2108.06848v2 [math.AG] 11 Nov 2022

arxiv
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ABSTRACT. We show that the K-moduli spaces of log Fano pairs (IP’3, ¢S) where S is a quartic
surface interpolate between the GIT moduli space of quartic surfaces and the Baily-Borel
compactification of moduli of quartic K3 surfaces as c varies in the interval (0,1). We completely
describe the wall crossings of these K-moduli spaces. As the main application, we verify
Laza-O’Grady’s prediction on the Hassett-Keel-Looijenga program for quartic K3 surfaces. We
also obtain the K-moduli compactification of quartic double solids, and classify all Gorenstein
canonical Fano degenerations of P?.
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1. INTRODUCTION

An important question in algebraic geometry is to construct geometrically meaningful compact
moduli spaces for polarized K3 surfaces. The global Torelli theorem indicates that the coarse
moduli space Moy of primitively polarized K3 surfaces with du Val singularities of degree 2d
is isomorphic, under the period map, to the arithmetic quotient Foy = Doy/T'9q of a Type IV
Hermitian symmetric domain Do, as the period domain. The space Fy4 has a natural Baily-Borel
compactification F3,, but it is well-known that F3,; does not carry a nicely behaved universal
family. Thus it is a natural problem to compare F3; with other geometric compactifications,
e.g. those coming from geometric invariant theory (GIT), via the period map.

In particular, it is natural to ask if there exists a modular way to resolve the (birational)
period map. When the degree 2d = 2, there is a birational period map between the GIT
quotient of sextic plane curves and %, since a generic such K3 is the double cover of P? ramified
along a sextic. By work of Looijenga and Shah, this map can be resolved by considering either
a partial Kirwan desingularization of the GIT quotient, or via a small partial resolution of J73
[Sha80, Loo86]. A realization of Laza-O’Grady (based on work of Looijenga), is that an alternate
systematic approach to this problem is via interpolating the Proj of R(F2, A + SA), where A is
the Hodge line bundle on Fs, the divisor A is some geometrically meaningful Heegner divisor,
and [ varies between 0 and 1 (see e.g. [LO18]).
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When the degree 2d = 4 (for simplicity, denoted by 9 = My and F = F,), a distinguished
geometric compactification is given by the GIT moduli space ﬁGIT of quartic surfaces in P3.

There is a birational period map p : M s 7 with much more complicated exceptional loci
as compared to the degree two case. In a series of papers [LO19, LO18, LO21], Laza and O’Grady
proposed a systematic way to resolve such period maps (when JF is an arithmetic quotient of
a Type IV Hermitian symmetric domain) via a sequence of explicit birational transformations
governed by the Heegner divisors in F*, and predict that they satisfy a natural interpolation.
Motivated by the Hassett-Keel program — running the log minimal model program on Mg to
interpolate between different birational models of the moduli space of curves (see e.g. [HH13]),
they named this program the Hassett-Keel-Looijenga program. In [LO21], Laza and O’Grady
verified their proposal for the the moduli of hyperelliptic quartic K3 surfaces, which is an 18-
dimensional divisor in F*, but their prediction for the 19-dimensional space F has remained
open. One of the main purposes of this paper is to completely verify their prediction for F
using the recently constructed moduli spaces of log Fano pairs from the theory of K-stability.
We note that the analogous question in the case of EPW sextics remains open, and it would be
interesting to try to use K-moduli to study their compactifications.

For a rational number ¢ € (0, 1), the pair (P3, ¢S) is a log Fano pair, where S C P? is a smooth
quartic surface. Thus, K-stability provides a natural framework to construct geometrically
meaningful compactifications of moduli of quartic K3 surfaces. In recent years, the algebro-
geometric theory of constructing projective K-moduli spaces of log Fano pairs has been completed
as a combination of the important works [Jia20, LWX21, CP21, BX19, ABHLX20, BLX22,
Xu20, X720, X721, BHLLX21, LXZ22]. Meanwhile, when we vary the coefficient ¢, the K-
moduli spaces of Q-Gorenstein smoothable log Fano pairs display wall-crossing phenomena as
established in [ADL19] (see also [Zho21b]).

In this paper, we show that the K-moduli compactifications of log Fano pairs (P3, ¢S) where

. . . . G
S is a smooth quartic surface interpolate naturally between the GIT moduli space I T and
the Baily-Borel compactification F* as ¢ varies in the interval (0,1). As a result, we resolve the

period map p : ﬁGIT --+ F* where all intermediate birational models have a modular meaning
as they parametrize certain K-polystable log Fano pairs. Furthermore, using the positivity of
the log CM line bundle [CP21, Pos22, XZ20], we confirm the prediction by Laza and O’Grady
on the Hassett-Keel-Looijenga program for moduli space of quartic K3 surfaces [LO18, LO19].

We first fix some notation. Let M° and 9t° be the Deligne-Mumford stack and coarse moduli
space of quartic surfaces S C P? with du Val singularities, respectively. Let F be the locally
symmetric variety parametrizing periods of all polarized K3 surfaces of degree 4 with du Val
singularities. The global Torelli theorem implies that the period map p : 9M° < F is an open
immersion of quasi-projective varieties. Let F* be the Baily-Borel compactification of F. Let
A be the Hodge line bundle over F. By [LO19], there are two Heegner divisors Hj, and H,
of &, which parametrize hyperelliptic and unigonal quartic K3 surfaces respectively, such that

p(M°) = F\ (Hp U Hy). Let M and M be the GIT moduli stack and space of quartic
surfaces in P3, respectively.

Theorem 1.1. For c € (0,1) N Q, let ﬁf (resp. ﬁ?} be the K-moduli stack (resp. K-moduli
space) parametrizing K-semistable (resp. K-polystable) log Fano pairs (X,cD) admitting a Q-
Gorenstein smoothing to (P3,¢S) where S is a quartic surface.

(1) For any c € (0, %) NQ, there are isomorphisms ﬁf =~ M and ﬁ? ~ T

(2) For any c € (0,1) N Q, the section ring R(F,cA + (1 — ¢)AX) is finitely generated where

AR .= 2Hy+3H,. Morcover, there is an isomorphism ﬁ? >~ Proj R(F,cA+ (1 —c)AK)
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where the log CM line bundle on ﬁf is proportional to O(1) on the Proj up to a positive
constant. X R
(3) For0 < e < 1, the K-moduli space 9,_, is isomorphic to Looijenga’s Q-Cartierization F

of F* associated to Hy, and H,. Moreover, the Hodge line bundle on ﬁi{_e is semiample
and its ample model is isomorphic to F*.

(4) There are 9 K-moduli walls for ¢ € (0,1). Among them, 2 walls are divisorial con-
tractions: contracting a strict transform of Hy, to the double quadric surface [2Q] when
c= %, and contracting a strict transform of H, to the tangent developable surface [T of
a twisted cubic curve when ¢ = %, respectively. The remaining 7 walls are flips.

For a detailed description of the K-moduli wall crossings, see Theorem 5.16.

That is, by varying the coefficient ¢, the K-moduli spaces ﬁi{ provide a natural interpolation
between the GIT quotient for quartic surfaces and the Baily-Borel compactification, and explic-
itly resolve the period map. We note that a special case of Theorem 1.1(1) was proved earlier in
[GMGS21, Theorem 1.2] and [ADL19, Theorem 1.4] (see also [Zho21a]). We also note that the
two walls which are divisorial contractions are actually weighted blowups of Kirwan type (see
Remarks 5.17 and 6.10).

Since these K-moduli spaces ﬁ? provide birational models of F, we are able to confirm Laza-
O’Grady’s prediction on the Hassett-Keel-Looijenga program for F [LO19, LO18| by modifying

ﬁ? and checking ampleness of Laza-O’Grady’s line bundle. Indeed, we prove a more general
finite generation result and describe a wall-chamber structure for the full-dimensional subcone
of Ni () generated by A\, Hy,, and H,.

Theorem 1.2. For any a,b € Qxg, the section ring R(F, \+ %(aH;ﬁ—bHu)) 18 finitely generated,
which yields a projective birational model F(a,b) := Proj R(F,\ + %(aHh +bH,)) of F. These
F(a,b)’s have a wall-chamber structure where the walls are a = a; or b =1 with

( ) 1111111

ai, a9, - ,a8) = =,=,=, =, —, =, = .

1, @2, s U8 97776757473727

Moreover, we have the following description of F(a,b). Here we assume 0 < € < 1.

(1) If a € (0, %) and b € (0,1), then F(a,b) = 7F.
(2) If a,b € [1,+00), then F(a,b) =M "

(8) The birational map F(1—e€,b) — F(1,b) is a divisorial contraction of the strict transform
of Hy, to a point, and F(1,b) = F(a,b) for any a > 1.

(4) The birational map F(a,1—€) — F(a, 1) is a divisorial contraction of the strict transform
of Hy to a point, and F(a,1) = F(a,b) for any b > 1.

(5) If 1 <i <7, then birational maps F(a; —€,b) — F(a;,b) < F(a; +€,b) form a flip whose
flipping locus (resp. flipped locus) is the strict transform of Z7 (resp. of W;_1) where
. 9—14  ifi >4 , ) . . . .
j= o Here Z7 C F is a tower of Shimura subvarieties of codimension
10—1¢ ifi <3.

J (see (3.2)), and W; C M is a tower of i-dimensional subvarieties (see (3.1)).

Corollary 1.3. Laza-O’Grady’s prediction for the 19-dimensional locally symmetric variety F
[LO19, Prediction 5.1.1] holds.

We note that partial results toward Laza-O’Grady’s prediction were obtained in [LO19, LO18].
In [LO21] the 18-dimensional case of their prediction was confirmed (see also [ADL20] for
a different approach). In [LO21] the authors used an intricate and subtle variation of GIT
argument, motivated by their previous arithmetic and hodge theoretic computations in [LLO19].
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As a consequence of Theorem 1.1, we give an explicit description of the K-moduli space of
quartic double solids, i.e. del Pezzo threefolds of degree 2. The smooth quartic double solids
are previously known to be K-stable [Derl16]. Note that this K-moduli space displays similar
behavior to the K-moduli space of del Pezzo surfaces of degree 1 [OSS16] as both are two-step
birational modifications (a blow-up followed by a small contraction) of GIT moduli spaces, while
K-moduli spaces of del Pezzo threefolds/fourfolds of degree 3 or 4 are identical to GIT moduli
spaces [SS17, LX19, Liu22].

Theorem 1.4. Let Q) be the K-moduli space of quartic double solids. Then the seminormaliza-
tion of ) is isomorphic to ﬁg Moreover, it fits into the following diagram

M LI L awy L)
where p is a divisorial contraction of a birational transform of Hy, to the point parametrizing the
double quadric surface [2Q)], v is a small contraction of a rational curve (the strict transform
of W) to a point p, and v is the seminormalization obtained by taking fiberwise double covers,
where 1(p) represents the toric Q-Fano threefold (x5 = x3z4) C P(1,1, 2,4,4) (20, 4]

Another interesting consequence is a classification of all Gorenstein canonical Fano degenera-
tions of P3. Here X}, is the projective anti-canonical cone over P! x P!, and X, is a Gorenstein
Q-Fano threefold constructed in Section 4.2. Their notation is chosen so that X (resp. Xj)
contains a general hyperelliptic (resp. unigonal) quartic K3 surface as its anti-canonical divisor.

Theorem 1.5. Let X be a Gorenstein canonical Fano wvariety that admits a Q-Gorenstein
smoothing to P3. Then X is isomorphic to P3, Xj,, P(1,1,2,4), or X,,.

Sketch of proofs. We sketch the proofs of Theorems 1.1 and 1.2. First of all, by [GMGS21,

ADL19] we know that ﬁ? ~ MM I S s a quartic surface in P3 with semi-log canonical

(slc) singularities (also called insignificant limit singularities), then (P3,9) is a K-semistable log

Calabi-Yau pair, and P3 is K-polystable. Hence by interpolation of K-stability, the log Fano
pair (P3,¢S) is K-semistable for any 0 < ¢ < 1. Therefore, the birational map ﬁf - ﬁGIT

is isomorphic over the open subset O5!° parametrizing quartic surfaces with slc singularities.
K

c

Thus in order to describe wall-crossings of 9., we only need to understand the K-polystable

=CIT . . e S .
replacements of 9T \ O parametrizing quartic surfaces with significant limit singularities.

From the GIT of quartic surfaces [Sha81, LO18|, we know that ﬁGIT\DﬁSIC = WsU{[T'|} where

T is the tangent developable surface of a twisted cubic curve, and Wy is the largest subvariety

of M in the tower W; (see (3.1)). Indeed, the K-polystable replacements of [T'] (resp. W;)
precisely correspond to unigonal (resp. hyperelliptic) quartic K3 surfaces.

In Section 4, we study the K-stability of (P3,¢T") and its K-polystable replacements. Using
equivariant K-stability from [Zhu21], we show that the K-semistable threshold of (P3,T), i.e.
the largest ¢ where (P3, ¢T') is K-semistable, is equal to %. Then we construct the K-polystable
replacement (X, %To) of (P3, %T) by explicit birational geometry. Here X, is constructed
as a particular Gorenstein Q-Fano threefold that contains all unigonal quartic K3 surfaces as
anti-canonical divisors (see Section 4.2). Then using Paul-Tian criterion type arguments and
the deformation theory of Gorenstein toric threefold singularities [Alt97], we show that the K-
moduli wall crossing at ¢ = % near [T is a divisorial contraction whose exceptional divisor,
birational to H,, is the GIT moduli space of (X,,S) where S is a Weierstrass elliptic surface.

In Section 5, we study the K-polystable replacements of the tower W; in ﬁGIT. This is

the trickiest part of the proof. Our motivation comes from [ADL20] where we show that the

K-moduli compactification K. of (P! x P!, cC) where C € |O(4,4)] is identical to the VGIT
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moduli space of slope t = 203fr2. By taking fiberwise double covers, we obtain a family of

K-moduli spaces birational to Hj;. However, these K-moduli spaces parametrize surface pairs
rather than threefold pairs. Nevertheless, we notice that a hyperelliptic quartic K3 surface S as a
double cover of P! x P! (resp. of P(1,1,2)) naturally embeds into the cone X}, (resp. P(1,1,2,4))
as an anti-canonical divisor. Then using a cone construction, a covering trick, and interpolation

(see Section 5.1 for more details), we show that K z.—1 admits a closed embedding into 9, for
4

c> % whose image H}, . is a birational transform of H}, (see Theorem 5.9). Then we construct
K-polystable replacements of W; by first embedding all of P3, Xj,, P(1,1,2,4) into P(1%,2) as
weighted hypersurfaces of degree two, and then finding a particular 1-PS (coming from VGIT in
[LO21]) that degenerates (P3,cS) to a K-polystable pair in Hj, . (see Theorem 5.12). Then we
use deformation theory to classify exceptional loci after the walls. In particular, all K-moduli

spaces M, are isomorphic outside of the loci Hy . and H, .. We give a complete description of
all wall-crossings of ﬁ? in Theorem 5.16.
Finally, in Section 6 we prove the main theorems. We observe that F --» 91 is a birational

contraction by Theorem 5.16. The upshot to show ﬁ? >~ Proj R(F,ch + (1 — ¢)AK) is to
use ampleness of log CM line bundles [XZ20], and to compute the variation of log CM line
bundles which interpolate between the Hodge line bundle and the absolute CM line bundle

(see (6.1)). Then we perform necessary gluing operations and birational modifications on ﬁ?
to obtain F(a,b) (see Definition 6.4 and Proposition 6.5), and show that the pushforward of
A+ §Hp + gHu is ample.

Prior and related works. Compactifying the moduli space Fy of degree 2 K3 surfaces is a well
studied problem. Recall that a general K3 surface of degree two can be realized as a double cover
of P? branched along a sextic curve. As such, there is a natural birational period map between the
GIT quotient of plane sextics and the Baily-Borel compactification. Shah [Sha80] constructed
a partial Kirwan desingularization of the GIT quotient which provides a compactification of
Fa with a set-theoretic map to F5. Work of Looijenga [Loo86, Loo03b] shows that Shah’s
compatification is a Q-factorialization of J5 and additionally resolves the birational period map.
In fact, this case serves as a major motivation for the Hassett-Keel-Looijenga (HKL) program.
The case of degree 2 was revisited, in terms of Kollar-Shepherd-Barron (KSB) stable pairs, by
Laza [Laz16], and more recently studied from the viewpoint of toroidal compactifications in work
of Alexeev-Engel-Thompson [AET19] (see also the more recent [AE21]).

As mentioned above, the Hasset-Keel-Looijenga program was proposed by Laza-O’Grady
[LO19] for Type IV locally symmetric varieties associated to the lattice U? @ Dy_o. It has
been verified in the case of N = 18 for hyperelliptic quartic K3 surfaces by Laza-O’Grady using
variation of GIT [LO21], and partial results for N = 19, i.e. moduli of quartic K3 surfaces were
obtained in [LO19, LO18|.

The wall-crossing phenomenon for K-moduli spaces of log Fano pairs with varying coefficients
was systematically investigated in [ADL19]. One novelty of this strategy is to naturally connect
well-studied moduli spaces, such as GIT, moduli of curves, and K3 surfaces, through birational
maps between a sequence of K-moduli spaces. In our previous works [ADL19, ADL20], we carried
out this strategy for the Hassett-Keel-Looijenga program for F5 and the hyperelliptic Heegner
divisor Hy, of F4. In this paper, we use this novel approach of wall-crossing for K-moduli to solve
the problem of Laza-O’Grady (HKL program for ;). One of the key benefits of this approach
is that it gives a direct solution to a problem which was posed from an entirely different point
of view, namely considering the Proj of a ring of automorphic forms and interpolating based on
some arithmetic predictions.
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Finally, we mention that moduli of pairs (P, cH) have been studied from the point of view
of KSB stable pairs by DeVleming [DeV22] where H is a surface in P? of degree d > 5.
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2. PRELIMINARIES ON K-STABILITY AND K-MODULI

Throughout this paper, we work over the field of complex numbers C. We refer the background
of singularities of pairs, such as Kawamata log terminal (klt), purely log terminal (plt), log
canonical (Ic), and semi-log canonical (slc), to the standard references [KM98, Koll3]. All
schemes are assumed to be of finite type over C.

2.1. K-stability.
2.1.1. Fujita-Li’s valuative criteria.

Definition 2.1. Let X be a normal variety. Let D be an effective Q-divisor on X. We say
(X,D) is a log pair if Kx + D is Q-Cartier. A log pair (X, D) is called log Fano if X is
projective and —Kx — D is ample. A log pair (X, D) is called log Calabi-Yau if X is projective
and Kx + D ~q 0. If (X,0) is a kit log Fano pair, then we call X a Q-Fano variety.

We refer the definitions of test configurations and K-(poly /semi)stability of log Fano pairs to
[ADL19, Section 2.1]. Here we use Fujita-Li’s valuative criteria as alternative definitions.

Definition 2.2. Let (X, D) be a log pair. We call E a prime divisor over X if there is a proper
birational morphism y : Y — X from a normal variety Y such that F is a prime divisor on Y.
We define the log discrepancy of E with respect to (X, D) as

A(X,D)(E) =1+ COGHE(KY - ,u*(KX + D))

If, in addition, (X, D) is a log Fano pair, then we define the pseudo-effective threshold, the
expected vanishing order (also known as the S-functional), and the S-invariant of E with respect
to (X, D) as

T(X,D) (E) = Sup{t S RZO | ,LL*(—KX - D) —tE is blg},

1
FE) =

Seem(B) = TRk — D

Bix,p)(E) == Ax,p)(E) — Sx,p)(E).
Here volx(—Kx — D — tFE) := voly (u*(—Kx — D) — tE). The a-invariant and the stability
threshold (also known as the d-invariant) of a klt log Fano pair (X, D) are defined as

. Ax.p)(E)
and 0(X,D) :=inf ——————
( ) E S(X,D)(E)

T(x,p)(E)
) / Vle(—KX —D—tE)dt,
0

A E
a(X, D) = inf 7(X’D)( )
E Tix,p)(E)

where the infima run over all prime divisors F over X.
Next, we recall Fujita-Li’s valuative criteria for K-(semi)stability and uniform K-stability.

Theorem 2.3 ([Fuj19c, Lil7, BX19], see also [FO18, BJ20]). A kit log Fano pair (X, D) is
6



(1) K-semistable if and only if Bx,py(E) = 0 for any prime divisor E over X, or equiva-
lently, 6(X,D) > 1;

(2) K-stable if and only if B x,py(E) >0 for any prime divisor E over X;

(8) uniformly K-stable if and only if §(X,D) > 1.

Note that a K-semistable log Fano pair is always klt by [Odal3]. By a recent result of Liu-
Xu-Zhuang [LXZ22], K-stability is equivalent to uniform K-stability for any klt log Fano pair.

If X is a Q-Fano variety, D is an effective Q-Cartier Q-divisor on X, and ¢ € Q-(, then we
say (X, D) is c-K-(poly/semi)stable if (X, cD) is a K-(poly/semi)stable log Fano pair.

2.1.2. Special degenerations and plt blow-ups. Recall that a test configuration (X,D;L) of a
klt log Fano pair (X, D) is called special if (X, Xp + D) is plt and £ ~g —I(Kx /a1 + D) for
some | € Zsg. In this case, we call (Xy,Dy) a special degeneration of (X, D) and denote by
(X, D) ~ (Xy, Dy). By adjunction we know that (Xp, D) is also a klt log Fano pair.

Next, we recall a result of Li-Wang-Xu which gives a characterization for K-polystability in
terms of special degenerations.

Theorem 2.4 ([LWX21]). A K-semistable log Fano pair (X, D) is K-polystable if and only if
any K-semistable special degeneration of (X, D) is isomorphic to itself.

Definition 2.5. Let (X, D) be a kit log pair. Let E be a prime divisor over X.

(1) ([Fuj19b]) We say E is of plt type over (X, D) if there exists a birational morphism
1Y — X from a normal projective variety Y such that
e F is a Q-Cartier prime divisor on Y, and —F is p-ample;
o ply\g: Y\ E— X\ p(E) is an isomorphism;
o (Y,E+ u;'D) is plt.
Such a morphism pu is called a plt blow-up.
(2) [Pro00, Xul4] A plt type divisor E over (X, D) with center u(E) = z being a closed
point is called a Kolldr component over the singularity = € (X, D).
(3) We say E is a special divisor over (X, D) if there exists a special test configuration
(X, D; L) of (X, D) and a positive integer d such that ordx,|c(x) = d - ordg.

Lemma 2.6 (Zhuang). Any special divisor over a kit log Fano pair (X, D) is of plt type.

Proof. By Zhuang’s Theorem [Xu21, Theorem 4.12], if E' is a special divisor over (X, D), then
there exists a Q-complement D of (X, D) such that E is the only lc place of (X, DT). Thus for
0 < € < 1, the log pair (X, (1—€)D+eD™) is kit where E has log discrepancy less than 1. Thus
by [BCHM10] there exists a birational morphism g : Y — X from a normal projective variety
Y such that the first two conditions in Definition 2.5(2) hold. Moreover, since E is the only lc
place of (X, D), we know that (Y, E + p; D7) is plt. Thus (Y, E + ;D) is also plt. O

2.1.3. Equivariant K-stability. The following theorem is essentially due to Zhuang [Zhu21]. The
equivalence between (i) and (iii) was also proved by Fujita [Fuj19b] when G is trivial.

Theorem 2.7 (Zhuang). Let (X, D) be a klt log Fano pair. Let G be an algebraic group acting
on (X, D). Then the following are equivalent.
(i) (X, D) is K-semistable;
(i4) Bx,py(E) = 0 for any G-invariant special divisor E over (X, D);
(1) Bx,p)(E) >0 for any G-invariant prime divisor E of plt type over (X, D).

Proof. The (i)=-(iii) part is a consequence of Theorem 2.3. The (iii)=(ii) part follows from

Lemma 2.6. So we focus on the (ii)=(i) part. Assume to the contrary that (X, D) is K-unstable.

