv preprint arXiv:1903.10635
(2019).

Trishul M Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
2014. Project Adam: Building an Efficient and Scalable Deep Learning Training
System.. In OSDI, Vol. 14. 571-582.

Lenaic Chizat and Francis Bach. 2018. On the global convergence of gradient
descent for over-parameterized models using optimal transport. Advances in
neural information processing systems 31 (2018).

Valeriu Codreanu, Damian Podareanu, and Vikram Saletore. 2017. Scale out for
large minibatch SGD: Residual network training on ImageNet-1K with improved
accuracy and reduced time to train. arXiv preprint arXiv:1711.04291 (2017).

E Cordis. 2019. Machine learning ledger orchestration for drug discovery.
Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. BinaryCon-
nect: Training deep neural networks with binary weights during propagations.
In Advances in neural information processing systems. 3123-3131.

Pierre Courtiol, Charles Maussion, Matahi Moarii, Elodie Pronier, Samuel Pilcer,
Meriem Sefta, Pierre Manceron, Sylvain Toldo, Mikhail Zaslavskiy, Nolwenn
Le Stang, et al. 2019. Deep learning-based classification of mesothelioma improves
prediction of patient outcome. Nature medicine 25, 10 (2019), 1519-1525.
Walter de Brouwer. 2019. The federated future is ready for shipping.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. 2012. Large scale
distributed deep networks. In Advances in neural information processing systems.
1223-1231.

Aaron Defazio and Léon Bottou. 2018. On the Ineffectiveness of Variance Reduced
Optimization for Deep Learning. arXiv preprint arXiv:1812.04529 (2018).

[21] JiaDeng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248-255.

Tim Dettmers. 2015. 8-bit approximations for parallelism in deep learning. arXiv
preprint arXiv:1511.04561 (2015).

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. 2017. Sharp
minima can generalize for deep nets. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 1019-1028.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

Petros Drineas, Ravi Kannan, and Michael W Mahoney. 2006. Fast Monte Carlo
algorithms for matrices I: Approximating matrix multiplication. SIAM J. Comput.
36, 1(2006), 132-157.

[26] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods

for online learning and stochastic optimization. Journal of Machine Learning

[27

(28]

[29

w
=

[31

[32

[33

&
=)

(35

[36

[37

[39

[40

[41

[42

=
&

[44]

[45

[46]

[47

=
&

[49]

[50

Research 12, Jul (2011), 2121-2159.

Philipp Farber and Krste Asanovic. 1997. Parallel neural network training on
multi-spert. In Algorithms and Architectures for Parallel Processing, 1997. ICAPP
97., 1997 3rd International Conference on. IEEE, 659-666.

Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami,
Kai Rothauge, Michael W Mahoney, and Joseph Gonzalez. 2018. On the Compu-
tational Inefficiency of Large Batch Sizes for Stochastic Gradient Descent. arXiv
preprint arXiv:1811.12941 (2018).

Priya Goyal, Piotr Dollar, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
large minibatch SGD: training ImageNet in 1 hour. arXiv preprint arXiv:1706.02677
(2017).

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep learning with limited numerical precision. In International Conference
on Machine Learning. 1737-1746.

Stefan Hadjis, Ce Zhang, Ioannis Mitliagkas, Dan Iter, and Christopher Ré. 2016.
Omnivore: An optimizer for multi-device deep learning on CPUs and GPUs.
arXiv preprint arXiv:1606.04487 (2016).

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Francoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. 2019. GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism. arXiv:1811.06965 [cs.CV]

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. 2017. Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations. Journal of Machine Learning Research 18, 187
(2017), 1-30.

Sergey loffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In International
Conference on Machine Learning. 448-456.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Ion Stoica, Raman Arora, et al. 2019.
Communication-efficient distributed sgd with sketching. In Advances in Neural
Information Processing Systems. 13144-13154.

H. Karimi, J. Nutini, and M. Schmidt. 2016. Linear convergence of gradient and
proximal-gradient methods under the Polyak-Lojasiewicz condition. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer, 795-811.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. 2016. On large-batch training for deep learning:
Generalization gap and sharp minima. arXiv preprint arXiv:1609.04836 (2016).
A. Khaled and P. Richtarik. 2019. Gradient descent with compressed iterates.
arXiv preprint arXiv:1909.04716 (2019).