By [LXZ22, Theorem 1.2] and [BHLLX21, Theorem 1.2(2)], there exists a non-trivial special test
7



configuration (X, D) of (X, D) that minimizes the bi-valued invariant (T;(glli ), T)‘J{(’;’ﬁ)) under

the lexicographic order among all special test configurations, where |||, and ||-||2 represents
the minimum norm and the L?-norm respectively (see [BHLLX21, Section 2.3] for definitions).
Moreover, such a minimizing special test configuration (X', D) is unique up to rescaling. The
minimizing property implies Fut(X', D) < 0 as (X, D) is K-unstable. Every g € G induces a pull-
back (X, Dy) of the test configuration (X, D) with the same Fut(-), ||||m, and ||-|[2. Since a non-
trivial rescaling must change the norms, the uniqueness of (X, D) implies that (Xy, Dy) = (X, D)
for every g € G. Thus (X, D) is G-equivariant. Let E be a special divisor over (X, D) such that
ordy,|c(x) = d - ordg for some d € Zsg. Then Fut(X,D) = d- Bx,p)(E£) > 0 by [Fujl9c], a
contradiction to Fut(X,D) < 0. Thus (X, D) is K-semistable. O

Proposition 2.8. Let (X, D) be a K-semistable, but not K-polystable, log Fano pair. Let G be a
reductive group acting on (X, D). Then there exists a G-invariant special divisor E over (X, D)
with B(x,p)(E) = 0 which induces a K-polystable special degeneration of (X, D).

Proof. By [LWX21, Theorem 1.3] let (Xp,A¢) be the unique K-polystable special degenera-
tion of (X, D). Then the second paragraph of [Zhu2l, Proof of Corollary 4.11] implies that
there exists a non-trivial G-equivariant special test configuration (X, D) of (X, D) such that
(Xb, Do) = (Xo, Do). Since (X, Dp) is K-polystable, we have Fut(X, D) = 0. From [Fuj19c| we
know that there exists a special divisor £ over (X, D) and d € Z¢ such that ordx,|c(x) = d-ordp,
and 0 = Fut(X, D) = d-B(x,py(E). Since (X, D) is G-equivariant, we know that E is G-invariant.
Thus the proof is finished. U

2.1.4. Almost log Calabi- Yau pairs. The following definition is equivalent to the original defini-
tion by [Odal3].

Definition 2.9. A log Calabi-Yau pair (X, D) is called K-semistable if (X, D) is log canonical.

The following theorem can be viewed as an algebraic analogue of [JMR16, Corollary 1]. A
different proof can be obtained by applying [Zho21b, Lemma 5.3].

Theorem 2.10. Let X be a Q-Fano variety of dimensionn > 2. Let D ~g —Kx be an effective
Q-Cartier Weil divisor. Assume that (X, D) is plt. Then there exists €1 € (0,1) depending only
on n, such that for any rational number ¢ € (1 — €1,1), the log Fano pair (X,cD) is uniformly
K-stable. In particular, Aut(X, D) is a finite group.

Proof. Consider the pair (X, mT_lD) where m € Zso. By [BLX22, Corollary 3.5] based on
Birkar’s boundedness of complements [Birl9, Theorem 1.8], there exists N € Z~( depending
only on n, such that either (X, mT_lD) is uniformly K-stable, or

-1 Ay mo1 (E )
(2.1) 5(X, "2 D) = inf T P

m £ S(x m1p)(E)
where E runs over lc places of N-complements A of (X, mT_ID) satisfying A > mT_lD. Since
NA} is a Weil divisor, we know that A} > D as long as m > N. Since A} ~g —Kx ~q D,
we have that A = D for m > N.

We claim that (X, NL_HD) is uniformly K-stable. If not, from n > 2 and ampleness of D we
know that D is connected. Since AE 41 =D and (X, D) is plt, the prime divisor D is the only
lc place of N-complements AJJ(, 41+ Hence (2.1) implies that 6(.X, NLHD) is computed by E = D,
and simple computation shows that

1 1
A D)= —— D)=———.
(XLD)( ) and S(X,LD)( ) (7’L+1)(N—|—1)

N+1
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This contradicts the assumption that 6(X, NLHD) < 1. Thus we prove the claim which implies

the uniform K-stability of (X,cD) for any ¢ € [NLH,I) by [ADL19, Proposition 2.13]. The
finiteness of Aut(X, D) follows from [BX19, Corollary 1.3]. O

2.2. CM line bundles. The CM line bundle of a flat family of polarized projective varieties
is a functorial line bundle over the base which was introduced algebraically by Tian [Tia97].
The following definition of CM line bundles is due to Paul and Tian [PT06, PT09] using the
Knudsen-Mumford expansion (see also [FR06]). We use the concept of relative Mumford divisors
from [Kol18, Kol19]; see also [ADL20, Definition 2.7].

Definition 2.11 (log CM line bundle). Let f : X — B be a proper flat morphism of connected
schemes. Assume that f has Sy fibers of pure dimension n. Let £ be an f-ample line bundle
on X. Let D := Zle ¢;D; be a relative Mumford Q-divisor on X over B where each D; is a
relative Mumford divisor and ¢; € [0,1] N Q . We also assume that each D; is flat over B (see
Remark 2.12).

A result of Knudsen-Mumford [KM76] says that there exist line bundles A\; = A\;(X, L) on B
such that for all k,

k (nkl) (k)
det fi(L") = A0 @MY @ ® Ao

By flatness, the Hilbert polynomial x (X, £F) = aok™ + a1k"~! + O(k"~2) for any b € B. Then
the CM line bundle and the Chow line bundle of the data (f : X — B, L) are defined as

1 _
Ao g o= M) @ AT+

where p := %‘% The log CM Q-line bundle of the data (f : X — B, L, D) is defined as

, AChow, f,£ = Ant1-

n(ﬁn_l . Db)
ACM, f,D,L = ACM,f,C — 1257n)/\0how,f,£ + (1 + D) Achow, f|p,£lp
b

-1 k -1 k ®c;
where (£ Dy) = 350, /(5" Dig) a0 At i i = ©y N 1, 1.

Remark 2.12. In Definition 2.11 we assumed that each D; are flat over B. This is guaranteed

in our setting — Q-Gorenstein smoothable log Fano families over reduced base schemes — by
[ADL20, Proposition 2.12].

2.3. K-moduli of Q-Fano varieties. We first recall the moduli stack of Q-Fano varieties.

Definition 2.13. A Q-Fano family is a morphism f : X — B between schemes such that

(1) f is projective and flat of pure relative dimension n for some positive integer n;
(2) the geometric fibers of f are Q-Fano varieties;

(3) —Ky/p is Q-Cartier and f-ample;

(4) f satisfies Kollar’s condition.

We recall the following definition from [BHLLX21].
Definition 2.14. [BHLLX21, Section 4.1] Let n be a positive integer and V' a positive rational

number. We define the moduli pseudo-functor Mga{}o that sends a scheme B to
./\/lsa{}o(B) := {Q-Fano families f : ¥ — B | dim(X;) =n, (—Kx,)" =V for all b € S},

Fix an 0 < e <1, and let Mgz‘ﬁ - ./\/lga{}o denote the subfunctor defined by

MZ(B) = {[X — Bl € MEN°(B)|d(X;) > e for all be B},
9



We also define
MKSS( ):={[X - BJ] e MFanO( )| & is K-semistable for all b € B}.

Then by Theorem 2.3 we know that ./\/lKSS ./\/15>1

By [BHLLX21, Section 4.1], the pseudo-functor M nZVEv is represented by an Artin stack of finite
type with affine diagonal (indeed, a quotient stack [Z/PGL,,+1] where Z is a quasi-projective
scheme). The CM Q-line bundle on M?& is defined as the CM Q-line bundle of its universal
family.

By [BL22, BLX22], we know that for a Q-Fano family X — B, the function b — min{1, §(X5;)}

is constructible and lower semi-continuous. Thus for any 0 < € < ¢ < 1 there are canonical

>
open immersions ./\/l5 3o ./\/li e

The following result known as the K-moduli theorem, is a combination of many recent
important algebraic works [Jia20, LWX21, CP21, BX19, ABHLX20, BLX22, Xu20, X720, X721,
BHLLX21, LXZ22].

Theorem 2.15 (K-moduli theorem). Let n be a positive integer and V a positive rational
number. Then there exists an Artin stack MES& of finite type with affine diagonal parametrizing

K-semistable Q-Fano varieties of dimension n and volume V. Moreover, MKSS admits a projec-
tive good moduli space MEP V parametrizing K-polystable Q-Fano varieties, and the CM Q-line

bundle on MKSS descends to an ample Q-line bundle on Mff{'}s

We call MES& and M:f 55 a K-moduli stack and a K-moduli space, respectively.
In this paper, we are mainly interested in the Q-Gorenstein smoothable case.

Definition 2.16. Let n and V be positive integers, and fix any 0 < € < 1. Let ./\/151““’6ZE be the

open substack of M6 v parametrizing smooth Fano varieties X of dimension n and volume V

with §(X) > €. Let MichSze be the Zariski closure of ./\/lsmvbE i ./\/l6 - with reduced structure.
We call Mimvbe a moduli stack of Q-Gorenstein smoothable Q-Fano varieties. A Q-Fano variety
X is called Q-Gorenstein smoothable if [X] € Mimv526 for some n, Ve.
Let MZmVKSS = ./\/lflmv($>1 be a reduced closed substack of MKSS According to Theorem
——sm,Kss 7Kp

2.15, the stack M,y  admits a projective good moduli space M as a reduced closed

subscheme of M:f 5-5. Note that prior to the algebraic approach in Theorem 2.15, it was shown

using analytic methods that there exists a proper good moduli space M va of Mimv * by

[LWX19] (see also [Odal5]).

2.3.1. Q-Gorenstein smoothable log Fano pairs. We will consider the following class of pairs.

Definition 2.17. Let ¢, r be positive rational numbers such that ¢ < min{1,r7~'}. A log Fano
pair (X, cD) is Q-Gorenstein smoothable if there exists a Q-Fano family 7 : X — C over a
pointed smooth curve (0 € C') and a relative Mumford divisor D on X over C such that the
following holds:

e D is Q-Cartier, m-ample, and D ~q» —1Kyx/c;

e Both 7 and 7|p are smooth morphisms over C'\ {0};

o (Xp,cDp) = (X, eD), in particular X has klt singularities.
10



A Q-Gorenstein smoothable log Fano family f : (X,cD) — B over a reduced scheme B consists
of a Q-Fano family f : X — B and a Q-Cartier relative Mumford divisor D on X over B, such
that all fibers (A3, cDy) are Q-Gorenstein smoothable log Fano pairs, and D ~q 5 —rKx.

For a Q-Gorenstein smoothable log Fano family, we define its Hodge line bundle as follows.

Definition 2.18. For ¢,r € Qs with er < 1, let f : (X, ¢D) — B be a Q-Gorenstein smoothable
log Fano family over a reduced scheme B where D ~q  —7Ky/p. The Hodge Q-line bundle
AHodge, f,r—1p 18 defined as the Q-linear equivalence class of Q-Cartier Q-divisors on 7" such that

Kx/p+ 77D ~g f*NHodge, f.r—1D-

In [ADL19] we define the Artin stacks KM, . and prove that they admit proper good
moduli spaces KM, ., where the projectivity of such K-moduli spaces is proven by Xu and
Zhuang [XZ20]. Note that the K-moduli theorem also holds for all log Fano pairs without the
Q-Gorenstein smoothable assumption as a generalization of Theorem 2.15 (see e.g. [LXZ22,
Theorem 1.3]), though we restrict to the Q-Gorenstein smoothable case in this article.

Theorem 2.19 ([ADL19, Theorem 3.1 and Remark 3.25] and [XZ20]). Let xo be the Hilbert
polynomial of an anti-canonically polarized Fano manifold. Fix r € Qso and a rational number
c € (0,min{1,771}). Consider the following moduli pseudo-functor over reduced schemes B:

(X,cD)/B is a Q-Gorenstein smoothable log Fano family,
KMyore(B) = (X,D)/B| D ~pg —rKyp, each fiber (Xy,cDy) is K-semistable,
and x (X, Ox,(—kKy,)) = xo(k) for k sufficiently divisible.

Then there exists a reduced Artin stack KMy, . (called a K-moduli stack) of finite type over
C representing the above moduli pseudo-functor. In particular, the C-points of KMy, v pa-
rametrize K-semistable Q-Gorenstein smoothable log Fano pairs (X, cD) with Hilbert polynomial
X(X,O0x(—mKx)) = xo(m) for sufficiently divisible m and D ~g —rKx.

Moreover, the Artin stack KMy . admits a good moduli space K M, . (called a K-moduli
space) as a projective reduced scheme of finite type over C, whose closed points parametrize K-
polystable log Fano pairs, and the CM Q-line bundle on KM, ;. descends to an ample Q-line
bundle on KMy ..

Lemma 2.20. Let n and V be positive integers. Let v be a positive rational number. Let xg
be the Hilbert polynomial of an anti-canonically polarized Fano manifold of dimension n and
volume V. Then there exists ey € (0,1] depending only on n and r such that the forgetful map
KMyorc — M7 that assigns [(X, D)] — [X] is well-defined for every ¢ € (0, min{1,771}).
Moreover, if r is an integer, then this forgetful map is a smooth morphism with connected or
empty fibers.

Proof. We fix a positive integer n and a positive rational number r. Since smooth Fano manifolds
of dimension n are bounded [KMM92, Cam92], there are finitely many choices of V' and . By
[ADL19, Theorem 1.2] we know that the collection of n-dimensional Q-Fano varieties X such
that [(X,D)] € KMyq . for some D, xo, V, and ¢ € (0,min{1,77'}) is bounded. Thus by
[BJ20, Theorem A] and [BL22, Proposition 5.3], there exists ey € (0,1] depending only on n
and r such that 6(X) > ¢y for every X in this collection. This shows that the forgetful map

KMy e — M2 is well-defined.

Next, we assume r € Z~q. For the last statement, following the last paragraph of the proof of
[ADL20, Theorem 2.21], it suffices to show that for any Q-Gorenstein smoothable Q-Fano variety
X and any effective Weil divisor D on X satisfying D ~g —rKx, we have D ~ —rKx. Let
7 : (X,D) — B be a Q-Gorenstein smoothing over a pointed curve 0 € B with (Xy, Dy) = (X, D)
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and D ~p g —rKy/p. Since 7 is smooth over B\ {0}, the class group of &j is torsion free for
b € B\ {0}. Thus we have D|x\x, ~B —7Kx/B|lx\x, as r is an integer. Since Ap is integral
and Xy ~pg 0, we know that D ~p —TKX/B. This implies that Dy ~ —rKy,. The proof is
finished. 0

3. GEOMETRY AND MODULI OF QUARTIC K3 SURFACES

3.1. Geometry of quartic K3 surfaces. Our goal in this section is to review the Hassett-
Keel-Looijenga program (Section 3.4). Before doing so, we introduce some terminology from the
geometry of quartic K3 surfaces as studied by Mayer in [May72]. A K3 surface S is a connected
projective surface with du Val singularities such that wg =2 Og and H'(S,Og) = 0. A polarized
K3 surface (S, Lg) consists of a K3 surface S and an ample line bundle Lg which is primitive.
A quartic K3 surface is a polarized K3 surface (9, Lg) of degree 4, i.e. (L%) = 4. Consider the
map S --+ |Lg|V = P? induced by the linear system |Lg|.

Definition 3.1. Generically, the linear system |Lg| defines an isomorphism onto a quartic
surface in P? with du Val singularities.
(1) We say that S is hyperelliptic if |Lg| induces a 2 : 1 map onto a quadric surface in P3,
In this case S is isomorphic to a double cover of P! x P! or P(1,1,2) ramified along a
(4,4) curve or a degree 8 curve, respectively.
(2) We say that S is unigonal if |Lg| defines a rational map from S onto a twisted cubic
curve in P2 with general fiber a smooth elliptic curve.

By [May72], we know that any quartic K3 surface belongs to one of the three classes above.

3.2. K-moduli of quartic surfaces. We define the K-moduli stacks ﬁff and spaces ﬁ?
Definition 3.2. Let yo be the Hilbert polynomial of (P3, Ops(4)). Let ¢ € (0,1) N Q be a

. . K xK
rational number. We define the K-moduli stacks M, and spaces 9, as

~K —K
M, :=KMyo1, and M, = KM, 1.

By Theorem 2.19 we know that M, is a reduced Artin stack of finite type, and i)ﬁi( is a reduced
projective scheme.

Lemma 3.3. Let X be a Q-Fano variety in M?;éfzg for some € € (0,1]. Then X admits a
Q- Gorenstein smoothing to P3. Moreover, there exists an ample Q-Cartier Weil divisorial sheaf
L on X such that the following conditions hold.

(1) L™ is Cohen-Macaulay for any m € Z;

(2) wy = L4 and (L3) = 1;

(3) h(X, L") = hi(P3, Ops(m)) for any m € Z and i > 0;

Proof. From the Iskovskikh-Mori-Mukai classfication of smooth Fano threefolds [IP99], we know
that P3 is the only smooth Fano threefold with anti-canonical volume 64. Hence X admits a
Q-Gorenstein smoothing 7 : X — B over a smooth pointed curve 0 € B such that Xy = X and
X, = P3 for b€ B\ {0}. Denote by X° := X\ Xy and B° := B\ {0}. After a quasi-finite base
change of 7, we may assume that X° = P3 x B°. Let £° be a Weil divisor on X*° in |OP%O (D).
Let £ be the Zariski closure of £L° in X. Since 4£° ~p —Kyo/go and Ap is a Cartier prime
divisor, we know that 4L ~p —Ky/p, in particular £ is Q-Cartier. Since X is kIt and L is
Q-Cartier, the sheaf Oy (mL) is Cohen-Macaulay for any m € Z by [KM98, Corollary 5.25]. Let
L := L|x,, then L is a Q-Cartier Weil divisor on X. Moreover, we have Oyx(mL) ® Oy, and
Ox(mL) are isomorphic on a big open subset of Xp, hence they are isomorphic everywhere since
Ox(mL) ® Oy, is Cohen-Macaulay. Thus part (1) is proved.
12



For part (2), notice that 4L ~p —Ky/p implies 4L ~ —Kx. We have (L?) = 1 since
(—~Kx)3 = 64. Part (3) follows from Kawamata-Viehweg vanishing similar to [Liu22, Proof of
Theorem 3.1]. O

From now on, we fix a number ¢y € (0,1] from Lemma 2.20 with n =3 and r = 1.
Next we recall a result connecting K-stability and GIT stability as a special case of [GMGS21,
Theorem 1.2] and [ADL19, Theorem 1.4] (see also [Zho21al).

Theorem 3.4 ([GMGS21, ADL19]). There exists ea € (0,1) such that for any rational number
c € (0,e2), a quartic surface S C P3 is GIT (poly/semi)stable if and only if (P3,cS) is K-
(poly/semi)stable.

Lemma 3.5. Let S C P? be a quartic surface.
(1) If S has only ADE singularities, then (P3,cS) is K-stable for any c € [0,1) N Q.
(2) If S is semi-log canonical, then (P3,cS) is K-semistable for any c € [0,1] N Q.

Proof. We first prove part (1). Since S has ADE singularities, it is GIT stable by [Sha81,
Theorem 2.4]. Hence Theorem 3.4 implies that (P?,eS) is K-stable for 0 < € < 1. Moreover, by
adjunction we have that (P3,9) is plt. Hence part (1) follows from [ADL19, Proposition 2.13].

Next we prove (2). In fact, inversion of adjunction implies that (P3,.S) is log canonical since
S is sle. Then the result follows from [ADL19, Proposition 2.13] since P? is K-polystable. ]

Recall that M° and 90t° denote the modui stack and coarse moduli space of ADE quartic

surfaces in P, respectively. Denote by M3 the open substack of the GIT moduli stack ﬁGIT

parametrizing quartic surfaces S that are semi-log canonical (i.e. (P?,S) is log canonical).

Proposition 3.6. For any rational number ¢ € (0,1), both M, and 9, are irreducible.
Moreover, there are open immersions M° «— MS¢ — M, whose images in M, are saturated

open substacks. Taking good moduli spaces yields open immersions M° — M — ﬁ? where
M parametrizes GIT polystable slc quartic surfaces S C P3. In particular, both M° and MS'

~GI
are saturated open substacks of M~ .

Proof. By Lemma 3.3 we know that M;fréf = ig irreducible. Thus ﬁf is irreducible since the

forgetful map ﬂ? — ﬂ;?é’fzeo is smooth with connected fibers by Lemma 2.20. By Lemma 3.5

(2), we know that any [S] € MI© satisfies that (P3,¢S) is K-semistable for any ¢ € (0,1). Thus
by openness of kit and lc (see [Kol97, Corollary 7.6]), we know that both M° and M®!® are dense

open substacks of ﬁf

Next, we show saturatedness of M° in ﬂf If S is an ADE quartic surface, then Lemma 3.5
implies that (IP3,¢S) is K-stable for any ¢ € (0,1). Thus all C-points in M° are closed with finite

stabilizers, which implies that M° is saturated in M, .

Finally, we show saturatedness of M in ﬁf Let S be a slc quartic surface. Since (P3,¢S) is
K-semistable for any ¢ € (0, 1) from the above discussion, by Theorem 3.4 we know that S is GIT
semistable. Let Sy be the unique GIT polystable quartic surface in the orbit closure of S. Then
by Theorem 3.4 we know that (P3,€eSp) is K-polystable for 0 < ¢ < 1. Denote by (P? x Al,S)
the test configuration of (P3,S) degenerating to (P3, Sp). Hence we have Fut(P3 x Al,eS) = 0.
Since Fut is linear in coefficients, we know that Fut(P? x Al,¢S) = 0 for any ¢ € (0,1). Hence
(P3,cSp) is K-semistable for any ¢ € (0,1) by [LWX21, Lemma 3.1] which implies that Sy is slc.
Thus interpolation of K-stability [ADL19, Proposition 2.13] implies that (P3,¢cSp) is the unique

K-polystable degeneration of (P3,¢S) for any ¢ € (0,1). Since Sy € M®!°, we have that M5 is

saturated in ﬁff The last statement follows from ﬁf SEya by Theorem 3.4. O
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Definition 3.7. The K-semistable threshold of a quartic surface S C P3 is defined as
kst(P3, S) := sup{c € [0,1] | (P3,¢S) is K-semistable}.

If S is GIT semistable, then by Theorem 3.4 and [ADL19, Theorem 3.15] we know that
kst(PP3, S) € (0,1] is a rational number, and the supremum is a maximum.

By Lemma 3.5, we know that kst(P3,.S) = 1 if and only if S is sle. If, in addition, S is GIT
polystable, then by interpolation of K-stability [ADL19, Proposition 2.13] and Theorem 3.4, we
know that for any c € [0, kst(P3,S)), the log pair (P3,cS) is K-polystable. If a GIT polystable
quartic surface S is not slc, i.e. kst(P3,S5) < 1, then (P3,kst(PP3,59)S) is K-semistable but not
K-polystable by [ADL19, Proposition 3.18].

The following theorem follows directly from [ADL19, Theorem 1.2] and Proposition 3.6.

Theorem 3.8. There exist rational numbers 0 = ¢y < ¢ < cg < -+- < ¢ = 1 such that for each

0<i<k-—1, both the K-moduli stack ﬁf and the K-moduli space ﬁ? are independent of the
choice of the rational number ¢ € (¢;,ciy1). Moreover, for each 1 <i<k—1and 0 <e <1 we

have open immersions
—K ~K  —K
M, _e = M, < M, 4
which induce projective birational morphisms

—K ¢ —K ¢ —K
M, e — M, «— M.

In addition, all the above morphisms have local VGIT presentations in terms of [AFS17, (1.2)].

3.3. GIT stratification of quartic surfaces. By Proposition 3.6, the GIT moduli space 't
has an open subset O5!° parametrizing GIT polystable quartic surfaces with slc singularities.

From [Sha81, LO18], we know that the complement o \ 91¢ (denoted by 9!V therein)
has two connected components, where one of them is an isolated point {[7]} representing the
tangent developable surface T' (see Definition 4.1), and the other component has the following
stratification
(3.1) @R\ Y\ {[T]} = Ws D Wr D W D Wy D Wy D Wa D Wy D W,
Here W; is an i-dimensional closed integral subvariety of ﬁGIT, and Wy = {[2Q)]} is the single
point representing the double quadric surface. For each ¢ € {0,1,2,3,4,6,7,8}, we denote by
W2 :=W; \ W;_1 when i ¢ {0,6}, Wg := Ws \ Wy, and Wy = W,

The following result follows from the classification of Shah [Sha81, S-4.3 on Page 282] (see
also [LO18, Section 4.3]).

Theorem 3.9 ([Sha8l]). Let [S] € W? fori e {0,1,2,3,4,6,7,8}. Then in suitable projective
coordinates [xg, 1,22, 3] of P3, the equation of S has the form ¢> + g = 0 where q and g are
given as follows.

q = Tox2 + x% + ax%,

_ Jad(wo + Bi(1, w2, w3)) + w2(23 f1(21, 22) + w2w391 (21, 22) + 23ha (21, 22)), if i > 3;
:Egll(:El,:Eg), Zf’L § 2.

Here 81, f1, g1, h1, and Iy are homogeneous linear polynomials in corresponding variables. More
precisely, we have the following classification.
(1) [S] € W if and only if x2 1 hy;
(2) [S] € W2 if and only if xo | hy and z2 1 g1;
(3) [S] € W¢g if and only if xo | h1 # 0 and z2 | g1;
14



(4) [S] € W2 if and only if hy =0, and either x5 | g1 # 0 or xa2 1 f1;
(5) [S] € W3 if and only if by = g1 =0 and z2 | f1 # 0;

(6) [S] € W3 if and only if x3111;

(7) 1S] € WY if and only if x3 | I # 0;

(8) [S] € W§ if and only if g =0 and a # 0.

3.4. Laza-O’Grady and the Hassett-Keel-Looijenga Program. The moduli space of quar-
tic K3 surfaces can be constructed as a Type IV locally symmetric variety &, and comes with
a natural Baily-Borel compactification F*. The global Torelli theorem for K3 surfaces implies

that the period map p : MT s F* is birational. Building off of previous work of Shah [Sha80]
and Looijenga [Loo03a, Loo03b], in a series of papers [LO19, LO18, LO21] Laza and O’Grady
propose a conjectural method to resolve the period map p whenever F is a Type IV locally
symmetric variety associated to a lattice of the form U? @ Dy_3. When N = 18 this is the case
of hyperelliptic quartic K3 surfaces, and when N = 19 this is the case of quartic K3 surfaces.
Recall that Baily-Borel showed that (for any N) one has F* = Proj R(F, \), where A denotes
the hodge line bundle. Based on observations of Looijenga, Laza-O’Grady predict that in many

cases there is an isomorphism T Proj R(F,\ + A), for some geometrically meaningful
boundary divisor A depending on F. Moreover, they predict that more generally the rings
R(F,\ + BA) are finite generated and so the schemes F(5) = Proj R(F, A + SA) interpolate

between MM and F*. Their work also predicts the location of the walls, i.e. the values 8 where
the moduli spaces change.

3.4.1. Hyperelliptic quartic K3 surfaces. When N = 18, i.e. the hyperelliptic case, Laza and
O’Grady confirm their conjecture in [LO19]. By Definition 3.1, this case occurs when the K3

surface is a double cover of P! x P! ramified along a (4,4) curve. If we let ﬁﬁif) denote the

GIT quotient of (4,4) curves on P! x P!, then Laza and O’Grady show that the period map

S5GIT . . - . . e
p:My ) - F*(18) can be resolved via a series of explicit wall crossings arising from variation

of GIT. Let Hjp 13 C F(18) denote the divisor which parametrizes periods of hyperelliptic K3s
which are the double cover of a quadric cone.

If Reg(p) C ﬁal,}) denotes the regular locus of p, then p(Reg(p))NF(18) = F(18)\ Hj15. Laza

and O’Grady prove that R(3) := R(F(18),\ + 3 - Hh2’18) is a finitely generated C-algebra, and

that F15(5) := Proj R(B) is a projective variety which interpolates between Fi5(0) = F(18)*,

the Baily-Borel compactification, and Fig(1) = ﬁgj%, the GIT quotient. Moreover, the period

map can be explicitly described as a composition of elementary birational maps. The first step
Fis(€) — F18(0) can be realized as the Q-factorialization of F(18)*, which fails to be Q-factorial

along Hj 1. The remainder of the birational transformations are flips, finally followed by a

o . <GIT
divisorial contraction Fi5(1 —€) — My 4.

In [ADL20], we show that the wall crossings resolving the period map p can be interpreted as
wall-crossings in a suitable K-moduli space of log Fano pairs. Let K. denote the connected com-
ponent of the moduli stack parametrizing K-semistable log Fano pairs admitting Q-Gorenstein
smoothings to (P! x P!, c¢C) where C is a (4,4) curve. Denote the good moduli space of K. by

K. Then, varying the weight ¢, the K-moduli spaces K . interpolate between ﬁg}T) and F(18)*.
Moreover, the explicit intermediate spaces constructed in [LO19] using variation of GIT are all
isomorphic to K-moduli spaces, and the walls coincide.

3.4.2. General conjecture. In fact, Laza and O’Grady conjecture that a similar behavior that

is shown in [LO19] is true for many classes of varieties whose moduli space can be constructed

as a Type IV locally symmetric variety. They expect that, as in the hyperelliptic case, if
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p: ﬁGIT --+ F* represents the relevant birational period map from a GIT compactification to
Baily-Borel, then p(Reg(p))NF = F\ A, for some geometrically meaningful divisor A. Moreover,
R(B) := R(F, A+ B-A) should be finitely generated and so F(3) := Proj R(S) should interpolate

between ﬁGIT and F*. Moreover, they conjecture that interpolating from F* to ﬁGIT should
consist of birational transformations related to A. More precisely, let H := 7~ 'SuppA, where
m:D — F. Then H is a union of hyperplane sections of D, and has a stratification by closed
subsets, where the stratification is given by the number of independent sheets of H containing
the general point. Then, the stratification of H induces a stratification of SuppA.

With this in mind, the prediction for resolving p is as follows: Q-factorialize A, followed
by a series of explicit flips of strata inside A, followed by a divisorial contraction of the strict

. ==GIT
transform of A to obtain DﬁG .

3.4.3. Quartic K3 surfaces. Now let ﬁGIT denote the GIT moduli space of quartic surfaces.
We recall some notation from [LO19]. For quartic K3 surfaces, we have that the K3 lattice
A2 U? @ Dy;. Consider

D={lo] e P(A®C) | 6®>=0,(c +7)* > 0}*,

where the superscript + indicates that we have taken one of the two connected components. Let
O™ (A) denote the subgroup of isometries O(A) of A which fixes D. Then F = D/OF(A) is the
period space for quartic K3 surfaces (see [LO19, Secion 1.2]).

Definition 3.10. Thet hyperelliptic divisor Hj, C T is the image of v ND for v € A such that
q(v) = —4 and div(v) = 2. The unigonal divisor H, C F is the image of v N D for v € A such
that ¢(v) = —4 and div(v) = 4.

Remark 3.11. Note that p(S, Lg) € Hy, (resp. H,,) if and only if (S, Lg) is hyperelliptic (resp.
unigonal) in the sense of Definition 3.1.

For quartic K3 surfaces, Laza-O’Grady predict that the regular locus of p is the complement
of H, and Hy. If A = (H, + Hp)/2, they predict that the predicted critical 8 values are

PIRS {1,%,%&,%,%,%,%,0} (see [LO19, Prediction 5.1.1]). Recall, in (3.1), we discussed a

. . ~GIT . . . . . .
stratification of E)ﬁG . They predict that, under p, this stratification is related to a stratification
of ¥*. This is made more precise as follows. Let A*¥) ¢ SuppA be the k-th stratum of the
stratification defined above, and consider

(3.2) 7cz8cz'czbcztczicz?cZz' =H,UH, C 7,
where ZF = A®) for k < 5, and then
o 77 = Imf}“(Hg,w D Ag) — F,
o 78 = Imgj(llg,l(] D Al) — F, and
° Zg = Im?(IIQ’lo) — F.
Then, they predict that each birational map occurring at one of the critical values above

. . . G
corresponds to a flip with center Z*, and that each Z* is replaced by Wj,_; C M T

4. TANGENT DEVELOPABLE SURFACE AND UNIGONAL K3 SURFACES

In this section, we show that if 7" denotes the tangent developable surface (see Definition
4.1), then the pair (P3,cT") is K-polystable if and only if ¢ < %. Moreover, the c-K-polystable
replacements of (P3,T) for ¢ > % are log pairs (X,,S) where X, is a Gorenstein canonical
Fano threefold (see Proposition 4.5 for the construction), and S is a GIT polystable unigonal

K3 surface.
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4.1. Destabilizing divisor.

Definition 4.1. [EL20, Pages 30 - 31] The tangent developable to the twisted cubic curve Cy
in P3 is the surface T C P? defined to be the union of all the embedded projective tangent lines
to Cy. The surface T is a quartic surface that has cuspidal singularities along C, and whose
normalization is P! x P! such that the diagonal Ap1 C P! x P! is the preimage of Cj.

Consider the group G := PGL(2, C) acting linearly on P* where Cj is G-invariant, since clearly
Aut(P3,Cp) = Aut(Cp) = G. A simple analysis shows that there are precisely three G-orbits in
P3, which are Cy, T'\ Cp, and P3\ T

Proposition 4.2. Let ¢ : P! =5 Cy be a parametrization. Then UNegps =2 Op1(5) © Opa (5).
Moreover, there exists a G-equivariant sub-line bundle Ny of Ney ps such that "Ny = Op1(4).
We denote by Ny := NCO/PB/Nl the quotient line bundle. Then locally analytically along Cy we

may split NCO/]P’S as N1 © Ny such that the surface T has analytic equation (y?> = x3) where
N1 = (0/0z) and No = (0/dy).

Proof. By [EVAV81], t*N¢, s = Op1(5)@Op1 (5). Denote by Oc, (m) := Ops(m)@0Oc,, then we
have 1*Oc¢,(m) = Op1(3m). Denote by Z, the ideal sheaf of Cj in P3. Since Cj is projectively
normal, we have a short exact sequence

0 — HO(P?, Z¢, (2)) — HO(P?, Ops(2)) — H°(Co, O, (2)) — 0.

Hence a dimension computation shows that h°(P3 Z,(2)) = 3. Since G = PGL(2,C) has
fundamental group Z/2Z, the line bundle Ops(2) has a natural G-linearization. Thus G acts on
HO(P3,Z¢,(2)). From the classification of G-orbits, we know that there does not exist any G-
invariant quadric surface in P3. Thus H°(P3, Z¢, (2)) is a 3-dimensional irreducible representation
of G. Next we consider the restriction map

r: HO(B?, Ic, (2) = HO(Co, (Zcy/TE,)(2))-

It is clear that r is non-zero and G-equivariant. Since Z¢, /I%O is the conormal bundle N, go /B3>
we have that *(Z¢, /1(210)(2) 2 Op1(1)®? which implies that h°(Cp, (ICO/I%O)(Z)) = 4. Since G
is reductive, the cokernel of 7 provides a non-zero G-invariant section s € H'(Cy, (Z¢, /I(%O)(Q))
Since (Z¢, /I(%O)(2) = Hom(Ng, e, Ocy(2)), the section s induces a non-zero G-equivariant
morphism N, ps — Og,(2) which has to be surjective since G acts transitively on Cp. Thus
we define Ny := O¢,(2) and N as the kernel of the surjection N¢, /p3 — N5. Computations on
degrees show that (* N7 = Op1(4) and (* Ny = Op1(6).

It is clear that 7" has equation (y? = 2?) in some analytic coordinate (z,y, z) of P3. Moreover,
the tangent vector d/0x spans a G-invariant sub-line bundle N of N /ps. Since the G-action
on Cp = P! is transitive, we know that either A7 = N or N] & N} = Neyps- The latter
case is not possible since Op1(4) = Np — Ny ps = Op1(5)%2 does not split. Thus we have
(0/0x) = N{ = Nj. O

Theorem 4.3. Let T be the tangent developable surface of twisted cubic curve Cqy in P3. Let
c € [0,1) be a rational number. Then (P3,¢T) is K-semistable (resp. K-polystable) if and only
if ¢ < 1% (resp. ¢ < 1%)

Proof. We first show the statement for K-semistability. For the “only if” part, we use Fujita-Li’s

valuative criteria Theorem 2.3. Denote by u : Yo — P3 the (2, 3)-weighted blow up of P? along

the twisted cubic curve Cj in the local coordinates (x,y) defined by N7 and A5 from Proposition

4.2. Let Ey be the exceptional divisor of . Then we know that Ey = Projp: Sym(E; @ E3) where

Er = Op1(—4) = *NY, & := Op1(—6) = * Ny, Sym(E2 @ &3) is a Z>p-graded Opi-algebra, and
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each &; has degree i. Denote by T the strict transform of T in Yp. From the local computation
that the (2 3) blow-up normalizes the cusp, we see that 7' is the normalization of T, so by [EL20,
Page 31], T = P! x P!. Denote the two pencil of rulings on T by R and C' respectively, such
that R is a tangent line of Cy and p.C is a conic curve. Denote by H := p*O(1). Then we
have the following relations:

(4.1) (H-R)y=1, (H-C)=2, (Ey-R)=1, (E-C)=1.

Moreover, we have T = 4H — 6Ep and —Ky, =4(H — Ey).

Claim. H — Ej (and hence —Kly;) is nef and big on Yj.

Proof of claim. We first show that H — Ej is nef. Indeed, since 4H 4Fy ~ T+ 2F), it
suffices to show that (H — FEy)|7 and (H — Ey)|E, are both nef. Since T =~ P! x P! with R and
C' as two rulings, (4.1) implies that ((H - Ep)-R) =0, (H— Ep)-C)=1. Hence (H — Ep)|5
is nef. Denote by F' the fiber of the P'-bundle Ey — Cj. Let Az = TN FEjy. It is clear that
Ey = P! x P! with F and Az as the two rulings. Since Az ~ R+ C in Tv, (4.1) implies that
((H—Ep)-Az) = 1. Moreover, we know that (H-F) = (Ops(1)-pu F') = 0 and —Fy|g, ~ Op, (1),
hence (—Ep - F') = 1. Thus ((H — Ep) - F') = 1. This implies that (H — Ey)|g, is also nef.

Next we show that H — Ej is big. This is done by computing the self intersection number of
H —tEj for t € [0,1] and observing that the computation in the previous paragraph also shows
that H — tEy is nef for t € [0,1]. It is clear that

H‘J’:NQR-FC E()‘J’:NR-I-C T"'NQR 2C.

Hence
(H*) =1, (H*-T)=4, (H-T*=-2, (I°)=-38.
Using the fact that Ey = $(4H — T), we see

When 0 <¢ <1 this is also the volume of H — tEj since it is nef. Thus voly, (H — Ey) = % >0
which implies that H — Ej is big. The claim is proved.

Next we compute the S-invariant of Ey. Since —Ky; is nef and big, and Y has only quotient
singularities which are klt, we know that — Ky, (and hence H — Ej) is semi-ample. The ample

model of H — Ej gives a divisorial contraction g : Yy — Y which contracts T to a smooth rational
curve by contracting R to a point. By computation (using the intersection theory above), we
have

1-—

g*g*(H—tEo):H—tEo+<12 >T H—tE0+< >(4H 6Ey) = (3 — 2t)(H — Ey).

Therefore, if 1 <t < %, the divisor H —tEj is big and by Zariski decomposition we know that

voly, (H — tEy) = voly, (g% g«(H — tEp)) = vol((3 — 2t)(H — Ey)) = %‘

Therefore,

0o 1 3/2 (o o1\3
3, 2 (3—2t) 11
I(H — tEp)dt = 1— 2824+ 23)dt / T g =
/0 vol( 0) /0 ( 5 + 3 )dt + . 6 16
Thus we know that
11
As,er)(Eo) =5 —6c, S er)(Eo) = 15
18

(4 —4c).



So if (P3,cT) is K-semistable, then Theorem 2.3 implies that 5 — 6¢ > %(4 — 4¢) which is
equivalent to ¢ < %. Thus we have shown the “only if” part for K-semistability.

Next, we show the “if” part for K-semistability. By interpolation of K-stability [ADL19,
Proposition 2.13], it suffices to show that (P3, 7 is K-semistable. Consider the G = PGL(2, C)-
action on P2 which preserves the twisted cubic curve Cp. By Theorem 2.7, it suffices to show

that 5(193’ o) (F) > 0 for any G-invariant prime divisor I of plt type over (P3, 1%T). Since
there are only three G-orbits in P3: Cy, T'\ Cp, and P3 \ T, we know that either ' = T or F
is centered at Cy. The first case is easy. For the second case, notice that localizing (IP3, %T)
at the generic point of Cy produces a singularity analytically isomorphic to (A2, %(gﬂ = 2?)).
Hence the (2, 3)-weighted blow up in (z,y) produces the only G-invariant divisor Ey of plt type
centered at Cy by Lemma 4.4. Therefore, the above computations show that ﬁ(P37 ) T)(Eo) = 0.

Thus (P3, %T) is K-semistable. This finishes the proof for K-semistability.

Finally, we show the statement for K-polystability. Since T is GIT polystable by [Sha81,
LO18], Theorem 3.4 implies that (P3,€eT) is GIT polystable for 0 < ¢ < 1. Thus [ADL19,
Proposition 2.13] implies that (P3,cT") is K-polystable when 0 < ¢ < 1%. Moreover, since
(P3,¢T) is K-unstable for any ¢ > 1% from the “only if” part for K-semistability, [ADL19,

Proposition 3.18] implies that (P2, %T) is not K-polystable. Thus the proof is finished. O

Lemma 4.4. The kit singularity 0 € (A2, %(y2 = 2%)) admits a unique plt blow-up given by the
(2, 3)-weighted blow-up in (x,y).

Proof. Let E C Y = A? be the (2, 3)-weighted blow-up in (z,%). Let T' be the different divisor
on E,ie. Kp+T = (Ky +E+7;'D)|g where D = %(gﬂ = 2?). Then it is not hard to see that
(E,T) = (P, %[0] + %[1] + %[oo]) Hence o(E,T) = (1 — max{%, 1%,% )(2 — deg(T)) = % > 1,
which means that (E,T") is an exceptional log Fano pair, i.e. there is at most exceptional divisor

over it with log discrepancy one (see [Pro00, Definition 4.1]). Thus [Pro00, Section 4] implies
that F is the unique Kolldr component over 0 € (A2, D). O

4.2. Construction of X,. Let £ := Op1 ® Op1(—4) ® Op1(—6) be a rank 3 vector bundle
over P!. Denote by &; the i-th direct summand line bundle of £ for i = 1,2,3. Denote by
PE := ProjpiSym & where Sym € is a Z>p-graded Op:i-algebra such that each line bundle &; has
degree i. Thus p : P€ — P! is a P(1,2,3)-bundle. It is clear that

p+Ope(1) = Op1,
P+«(Ope(2) @ p"Opi (4)) = Op1(4) ® Op1,
P« (Ope(3) @ p*Op1(6)) = Op1(6) ® Op1(2) ® Opr.
Let z € HY(PE, Ope (1)), y € H(PE, Ope(2) @p*Op1(4)), and z € HY(PE, Ops (3) @ p*Op1(6)) be
non-zero sections in the last direct summand of the right-hand-side in each isomorphism above.

By the Euler sequence for weighted projective bundles (see [Har77, Ex. II1.8.4] and [Dol82]),
we have

(4.2) O(=Kpg) ~1*(EY @ & @ &) @ 1 Opr (—Kp1) @ Ope (1 + 2+ 3) = p*Op1 (12) @ Ope (6).
It is clear that

PeOpe(6) ZE? D (E106RE) B (EPRE)EP @ (EP2RESY) @ (622 ® &) @ £25.
Thus any section s € H?(PE, Ope(—Kpe)) can be uniquely expressed as
(4.3) s = a2z’ + foxyz + fexdz + by® + faxy® + featy + froa5,

where f; € HY(P', Op1(j)).
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Let He € ](’)pg(l)] be the Weil divisor defined by (z = 0). Let Tg be the anti-canonical divisor
on PE defined by (22 — y3 = 0). Then T¢ and Hg intersect transversally along a smooth curve
Ce = V(z, 22 — y3) which is a section of PE — PL. Let h : PE — PE be the (2,1)- weighted blow
up along the divisors (Tg, He). Let Eg be the exceptional divisor of h. Denote by Hg and Tg
the strict transforms of Hg and T¢ in PE respectively. It is clear that He ~ He 2 P! x P!,

Proposition 4.5. With the above notation, PE is a Gorenstein canonical weak Fano threefold,
i.e. —Kgz is nef and big. We call its anti-canonical model X,. Then X, is a Gorenstein

canonical Fano threefold. Moreover, the birational morphism v : PE — X, contracts ﬁg to an
isolated singularity o € X,,, and is isomorphic elsewhere.

Proof. From the geometry of the weighted blow-up & we know that PE has quotient singularities
along three disjoint smooth rational curves in Hg, where two curves are of type 5(1 1,0), and

the rest is of type 5(1, 2,0). Thus PE is Gorenstein canonical.

Let Sg be an anti-canonical divisor on PE defined by (22 = y3 + fsz*y + f1225) where
fs and fi2 are general degree 8 and 12 binary forms respectively. By [Huyl6, Chapter 11
§2] we have that Sg¢ — P! is a smooth elliptic K3 surface with a section Cg, i.e. a smooth
unigonal K3 surface, as the discriminant does not vanish for general binary forms fg and fio.
Denote by F a general elliptic fiber on Sg. Then since (CZ) = —2 we know that mF + Cg
is ample on Sg whenever m > 3. It is easy to see that Sg and Tg are tangent _along Ce

which implies that ordﬁg(Sg) = 2. Denote by §g the strict transform of Sg in PE. Thus

Se = h*Sg — 2F¢ ~ h*(—Kpg) — 2F¢ ~ — Kz because A]pg(Eg) = 3. By (4.2), we know that
—Kpg‘sg ~ 12F + 6C¢. Thus

Kgglg, ~ h™(12F + 6Cg) — 2Bg|g, ~ 4h*(3F + Ck).

Since h : gg =N Sg, we know that —K]P:é|§8
intersection with any curve not contained in gg, so this implies that —Kgz is nef. Furthermore,
this implies (—KH;E,)?’ = (—K@E)Q . Sg = (—Kl§5|§g)2 > 0, so by [Laz04, Theorem 2.2.16], —Kpz
is big. By the Kawamata-Shokurov basepoint free theorem [KM98, Theorem 3.3], —Kgz 18
semiample with ample model X,,.

Moreover, Sg is disjoint from Hg which implies that —

is ample. Because —Kpz ~ Sg¢, it has non-negative

I@E|ﬁg ~ 0. Thus Hg is contracted
under ¥ to an single point. Since h o p realizes Hg as a Pl-bundle over P!, we know that the
curve classes O(1,0) and O(0,1) on Hg are not proportional in Nj(P&)g. Since PE has Picard
rank 3, if we only contract Hg from PE then the resulting variety has Picard rank 1 which has
to be X,,. This implies that 1 is isomorphic away from He.

Denote by o = 1/1(]?15) the unique singular point of X,. Since Sg ~ — Kz is disjoint from
Hg = Exc(v), we know that ¢*§g ~ —Kx, does not pass through o. Thus —KXU is Cartier.
Moreover, we have ¢*(—Kx,) = V"¢, (—Kgz) = —Kgz as _Klf%|ﬁg ~ 0. Thus —Kx, is ample
on X,, and v is crepant birational. Thus X, is canonical as PE is canonical. Therefore, X, is
a Gorenstein canonical Fano threefold. O

Proposition 4.6. With the above notation, Eqy induces a K-polystable degeneration (X, %To)
of (Pg’ 193T)
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Proof. We perform the following birational transformations,

,,,,,,,,,,,,,, N X+
P3 % \ / \
where in the central fiber we have
) 10) R — U » Y UPE
g P
B / \
P3 Yy UPE Xu

Recall that Cy C T denotes the twisted cubic curve. Using notation from Theorem 4.3 and
Proposition 4.5, the maps are as follows:

(1) pu: X —P3 x Al is the (2,3, 1)-weighted blow up along Cj in the central fiber, where Y
is the strict transform of P x {0} and P& is the exceptional divisor.

(2) f:X --» X1 is the flip of T induced by the contraction g of the rulings R of T in the
central fiber. The strict transform of Y is Y and the strict transform of P& is PE.

(3) ¥ : Xt — Z is the divisorial contraction of Y{.

We elaborate on these maps below.

The first morphism g : X — P3 x A} is the (2,3, 1)-weighted blow up of P3 x Al along Cp,
in local coordinates (x,y,t), where z,y are as in Theorem 4.3, whose exceptional divisor PE is
a P(1,2,3) bundle over Cp. In the central fiber, this is the (2, 3)-weighted blow up of P? along
CoCT.