Latif U Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon Hong.
2021. Federated learning for internet of things: Recent advances, taxonomy, and
open challenges. IEEE Communications Surveys & Tutorials (2021).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung,
Sylvain Gelly, and Neil Houlsby. 2020. Big transfer (bit): General visual repre-
sentation learning. In Computer Vision—ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part V 16. Springer, 491-507.

A. Krizhevsky, I. Sutskever, and G. Hinton. 2012. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems. 1097-1105.

David Leroy, Alice Coucke, Thibaut Lavril, Thibault Gisselbrecht, and Joseph
Dureau. 2019. Federated learning for keyword spotting. In ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 6341-6345.

Mu Li, David G Andersen, Jun Woo Park, Alexander] Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J Shekita, and Bor-Yiing Su. 2014. Scaling
Distributed Machine Learning with the Parameter Server.. In OSDI, Vol. 14. 583—
598.

Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. 2018. Don’t
use large mini-batches, use local SGD. arXiv preprint arXiv:1808.07217 (2018).
Linjian Ma, Gabe Montague, Jiayu Ye, Zhewei Yao, Amir Gholami, Kurt Keutzer,
and Michael W Mahoney. 2019. Inefficiency of K-FAC for Large Batch Size
Training. arXiv preprint arXiv:1903.06237 (2019).

Ryan Mcdonald, Mehryar Mohri, Nathan Silberman, Dan Walker, and Gideon S
Mann. 2009. Efficient large-scale distributed training of conditional maximum
entropy models. In Advances in Neural Information Processing Systems. 1231-1239.
Piyush Mehrotra, Jahed Djomehri, Steve Heistand, Robert Hood, Haoqiang Jin,
Arthur Lazanoff, Subhash Saini, and Rupak Biswas. 2012. Performance evaluation

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://arxiv.org/abs/1811.06965

[51]

[52]

[53

[54]

[55

[56]

[57]

[58

[59]

[60]

[61

[62]
[63]

[64]

[65

[66]

(67

of Amazon EC2 for NASA HPC applications. In Proceedings of the 3rd workshop
on Scientific Cloud Computing. 41-50.

Thomas Paine, Hailin Jin, Jianchao Yang, Zhe Lin, and Thomas Huang. 2013. GPU
asynchronous stochastic gradient descent to speed up neural network training.
arXiv preprint arXiv:1312.6186 (2013).

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
2017. Automatic differentiation in pytorch. (2017).

Sundar Pichai. 2019. Privacy should not be a luxury good. The New York Times
(2019).

Rajat Raina, Anand Madhavan, and Andrew Y Ng. 2009. Large-scale deep unsu-
pervised learning using graphics processors. In Proceedings of the 26th annual
international conference on machine learning. ACM, 873-880.

Swaroop Ramaswamy, Rajiv Mathews, Kanishka Rao, and Francoise Beaufays.
2019. Federated learning for emoji prediction in a mobile keyboard. arXiv preprint
arXiv:1906.04329 (2019).

Alexander Ratner, Dan Alistarh, Gustavo Alonso, Peter Bailis, Sarah Bird, Nicholas
Carlini, Bryan Catanzaro, Eric Chung, Bill Dally, Jeff Dean, et al. 2019. SysML:
The New Frontier of Machine Learning Systems. arXiv preprint arXiv:1904.03257
(2019).

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems. 693-701.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. 2021.
Imagenet-21k pretraining for the masses. arXiv preprint arXiv:2104.10972 (2021).
Nicola Rieke, Jonny Hancox, Wengqi Li, Fausto Milletari, Holger R Roth, Shadi
Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-
Hein, et al. 2020. The future of digital health with federated learning. NP7 digital
medicine 3, 1 (2020), 1-7.

Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms.
arXiv preprint arXiv:1609.04747 (2016).

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 2014. 1-bit stochastic
gradient descent and its application to data-parallel distributed training of speech
DNNs. In Fifteenth Annual Conference of the International Speech Communication
Association.

Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

K. Simonyan and A. Zisserman. 2014. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. 2017. Don’t
decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489
(2017).