Let R and C denote the two pencils of rulings (u.R is a tangent line of Cp, and u.C is
a conic curve). With this notation, ¢ is the flipping contraction obtained by contracting the
rulings R of T , the strict transform of T in the central fiber, and the flip f flips T C X.
Indeed, the rulings R are contractible, and the computations in Theorem 4.3 imply that they
generate a Ky + T-negative extremal ray in X', where 7T is the family of surfaces. Using the
local structure of X as a fibration over Cj, we can obtain an explicit description of the flip.
Along Cj, using the local coordinates (z,y) in the central fiber, T has equation y*> = 3 and
1 normalizes the cusp. Consider X' as a fibration of surfaces in a neighborhood of p € Cy. In
each fiber &, = Yp, UP(1,2,3), the normal bundle of R is Np/x, = Or(—2) © Or(—1) by
computation, so the contraction g creates a (1 1) singularity at q € Y , and the map h is the
(2,1) weighted blow up of ¢ in P(1,2,3). The structure of the central fiber of X is therefore
exactly as described in Proposition 4.5, so in the central fiber, the strict transform of 7T is
T, ¢ in PE. Recall from Proposition 4.5 that T¢ is the anti-canonical divisor on PE defined by
(22 — 4> = 0), and by construction, the strict transform of 7 under the first morphism p in P&
is an anti-canonical divisor with this equation. -

The last morphism ¢ is the divisorial contraction of Yy, and X, is the image of PE under 1.
Indeed, an easy computation shows that curves in Y]] are Ky+-negative, and Proposition 4.5
shows that Y N P€ is contractible in IP’S but Y{ has Picard rank one, hence is contractible in
XT to » Z. Let T be the central fiber of the strict transform of 7 in Z, which is the image of
Tz C PE under .

Finally, we show that (X, %TO) is K-polystable. By Proposition 4.3, the log Fano pair
(P3, 2T) is K-semistable but not K-polystable. Let G := PGL(2,C) as in the proof of Theorem

)13

4.3. Then Proposition 2.8 implies that there exists a G-invariant special divisor F' over (IP3, 193 T)
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which induces a K-polystable degeneration and 5(1}"3, 9 T)(F ) = 0. Since F' is G-invariant of plt

type by Lemma 2.6, from the proof of Theorem 4.3 there are only two such divisors: T or Ej,
and the S-invariant of Ey (resp. of T') is zero (resp. non-zero). Hence F' = Ej and the proof is
finished. O

In particular, a consequence of Proposition 4.6 is that X,, admits a Q-Gorenstein smoothing
to P3. Let L be the Q-Cartier Weil divisor on X, obtained as the limit of Ops (1) according to
Lemma 3.3. The next result determines the Cartier index of L.

Lemma 4.7. With the above notation, the Cartier index of L on X, is 4.

Proof. By Lemma 3.3 and Proposition 4.5, we know that L is a Q-Cartier Weil divisor on X, such
that 4L ~ —Kx, is Cartier. Thus the Cartier index of L divides 4. Recall that h : PE — PE is

a (2,1)-weighted blow up along (T, He) where the center Cg is a section of PE — P!. Hence on
PE the divisor Tg = h;'T¢ and the h-exceptional divisor Eg have transverse intersection along
a section of PE€ — PL. Denote by Rg a fiber of Eg — P!. Then the above argument implies that
(Te - R¢) = 1. By the proof of Proposition 4.5, we know that Tg ~ —Kgz =" (—Kx,) ~ 4" L.
Thus we have (L - . Rg) = %(f ¢+ Rg¢) = 1 which implies that L has Cartier index 4. O

4.3. GIT for Weierstrass models of unigonal K3 surfaces. By construction of X, the
surface Ty has the structure of a Weierstrass elliptic fibration over the twisted cubic curve.
Repeating these birational transforms for any family (P2 x A, 7)) whose central fiber 7Ty is the
tangent developable surface, the new central fiber also has this structure. These elliptic surfaces
naturally live inside (birational models of) PE, a P(1,2,3) bundle over Cy. Next, we relate this
construction to GIT for Weierstrass elliptic surfaces.

We recall some notation from Section 4.2, namely the construction of Weierstrass ellip-
tic surfaces inside a P(1,2,3)-bundle. As above, let &€ = Op1 ® Opi1(—4) & Opi1(—6) and
let & denote the ith direct summand line bundle where & has degree i. Then we obtain
the P(1,2,3) bundle p : P€ — P!, where P := ProjpiSym&. Consider the affine space
A = H(P',Op1(8)) @ HO(P!, Op1(12)) of dimension 22 parametrizing pairs (A4, B) of degree
8 and 12 binary forms respectively. In this way, for each pair (A, B) € A one can associate a
Weierstrass elliptic surface Sa gy € | — Kpe| whose equation is given by

Sa,B) = (22 = > + Azy + Bzb),
where x,y, z have degrees one, two, and three respectively. Note that S(g o) = T¢ by definition.
The discriminant divisor 4A4% + 27B? vanishes at the singular fibers, and for every point
p € P!, one has ord,(A) < 3 or ord,(B) < 5. The latter condition is equivalent to the surface
having only ADE singularities. Furthermore, one can show that a pair (A, B) satisfying these
conditions yields a unigonal K3 surface with ADE singularities, and vice versa.

Next, we introduce the GIT set-up for Weierstrass elliptic surfaces. Clearly the affine space
A admits an (SL(2,C) x G,,)-action given by

(9,t) - (A, B) := (t*'A0 g,t°Boyg).

Let P := [(A\{0})/Gy,] be the weighted projective stack where G, acts as above. Let P be the
weighted projective space as the coarse moduli space of P. Then we have P = P(2°,3'3). The
SL(2, C)-action on A descends to an SL(2, C)-action on (P,Op(1)). We say that a non-zero pair
(A,B) € A\ {0} is GIT (poly/semi)stable if [A, B] € P is GIT (poly/semi)stable with respect
to the SL(2,C)-action on (P,Op(1)). Denote by A% C A\ {0} the GIT semistable open locus.

In [Mir81], Miranda constructs a compact moduli space parametrizing Weierstrass fibrations
over P! using GIT following the above discussion. In particular, Miranda gives (see [Mir81,
Proposition 5.1]) a criterion for when a pair (A, B) is GIT (semi)stable based on the valuations.
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Remark 4.8. Before stating the following theorem, we point out that Miranda’s setup (and the
discussion that follows in [0021] and [AB19]) considers Weierstrass elliptic surfaces embedded
in a P? bundle, instead of a P(1,2,3) bundle, which is more convenient for our work. The same
results hold in our setup, as the underlying surfaces are the same.

Theorem 4.9. If (A, B) € A\ {0} is GIT semistable, then the surface S(4 gy is slc.

Proof. See [0021, Proposition 7.4] for an explicit description of the GIT compactification of
Weierstrass elliptic surfaces (see also [AB19, Section 10]). O

Lemma 4.10. Let S € | — Kx, | be an anti-canonical divisor. If S does not pass through the
singular point o € X, then there exists an automorphism ¢ € Aut(X,) such that (X, p*S) is
the birational transform of (PE, S 4 py) for some (A, B) € A. Moreover, S is isomorphic to the
Weierstrass elliptic surface S p)-

Proof. Recall from Proposition 4.5 that there is a diagram P& &opg 4 X, where h is a
weighted blow-up and v is taking the anti-canonical model. Let Sg := h,¥*S. Then we know
that ordﬁg(Sg) = 2 which implies that Sg is tangent to Tg along the curve Cg. Thus by (4.3)
we know that Sg has the equation (a(z? — y3) + fex®z + fix?y? + fsxty + fr20% = 0). Since
o ¢ S, we know that Sg does not contain He = (x = 0) which implies a # 0. Hence we
may assume that a = 1. Let ¢g € Aut(PE) be pg(x,y,2) = (x,y + f—§x2,z - %azg) Then
clearly ¢z Sg is defined by the equation (22 = y® + Az*y + Ba®) which is a Weierstrass elliptic
surface, i.e. @gSe = S(4 p). Hence pg induces the desired ¢ € Aut(X,). Since Sg is tangent
to Te along Cg, we know that h;'Sg is isomorphic to Sg and disjoint with ﬁg, which implies
S = (hi'Sg) = hi'Sg = Se. O

By Lemma 4.10, every unigonal K3 surface S(4 p) with ADE singularities is isomorphic to an
anti-canonical divisor S € | — Kx,| not passing through o. Since the ample Q-Cartier divisor
L on X, is Cartier away from o, and (L? - S) = %(—KXU)?’ = 4, we know that every polarized
unigonal K3 surface of degree 4 is isomorphic to some (5, L|g).

Theorem 4.11. Let S,S5" € | — Kx,| be two divisors where o ¢ S and o € S’. Let (A,B) € A
be a pair such that ©*S is the birational transform of S(a gy for some ¢ € Aut(X,).
(1) (X, %S) is always K-semistable, and it is K-polystable if and only if ©*S = Ty;
(2) ifc € (&,1)NQ, then (Xy,cS) is K-(poly/semi)stable if and only if (A, B) € A\ {0} is
GIT (poly/semi)stable;
(3) if c € (0, 1%) NQ, then (Xy,cS) is K-unstable;
(4) (Xu,cS’) is K-unstable for any rational ¢ € (0,1).

Proof. For simplicity, we always assume that ¢ is the identity as guaranteed by Lemma 4.10,
ie. S =1, (h;1Sa,p)) for some (A,B) € A.

(1) Since lim;_,o(t*A,t°B) = (0,0), the G,,-action on A induces a special degeneration of
(X, %S ) to (Xu, %TO) which is K-polystable by Proposition 4.6. Hence it follows from openness
of K-semistability [BLX22, Xu20] and the fact that (X, S) 2 (X, To) whenever (A, B) # (0,0).

(2) To start with, notice that (P, cT’) admits a special degeneration to (Xy, cTp) for ¢ < 2.
Since (P2, T is K-polystable for ¢ < % by Theorem 4.3, we know that (X, c¢Tp) is K-unstable
for ¢ < %. Since (Xu,%TO) is K-polystable by Proposition 4.6, we know that (X, cTp) is
K-unstable for any ¢ # 1% by [ADL19, Proposition 3.18]. Thus we may assume (A, B) # 0.

We first show the “only if” part, that is, K implying GIT. This follows from the Paul-Tian
criterion [ADL19, Theorem 2.22]. There is a universal family of Weierstrass elliptic surfaces
(PE x A,Se.A) — A where the fiber over (A, B) € A is (P&, (2? = y® + Az*y + Ba%)). By
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performing the weighted blow-up h and anti-canonical morphism ¢ in families, we obtain a
universal family (X, x A,Sa) — A. Clearly the G,,-action on A lifts naturally to P€ x A
(where t- ([z,v, 2], (A, B)) := ([tz,y, 2], #*A,t°B))) and X, x A such that both Sg A and Sa are
G -invariant. Hence taking the stacky quotient of G, over A\{0}, we obtain a Q-Gorenstein log
Fano family 7p : (Xp,Sp) — P. We show that the assumptions of [ADL19, Theorem 2.22] are
satisfied for mp : (Xp,cSp) — P when ¢ € (%, 1). Assumptions (a) and (b) are straightforward.
For assumption (c), it suffices to show that the CM line bundle A, rp s, descends to an ample
Q-line bundle Ap . on P for ¢ € (%, 1). For a general choice of (A, B), the surface S is klt which
implies that (X,,S) is plt. Hence Theorem 2.10 implies that (X, (1 — €)S) uniformly K-stable
for 0 < e < 1. Thus interpolation [ADL19, Proposition 2.13] implies that (X, ¢S) is uniformly
K-stable for any ¢ € (%,1). Thus [CP21, Pos22, XZ20] implies that Ap . is big, hence it is
ample since P has Picard rank 1. Thus the proof of the “only if” part is finished by [ADL19,
Theorem 2.22].

For the “if” part, notice that by Theorem 4.9 any GIT semistable S is slc. Thus (X, ¢S) is K-
semistable for any ¢ € (&, 1) by part (1) and interpolation for K-stability [ADL19, Proposition
2.13]. For a general choice of (A, B), the above discussion shows that (X,,cS) is K-stable
for any ¢ € (,1). If S is GIT polystable, then it suffices to show that (X, (3% + €)9) is
K-polystable, since then (X,,cS) is K-polystable by interpolation [ADL19, Proposition 2.13].
Let (Xo, (3 + €)So) be the K-polystable degeneration of (Xy, (s + €)S). Then we know that
(Xo, 1%50) is K-semistable. Since (X, %To) is the K-polystable degeneration of (X, %S), by
[LWX21] we have a sequence of special degenerations (X, 55) ~ (X, %S50) ~ (Xu, 7570). This
implies that X = X, and Sy does not pass through the singular point on X. We may assume
that X = X, for simplicity. By Lemma 4.10, we can find a 1-parameter family of automorphisms
(pr) € Aut(X,,) over a pointed curve (B, 0) such that ¢} S (t # 0) and ¢Sy are all in Weierstrass
form, and lim;_,o ¢}S = ¢{So. Since (X, (%—1-6)90850) is K-polystable, we know that ¢Sy # T,
i.e. Sy corresponds to a non-zero pair (Ao, By) € A. By the “only if” part, (Ao, By) is GIT
polystable. Hence the separatedness of GIT quotient implies that [A, B] and [Ag, By] belong to
the same SL(2, C)-orbit in P. In particular, (Xy, (5 +¢€)S) = (X, (5 +€)So) are K-polystable.
The proof is finished.

(3) Assume to the contrary that (X,,cS) is K-semistable for some ¢ < 1%. By openness of
K-semistability [BLX22, Xu20], we may choose S such that (A, B) is a general pair of binary
forms. Thus (A, B) is GIT stable which implies that (X, (5 + €)S) is K-stable by part (2). By
interpolation [ADL19, Proposition 2.13] we know that (X, %S) is K-stable, contradicting part
(1). Thus part (3) is proved.

(4) By Proposition 4.5, the divisor S’ is Cartier as X,, is Gorenstein. Besides, the birational
morphism v : PE — X, contracts the primquivisor ]?Ig to o € X, where ﬁg ~ Pl x P! and
Kggl . ~ 0. Hence by adjunction we have Hg¢| i, = K, + T where I' is the different divisor.
Denote the two families of fibers of P! x P! by F, and F} for a,b € PL. Then by construction we
have that I' = %Fo + %Fl + %Foo under a suitable choice of coordinates. Thus Ax, (]?Ig) =1and

vol Xu,o(ﬁ ¢)=(—-K e —T')2 = 3. Here we refer to the survey article [LLX20] for the background

of normalized volumes. Since S is Cartier and passes through o = w(ﬁ ¢), we have ord 7. (S)>1.
Hence we have

—~ . _ _ 4
vol(x, s).0(He) = (Ax, (He) — cord_(8))*volx, o(He) < 3= o).

On the other hand, we have g(—Kxu —cS)P =27(1—¢)® > \a(xmcs)p(flg), which implies that
(X4, cS) is K-unstable by [LL19]. O
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4.4. Deformation theory of X,. In this subsection, we show that the allowed deformations
of X, are unobstructed, and any such small deformation of X, is isomorphic to itself or P3.

In the moduli stack ﬂ;?éfzeo, we only consider deformations induced by the index one cover
of the Q-Cartier Weil divisor L that is the limit of Ops(1), see Lemma 3.3. In the case of X,

the divisor L is 4-Cartier by Lemma 4.7.

Lemma 4.12. The unique singular point o € X, admits a special degeneration to an orbifold
cone singularity xo € Xy 0. Under this special degeneration, the divisor L degenerates to a
Q-Cartier Weil divisor Ly on X, 0, whose Cartier index is 4. Moreover, the index one cover
Y — Xu0 of Lo is a toric Gorenstein canonical singularity of the form (zy — zw = 0) C A/ ps,

2mi

where the action of ps is given by (3 - (,y, z,w) = (¢, (3y, (32, (3w) with (3 = €73 .

Proof. By construction from Section 4.2 and the proof of Theorem 4.11(4), we know that
(Hg,T) = (P x P!, 1FR+3F+3Fy) and f‘jg’ﬁg = K +T where I is the different divisor. Thus
ﬁg induces a special degeneration of (o € X,,) to the orbifold cone X, o := C, (P'xP!, — Kp1yp1—T)
(as defined in [LX20, Section 2.4] and [LZ22, Section 2.4]). The notion of special degeneration
in the local setting comes from Kollar components over the singular point (c.f. [Xu21, Definition
4.24]). Since X, o is an anti-canonical cone over a klt log Fano pair with standard coefficients,
it is Gorenstein canonical ([Kol13, Lemma 3.1, Proposition 3.14]).

Let Lo be the degeneration of L to Xy . Then clearly 4Ly ~ —Kx, , is Cartier, and 2Ly is
not Cartier because 2L is not Cartier. Thus we can take an index 1 cover Y — X, o of Ly which
has degree 4. In fact, there is a local universal cover of o0 € X, ¢ as follows:

Co(P' x P O(1,1)) = Cu(P! x P1,0(2,2)) = Cu(P' x P!, —Kp1yp — ).

Here the first map is raising the polarization to the second tensor power, and the second map
comes from the quotient map P! — (P, 1[0]+ 3 [1] + 2[0c]) of degree 6, induced by the S3-action
on P! generated by [ug,u1] — [uo, (3u1] and [ug,u1] > [u1,up]. Thus we have a group of order
12 (isomorphic to a binary dihedral group) acting on the singularity C,(P! x P!, O(1, 1)) whose
quasi-étale quotient is precisely xg € Xy .

Since Lo has Cartier index 4, the index 1 cover of Ly on X, ¢ is a p3-quotient of the singularity
C,(P* x P!, O(1,1)). Let ([ug,u1], [vo,v1]) be the projective coordinate on P! x P!, then we may

identify C, (P! x P1,O(1,1)) with Y := (zy — 2w = 0) C A3, where
(z,y,2,w) = (ugvo, urv1, U1V, UV1 ).

The group p3 acts on P! as generated by [ug,u1] + [ug,(3ui]. After lifting to the anti-
canonical cone C,(P' x P1,0(2,2)), the ps-action becomes (ud, uour,u?) — (CGud, ugur, (zu?)
where v3, vov1, and v} are pg-invariant. Thus the only lifting of ps-action on Y is given by
(xvyvsz) = (C3x7C§y7C3227C3w)' U

Therefore, we must understand the deformation theory of these singularities. Because they
are toric Gorenstein threefold singularities, Altmann’s method described in [Alt97] applies to
compute the miniversal deformation space.

Lemma 4.13. The singularity 0 € Y = (zy = zw) C A*/u3 with above action of psz is
isomorphic to the affine toric Gorenstein threefold singularity V. defined by the cone in R3 with
two dimensional polytope Q) as the hyperplane section t = 1 pictured below.
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(0,0) (1,0)

Proof. Let M’ = Z3 be the standard lattice. Let w C M}, = R3 be the cone generated by (0,0, 1),
(1,1,1), (1,0,1), and (0, 1, 1) corresponding to the variables z, y, z, and w. Then the toric variety
Y := Clz,y, z, w]/(xy — zw) is isomorphic to Spec Clw N M’]. Let N’ := Hom(M’,Z) = Z* and
o =w" C Nf = R3, then computations shows that o is generated by (1,0,0), (0,1,0), (0,—1,1),
and (—1,0,1). The ps-action on Y induces an index 3 sublattice M C M’ corresponding to
p3-invariant monomials. It is clear that zz, T, and 2 are pz-invariant. Thus M is generated
by (1,0,2), (0,1,0), (0,0,3) which correspond to the above three ps-invariant monomials. Let
N = Hom(M,Z) be the dual lattice. Then computing dual basis shows that N is generated
by (1,0,0), (0,1,0), and (—%,0, %) We pick a new basis 73 = (1,—1,0), 05 = (—%,O, %), and
U3 = (0,1,0) of N. Then under the basis #;, the cone o is generated by

U1 + U3 = (1,0,0), v3 = (0,1,0), 20; + 3 + v3 = (0,—1,1), and ¥} + 302 + v5 = (—1,0,1).
This shows that Y = Y /s corresponds to the polytope @ from the picture as
Q = {(a,b) € R? | at) + bily + T3 € o}
The proof is finished. O

Proposition 4.14. The base of the miniversal deformation space for the singularity 0 € Y is a
smooth curve. In particular, the singularity 0 € Y has unobstructed deformations.

Proof. A more general result is proved in [Pet22a, Proposition 4.4 (ii)]. We provide a proof here
for readers’ convenience. The miniversal base space of a toric Gorenstein threefold singularity
is determined by the corresponding two-dimensional polytope. Indeed, in [Alt97, Theorem 5.1],
Altmann constructs a flat deformation over a base space M from the polytope, and proves
it is the miniversal deformation space in [Alt97, Corollary 7.2]. For more information on the
construction of M , see [Alt97, Definition 2.2, Theorem 2.4].

To obtain equations for the space M , label the edges of the polytope ) in a counterclockwise
fashion starting at the origin: d' = (1,0), d?> = (1,3), d*> = (—~1,0), d* = (=1, —3). Define the
vector valued polynomial g (t) = E;lzl tkd’. The inner products (g (t), (1,0)) and (g (t), (0,1))

define two polynomials gy, ,(t) and gj ,(t). We define the ideal

T =Agka(t), gry(t) | k> 1} C Clt1, to, t3, t4).
Let M = Spec Clt1,t,t3,t4]/T C A*. By [Alt97, Theorem 7.4], M is defined by equations in
C[t; — t;], and the miniversal base space M is defined by J N C[t; — t;], or the pre-image of M
under the canonical projection c* — ct/C-(1,1,1,1).

Plugging in the values of d’, we see that J is defined by the equations t§ + t5 — t5 — ¥ and
3t — 3tk for k > 1 which reduces to t; — t3 and ty — t4. Hence, M = Spec Cl[t1,ts], and
M = Spec C[t; —t5] =2 Al. Therefore, the miniversal base space of the singularity Y is a smooth
curve, so Y has unobstructed deformations. O

The miniversal base space of the singular point of X, o where Ly deforms in a Q-Gorenstein
family is given by the Z/(4)-invariant part of the miniversal base space of Y, which is a proper
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subspace of M. However, by construction zo € X, o deforms to o € X,, which admits a smoothing
to ]Eg/’, so the miniversal base space must be at least one-dimensional. Therefore, it must be all
of M and we obtain the following corollary.

Corollary 4.15. The singularities xo € X, 0 and o € X,, are formally isomorphic. As a result,
the singular point o € X, has unobstructed deformations where L deforms in a Q-Gorenstein
family.

To finish the study of the deformation theory of X,, we must show that there are no local-
to-global obstructions in extending the local deformation to a global deformation of X, which
is done by the following lemma.

Lemma 4.16. There are no local-to-global obstructions for deformations of X,.

Proof. By [Pet22b, Proposition 2.3], it suffices to show that H?(X,,Tx,) = 0.

For simplicity, write X = X,. By construction of X, there is a small Q-factorialization
m : Z — X such that Z has Dj singularities along an irreducible curve, contracted to the
singular point o € X. The map ¢ : P€ — X factors through 7 and the fibration structure of
PE — P! descends to a fibration f : Z — P!. Furthermore, f : Z — P! is an isotrivial fibration
of Q-Fano surfaces S each with an isolated D5 singularity. In a neighborhood of any point p in
the singular locus of Z, the threefold looks like S x T', where T is a smooth curve.

From the five-term exact sequence from the Leray spectral sequence

H?(X,Rin,Ty) = HPT(Z,Ty)
and the fact that 7,77 = T, there is a sequence
0— H' (X, Tx) = HY(Z,T7) - H*(X,R'n.Tz) — H*(X,Tx) — H*(Z,Tz).
In fact, this can be extended to
0— HYX,Tx) = H (Z,T7) - H*(X,R'7.Tz) — H*(X,Tx) — H*(Z,T7) — H' (X, R'1.T7)

as in general the second-to-last term is ker H2(Z,Tz) — H°(X, R*m,Ty), but the latter is 0 as
the fibers of 7 have dimension at most 1. In the following Lemma, we will show that R'7, T = 0,
so we find that H*(X,Tx) = H'(Z,Tz) and H*(X,Tx) = H*(Z,Ty).

Finally, we show that H?(Z,Tz) = 0. First note that T and its dual Q[ZI] are Cohen-Macaulay:
their restriction to any (Cartier) fiber S of f : Z — P! is Sy and dim S = 2, so the restriction to
the Cartier fiber is Cohen Macaulay. (To see that the restriction is Sg, one may use the sequence
0— Og(—S) — Q[Z1}|g — Qg] — 0; shown to be exact using the description of Z as a fibration
over P1.) By Serre Duality, then H?(Z,Ty) = H(Z, Q[ZH (Kz))V.

The proof that H'(Z, Q[Zl](KZ)) = 0 then follows by the same logic used in [Nam97, Propo-
sition 4]. The input [Nam97, Proposition 2] holds (and the proof holds verbatim), replacing Z
by X and Y by X, in the author’s notation, i.e. if D is an anticanonical section of X, and D’
its strict transform on Z, we have Pic(Z) — Pic(D’) is injective. Therefore, from the standard
exact sequence

0Z—->0—-0"=0
and vanishing of H*(Z,Oyz) for i > 0, we have an injection H?(Z,Z) — H*(D',Z). Because
Z has only quotient singularities, it is a V-manifold as in [Ste77b, Theorem pg. 4], and the
Hodge structure is pure and H''(Z) is identified with H'(Z, Q[ZI]) By Hodge theory, the
injection on cohomology then induces an injection on the parts of the Hodge decomposition
HP4(Z) — HP4(D') with p+q = 2. Therefore, we have an injection H'(Z, Q[ZH) — HY(D',QL).
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Noting that the exact sequences in the proof of [Nam97, Proposition 4] are exact replacing
le with Q[ZH because D’ does not intersect Z, the argument shows that H?(Z,Tz) = 0. O

Lemma 4.17. In the notation as in the proof of Lemma 4.16, we have R'm, Tz = 0.

Proof. Recall that 1 : PE — X, is taking the anti-canonical model. From the construction of Z,

we know that 1 factors as YA /N X, where both # and 7 are crepant birational. Since PE
and Z are both Gorenstein canonical with quotient singularities, applying [Ste77a, Lemma 1.11]

(see also [GKKP11, Theorem 1.4]) to a common log resolution of them yields that H*Q][;; = Q[Zz}.
Thus we have

0. T = 0.(02 @ wl) = 0.0 0 0*w)) = (0.02) w wy = 0 @ wy = Ty,

From the first two terms of Leray spectral sequence, we have that R'w, T injects into R4, T 5F
Thus it suffices to show RIQ/J*TE;Z, =0.

Recall that X, 0 = Cy(P* x P!, — Kp1 p1 —I') is the orbifold cone where I' = %FO + %Fl + %Foo.
Let W be the total space of the orbifold line bundle Kpiyp1 + I, i.e.

W := Spec pip1 @ Opixp1 ([m(—Kpixpr —T)]).
m=0
Let ¥ be the zero section of W. Denote by Ay the different of (W, %) on X. Thus we know
that 1o : W — X, provides the Kollar component (3, Ay) = (P! x PLT). From the proof
of Lemma 4.12 and Corollary 4.15 we know that the formal isomorphism between X, and X, o

lifts to a formal isomorphism between PE and W along ﬁg and Y. Thus it suffices to prove
RY%o Ty = 0 which is equivalent to H(W, Tiy) = 0 as X, ¢ is affine.

Recall from the proof of Lemma 4.12 that there is a finite Galois morphism 75 c X = Xu0
where X := C, (P! x P!, 0(2,2)) and the Galois group is &3. Let W be the total space of the line
bundle Op1 p1 (—2, —2) with zero section 5. Then ¥ : W — X is the blow-up of the cone vertex
providing the Kollar component > = P! x PL. Then the quotient map 75 lifts to a quotient map
WS W by the action of &3 which gives the following commutative diagram:

W5 W
lﬁ’ liﬁo

X*)Xuo

From the proof of Lemma 4.12, we know that 7 is quasi-étale, and T’i Y — ¥ is the quotient
map of the effective G3-action on ¥ 2 P! x PL. Thus 7 is also quasi-étale. By [Kni73, Theorem
3], we know that Q[&; = (T*Q%)%. Since 7 is quasi-étale and Q% is reflexive, we know that
T*Q% is also reflexive. This implies that ((7. QE[/])GB)V = ((m Qm)v)63 Since 1) : PE — X0 is
crepant between Gorenstein normal varieties, so is g : W — Xu o- In particular, W is normal
and Gorenstein. By construction, W is smooth hence also normal and Gorenstein. Applying

1

Lemma 4.18 to the morphism 7 and sheaf Q[W’ we have that

= @) = (nA)%)" = (r.oll))% = (r,(OL))% = (7,7)"

Since Ty = (T*T~)63 is a direct summand of 7.7}, we have that H YW, Tyw) is a direct

summand of H' (W, 1) & Hl(W,TW). Thus it suffices to show Hl(W,TW) =0.
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Denote by f : W — P! x P! the Al-bundle structure. Then we have a short exact sequence

0— TW/Plel — Ty — fi‘Wvalxpl — 0.

By the loig exact sequence of cohomology, it suffices to show the vanishing of both H* (W, Ty /Pt ><IP1)
and Hl(W, f}WTpl X]P’l)'

Denote by Ly := Op1yp1(2,2). Since W is the total space of the line bundle LVW, we know
that fW,*OW = EB%ZOL%"L, and Ter/Plxpl = f%LyW Thus we have

. . (o.]
H' (W, Ty jpr ) = H' (W, i L) = HY (P < P f feLic) = HY (P < P!, @ LE™M).
m=—1

By Kodaira vanishing we know that H'(P! x P!, L%m) = HY(P* x P}, 0(2m,2m)) = 0 for every
m € Z. Thus we get the vanishing of Hl(W, TW/]P’lx]Pl)‘ On the other hand, we have

(o]
H' (W, fTpryp) = H (B x P!, f fiTorp) = H' (P' x P, €D LE™ © Tp1xp1)-

m=0

Since Tp1yp1 = Tpr X Tp1 = O(2,0) @ O(0,2), by Kodaira vanishing we have
HY(P! x Pl,L%m @ Tpiypr) = HY (P x P, O2m +2,2m) @ O(2m,2m +2)) = 0
for every m > 0. Thus the vanishing of H 1(W, fi‘WvT pixpt) is proved. The proof is finished. O

Lemma 4.18. Let f : X — Y be a quasi-étale finite morphism between normal Gorenstein
varieties. Let G be a coherent sheaf on X. Then we have (f«G)Y = f.(GY).

Proof. Since f is quasi-étale and both X and Y are Gorenstein, we know that wx = f*wy = f'wy.
By Grothendieck duality for finite morphisms (see e.g. [Stal8, Tag 0AU3]), we have

(44) f*HomOX (g ®WX7WX) = HomOy (f*(g ®WX)7WY)-
Since wx is invertible, the left-hand side of (4.4) is

f*HomOX (g ® WX’WX) = f*HomOX (g, OX) = f*(gv)
For the right-hand side of (4.4), we get

Homo, (f«(G @wx),wy) = Homo, (f«(G @ ffwy),wy)
= Homoy ((f+G) ® wy,wy)
= Homo, (f«G, Oy)
= (f:9)".

Here we use projection formula and the fact that wy is invertible. The proof is finished by
combining the above equalities. O

Corollary 4.19. The Q-Fano threefold X, has unobstructed deformations where L deforms in
a Q-Gorenstein family, and the miniversal base space is a smooth curve. Moreover, any small

. . ——sm,0>eqy . . .
deformation of X, in Msgy ~ ® is isomorphic to P? or X,,.

Proof. This follows from Corollary 4.15 and Lemma 4.16. O
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closed substack of ﬁff with reduced structure parametrizing K-semistable pairs (X, cS) where
X =2 X,,. Then H, . is a closed substack of ﬁf

Denote by H, . the good moduli space of }, .. Then H, . is a closed subscheme of ﬁ? that
is isomorphic to the GIT quotient P/ SL(2,C).

Proof. We first show that J(, . is closed which follows from the existence part of valuative

Definition-Proposition 4.20. Let ¢ € (55,1) be a rational number. Let H, . be the locally

criterion for properness of the map H, . — ﬂ? Let (X,cS) — C be a Q-Gorenstein family of
K-semistable log Fano pairs over a smooth pointed curve 0 € C such that Ky,c +S ~¢ 0 and
X, 2 X, for any t € C'\ {0}. It suffices to show that Xy = X, as well.

Denote by C° := C'\ {0}, X° := X x¢ C°, and §° := S|xo. After replacing (0 € C) by a
quasi-finite cover if necessary, we may assume that X° = X, x C°. Recall from the proof of
Theorem 4.11(2) that there is a universal family (X, x A,Sa) — A parametrizing (Xy, S(4,5))
for (A, B) € A. Hence by a family version of Lemma 4.10, we can find a map v° : C° — A such
that (X°,58°) =2 (Xu XA, Sa) x40 C°. Since (X}, ¢S;) is K-semistable for ¢ € C°, Theorem 4.11(2)
implies that S; is the birational transform of S(4 p) where (A, B) € A\ {0} is GIT semistable.
Hence 7° factors as v° : C° — A®* — A. Since A% J/ (SL(2,C) x G,,) = P J/ G, is proper, after
replacing (0 € C) by a further quasi-finite base change we can find g : C° — SL(2,C) x G,, and
v+ C — A® such that v'|ce = g -~+°. In particular, we have a K-semistable log Fano family
(Xy x C,c8") == (Xy x A, cSA) X+ C over C such that (X, x C,cS") xc C° = (X°,¢S°). Thus
(Xy,cS)) and (X, cSp) are S-equivalent K-semistable log Fano pairs, and by [BX19] they admit
a common K-polystable degeneration (X”,¢S”). By Theorem 4.11(2), we have that X" = X,
and S” is the GIT polystable degeneration of S). Hence Xj is isomorphic to X,, as it not only
specially degenerates to X, but also comes from an isotrivial degeneration of X,. Thus 3, is

~—K
a closed substack of M, .

Finally, we show that H, . is isomorphic to P/ SL(2,C). In fact, the universal family
(Xu X A,SA) XA A% parameterizes c-K-semistable log Fano pairs by Theorem 4.11(2). After
taking quotient of SL(2,C) x G,,, we get a stack morphism [A%/(SL(2,C) x G,,)] = Hy..
Thus taking good moduli spaces yields a morphism P/ SL(2,C) — H, . which is bijective by
Theorem 4.11. By Corollary 4.19 we know that 3, . is smooth, so H, . is normal. Therefore,
P /SL(2,C) — H, is an isomorphism. O

Theorem 4.21. The K-moduli spaces ﬁ? has a wall at ¢ = 1%. Moreover, we have
(1) The wall crossing morphism ¢~ : ﬁ%_e — ﬁ% replaces [(P3,T)] by [(Xu, Tv)], and is
isomorphic near [(Xy,Tp)].
(2) The wall crossing morphism ¢+ : ﬁlli%ﬁ — M
H

u,%—l—e'

K

o replaces [(Xu,T0)] by the divisor
9 L —K —K . .
(3) For any ¢ € (35,1), the birational map M, --» My is an isomorphism over a

neighborhood of Hu,%-{-g'

Proof. (1) Let Up := o \ Wg be an open neighborhood of [T]. By (3.1), we know that any

[S] € Up \ {[T]} is slc, thus (P3,¢S) is K-stable for any ¢ € (0,1). Since kst(P3,T) = % by
Theorem 4.3, there are open immersions Up < ﬁ? when ¢ € (0,%) and Uy \ {[T]} — ﬁ?
when ¢ € [%,1). Thus the map ¢~ : ﬁ%_e — ﬁ% is isomorphic on Ur \ {[T]}. On the other
hand, we know that ¢~ ([(P3,T)]) = [(Xu,Ty)] by Proposition 4.6. By Corollary 4.19, we know

that ﬂ;?éfzeo is smooth in a neighborhood of [X,]. Thus ﬁ% is normal near [(X,,Tp)] by
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Lemma 2.20. By Zariski’s main theorem, we know that (¢~)~1([(Xy,Tp)]) is connected, thus it
has to be the singleton {[(IP3,T)]}. Hence ¢~ is an isomorphism near [(X,,Tp)].
(2) By Theorem 4.11(1) we know that ¢* contracts HU%JFE to the point [(X,,Tp)]. It

suffices to show that any [(X,S)] € ﬁ% +c whose Z-K-polystable replacement is [(X.,7p)]

satisfies X = X,,. By Corollary 4.19, we know that X is isomorphic to P3 or X,. If X = P3,

then by interpolation [ADL19, Proposition 2.13] we know that (X, %S ) is also K-polystable, a

contradiction to the uniqueness of K-polystable degenerations [LWX21]. Hence we have X = X,.
(3) Let Uy := (¢7)~ (¢~ (Ur)). By parts (1) and (2), we have U, = (Ur \ {[T]}) I_IHu’lg3JrE as

sets. Since every [S] € Up\ {[T'} is slc and GIT polystable, Proposition 3.6 implies that (P2, cS)
is always K-polystable for ¢ € (0,1). Moreover, Theorem 4.11(2) implies that any pair (X,,S)

in H, 5 is c-K-polystable for any c € (1%, 1). Thus there are open immersions U, — 9, for
713

any c € (%, 1), which implies that the birational map ﬁ? -—> ﬁi{% L is an isomorphism over

U,. The proof is finished. O

5. HYPERELLIPTIC K3 SURFACES

In this section, we will use the results from [ADL20] to study K-polystable replacements of

the locus W; in M for i e {0,1,2,3,4,6,7,8} (see Section 3.3 for the definition). We will
show that the first K-moduli wall crossing extracts the divisor H} birationally over the point
Wo = {[2Q]}, and subsequential wall crossings precisely replace W; (i > 1) by Z*t! C F inside
the hyperelliptic divisor Hj, as introduced in Section 3.4.

5.1. A cone construction for hyperelliptic K3 surfaces. In this subsection, we provide a
cone construction to produce K-polystable threefold pairs from K-polystable surface pairs. This
is very useful in constructing the K-polystable replacements of the locus W; in the GIT moduli
space based on the replacements from [ADL20].

Definition 5.1. Let V be a Gorenstein log Del Pezzo surface, that is, a Q-Fano variety of di-
mension 2 with Ky Cartier.! Let C' € |—2Ky| be an effective Cartier divisor defined by a section
sc € HY(V,—2Ky) on V. Let X := Cp(V,—Ky) = Proj (®m>0 &y HY(V, —rKy)t™") be the
projective cone. Let S be the double cover of V branched along C; i.e. S = (#* = s¢). Then
S is naturally embedded into X as an anti-canonical divisor. We denote this construction by
C(V,cC) := (X, 221 8) where ¢ € [0, 3] is a rational number.

Theorem 5.2. With the above notation, let c € [0,3) be a rational number. Then (V,cC) is
K-semistable (resp. K-polystable) if and only if (X, %S) = C(V,cC) is K-semistable (resp.
K-polystable).

Proof. We first treat the “only if” part. Assume that (V,cC) is K-semistable. Let Vx C X be
the section at infinity. Let Y := C,(V, —2Ky ) be a new projective cone with V3 the section
at infinity. Then there exists a finite morphism 7 : X — Y as a double cover branched along
Vy and 7*Vy = 2Vx. Denote by 7 : X — X the involution induced by w. Then it is clear

that S is 7-invariant. Denote by D := S/7 as a divisor in Y. Clearly D corresponds to a
section of Y such that D]y, = C. The finite morphism 7 is crepant between (X, %) and

(Y,1vy + 2¢ELD). Hence by [LZ20, Zhu21] it suffices to show that (Y, 3Vy + 252 D) is K-
semistable. The natural G,,-action on Y degenerates D to Dy as the cone over C'. Let r := % —c
be a positive rational number, hence —2Ky ~q r~1(—=Ky — ¢C). By [LX20, Proposition 5.3],

we know that (Y,(1 — £)Vy + cDp) is K-semistable. Since 1 — % = 2 + £, we know that

n later discussions, we will very often assume that V is isomorphic to either P* x P! or P(1,1,2).
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(Y, (2+£)Vy +cD) is K-semistable since it admits a K-semistable special degeneration. Similarly,

since D is also section of Y, the roles of V3~ and D are interchangeable and we could alternatively
degenerate Vy to Vi, we know that (Y,cVy + (2 + £)D) is also K-semistable. We know that
(3,42H) is a convex linear combination of ((2 + £),¢) and (c, (2 + £)) since the sum of two
components are the same and ¢ < % < % + 5. Hence by interpolation ([ADL19, e.g. Proposition
2.13]), we conclude that (Y, 3Vy + 24E1 D) is K-semistable. Hence (X, 245) is K-semistable.

Next we assume that (V) cC') is K-polystable. Since 7 is a Galois morphism, by [LZ20, Zhu21]
it suffices to show that (Y, %Vy + %D) is K-polystable. By [LWX21] we can choose a special
test configuration (Y, 1V + 21 D) of (Y, 1Vy + 44EL D) whose central fiber (Y7, 3V + 21 D') is
K-polystable. In particular, Fut(), %V + %D) = 0. Denote by b := % + 5. By linearity of the
generalized Futaki invariant in coefficients and K-semistability of (Y, bVy +cD) and (Y, cVy +bD),
we know that

(5.1) Fut(Y, bV + ¢D) = Fut(Y, ¢V + bD) = 0.

By [LWX21, Theorem 1.4], we know that the analogous statement of [LX20, Proposition 5.3]
for K-polystability is true (see also [LZ22, Proposition 2.11]). Hence (Y,bVy + c¢Dy) is the
K-polystable since (V,cC) is K-polystable. In particular, (Y,bVy + ¢Dy) is the K-polystable
special degeneration of (Y,bVy + ¢D). By [LX14] and [LWX21, Lemma 3.1], (5.1) implies
that (Y/,bV’" + ¢D’) is a K-semistable special degeneration of (Y,bVy + ¢D). Thus [LWX21,
Theorem 1.3] implies that (Y, bVy 4 ¢Dy) is isomorphic to the K-polystable special degeneration
of (Y, bV’ + ¢D'). Thus we have a sequence of special degenerations

(5.2) (Y, bVy + cD) ~ (Y, bV + ¢D') ~ (Y,bVy + cDy).

By forgetting D, D', and Dy, we obtain (Y,bVy) ~» (Y',bV') ~» (Y,bVy ). This implies that
(Y, V') = (Y, Vy). Similarly, since V3 and D are symmetric, using the second equality in (5.1)
we have that (Y',D') = (Y,Vy). Thus Y =Y = C,(V,—2Ky) where both V’ and D’ are
sections in Y’. Moreover, since D]y, = Dyly,, after restricting (5.2) to V3 and V' we see
that (V,C) = (W, Dly, ) = (V',D'|y/). Hence (Y, V' + D) = (Y, Vy + D) which implies that
(Y, 1vy + 2L D) is K-polystable.

Next we treat the “if” part for K-semistability. Assume that (X, 46—;15) is K-semistable,
which implies the K-semistability of (Y, %Vy + %D) from the above discussion. It suffices
to show that (V,cC) is K-semistable. Assume to the contrary that (V,cC) is K-unstable. By
Theorem 2.3, there exists a prime divisor E over V such that ﬁ(V,cC)(E) < 0. Let v be the
quasi-monomial valuation on Y obtained by taking the (1,%¢)-linear combination of ordy; and
ordg, where E is a prime divisor over Y by taking cone over E. For simplicity, denote by
A= 1Vy + 222 D. Then a simple computation shows that Ay (v;) = 1+ tAy(E), v(Vy) = 1,
and v,(D) = min{1, tordg(C)}. Hence we have

4c+1

1
(53) A(Y,A) (Ut) = 5 + tA(V,cC)(E) + CtOI‘dE(C) -

Next we compute S(y,a)(vt). Let Ly := Oy (Vy'). Then for m € Z~q it is clear that

min{1, tordg(C)}.

HO(Y,mLy) = @ HO(V, -2iKy) - s,

where (so = 0) represents the divisor Vy, and s € H O(V,—2iKy) corresponds a section in
HOY(Y,iLy) by taking the cone. We have that v;(s-s{'~") = tordg(s) + (m —1) for each non-zero
section s € H(V, —2iKy ). Hence we have

(5.4) Sty m(ve) = m Z; hO(V, =2iKv )(2itS—f, m(ordp) + (m — 4)).
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Here we refer to [BJ20] for the definition and properties of Sy,-invariants. It is clear that
KO(Y,mLy) ~ gvoly (—2Kyv)m?® and hO(V, —2iKy) ~ $voly (—2Ky)i® as m,i — oo. By taking
limit of (5.4) as m — oo, we have that

1

(5.5) Sy (v) = gtS_KV (B) + 7.

Since —Ky — A ~g 252 Ly and —Ky — ¢C ~g (1 — 2¢)(—Ky), (5.5) implies that

1—2¢
(5.6) Sy,ay(ve) = tSv,ec)(E) + e
Combining (5.3) and (5.6), we have that
1 4 1
(57)  Buya () = tByec(ordg) + ctordp(C) + C; _ C; min{1, ford(C)}.

Recall that f(y,.cy(ordg) < 0 by our assumption. If ordg(C) = 0, then we see that Sy,a(vi) <0
for t > 0 which implies that (Y, A) is K-unstable by Theorem 2.3, a contradiction. If ordg(C) # 0,
we choose t = ﬁ(c). Then (5.7) implies that By,ay(vi) = tBv,ecy(ordg) < 0, again a
contradiction. Thus the “if” part for K-semistability is proven.

Finally, we treat the “if” part for K-polystability. Assume that (X, 40; 3.5) is K-polystable,
which implies the K-polystability of (Y, %Vy + %D) from the above discussion. Assume to
the contrary that (V,cC) is not K-polystable. By the “if” part for K-semistability, we know
that (V,cC) is K-semistable. Let (V' ,cC’) be a K-polystable degeneration of (V,cC). By the
“only if” part, we may use the cone construction over (V’, cC”) to obtain a K-polystable log Fano
pair (Y, 3V, + 24 D’). Then we may take the cone of (V, cC) ~ (V',cC’) as in [LZ22, Proof of
Proposition 2.11] to produce a K-polystable degeneration (Y, %Vy+%D) ~ (Y7, %V§,+4C;1D’)
which has to be a product test configuration since (Y,%Vy + %D) is K-polystable. By
restricting to Vy ~» Vi, we have that (V,cC) = (V',cC’) is K-polystable. The proof is
finished. ]

We will apply the cone construction to hyperelliptic degree 4 K3 surfaces, when V is either
P! x P! or P(1,1,2). In this case, the cone constructed in Definition 5.1 is either the cone over the
anticanonical embedding of the smooth quadric, which we denote by X, = C,,(P! x P1, 0(2,2)),
or the cone over the anticanonical embedding of the singular quadric, which is the weighted
projective space P(1,1,2,4) = C,(P(1,1,2),0(4)).

Proposition 5.3. Let X be a Q-Fano threefold that is isomorphic to either Xy or P(1,1,2,4).
Let S ~ —Kx be an effective Cartier divisor on X. If S passes through the cone vertex o of X,
then (X, cS) is K-unstable for any c € [0,1).

Proof. Let X — X be the partial resolution by blowing up the cone vertex. Denote by F C X
the exceptional divisor. Since X = C,(V,—Ky) where V is P! x P! or P(1,1,2), we know that
Ax(F) =1 and volx ,(E) = (—Ky)? = 8. Since S is Cartier and passes through o = cx (E), we
know that ordg(S) > 1. Hence we have

Vol (x.c5).0(E) = (Ax(E) — cordg(S))*volx o(E) < 8(1 — ¢)?.

On the other hand, we have g(—KX — 9P =27(1 —¢)? > \7(71(X7CS)70(E), which implies that
(X, cS) is K-unstable by [LL19]. O
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5.2. Deformation theory of cones. In this subsection, we show that the allowed deformations
of Xj or P(1,1,2,4) are unobstructed, and any such small deformation of X}, (resp. P(1,1,2,4))
is isomorphic to itself or P? (resp. itself, X, or P?). Recall that X} is the projective anti-
canonical cone over P! x PL.

——sm,0>€q

Lemma 5.4. The Q-Gorenstein deformations of X or P(1,1,2,4) in the moduli stack M 64
of Q-Gorenstein smoothable Q-Fano varieties are unobstructed.

Proof. We consider the deformations only in the smoothable locus, in particular, we only consider
deformations induced by the index 1 cover of L, the limit of Ops(1). In this setting, the
deformation theory in [HacO1, Section 3] applies and the obstructions are contained in 7, 5G7 X
defined as follows. Let w : Z — X be local index 1 cover of L near x € X, with group G, and let
p: Z — X be the index 1 cover stack. Then, define T} = Ext'(Q}, Oz) and T}, = Ext'(Q}, Oy).
The Q-Gorenstein smoothable deformations of X are controlled by Té& = m(T2)Y (locally)
and Téq « = Ext'(Lz, Ox), where Lz is the cotangent complex of the stack.