Chetan L Srinidhi, Ozan Ciga, and Anne L Martel. 2020. Deep neural network
models for computational histopathology: A survey. Medical Image Analysis
(2020), 101813.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research 15, 1 (2014), 1929-1958.
Stanley Smith Stevens, John Volkmann, and Edwin B Newman. 1937. A scale
for the measurement of the psychological magnitude pitch. The Journal of the

1590

o
&,

<
=t

=
2

[79

(80

(81]

(82

o0
&

(84

(85]

(86

Acoustical Society of America 8, 3 (1937), 185-190.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. 2019. PowerSGD:
Practical low-rank gradient compression for distributed optimization. In Advances
in Neural Information Processing Systems. 14236—14245.

Pete Warden. 2018. Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209 (2018).

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai
Li. 2017. Terngrad: Ternary gradients to reduce communication in distributed
deep learning. In Advances in neural information processing systems. 1509-1519.
Stephen Wright and Jorge Nocedal. 1999. Numerical optimization. Springer
Science 35, 67-68 (1999), 7.

Alfred Xu. 2018. NCCL BASED MULTI-GPU TRAINING. http://on-demand.
gputechconf.com/gtc-cn/2018/pdf/CH8209.pdf. (2018). Accessed: 2020-02-06.
Omry Yadan, Keith Adams, Yaniv Taigman, and Marc’Aurelio Ranzato. 2013.
Multi-GPU training of convnets. arXiv preprint arXiv:1312.5853 (2013).
Timothy Yang, Galen Andrew, Hubert Eichner, Haicheng Sun, Wei Li, Nicholas
Kong, Daniel Ramage, and Francoise Beaufays. 2018. Applied federated learning:
Improving google keyboard query suggestions. arXiv preprint arXiv:1812.02903
(2018).

Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. 2018.
Hessian-based analysis of large batch training and robustness to adversaries. In
Advances in Neural Information Processing Systems. 4949-4959.

Yang You, Igor Gitman, and Boris Ginsburg. 2017. Scaling SGD batch size to 32K
for ImageNet training. arXiv preprint arXiv:1708.03888 (2017).

Yang You, Jonathan Hseu, Chris Ying, James Demmel, Kurt Keutzer, and Cho-
Jui Hsieh. 2019. Large-Batch Training for LSTM and Beyond. arXiv preprint

arXiv:1901.08256 (2019).
Yang You, Jing Li, Jonathan Hseu, Xiaodan Song, James Demmel, and Cho-Jui

Hsieh. 2019. Reducing BERT Pre-Training Time from 3 Days to 76 Minutes. arXiv
preprint arXiv:1904.00962 (2019).

Binhang Yuan, Anastasios Kyrillidis, and Christopher M Jermaine. 2019. Dis-
tributed learning of deep neural networks using independent subnet training.
arXiv preprint arXiv:1910.02120 (2019).

Matthew D Zeiler. 2012. ADADELTA: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701 (2012).

Ce Zhang and Christopher Ré. 2014. Dimmwitted: A study of main-memory
statistical analytics. Proceedings of the VLDB Endowment 7, 12 (2014), 1283-1294.
Jian Zhang, Christopher De Sa, Ioannis Mitliagkas, and Christopher Ré. 2016.
Parallel SGD: When does averaging help? arXiv preprint arXiv:1606.07365 (2016).
Shanshan Zhang, Ce Zhang, Zhao You, Rong Zheng, and Bo Xu. 2013. Asynchro-
nous stochastic gradient descent for DNN training. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on. IEEE, 6660-6663.
Xiru Zhang, Michael Mckenna, Jill P Mesirov, and David L Waltz. 1990. An
efficient implementation of the back-propagation algorithm on the connection
machine CM-2. In Advances in neural information processing systems. 801-809.
Wan Zhu, Longxiang Xie, Jianye Han, and Xiangqian Guo. 2020. The application
of deep learning in cancer prognosis prediction. Cancers 12, 3 (2020), 603.
Martin Zinkevich, Markus Weimer, Lihong Li, and Alex] Smola. 2010. Parallelized
stochastic gradient descent. In Advances in neural information processing systems.
2595-2603.

http://on-demand.gputechconf.com/gtc-cn/2018/pdf/CH8209.pdf
http://on-demand.gputechconf.com/gtc-cn/2018/pdf/CH8209.pdf