By definition, Tcga y = Tx, the sheaf TZl is supported on the singular locus of Z and, by
[Ser06, Corollary 3.1.13(ii)] the sheaf 7 is supported on the non-lci locus of Z. Furthermore,
there is a local-to-global spectral sequence Hp(TéIG ¥) = ng,}x’ so it suffices to show that
H?(TSq.x) =0for p+q=2.

First, consider X = X},. The divisor L is 2-Cartier and passes through the vertex of the cone.
A computation shows H 2(78(;’ x,) =H %(Tx,) = 0, and TéG, x,, 18 supported on the singular
locus of X}, a single point, hence H I(T)%h) = 0. Finally, the index 1 cover of L on X}, has only
hypersurface singularities, hence TZZ =0,s0 H 0(78G, Xh) = 0. Therefore, TC22G, x, =0 and the
deformations are unobstructed.

Now, let X =P(1,1,2,4). The divisor L = Ox(2) is 2-Cartier. From the Euler sequence and
cohomology of weighted projective space, we also obtain H 2(78(;’ x)=H?*(Tx)=0. Let 0 € X
be the %(1, 1,2) singularity. Away from o, L is Cartier, and near o, we may compute the index
one covering of L: if the coordinates on X are [z : y : z : w], near o, the section (w = 0) is
a non-vanishing section of L2, So, one can compute the index one cover is given by the map
p:P(1,1,2,2) — X, where, if the coordinates on Z = P(1,1,2,2) are [z : y : u : v], the map is
[#:y:u:v]~ [z:y:u:v?. Noting that Z is a (singular) quadric threefold in P4, we have an
exact sequence

0 — Opa(—2)|7 = Qpa|z = Qy — 0.
Dualizing, we obtain
0—=>Ty; — T]p4|z — Op4(2)|z — 'TZI — 0.

Because 7 is mapped onto by the line bundle Op4(2)|z = Oz(4) in the weighted coordinates
on Z, and is supported on the singular locus z = y = 0 of Z, P[lu:v], we obtain that 7} = Op1(2).
Let us assume the branch locus of p is given by w = 0. By definition and because the canonical
covering stack is uniquely determined in the étale topology, away from the branch locus of

p: Z — X, we have TéG,X = p*(T%)G, where G is the action v — —wv on the singular locus

IP’[IMU}. As TéGX is supported on the singular locus z = y = 0 of X, which is P(2, 4) (2] = P[lzz:w],
we can explicitly compute p, (T})G, where p 1= plp1 ]P’[lu: o P[lzz:w]. By computation,

[u:v]
since T} = Op1(2), pu(T) = O(1) & O. As p is given by the map [u : v] = [u : v?], we
can compute the local charts and transition functions for p.(T}). On the local chart where
u # 0, computation shows that the module Op1(2) = C[v/u] can be viewed as the Op1 -

(225
module C[z2/w] @ v/uC[z?/w], where 22/w = v?/u®. Similarly, on the local chart where
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v # 0, computation shows that the module Opi(2) = Clu/v] can be viewed as the Op1 -

[22:w)]
module C[z/2?] ® u/vClw/z?], where w/z? = u?/v?. Furthermore, the transition function on
Op1(2)uzo = Clv/u] to Op1(2)y20 = Clu/v] is given by multiplication by u?/v? (and v?/u? in
the other direction), gluing together to give three global sections, u?,uv, and v2. With the
Op1  -module structure, we see that the transition functions (from the w # 0 chart to the

[22:]
22 # 0 chart, and vice versa) become multiplication by 2z?/w = v?/u? and multiplication by
w/z? = u?/v?, so we see that first summand of p,(T}) is G-invariant and the second is not.
Therefore, p,(T1)% = O(1).

However, this only computes T, &26‘, y on the chart w # 0. In order to compute T, &26‘, y on the
entire singular locus, we can compute the canonical covering with a different section (branched
over a different point), and use the explicitly computed transition functions to glue the them
together.

Indeed, consider index-one covering using the section w — 22, giving a map p’ : Z — X such
that the branch locus is w = z2. This computes TéG’ y on the chart w # 22. By the same

2

computation as above, p/,(T})% = O(1), given on charts w — 22 # 0 by C[z?/(w — 22)] and
22 # 0 by C[(w — 2?)/2?] with transition function multiplication by (w — 22)/z% from w — 2% # 0
to 22 # 0 and 22/(w — 2?) in the opposite direction.

From the computation of 7, 612G7 y on both charts, now it is a matter of gluing the charts
together. Note that the singular locus is covered completely by the charts w # 0 (accurately
computing TclgG, « at all points) and w — 2% # 0 (accurately computing 7, 612G7  at all points).
Noting that these coincide on their common intersection, we use the previous descriptions to
determine the gluing and transition functions. We then see that T, 612G7 « is given by C[z?/w] on
the w # 0 chart and C[z2/(w — 22)] on the w — 2% # 0 chart, and the transition function is given
by multiplication by w/z? - 22 /w — 2% = w/w — 22 from w # 0 to w — 22 # 0, and by w — 22 /w
in the other direction. Then, it is easy to see that there are two global sections w and 22, so in
particular, TéG’X = O(1) and Hl(TéGX) = 0.

Finally, the index 1 cover of L on P(1,1,2,4) has only hypersurface singularities, so 72 = 0
and H 0(78G, ) = 0. Hence, TC22G, y = 0 and the deformations are unobstructed. 0

Lemma 5.5. Let 71 : X — B be a Q-Gorenstein smoothable Q-Fano family over a smooth
pointed curve 0 € B.

(1) If Xy = X}, then a general fiber Xy is isomorphic to P3 or Xj,.

(2) If Xy = P(1,1,2,4), then a general fiber Xy is isomorphic to P3, X}, or P(1,1,2,4).

——sm,d>€g

Proof. Since both X}, and P(1,1,2,4) belong to M3, =, we know that 7 is obtained by pulling

>e0 ——sm,0>€q

back the universal family over ﬂ;?éf under some morphism B — M3q,~ . Let n be the

generic point of B. Since the geometric geometric fiber [X5] € ﬂ;?éfzgo, by Lemma 3.3 it admits
a Q-Cartier Weil divisor L such that 4L; ~ —Kx,. After replacing 0 € B by a quasi-finite
cover, we may assume that Lj is the base change of a Q-Cartier Weil divisor £,, on the generic
fiber &;. Then we can take the Zariski closure £ of £, as a Weil divisor on X. By similar
arguments to the proof of Lemma 3.3, we have £I=% ~p w, /B, and the sheaves 7,.L and L2
are locally free over B of rank 4 and 10 respectively.

Consider the sheaf F := coker(Sym?r,L — m.L2). Denote by Fp := F ® Op/my. If (Xo, Lo)
is isomorphic to (P(1,1,2,4), Op(1,1,24)(2)), we know that dimFy = 1. Since b ~ dim F; is
upper semi-continuous, we know that there exists an open neighborhood 0 € B’ C B such that
dim F, < 1 for any b € B’. In particular, because P(1,1,2,4) can be partially smoothed to
X}, in a Q-Gorenstein smoothable family, we may assume that dim Fy < 1 if either (Xp, Lo) is
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isomorphic to (P(1,1,2,4), Op(1,1,2,4)(2)) or isomorphic to (X, Ox,(2)). Moreover, since 4}2} is

base point free and 7, £ is locally free, we may assume that ﬁl[f} is base point free (in particular
Cartier) for any b € B’. If dim F, = 0, then £, is base point free hence Cartier, which implies
that &} = P3 because A}, is a canonical Gorenstein threefold with Fano index 4 [Shi89, Theorem
3.9]. If dim F, = 1, then we may pick a basis sg,--- ,s3 of HO(X}, L) and s4 € HO(Xb,ﬁl[)z})
whose image in JF;, is non-zero. Since ﬁl[?] is base point free, we know that [sg,- - , s3, 4] defines
a finite morphism Aj — P(1%,2). Since this map is a closed embedding when b = 0, it is of degree
1 for general b. Thus its image is a weighted hypersurface of degree 2 that is not isomorphic
to projective space. Then a simple analysis shows that &, = X; or P(1,1,2,4): a degree 2
weighted hypersurface (¢ = 0) in P(1%,2) with coordinates [zg : ... : x3 : y] is not isomorphic
to P3 if and only if ¢(0,0,0,0,%) = 0, so has equation g(zo,...,r3) consisting of monomials of
degree 2 in the x;5. As P(1%,2) = C,(P3,0(2)), such an equation defines the anticanonical cone
over a (possibly singular) quadric in P3, so &}, is either X}, or P(1,1,2,4). The proof is complete
by observing that, if Xy = X}, then &} cannot be P(1,1,2,4) as the singular locus cannot have
larger dimension on the generic fiber. O

The next result shows that there is a smooth open substack of M, parametrizing P?, X,
P(1,1,2,4), or X,. Later on we will see that this open substack is indeed the entire stack M,
(see Proposition 5.15).

——sm,d>¢g

Corollary 5.6. The subset of Mg, that parametrizes P, X;, P(1,1,2,4), and X, is a

smooth open substack. In particular, there exists a smooth open substack of ﬁ? parametrizing
(X, S) where X is isomorphic to P3, X, P(1,1,2,4), or X,,.

Proof. This follows from Corollary 4.19, Lemma 5.4, and Lemma 5.5. O

Definition 5.7. Consider the reduced locally closed substack T of ﬂ;?éfzeo parametrizing X}, or

P(1,1,2,4). Let H be the locally closed subscheme of Hilb(P?) parametrizing X} and P(1,1,2, 4)
embedded by 2L. Then T = [H/PGL(10,C)] (see e.g. [ADL19, Section 3.6] or [ADL20, Proof

= ——sm,d>¢g

of Proposition 5.9]). Let 7. : M, — Mj3g,~  be the forgetful map where 7.([(X,S)]) = [X].
We define Hy, . to be the locally closed substack Hy, . := m; 1(T) of ﬁf
Lemma 5.8. Notation as in Definition 5.7. The stack Hy, . is smooth.

Proof. The strategy of showing smoothness of T is similar to [ADL19, Section 3.6] and [ADL20,
Proof of Proposition 5.9]. Let Xy — H be the universal family. Since the embedded X; and
P(1,1,2,4) are projective cones, there exists a section o : H — Xy taking fiberwise cone vertices.
Therefore we have a morphism g : H — P? as the composition H % Xy < P9 x H — P9, Tt
is clear that ¢ is an isotrivial fibration with fiber isomorphic to the Hilbert scheme H’ of anti-
canonically embedded P! x P! and P(1,1,2) in P8, By [ADL20, Proof of Proposition 5.9] we
know that H' is smooth, hence H is also smooth. Thus we obtain the smoothness of T, thereby
obtaining the smoothness of H, .. O

Theorem 5.9. Let K. be the K-moduli stack constructed Irom [ADL20]. Let IEC — K. be the
po-gerbe obtained by taking fiberwise double covers. Then IC% = Hp, e for any c € (%, 1).

Proof. Let f.: Hp . — Kse-1 be the forgetful functor f.([X,D]) = [D]. We will show that f,
4

is separated, stabilizer preserving on C-points, and an isomorphism on C-points. Using this, by

Lemma 5.8 and [AI19, Theorem A.5] (a version of Zariski’s main theorem for Artin stacks), we

will conclude that f. is an isomorphism of stacks.
36



By the valuative criterion (see e.g. [LMBO00, Chapter 7]), we consider a diagram

U—— g{h,c

//\(
e fe
.
-

T —— Kse1
1

where T' = Spec R is a DVR and U is the complement of the closed point 0 € T. We must show
there is at most one dashed arrow completing the diagram. Suppose for contradiction there are
two, i.e. there exist two families (X, D) — T and (X', D’) — T'. Because the diagram commutes,
the maps agree on D, so we may assume D = D’, and X and X’ are isomorphic away from the
central fiber. If they are not isomorphic in the central fiber, then by considering the graph of
the rational map X --» &/, the image of Xy in X’ is a proper subvariety of A} containing Dy,
as the map is an isomorphism on D. Consider a generic ruling R of the cone Xy, and let Al be
the ruling R minus the cone point. Because the image of A! in A} must be 0-dimensional and
the map was an isomorphism on Dy, the image must be the two points of intersection of Al and
Dy. However, this means the image of the connected variety A! is disconnected, a contradiction.
Therefore, X = X’ and the map is separated.

Next, we show the forgetful functor is stabilizer preserving on C-points. Suppose o € Aut(X, D)
is an automorphism that is the identity on D. Then, we claim that o is the identity. Note that
o must take rulings of the cone X to rulings of X: in the universal family of the threefolds in P?,
the rulings are lines and hence curves of lowest degree, and intersection numbers are preserved
in the automorphism. Furthermore, any line on X must be a ruling. Fix any ruling R = P! of
X. By definition, ¢ fixes the cone point and the two points of intersection with D, and o takes
rulings to rulings, so o|p: fixes three points on P!, and hence must be the identity. Therefore, &
is the identity.

Now we show that f. is an isomorphism on C-points. By [ADL20, Theorem 4.8], we know
that for any point [(V,C)] € K 81, the underlying surface V is isomorphic to either P! x P! or
P(1,1,2). Hence by taking the cone construction €(V,25C) = (X, ¢D) (c.f. Definition 5.1),
we know that X is isomorphic to either X}, or P(1,1,2,4). On the other hand, if (X, D) € 3,
then Proposition 5.3 implies that D does not pass through the cone vertex of X. Hence after
an automorphism of X we have (X,cD) = C(V, 22-10) where V = P! x P! or P(1,1,2). Since
(X, cD) is K-semistable, Theorem 5.2 implies that (V, 2322C) is also K-semistable hence belongs
to IE% As a result, the forgetful map f. : 3 (C) — 163%1(((3) sending [(X, D)] to D has

inverse given by the cone construction IEM((C) — Hp,c(C).
4

By Lemma 5.8, the stack H} . is smooth, and by [ADL20, Theorem 2.21], the stack IE%

is smooth. Therefore, we conclude that f. is actually an isomorphism by [AI19, Theorem A.5],
noting that being isomorphic and stabilizer preserving on C-points implies fully faithful and
essentially surjective. O

Definition 5.10. Let ¢ € (%, 1) be a rational number. By Theorem 5.9, there exists a closed

. . =~ ~—K . . . .
immersion IC% — M, of Artin stacks. By taking good moduli spaces, we obtain a closed

immersion K se-1 <> ﬁ? Let Hp. (resp. Hp,) be the image of the closed embedding in

the K-moduli S4p:1—10e (resp. K-moduli stack). Equivalently, by Theorem 5.9 Hp, . (resp. Hp)
is the locus parametrizing K-polystable (resp. K-semistable) pairs (X, cD) where X = X or
P(1,1,2,4).
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5.3. K-polystable replacements. In this section, we describe all K-polystable replacements
of the locus Wy inside ﬁGIT. In particular, we show that the replacements of (P3,S) where
[S] € Wy is either (X, S’) or (P(1,1,2,4),5"). Here S’ is a double cover of P* x P! or P(1,1,2).

By Theorem 3.9, every [S] € Wy is defined by S = (¢ + g = 0) where ¢ is a degree 2
polynomial and g is a degree 4 polynomial. There is a natural closed embedding of such a log
pair (P3,S) with into the weighted projective space P(1%,2) with coordinates [xq, 1, 22, 73, 2]
such that the image is given by (V(z — q), V(2 — ¢, 2% + g)).

We start with the K-polystable replacement of [2Q)].

Proposition 5.11. Let S = 2Q where Q C P3 is a smooth quadric surface. Let c € (0,1) be a
rational number. Then (P3,cS) is K-semistable (resp. K-polystable) if and only if ¢ < % (resp.
< %). Moreover, the K-polystable degeneration of (P?,15S) is isomorphic to (X, 3So) where
So = 2Qx and Q 1is the section of X, = Cp(Q, —Kq) at infinity.

Proof. We first show that if (P3,¢cS) is K-semistable, then ¢ < % Computation shows that

1/2 _
A(ps,cs)(ordQ) =1-2c, S(]ps,cs)(ordQ) =(4- 46)/ (1— 2t)3dt = ! 5 C‘
0

By Theorem 2.3, we have Aps .gy(ordg) > Sps sy(ordg) which implies that ¢ < %

Next, we show that (IP3, %S) special degenerates to (Xp, %So). We may embed (P3,S5) into
P(14,2) with image (V(z — q),V(z — q,2?)) where ¢ = zox1 + 23 + 2. Consider a 1-PS
& in SL(4,C) x G,, of weight (0,0,0,0,—1) acting diagonally on P(1#,2). Then & specially
degenerates (P, 1S5) to (V(q), 3V (g,2%)) which is isomorphic to (X, $5). Since Q = P* x P!
is K-polystable and X}, = Cp(Q, —Kq), by [LZ22, Proposition 2.11(2)] we know that (Xp, %So)
is K-polystable. This implies that (P3 %S) is K-semistable by openness of K-semistability
[BLX22, Xu20]. Since S = 2Q is GIT polystable, Theorem 3.4 implies that (P3,eS) is K-
polystable for 0 < € < 1. Hence interpolation for K-stability [ADL19, Proposition 2.13] implies
that (P3,¢S) is K-polystable for any ¢ € (0, %) The proof is finished. O

Theorem 5.12. Let [S] € Ws \ {[2Q]} be a GIT polystable point with S = (¢*> + g = 0) as
in Theorem 3.9. Let V = (¢ = 0) and C = V(q,g) be a quadric surface and a (2,4)-complete
intersection curve in P3, respectively. Denote by c = kst(P3,S). Then we have the following.

(1) The log Fano pair (V, 304_10) 1s K-semistable but not K-polystable.

(2) There exists a 1-PS o in SL(4,C) that induces a K-polystable degeneration (Vo, 351 Cy)
of (V,22LC) in P3.

(3) There exists a 1-PS & in SL(4,C) x G,, acting diagonally on P(1*,2) such that the
SL(4, C)-component of & is a positive rescaling of o, and & induces a K-polystable
degeneration C(Vp, 22 Co) of (P3,¢S) in P(14,2).

Moreover, the K-semistable thresholds and the destabilizing 1-PS’ in SL(4,C) x G, are given in
Table 1, where 0 < o < 1 and kst(W?) := kst(P3,S) for any [S] € W7.

Proof. Let S = (¢ +2g = 0) be a GIT polystable quartic surface in Wy for i € {1,2,3,4,6,7,8}.
As mentioned earlier, the pair (P3,S) admits an embedding into P(1%,2) given by the equations
(V(z—q),V(z — q,2%2 + g)). The pair (V,C) = (V(q),V(q,g)) C P? provides a threefold pair
(X,8") = C(V,C). Tt is clear that (X,S’) admits a embedding into P(1%,2) given by the
equations (V(q),V(q,2%2+g)). According to [LO21, Theorem 6.2, Proposition 6.6, and Table 2],
for each i € {1,2,3,4,6,7,8} and [S] € W?, there exists a 1-PS o of SL(4,C) acting diagonally
on P3 and a rational number ¢;_; depending on 7 such that the following properties hold in the
context of VGIT from [LO21, Section 6].
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TABLE 1. K-polystable replacements of W,

i | kst(W?) | Sing. of S in W Destabilizing 1-PS

0 % double quadric (0,0,0,0,— )

1 1 two quadrics tangent along a conic | (1, @, 2a — 1, —3a, —6a)
2 % cuspidal along a conic (1 a, 20 — 1, —3a, —4a)
3 % J4,oo ( 10)

4 % Jg,o, J37T, or J37oo (3, 1, 3 3)

6 3 Fu4 (17,5, -7, —15, —14)

7 z FE13 (11 3, -5, -9, —8)

8 2 E1p (8, —5)

e (V,C) is GIT polystable at slope (¢;—1 —¢€) for 0 < € < 1, and is GIT semistable but not
polystable at slope t;_1;
e o0 degenerates (V,C) to a GIT polystable pair (Vj,Cy) at slope ;1.

Here the correspondence between i and t;_1 are given in the following table. Indeed, the o from
[LO21, Table 2] matches the SL(4, C)-component of & from Table 1 up to positive rescaling.

TABLE 2. VGIT slopes and K-semistable thresholds

1 1123 (46|78
VGIT slope: t;i1 || 2 | 3| & |3 | & |2 2
. 142t 1132 |53 |7]|09
kstW?): sor |9 |51 3 7|3 |0olm

By [ADL20, Theorem 1.1(2)], we know that (V, 72kt -C') is K-semistable but not K-polystable,

» 3221,
whose K-polystable degeneration is (VO, R T C’o) Let ¢ := :1:;2:

of i. Hence Theorem 5.2 implies that (XO,CSO) = C(Vo, ?ﬁgﬁCo) is K-polystable. Suppose

(Vo, Co) = (V(90), V (40, 90)) C P*. Then clearly (Xo,50) = (V(g0),V (g0, 2* + g0)) C P(1%,2).
We choose the G,,-component of & so that the weight of 22 is the same as the weight of gg, while
the weight of z is smaller than the weight of gg. It is straightforward to check that the column
of & from Table 1 satisfies this property. Thus we know that & degenerates both (P3,¢S) and
(X, eS’) to the K-polystable pair (Xg,cSp). By openness of K-semistability [BLX22, Xu20], this
implies that (P3,cS) is K-semistable but not K-polystable, as Xy is either X}, or P(1,1,2,4) so
P3 2 Xy. Thus ¢ = kst(P3,5) = étgiij is listed in the last row of Table 2 for every quartic
surface [S] € W?. The proof is finished. O

which depends on the choice

5.4. K-moduli wall crossings. Recall from Theorem 3.8 that K-moduli spaces ﬁ? display
wall crossing phenomena as we vary c¢. The goal of this subsection is to completely describe all
K-moduli walls {c¢;}1<ij<x—1 and all wall crossing birational morphisms qﬁgt : ﬁgie — ﬁg We
first give a definition of the exceptional loci of quE.
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Definition 5.13. For each K-moduli wall ¢; € (0,1), the exceptional locus EfE is defined as
Ef :={[(X,9)] € ﬁgig | (X,S5) is (¢; £ €)-K-polystable but not ¢;-K-polystable}.

By [ADL19, Theorem 1.2], we know that E: is a Zariski closed subset of ﬁgig.

We start from describing the first wall crossing.

Theorem 5.14 (First wall crossing). The first wall of K-moduli stacks ﬁ? iscy = % The first
wall crossing has the following description.

or any 0 < ¢ < &, we have M, =M and M, =M.
(1) For any 0 L we have My =M and M, =M
e wall crossing morphism ¢7 = M1 _ =N 1 1§ an isomorphism which only replaces
2) The wall : hism ¢ szj sm‘; h hich only repl
(F,2Q) by (Xp,2Qw0). . ) -
e wall crossing morphism p : M, — Mi_. =M 18 a divisorial contraction
3) Th I ' hi 9ﬁ3 te 9ﬁ3 . om d l
with image [2Q)] such that ¢f = ¢ o p : ﬁI%{JFE — ﬁlg The exceptional locus EY of
p parametrizes [(Xp,S)] where S is a double cover of P* x P! branched along a GIT
polystable (4,4)-curve D.

Proof. We first prove part (1). It follows from Theorem 3.4 that we have ﬂf = ﬁGIT for

0 < e < 1. By Proposition 3.6, the K-moduli stack ﬂf is irreducible. Hence it suffices to show
that any GIT semistable quartic surface S C P? satisfies kst(P3,5) > % Let Sy be the GIT
polystable degeneration of S. Then by openness of K-semistability [BLX22, Xu20], we know
that kst(P3, Sg) < kst(P3,S). If Sy is slc, then Lemma 3.5 implies that kst(P3, Sg) = 1. If Sy is
not sle, then either [So] = [T or [Sy] € Wy in M. Thus we have kst(IP3, Sp) > % by Theorems
4.3 and 5.12. This finishes the proof of part (1).

For part (2), Theorem 3.8 implies that qﬁc are projective and birational, hence surjective.
By Theorems 4.3 and 5.12, we know that the only GIT polystable quartic surface S with
kst(P3,S) = 1 is the double quadric surface [S] = [2Q)]. Hence ¢; only replaces (P3,2Q)
by (Xn,2Q«) by Proposition 5.11. Since ﬁ? is irreducible, by [ADL19, Theorem 1.2] the
morphism ¢] is projective and bijective. Since any closed point [(X,S)] of Wg satisfies that

X = P3 or Xj,, Corollary 5.6 implies that ﬂg{ is smooth. Hence ﬁg is normal, and ¢; is an
isomorphism by Zariski’s main theorem.

For part (3), we use the deformation theory of Xj. By Theorem 5.9 and Definition 5.10,
there is a closed embedding Fe/4 — ﬁlg +e Whose image we denote by Hj; 1, .. Note that

’3
H), e is a divisor since the locus of hyperelliptic K3s forms a divisor (see e.g. [LO21]). By
[ADL20, Theorem 1.1(1)], we know that H; 1 parametrizes (X}, S) where S is a double cover
of P! x P! branched along a GIT polystable (4,4)-curve D. Since (X}, S) admits a special de-
generation to (X, 2Qos), we know that ¢ (H, 1. ) = [(Xs,2Qo)]. Thus H, 1. is contained in
'3 '3

Ef = (7)) ([(Xn,2Qw0)])- On the other hand, if (X, S) € Ef ie. ¢7 ([(X,S)]) = [(Xn,2Q)],
then X admits a special degeneration to Xj,. Thus Lemma 5.5 implies that X = P3 or X. If
X = P3 then (X, %S ) is K-polystable by interpolation, a contradiction. Thus we have X = X,
and hence [(X,S)] € Hh’%JrE by Theorem 5.9. Thus we have Hh’%JrE = E;. O
The following result shows that all but one K-moduli wall crossings of ﬁf for c € (%, 1) are

directly induced by those of H}, ., i.e. the divisor parametrizing hyperelliptic K3 surfaces.
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Proposition 5.15. Let ¢ € (1,1) be a rational number. Then any point in ﬁ? \ Hp, . is either
[(P3,S)] where S is a GIT polystable quartic surface, or [(Xy,S')] where S’ is an anti-canonical
divisor on X,,.

Proof. We do induction on the K-moduli walls. When ¢ = % + ¢, by Theorem 5.14 we know that

ﬁ? = (ﬁGIT \ {[2Q]}) U H}, .. Assume that we hit a K-moduli wall ¢; such that the statement

is true for any % < ¢ < ¢;. Then we analyze the wall crossing morphisms

TN, O L

We first show that the statement is true for ¢ = ¢;. Indeed, all ¢;-K-polystable replacements
of Hy,—e belongs to Hj., by Theorem 5.9. For [(P3,9)] € ﬁg_g \ Hpc,— and [S] € W,
its K-polystable replacement belongs to Hj, ., by Theorem 5.12. For (P3,T), its K-polystable
replacement at ¢; = % is (Xy,Tp). Since any Fano threefold appearing in Hy, ., is either X} or

P(1,1,2,4), Lemma 5.4 implies that M., is a smooth stack. Thus the statement holds for ¢ = ¢;.
Next, we show that the statement is true for ¢ = ¢;+e¢. Since M., . is an open substack of M,

it is also a smooth stack. Assume that [(X,S)] € ﬁgﬁ \ Hpcive. If (X,5) is ¢;-K-polystable,
then it is also (¢; — €)-K-polystable by [ADL19, Proposition 3.18]. Thus X = P3 or X,. If
(X, S) is not ¢;-K-polystable, then let (Xy,Sy) be its ¢;-K-polystable replacement. Then either
(Xo0,50) € Hp ¢, or (Xo,50) = (Xu,Tp). In the first case, we know that X = X, or P(1,1,2,4)
which implies that X = P3, X},, or P(1,1,2,4) by Lemma 5.5. In fact, X cannot be isomorphic
to P? since otherwise (X, ¢;9) is K-polystable by interpolation, a contradiction. Thus X = X,
or P(1,1,2,4) which implies that [(X,S)] € Hp ¢,+e by Theorem 5.9, again a contradiction. In
the second case, by Corollary 4.19 we have that X = P3 or X,,. Hence the proof is finished. O

The following theorem summarizes the results we have obtained, which provides a detailed
description of wall crossings for K-moduli spaces 91, .

Theorem 5.16. The K-moduli space ﬁ? (resp. K-moduli stack ﬁ? ) is irreducible and normal

(resp. smooth) for any c € (0,1). Moreover, the list of K-moduli walls ofﬁf is given as follows.
1132953729

(58) (617027"' 709)_ <§7§757§71_37?7Z7§7ﬁ>'

In the below, we give precise description of the wall crossing morphisms.

(1) Whenc=c¢; = %, the K-moduli wall crossing map decreasing from ¢ = %—Fe toc= % —¢

is a divisorial contraction of the exceptional divisor E;F, which is the birational transform
of Hy, to the point [(P3,2Q)].

(2) When c=c5 = 1%, the K-moduli wall crossing map decreasing from ¢ = 1% +€ to 1% —€1s
a divisorial contraction of the exceptional divisor Egr , which is the birational transform
of Hy, to the point [(P3,T)].

(3) When ¢ =c; € {3,3,2 33 T 9% e 2<i<9andi#5, K-moduli wall crossings
are flips. Moreover, if i € {2,3,4,7,8,9} (resp. if i = 6) then the exceptional locus E;
is the birational transform of Wi_y (resp. Wi_3), while EZ'" is the birational transform
of Zt (resp. Z'71).

Remark 5.17. Using techniques similar to [ADL19, Section 5.2], one should be able to show

that the wall crossing morphisms in Theorem 5.16 (1) and (2) are weighted blow-ups of Kirwan

type. Since this is not necessary for our main results, we omit the calculation. By Remark 6.10

(a combination of [LO18, Sections 5.1 and 5.2] and the results of Section 6, where we identify our
a1



K-moduli spaces with the spaces defined in Laza-O’Grady), we will see that the wall crossing
morphisms in Theorem 5.16 (1) and (2) are indeed weighted blowups of Kirwan type at the
point [2Q)] and [T'] respectively.

Proof. By Theorem 5.14 and Proposition 5.15, we know that the only possible Fano threefolds
appearing in ﬁ? are P3, X}, P(1,1,2,4), or X, for any ¢ € (0,1). Thus the smoothness of mi(
and normality of ﬁ? follow from Corollary 5.6, while irreducibility is proven in Proposition 3.6.

Next, we turn to the list of K-moduli walls. By Proposition 5.15, a K-moduli wall ¢; of ﬁ?
either satisifies ¢; = kst (P2, S) for some [S] € Wg U {[T}, or it is a wall of the K-moduli spaces
K3c-1 = Hj, . from [ADL20], as there are no wall crossings on H,, . when ¢ € (%, 1) by Theorem

4
4.21. In the former case, we precisely obtain the right-hand-side of (5.8). In the latter case, by

[ADL20, Remark 5.13] the collection of walls is {c | 252 € {%,4,4,2, 2 1 21} which equals
{3:5,5,%, 1,5, 17) as a subset of the right-hand-side of (5.8). Thus we have verified the list of
all K-moduli walls (5.8).

Next, we characterize the K-moduli wall crossing morphisms. Part (1) follows from Theorem
5.14. Part (2) follows from Theorems 4.11 and 4.21. We focus on part (3). Let j : =i — 1 (resp.
j:=1i—2) when i € {2,3,4,7,8,9} (resp. when i = 6). By Theorem 5.12 and Proposition
5.15, we know that E;” = W? U (E; N Hpc,—c) as sets, and E:r C Hp, ¢;4e. Since Hyp, . = f%

by Theorem 5.9, we know that EZjE N Hp, ¢, is isomorphic (via the operation C(-,-)) to the
exceptional locus Egi of Kc;:l:e — KC; where ¢} := %. By [ADL20, Theorem 1.1], the locus

Egi is the same as the VGIT exceptional locus of slope t; := % for (2,4) complete intersections
in P3. By [LO21, Theorem 1.1], we know that E;~ is the strict transform of p;'W; N H,, 1ies
. '3
while E/T is the strict transform of Z/*!. Thus we see that E; (resp. E;") is the strict transform
of Wj (resp. Z7t1). The fact that these morphims are flips will follow from the calculations in
Theorem 6.2, as the morphisms are shown to be MMP with scaling with respect to the CM line
bundle. 0

6. PROOF OF MAIN THEOREMS

In this section we present proofs of main theorems.

6.1. CM line bundles on K-moduli spaces. In this subsection, we compute the log CM

Q-line bundles on the K-moduli spaces ﬁ?, and prove Theorem 1.1.
The following result describes the locus of K3 surfaces with Du Val singularities inside K-
moduli stacks and spaces.

Proposition 6.1. Let ¢ € (0,1) be a rational number. There exists a saturated open substack
ME® of ﬁ? consisting of c-K-stable log pairs [(X,S)] where S has Du Val singularities. More-
over, ME° is a smooth Deligne-Mumford stack with coarse moduli space ML, The birational
period map e : ﬁ? --» J for boundary divisors induces an open immersion pg : mee s F

satisfying the following properties.
(1) ME® is a big open subset ofﬁi( for any c € (0,1).

none if c e (%,1);
(2) The divisorial components of F\ pS(IME°) are { H, if ce (%, %];
H,UH, ifce(0,3].

(3) pS is an isomorphism if and only if ¢ € (3, 1).
42



. —K
Proof. We first show that ME® is a saturated open substack of M, . By the openness of K-

stability [BLX22] and lower semi-continuity of Ict, there exists an open substack M!S of ﬁ?
parametrizing ¢-K-stable log pairs (X, S) that are log canonical. By applying adjunction, we
obtain a Q-Gorenstein universal family 8§ — M!® with fibers being semi-log-canonical surfaces
with trivial canonical divisor. Since klt is an open condition in Q-Gorenstein families, and

Gorenstein klt is the same as having ADE singularities for surfaces, we know that ME® is an

open substack of M!¢ and hence an open substack of ﬂf Since My consists of K-stable log
pairs, every point is closed with finite stabilizers. Hence we know that ME® is a saturated open
Deligne-Mumford substack of ﬁ? By taking period map for boundary divisors, we obtain a
morphism M?’O — J which descends to a morphism p? : zmi"" — F.

Since p. is birational, so is pS. Next we show that p? is injective on closed points. By global
Torelli theorem it suffices to show that if (X, S) and (X', S’) both belong to Me° and S = '
as polarized K3 surfaces, then (X,S) = (X’,S"). This clearly holds when S and S’ are quartic
surfaces in P3. If S and S’ are hyperelliptic, then their quotients (V,C) and (V’,C’) by the
hyperelliptic involutions are isomorphic. By Theorem 5.9 and Proposition 5.15, we know that
(X,eS) 2 C(V,210) = (V7,252 C") = (X', ¢S’). If S and S’ are unigonal, then Proposition
5.15 implies that X = X’ = X, and hence (X, S) = (X', S") by Lemma 4.10. Thus p¢ is injective
on closed points. By Zariski’s main theorem and normality of K-moduli spaces (Theorem 5.16),
we conclude that pg is an open immersion.

Next we turn to parts (1) — (3). For part (1), if ¢ € (0, %], then by Lemma 3.5 and Theorem

5.14 we know that 95° = 9° under the isomorphism ﬁ? . ﬁGIT, which implies that e

is a big open subset of ﬁ? If ¢ > %, then a general hyperelliptic K3 surface S C X}, satisfies
that (X,cS) is K-stable by Theorem 5.9 and [ADL20, Theorem 1.1]. If ¢ > <%, then a general
unigonal K3 surface S C X, satisfies that (X, ¢S’) is K-stable by Theorem 4.21. Thus we know
that 915° has non-empty intersection with Hp (resp. Hyy) if ¢ > % (resp. if ¢ > ). Since

there is an open immersion 9° — M for any c¢ by Lemma 3.5, and all but two wall crossings

are flips by Theorem 5.16, we know that ME* is a big open subset of ﬁ? for any ¢ € (0,1).
Part (2) follows for similar reasons to part (1) as IM° = F\ (H, U H,) under p. For part (3),
since pg is an open immersion, it suffices to show that it is surjective if and only if ¢ € (1%, ).
We know that F\ (H, U H,) = M° — ME* for any ¢, and H, C ML if and only if ¢ > % by
Theorem 4.21. Thus the surjectivity of pg is equivalent to the containment Hj; C Hj .. Since
Hy . = Ksc-1 by Theorem 5.9, from the explicit wall crossings for K-moduli of hyperelliptic

quartic K3 surfaces (see [ADL20, Remarks 5.13 and 5.14] and [LO21, Section 6]) we know that

Hjy C Hy, if and only if 304_1 > %, ie ¢c> %. Thus the proof is finished. O

Next, we recall the definition of log CM line bundles on K-moduli stacks and spaces from
[ADL19, Definition 3.34]. By the construction of K-moduli stacks from [ADL19, Section 3|, we
may write ﬁ? = [Z:¢d/PGL(N +1)] where Z*¢ is a reduced locally closed subscheme of certain
relative Hilbert scheme in PV parametrizing c-K-semistable pairs in ﬁ? Let 7. : (&, D.) — Ztd
be the universal family. Let ¢ € (0,1) be a rational number. Then the log CM Q-line bundle
AcM D, (resp. the Hodge Q-line bundle Agodge,r.,p,.) ON Zéed descends to a Q-line bundle
Ae,er (resp. Ac Hodge) ON ﬁ? We simply denote X\, := A... By [ADL19, Proposition 3.35], we
know that A. descends to a Q-line bundle A, on ﬁ? for any ¢ € (0,1). Moreover, if ¢ € (0,1)
is not a K-moduli wall listed in Theorem 5.16, then both A, and A podge descend to Q-line

bundles A. . and A¢ Hodge ON ﬁ? By [XZ20], we know that the CM Q-line bundle A, is ample
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on ﬁ? for any ¢ € (0,1). Moreover, the Hodge Q-line bundle A fodge is nef on ﬁ? for any
¢ € (&,1) by Theorem 5.16 and [ADL19, Proposition 3.35].

Theorem 6.2. Let A be the Hodge line bundle on F. Let AK = %Hh + %Hu. Then for any
c€(0,1) NQ we have

ﬁ? >~ Proj R(F,cA + (1 — ¢)AK).
Moreover, the CM Q-line bundle A. on ﬁ? is proportional to (p;1)s(ch + (1 — c)AK) up to a
positive constant.

Proof. From Theorem 5.16, we know that the birational map ﬁ? -—» ﬁ? is a birational
contraction for any 0 < ¢ < ¢ < 1. Moreover, by [XZ20] we know that A, is ample on
ﬁ? Thus similar arguments to [ADL19, Theorem 9.4] imply that for any ¢ € (0,1) N Q and
0 < e <1 we have x «
M, = Proj RO _., Ai—c.),

and A. is the same as the pushforward of Aj_.. under ﬁlf_e - ﬁ? By Proposition 6.1(3),
we know that pl__l6 = ﬁlf_e is a regular open immersion whose image zm?j; is a big open
subset of ﬁi(_e. Since ﬁll(_g is normal by Theorem 5.16, to prove the theorem it suffices to show
that (p;'.)*A1_c. is proportional to eX + (1 — ¢)AK up to a positive constant.

By [ADL19, Proposition 3.35] we know that
(61) (1 — C)_3A1_E’c = (1 — C)Al_@(] + 446A1—5,H0dge-
By adjunction, we have (p1__15)*‘/X1_67HodgC = ). Since pl__lg(ff\ (Hp U H,)) parametrizes pairs
(P3,S), we know that the pullback of A1_. o to F\ (H,UH,) is trivial as the underlying family of
Fano threefolds is an isotrivial P3-fibration. Thus the support of 4~4(p7*.)*A;_. ¢ is contained
in H, U H,, and we may write 4_4(p1__16)*A1_E,0 = by H}j, + by H, for some by, b, € Q. Hence we
have
(6.2) 471 = )3 ) A —ee = A+ (1 — ¢) (b Hp, + b, H,).
Therefore, the theorem reduces to showing 4~4(p;!)*A1_co = AKX, ie. by = 1 and b, = .

Let AS™ be the ample Q-line bundle on ﬁGIT induced by the hyperplane line bundle on
|Op3(4)|. Then by [LO19, (4.1.2)] we have
H H,
(6.3) pACT =\ + Zhy —u
2 2
==GIT . . .
where p : 9N --» F is the birational period map.
Next we compute b,. By Theorem 4.21, for every c € (%, 1) we have that H, C H, ., and
Mo s M s regular near H, . which contracts H, . to the point [T]. Thus (p*ACT)|y, is

C

Q-trivial. Since Hp N H, = () by [LO19, Lemma 1.7.3|, (6.3) implies that
= 0.

(6.4) <A + %) N

On the other hand, by [ADL19, Theorem 3.36] we know that A%%% = (gb;)*Al_gB which is

Since M;_, --» M 94 I8 isomorphic near H,, we have that

=5 (s B
4 13 9

u

€

trivial along H, C H, 2 +
IR

0=Aos . ol =A_, o |r7, - By (6.2) we get
N

13T613

9. 4
. == — (b, H, wHoy,
(6.5) 0 <13>\+13(bh h+b )>

Hy
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Since A|p, is ample but not Q-trivial, equations (6.4) and (6.5) imply that b, = 3

Finally, we compute by. Denote by Hy := Hj \ Z? parametrizing hyperelliptic K3 surfaces
S with ADE singularities that are double covers of P! x P!. By Theorem 5.14, we know that
(Xp, (3 + €)S) is K-stable. Thus interpolation [ADL19, Proposition 2.13] implies that (X}, cS)
is K-stable for any ¢ € (%, 1),ie. Hp C Hp. Similar to the H, case, we have A%%% = (qﬁf)*A%

which is trivial along Hp, and ﬁi{_e - ﬁlf Lie is isomorphic near Hy. Thus (6.2) implies

(6.6) < P (bhHthb " )> - % (A -+ 2, Hy)

Hy

Meanwhile, (6.3) implies that
1
(6.7) A+ §Hh)|H,°L =0.

It is clear that Hy is a big open subset of H), 1ie which is isomorphic to the GIT moduli space
of (4,4)-curves on P! x P!, Thus )| gy is ample and not Q-trivial. This combining with (6.6)
and (6.7) implies that b, = 1. O

Lemma 6.3. For any € € (0, 121) NQ, a € (0, ) NQ, and b € (0, %) NQ, we have

~

M, = Proj R(F, A+ 2H, + LH,) = 7.
Proof. We focus on the first isomorphism, as the iecond isomorphism is an easy consequence
of [LO18, Proposition 17] Where it is shown that F = Proj R(F, A + €A) for 0 < € < 1. By

Theorem 5.16, we know that zml . is independent of the choice of € € (0, 11) N Q. Since zml .
and F are isomorphic in codimension 1, it suffices to show that (p;.).(\ + &(aH), + bH,,)) is

ample on ﬁ?eforee(o 2)ﬂ@,a€( )ﬁ@, and b € (0, )ﬂ@ We split into two cases.

11
Case 1: b < 2a Since a < 9, we may choose €:= 12“ < 11 As AK = 1H + 9Hu, we have
2b 2b
(6.8) A+ = (aHh +bH,) = oo (A + 2aAK) + (1 - 9—)()\ + Hh)

By Theorems 5.16 and 6.2, (p;*.)«(\ + 2aAK) = (1 +2a)(p7 1)« ((1 — A + eAK) is a positive
multiple of the CM Q-line bundle A;_. on 9311_6 hence is ample by [XZ20]. As we men-
tioned earlier, (p; ' )«A = A1_c Hodge is nef on ﬁ?_e. Thus by (6.8) it suffices to show that
(pl__lg)*()\ + §Hp) = A1_cHodge + §Hn,1—c is nef on ﬁi(_ﬁ. Since Ai_¢ Hodge is nef and Hj, 1,
is effective Q-Cartier, it suffices to show that (A1_c Hodge + %Hh,l—e)‘H;m,E is nef. By Theorem
5.16, we know that Hj, 1_. and H, 1. are disjoint. Thus

a a 9a
(A1—eHodge + §Hh,1—e)\Hh,1,5 = (A1—c,Hodge + §Hh,1—e + ZHu,l—e)\Hh,l,s

is a positive multiple of Aj_| Hy.,_. Which is ample. Thus Case 1 is proved.
Case 2: b > %a. Since b < %, we may choose € := %Zb < 1—21 Then we have

4b  k b
2b()\+ 9A )+ (1—%)()\—1- —H,).
Similarly to Case 1, (pi!)«(A + RAK) = (1 + B)(pil)«((1 — eA + eAK) is ample as a
positive multiple of the CM Q-line bundle A;_.. Thus it suffices to show the nefness of
(A1—¢ Hodge + gH%l_E)\HuJ% as Hy 1—. is also effective Q-Cartier. This again follows from the
disjointness of Hy, 1_. and H, ;. and the ampleness of A1_€|Hu,1fe' Thus Case 2 is proved. [
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Proof of Theorem 1.1. Part (1) is a consequence of Theorem 5.14. Part (2) is exactly Theo-
rem 6.2. Part (4) follows from Theorem 5.16. Hence we only need to prove part (3). By
construction, F, 5", and F* are all isomorphic in codimension 1. Hence Lemma 6.3 implies
(5’, 5\) = (ﬁi{—eaAl—e,Hodge) where ) is the unique extension of A on 7. Clearly, A uniquely
extends to an ample QQ-line bundle A* on F* whose pullback under the morphism F - Fis
exactly X. Thus (3) is proved. O

6.2. Proof of Laza-O’Grady’s prediction. In this section, we prove Theorem 1.2 which
implies Laza-O’Grady’s prediction. The key idea is to construct F(a,b) from modifications of

K-moduli spaces ﬁ?, use positivity of the log CM line bundle [CP21, Pos22, XZ20], and follow
the MMP with scaling from [KKL16].

We recall some notation and consequences from the proof of Theorem 4.21. We define

Ur = T\ Wy and U, = (6) (05 (Ur) © T, where ¢ : 35 . — Ty are the

K-moduli wall crossing morphisms. Moreover, there are canonical open immersions Ur — 901,
_K o, .
and U, — M, for any 0 < ¢ < 1% < d < 1. Let p, : U, — Ur be the composition
pu = ((¢5) L 0 #3)|v,. Then p, is a projective birational morphism that contracts the divisor
H 9 to the point [T] € Up. In addition, the restriction of p, to U, \ Hu%%, denoted by ps,

is an isomorphim onto Ur \ {[T]}.

Definition 6.4. Let a,b € Q. Denote by ¢ = ¢(a) :=
follows.
K

(1) For a € (0, ) and b € (0,1), we define F(a,b) := M. ;

(2) For a € (3,+00) and b € (0,1), we define F(a,b) as the gluing of ﬁK \ {[(P3,T)]} and
U, through the isomorphism of open subschemes Urp \ {[T]} —— (p“) U, \H, o
F(2,b) :=F(3 +¢€b) for 0 <e< 1

(3) For a € (0,2) and b € [1,+00), we define F(a,b) as the gluing of ﬁ? \ Hy,c and Ur
through the isomorphism of open subschemes U, \ H,, LN % Ur \{[T1};

K
c -

Tioa +2a We define the schemes F(a, b) as

2o and

’9

(4) For a € [3,400) and b € [1,400) we define F(a,b) := M

Proposition 6.5. For every a,b € Qsq, the scheme F(a,b) is an irreducible normal proper

scheme. Denote by ¢ = c(a) = ﬁ Moreover, if a € (%,4—00) and b € (0,1), then there

is a birational morphism o,p : F(a,b) — ﬁ? which contracts H, » . to the point [(P3,T)],
713
and is isomorphic elsewhere; if a € (0, %) and b € [1,400), then there is a birational morphism

Tap ﬁ? — F(a,b) which contracts Hy, . to the point [T], and is isomorphic elsewhere.

Proof. We first construct the birational morphisms.

Suppose a € (3,+00) and b € (0,1) which implies ¢ € (0,-%). Hence by Theorem 4.21

we know that ﬁ? is the gluing of ﬁ? \ {[(P3,T)]} and Ur through the common open sub-
schemes Up \ {[T]}. Thus by Definition 6.4(2) we know that there is a birational morphism
oap: Fla,b) — ﬁ? obtained by gluing the identity map on ﬁ? \{[(P3,T)]} and p, : U, — Ur.
Since p,, is a projective morphism, so is 04p. Thus F(a,b) is a projective scheme.

Suppose a € (0, 2) and b € [1,400) which implies ¢ € (3,1). Hence by Theorem 4.21
we know that Dﬁc is the gluing of two ﬁ? \ Hy,. and U, through the common open sub-
schemes U, \ H w S e Thus by Definition 6.4(3) we know that there is a birational morphism
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Ufz,b : ﬁ? — F(a,b) obtained by gluing the identity map on ﬁ? \ Hy and p, : U, — Ur.
Then it is clear that o, is a surjective proper morphism, which implies that F(a,b) is a proper
scheme by [Stal8, Tag 03GN and Tag 09MQ)].

Finally, the irreducibility and normality of F(a,b) come from the corresponding properties of

ﬁ? by Theorem 5.16. O

Denote by g4 : F --+ F(a, b) the inverse of the birational period map. Let A(a,b), Hy(a,b),
and Hy(a,b) be the pushforward of A, Hp, and H,, under v, respectively. By Theorem 5.16,
Definition 6.4 and Proposition 6.5, we know that such F(a, b)’s undergo wall crossings at a = a;
or b =1 where

(al,---,ag):< _______

. +
We denote the wall crossing morphisms for a fixed b € (0, 1) by F(a;—e¢, b) SAIN F(a;,b) Nas F(ai+e,b).

Lemma 6.6. Recall the birational morphisms p : ﬁ%{% — ﬁGIT from Theorem 5.1/ and

pu : Uy — Ur from Definition 6.4. Then Hy 1. is p-anti-ample, and H, s . is py-anti-ample.
'3 713

Proof. Since p and p, come from wall-crossing morphisms of 9%, at ¢ = % and ¢ = %

. — =K . . .
respectively, by Theorem 6.2 we know that (p_ 4}e)akAK on M., . is relatively anti-ample over
T 19 _ 1 -1 K _ 1 h Smnls
M. for c € {3,13}. For ¢ = 3, we know that (p%+6)*A = ZHh,%—I—e which implies the first

G

s ~ gprGIT _ 9 —1 K_ 1 9
statement as M1 = I . For ¢ = 73, we know that (p§+e)*A = ZHh%Jre + gHu%JFE. From

the definition we know that H), 94 is disjoint from U, hence %H w2 e is relatively anti-ample
over Up which implies the second statement. O

Lemma 6.7. Leta,b € (0,1)NQ. Then the birational map 1, : F --+ F(a, b) is an isomorphism
in codimension 1. Moreover, we have the following.
(1) Ifa € (0,2), then Xa,b) + $Hp(a,b) + 22 H,(a,b) is ample on F(a,b);
(2) If a € [3,1), then A(a,b) + 2Hp(a,b) + 55 Hy(a,b) is ample on F(a,b) for 0 < e < 1.
(3) A a,b) + SHp(a,b) is nef for any a,b € (0,1) N Q.

Proof. By Theorem 6.2 we know that (p;1).(A + £=¢AK) is ample on ﬁf
(1) If a € (0, 2), we know that p;* = g, hence (1hgp)s(A + =2AK) is ample on F(a, b) for
¢ = 1. Tt is clear that

1+2a°
1—c 1 9 a 9a
- AK= 2a(=Hy, + —H,) = —H, +—H,.
At — A+ 2a(; ht g ) = A+ gHy+ 1y

Hence A(a,b) + 2Hp(a,b) + 2 H,(a,b) is ample.
(2) If a € [%, 1), by Theorem 5.16 we know that p_ ! is a birational contraction which only

.. . 1 19
contracts the divisor Hy since ¢ = 175, € (3, 15/- Hence we know

() A+ SH) = (o) 0+ ——AK)

is ample on M, . By Proposition 6.5 and Lemma 6.6, there is a birational morphism o, : F(a,b) — 9N,

with exceptional divisor H,(a,b) which is anti-ample over ﬁ? Since (A + $H,)|n, ~g 0 and
Hp,NH, =0 by (6.4), we know that

(00) (42 o\ S Ha) = (Whep)e A S Hi + 5 )
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Hence (¢q5)+(A + 2H), + 15H,) is ample as it is the pull back of an ample Q-divisor on ﬁ?
twisted by a small multiple of a o, j-ample divisor.

(3) Since the statement is independent of the choice of b € (0, 1), we may assume b € (0, 3).
We prove nefness by induction on the walls of a. To start with, we assume a € (0,a;) where

a1 = %. Then we have F(a,b) = ﬁ? ~F by Lemma 6.3 as ¢ = ﬁ € (%, 1). By Lemma 6.3,
we know that A(a,b)+§ Hp(a,b)+ %Hu(a, b) is ample. Hence we get nefness of A(a,b)+ §Hp(a,b)
for a € (0,a1) by letting b — 0. Next, we divide the induction into two parts. Note that we
always assume 0 < € < 1 in this proof.

Assume that A(a; — €,b) + “5<=Hp(a; — €,b) is nef. Since F(a; — €,b) is independent of the
choice of €, by letting ¢ — 0 we have that A(a; — €,b) + % Hp(a; — €,b) is nef. As all F(a,b)’s
with a,b € (0,1) N Q are isomorphic in codimension 1, we have that

(6.9) Aa; £ €,b) + %Hh(ai +e,b) = (o) (Aas, b) + %Hh(ai, b)).

Hence we obtain that A(a;, b) + 5 Hp(as, b) is also nef.
Assume that A(a;, b) + % Hy(as, b) is nef and a € (a;, a;11). By (6.9) and F(a,b) = F(a; +¢,b),
we know that A(a,b) + % Hy(a, b) is the ¢; -pull-back of A(a;, b) + % Hp(as,b) hence is nef. Since
a > a;, in order to show nefness of A(a, b)+§ Hj(a, b) it suffices to show that (A(a, b)+5 Hp(a,b))|#, ()
is nef. By parts (1) and (2), there exists b’ = b/(a) € (0,1) such that A(a, b)+5 Hp(a, b)—l—%/Hu(a, b)
is ample. Since Hy(a,b) N Hy(a,b) = 0,

/

a a b
(Ma,b) + §Hh(a, D), (ap) = (Ma,b) + §Hh(a7 b) + EH“(Q’ D)), (asb)

is ample. Thus A(a,b) + §Hy(a,b) is nef for any a € (a;,a;41). As a result, the induction steps
are validated which yield the nefness of A(a,b) + §H}p(a,b) for any a,b € (0,1) N Q. O

Definition 6.8. Let 9MCIT := F(1—¢,1—¢) for 0 < € < 1. Then the birational map F --» MEIT
is isomorphic in codimension 1. Denote the pushforwards of A, Hj,, and H, under this map by \,
H n, and ﬁu, respectively. By Definition 6.4 and Proposition 6.5, there is a birational morphism
E MO MM induced by 01—¢,1—¢ that contracts Hj, and H, to [2Q] and [T] respectively
and is isomorphic elsewhere.

From Definition 6.4 and Theorem 5.16, we see that F(a,b) = I
F(1—€,b) 2MAT if 0 < e < 1 and by € (0,1).

GIT a,b € [1,4+00), and

Theorem 6.9. For any a,b € Q~q, the section ring R(F, X+ §H}, + %Hu) is finitely generated,
and F(a,b) = Proj R(F, A+ §Hj, + %Hu) In particular, every F(a,b) is projective.

Proof. We split into four cases based on values of a and b.

Case 1: a,b € (0,1). By Lemma 6.7, ¢qp :  --» F(a,b) is an isomorphism in codimension
1. Thus it suffices to show that the Q-divisor A(a,b) + §Hp(a,b) + %Hu(a, b) is ample on F(a,b)
for a,b € (0,1) N Q.

By Lemma 6.7(1)(2), there exists b’ = '(a) € (0,1) such that A(a,b) + $Hy(a,b) + %/Hu(a, b)
is ample. By Lemma 6.7(3), we know that A(a,b) + §Hy(a,b) is nef. Since a strict convex
combination of a nef QQ-divisor and an ample Q-divisor is ample, it suffices to show the nefness
of A(a,b) + %Hyp(a,b) + 3 H,(a,b). Moreover, since %/ < 3 and Hp(a,b) N Hy(a,b) = 0, it suffices
to show that

a 1 1
()‘(av b) + §Hh(a7 b) + §Hu(a7 b))‘Hu(lLb) = ()‘(aa b) + §Hu(a7 b))’Hu(a,b)
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is nef. Indeed, by Definition 6.4, Theorem 4.21(3), and Lemma 6.3, the birational map F s F(a,b)
is isomorphic near H, and H,(a,b). Since H, is a big open subset of H, and (A + %HHU =0
by (6.4), we know that (\ + %)]ﬁu = 0. This implies (A(a,b) + 3 Hu(a,b))| 1, (ap) is Q-linearly
trivial and hence nef. Thus Case 1 is proved.

Case 2: a € (0,1) and b € [1,+00). We have the diagram F(a,1 — €) £% F(a,1) = F(a,b)
from Definition 6.4, where p, is the birational morphism that contracts the divisor Hy(a,1 — €)
to a point. We first show that A(a,1) + §H}(a,1) is ample on F(a, 1). Indeed, from Case 1 we
have the ampleness of M(a,1 —€) + 2Hp(a,1 — €) + 155H,(a,1 — €) on F(a,1 —¢). By letting
€ — 0, we know that A(a,1—€) + 2Hp(a,1 —€) + $H,(a,1 — €) is big and nef, whose restrict to
H,(a,1 —¢€) is Q-linearly trivial. Thus

1
Ma,1—€) + th(a, 1=+ 3Hu(a,1— ) = pi(A(a,1) + th(a, 1).

This shows that A(a, 1) + §Hp(a, 1) is big and nef. By the Nakai-Moishezon criterion, to show
the ampleness of A(a,1) + §Hy(a, 1), it suffices to show that (A(a,1) + §Hp(a,1))|y is big for
any positive dimensional closed subvariety V C F(a,1). Let V C F(a,1 — €) be the birational
transform of V. Then clearly V ¢ Hy(a,1 — €) as p, contracts H,(a,1 — €) to a point. Since
(Ma,1 =€)+ 2Hp(a,1 —€) + 355 Hy(a, 1 — €))| is ample, we know that

(M@, 1~ ) + 5 Hifa,1— ) + %Hu(a, L=l = A5(Aa, 1) + 2Hi(a, 1)lv)

is big. Thus (A(a, 1) + §Hy(a, 1))|y is big which implies the ampleness of A(a, 1) + §Hy(a, 1).
Since F(a, 1 — €) and F are isomorphic in codimension 1, Case 2 reduces to showing

Proj R(F(a,1 —¢€),N(a,1 —¢€) + th(a, 1—e€)+ gHu(a, 1—¢)) = Fa,l).

This is true because A(a, 1) + §Hp(a, 1) is ample, Hy(a,1 — €) is ps-exceptional, and
a b . a b—1
Aa,1—€)+ EHh(a’ 1—¢€)+ §Hu(a, 1—¢)=piX(a,1)+ §Hh(a, 1)) + THu(a, 1—e).
Thus Case 2 is proved.

Case 3: a € [1,4+00) and b € (0,1).Since F and MET are isomorphic in codimension 1, it
suffices to show that

(6.10) Proj R(MST X + gﬁh + gﬁu) =~ F(a,b).

By Definition 6.4, we know that 9CIT is the gluing of U, and ﬁl;—e \ {[(P3,T)]}, while F(a,b)

is the gluing of U, and ﬁ? \ {[(P3,T)]} with ¢ = ﬁ < 1. Thus we have ﬁf ~ gt by

Theorem 5.14. Thus the birational morphism p : MEIT ﬁGIT can be decomposed into
MOTT 2L, F(q,b) LM

where p; and ps contracts Hj, and (pl)*flu respectively. Note that ps is also induced by oy .
We first show ampleness of (p1)«(\ + $H,). Indeed, by (6.3) we know that (p1)«(\ + $H,)

is the pull-back of the ample Q-line bundle AS'T on ﬁGIT under py. Since (pl)*]?Iu is po-anti-

ample by Lemma 6.6, we have that (p1).(\ + %Hu) is ample for 0 < € < 1. On the other

hand, we know that (X + %Hh)\ﬁh is Q-linearly trivial by (6.7). Thus (p1)*(p1)sA = A + T,

By Definition 6.8 and Lemma 6.7(3), we know that MCIT = F(1—€1—¢) and X+ %ﬁh is
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nef. By letting € — 0 we obtain nefness of A + %]?I r which implies the nefness of (pl)*j\. This
together with ampleness of (1)« (A + 1€ H,) implies that (p1)«(X + bH,) is ample.

Now we prove (6.10). From the above arguments, we have that (p1).(\ + %]?Iu) is ample on
F(a,b), and

< a~ ~ . ~ b=~ a—1~
)\+§Hh+§Hu:(p1) (pl)*()\+§Hu)—|- 5 Hy,.
Since a > 1 and H n is p1-exceptional, (6.10) follows. Thus Case 3 is proved.

Case 4: a,b € [1,400). By Definition 6.8 we know that F(a,b) = m Similarly to Case

3, it suffices to show that

— - ~ b~ _
(6.11) Proj R(MCT X + th + 5 H.,) = Mmoo
By (6.3), we know that p*AGT = A+ %ﬁh + %ﬁu Since ACIT is ample on ﬁGIT, both Hj, and
H, are p-exceptional, and a,b > 1, we conclude that (6.11) holds. Thus Case 4 is proved. O

Remark 6.10. From the identification of the K-moduli spaces with F(a,b), and the results of

[LO18, Sections 5.1 and 5.2], where Laza-O’Grady prove that g : MEIT — Fl—€1—¢€) — T

(denoted by 9t — 9 in their notation) is a composition of weighted blowups of Kirwan type at
[2Q] and [T], we can conclude that the morphisms p in Theorem 5.14(3) and p, in Definition
6.4 are weighted blowups at [2Q)] and [T'] respectively.

Proof of Theorem 1.2. This follows from Definition 6.4, Theorems 5.16, and 6.9. O
Proof of Corollary 1.3. This is a direct consequence of Theorem 1.2 by letting a = b. O

Remark 6.11. It is reasonable to expect that R(F,\ + §H) + %Hu) is finitely generated if
one of a or b is zero and the other is positive. Taking Proj of these rings should extend the
wall-crossing picture as described in Theorem 1.2 to a,b € Q> where JF(0,0) = F*.

6.3. Quartic double solids. Recall that a smooth quartic double solid Y is a double cover of
P3 branched along a smooth quartic surface S. Denote the double cover map by 7 : Y — P3.
A quartic double solid is the same as a del Pezzo threefold of degree 2 (see e.g. [Fuj90]). By
[Der16, Example 4.2], we know that Y is Kéhler-Einstein and hence K-stable as Aut(Y") is finite.
Since any smooth deformation of a del Pezzo threefold is still del Pezzo of the same degree, there

exists an open substack Y of M%ﬁ% parametrizing all smooth quartic double solids. Let Y be the

Zariski closure of Y in M?ﬁ% with reduced structure. By definition, we know that Y is also a
——sm,Kss

closed substack of M3 15 . Let 2 be the good moduli space of Y, then 9 is a closed subscheme

of M ;?6 P* and Mf 15 Since Y parametrizes K-stable pairs, it is a saturated Deligne-Mumford

open substack of Y. Hence Y admits a coarse moduli space 9) as ‘an open subscheme of 2. We

call Q) the K-moduli space of quartic double solids. We know that 2) is an irreducible component
Kps . . . Kps

of M; 16 since 2) is open in Mj g

Proposition 6.12. There exists a bijective morphism ¢ : ﬁg — 9.

Proof. Consider the Hilbert scheme H of pairs (X, D) C P? with Hilbert polynomial x(P%, O(4))
and D ~ —Kx. Let H denote the locally closed subscheme of H parameterizing K-semistable
pairs (X, D) C PV (see [ADL19, Definition 3.7] or [ADL20, Theorem 2.21]). Because ¢ = 1, the
wall crossing results in Section 5.4 prove that, if [(X %D)] € H, then X = P3, X}, or P(1,1,2,4).

By Lemma 5.4, the Q-Gorenstein deformations of X = P3, X},, or P(1,1,2,4) are unobstructed

in M;fréfzeo, and there is no torsion in the class group for X; = P3, Xj, or P(1,1,2,4) (see e.g.
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[Kol13, Proposition 3.14]). Hence Opo(1)|x is the unique Weil divisor class that is Q-linearly
equivalent to —%Ky. Therefore, H is smooth, so the quotient stack [H/PGL(10,C)] is smooth.
By construction of H which parameterizes K-semistable pairs, universality of K-moduli gives

a map [H/PGL(10,C)] — ﬁg This map is separated, stabilizer preserving, and bijective on
C-points. Therefore, by [AI19, Theorem A.5], we have that [H/PGL(10,C)] = ﬁg
We now construct a morphism ¢ : ﬁ%{ — 9). Consider the universal family (X,D) — ﬁ%{

By the isomorphism of [H/PGL(10,C)] and ﬁg, there is a line bundle Oy (1) on X obtained
as the pull-back of the line bundle Ops(1) from the universal family on the Hilbert scheme.
Since Oy, (2) ~ —Kx, ~ Dy on each fiber X; for any ¢ € Wgﬂ, we know that Ox (D) ® Ox(—2)

is trivial on every fiber &}, which implies that it is the pull-back of a line bundle F on W%{
Let ¢ : Z — ﬂg be the po-gerbe obtained as the second root stack of F (see e.g. [AGVO0S,

Appendix B.1]), i.e. Z:= ﬂ%{ X BG,, Bg,, where ﬁg — BG,, is the classifying morphism of F,

and BG,,, — BG,, is the second power map. Hence there is a line bundle G on Z such that G®2

is the pull-back of F on Z. Denote by 7y : (Xz, Dy) — Z the base change of the family (X, D)

to Z. Then there is a line bundle Ny, := Ox, (1) ® 75G on 2 satisfying N&** = O, (D).
Consider the double cover Yy of Xy branched along Dy, i.e.

Yy = SpecXZO;(Z EBNZ®_1,

where the Oy, -algebra structure is induced by the sheaf homomorphism Ng g Ox, where s
is a section of /\/’?2 such that (s = 0) = Dg. Since Ny is locally free, the double cover YV, — Xy is

also a fiberwise double cover. In particular, each fiber (A, %Dt) for t € \ﬂ%{] is the po-quotient

of Y, where z € |Z| is the unique point lying over t. Thus, by [LZ20, Zhu2l] we know that
Yz — Z is a Q-Fano family with K-semistable fibers, where a general fiber is a smooth quartic
double solid. Therefore, this gives Z — Y by the universality of the K-moduli stack.

Next we prove that the composition Z ¢—Z> ﬂg — ﬁg provides a good moduli space of
Z. By [Alp13] it suffices to show that (¢2).Oz = OMIf and ¢z is cohomologically affine. The

first statement follows from the fact that ¢4 is a ug-geibe. For the second statement, applying
[Alp13, Proposition 3.10(vii)] to the Cartesian diagram in the fiber product construction of Z,
it suffices to show that the second power map f : BG,, — BG,, is cohomologically affine. A
quasi-coherent sheaf V' over BGy, corresponds via the weight decomposition to a family (V;);cz
of C-vector spaces. It is clear that W := f,V corresponds to (W;);ecz where W; = Va;. Since
V — V; is exact for every ¢ € Z, we know that f, is exact. Hence ¢ is cohomologically affine,

which implies that Z — ﬁg is a good moduli space morphism. Descending the map Z — Y to
level of good moduli spaces gives the desired morphism ¢ : ﬁ%{ — 9.

Next, we will show that ¢ : ﬁg — 9) is bijective. Clearly, 9 is contained in the image of
L, S0 properness of ﬁ%{ implies the surjectivity of ¢. It suffices to show injectivity of ¢, i.e. for

any two points [(X, D)], [(X’,D")] € ﬁg, if their double covers Y and Y’ are isomorphic, then
(X,D) = (X', D'). First of all, we know that X (resp. X') is isomorphic to P?, X},, or P(1,1,2,4)
by Theorem 5.16, where in the latter two cases D (resp. D’) does not pass through the cone
vertex. By Lemma 3.3, we know that there exist ample Q-Cartier Weil divisorial sheaves L and

L’ on X and X' respectively, such that —Ky = 4L and —Kys = 4L'. In addition, if X (resp.
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X') is a cone, then L (resp L) is Cartier away from the cone vertex, and it has Cartier index

2 at the cone vertex. Let L and L' be the pull-back of L and L' to Y and Y’ respectively. If X
(resp. X') is smooth, then clearly Y (resp. Y’) has local complete intersection singularities. If
X (resp. X') is singular, then Y (resp. Y') has precisely two singularities, the preimage of the
cone vertex, that are not local complete intersections, since D (resp. D') is away from the cone
vertex by Theorem 5.16. Since Y = Y/, we know that X is smooth if and only if X’ is smooth.
We split into two cases. For simplicity we assume Y = Y’, and denote the double cover maps
byr:Y - Xand 7 :Y — X' N N N N

Case 1: X = X’ = P3. In this case, both L and L’ are Cartier on Y, and —Ky = 2L = 2L/
which implies that L — I is a torsion Cartier divisor on Y. Since Y is Q-Fano, it is rationally
connected by [Zha06] and hence simply connected. Thus any torsion hne bundle on Y is trivial
which implies L = L'. By [KM98, Definition 2.50] we know that 7,0y (L) = Ox (L) & Ox(—L)
and 7.0y (L) = Ox/(L') & Ox/(—L'). Thus

(6.12) HY(X,0x(L)) = H'(Y,L) = H(Y,L') = H) (X', Ox:(L)).

Hence the linear system ]E[ induces a map Y — P3 isomorphic to both 7 and #’. By taking
ramification divisors, we obtain (X, D) & (X', D').

Case 2: both X and X’ are cones. In this case, denote the unique non-lci singularity in
X and X’ by = and 2, respectively. Then 7~ 1(x) = 7'~1(2') =: {y1,v2}. From the geometry
of Xj, and P(1,1,2,4), we know that Pic(z € X) = Pic(a’ € X') = Z/2Z where L and L’ are
generators respectlvely Since 7 (resp. 7') is étale over a neighborhood of z (resp. of '), we
know that L — L' is a torsion Cartier divisor on Y, and as above we conclude that L = L’.
We have (6.12), and also 7,0y (2L) = Ox(2L) & Ox and 7.0y (2L') = Ox:(2L') & Oxs which
implies

(6.13) HY(X,0x(2L)) & C = HO(Y,2L) = HO(Y,2L") = HY(X',0x:(2L")) & C.

By choosing a basis (sq, s1, 52, 53) of H*(X, L) and an element s, € HO(Y,2L)\ H(X,Ox(2L)),
we obtain a morphism [sg,---,s4] : Y — P(1%,2) which is isomorphic to 7 after taking the
image. Similarly, we have [s),---,s}] : Y — P(1%,2) isomorphic to 7’ after taking the image.
From the construction, (6.12), and (6.13), we know that 7 and 7" only differ by an automorphism
of P(1%,2), so they are isomorphic to each other. Thus (X, D) = (X', D’). O

Proof of Theorem 1./. The first statement follows from Proposition 6.12. The diagram follows
from Theorem 5.16 where p = [(P(1,1,2,4), (z3 = 23))]. Then 7(p) represents the weighted
hypersurface (22 = 22 — ) C P(1,1,2,4,4) which is isomorphic to (73 = z3z4) C P(1,1,2,4,4)
after an automorphism of P(1,1,2,4,4). O

Remark 6.13. If we take quadruple cyclic covers instead of double covers, then similar ar-
guments show that there is a finite birational morphism zm% — M§< 4> whose image is the

Zariski closure of the moduli space of smooth quartic threefolds that are cyclic covers of P3
under linear projections. Note that smooth quartic threefolds are known to be K-stable by
[Che01, CP02, Fuj19a], while their K-moduli compactification is currently unknown.

6.4. Gorenstein Q-Fano degenerations of P3. In this subsection, we prove Theorem 1.5.

Proof of Theorem 1.5. Let X be a Gorenstein Q-Fano degeneration of P3. By the effective non-

vanishing theorem of Ambro [Amb99, Main Theorem] and Kawamata [Kaw00, Theorem 5.1],

there exists an effective Cartier divisor S € | — K x| such that (X, S) is plt. Hence Theorem 2.10

implies that (X, (1 — €)S) is uniformly K-stable for 0 < ¢ < 1. Let 7 : X — B be a Q-Fano

family over a smooth pointed curve 0 € B such that Xy = X and &}, = P3 for any b € B\ {0}. By
52



Lemma 3.3 we know that F*w;\é /B is a vector bundle over B whose fiber over b € B is precisely
H O(Xb,w/rv\gb). In particular, we know that (X, S) admits a Q-Gorenstein smoothing to (P3,Sy)

where S is a smooth quartic surface. Hence [(X, S)] € ﬁ?_e, and the statement follows from

Proposition 5.15. O
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