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Smoothability of relative stable maps to stacky curves

Kenneth Ascher and Dori Bejleri

Abstract. Using log geometry, we study smoothability of genus 0 twisted stable maps to stacky
curves relative to a collection of marked points. One application is to smoothing semi-log canonical
Æbered surfaces with marked singular Æbers.
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1. Introduction

Consider the moduli space Maps
�
n
of degree n maps f : C! P1 from a smooth rational curve C such

that f is unramiÆed over inÆnity. Marking the preimage f
�1
(1) = {p1, . . . ,pn} of such a map induces a

locally closed embedding
]Maps

�
n
,!M0,n(P

1
,n)

of the Sn-torsor ]Maps
�
n
!Maps

�
n
parametrizing such f : C! P1 as well as a labeling of f �1(1) into the

space of n-pointed degree n genus 0 stable maps to P1. The image of this embedding is the locus of stable
maps (f : C! P1

,p1, . . . ,pn) such that C is smooth and f (pi ) =1 for all i . Let Maps
n
denote the closure

of this locus.

Question 1. Is there a combinatorial description of the boundary Maps
n
\ ]Maps

�
n
?

There are several natural combinatorial conditions (see Proposition 2.4 and the discussion preceding it)

that are necessary for a stable map (f : C
n:1���! P1

,p1, . . . ,pn) to lie inside Maps
n
:

(1) The evaluations satisfy f (pi ) =1 for all i .
(2) Every point of f �1(1) ⇢ C either is a marked point or is on a contracted component.
(3) For each maximal connected closed subvariety T ⇢ C contracted to 1 by f , we have

# marked points on T =

X
ramiÆcation index of f at the nodes T \ (C \T ).

More generally, for any tuple of non-negative integers (d1, . . . ,dn) with d =
P
di , one can consider the

locally closed subset M(d1,...,dn)
⇢M0,n(P1

,d) of n-pointed degree d genus 0 maps (f : C! P1
,p1, . . . ,pn)

such that f (pi ) =1 and f is ramiÆed of order di at pi if di > 0. If di = 0, there is no condition imposed on
the f at pi . Denoting by M(d1,...,dn)

the closure of M(d1,...,dn)
, we can ask the variant of Question 1 for this

space. The necessary conditions above naturally generalize to Conditions (⇤) below.
DeÆnition 1.1. Let (f : C! X,p1, . . . ,pn) be a prestable map to a smooth curve, and Æx a tuple of positive
integers (d1, . . . ,dn) and a point x 2 X . We say that f is a relative map to (X,x) with tangency (d1, . . . ,dn)

if it satisÆes the following conditions:

Combinatorial conditions (⇤). ([Gat02, DeÆnition 1.1 & Remark 1.7])

(1) The evaluations satisfy f (pi ) = x for all i .
(2) Every point of f �1(x) ⇢ C either is a marked point or is on a contracted component.
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(3) For each maximal connected closed subvariety T ⇢ f
�1
(x), we have

X

pi2T
di =

X

q2T\(C\T )
ef (q),

where the Ærst sum is over marked points contained in T and ef (q) denotes the ramiÆcation of f |C\T at
the point q (see Figure 1 ).

This question in much greater generality was studied by Gathmann [Gat02, Proposition 1.14], building o�
previous work of Vakil [Vak00, Theorem 6.1]. In particular, Gathmann showed that Conditions (⇤) relative to
1 are both necessary and su�cient for a stable map to lie in M(d1,...,dn)

. As a consequence, the set of points
of M0,n(P1

,d) satisfying Conditions (⇤) relative to 1 are the points of an irreducible closed substack. See
also the balancing condition of Gross–Siebert [GS13, DeÆnition 1.12 and Lemma 1.15].

In [AV02], Abramovich and Vistoli introduced moduli spaces of twisted stable maps, which allows the
target to instead be a Deligne–Mumford stack. To form a compact moduli space, the source curves obtain a
stacky structure. Let K0,n(X,d) denote the moduli space of n-pointed genus 0 degree d twisted stable maps
to a Deligne–Mumford stack X. The goal of this paper is to study the analogue of Question 1 for genus 0
twisted stable maps to a weighted projective line P(a,b), or more generally a genus 0 Deligne–Mumford
curve.

When X is P(a,b) and 1 2 P(a,b) is a Æxed point away from [0 : 1] and [1 : 0], we have the following
(see Theorem 1.5 for a more general result). For this example, the reader can keep in mind M1,1 = P(4,6)

and the point j =1 parametrizing a nodal elliptic curve.

Theorem 1.2. Let (f : C! P(a,b),p1, . . . ,pn) be an n-pointed genus 0 twisted stable map such that the coarse
map (g : C ! P1

, q1, . . . , qn) satisÆes Conditions (⇤) with respect to 1. Then f is smoothable in a family with
generic Æber satisfying: f (pi ) =1 and f is ramiÆed to order di at pi for all i = 1, . . . ,n.

In what follows, we set up notation needed to state our more general results.

Let (X,x1, . . . ,xr ) be a smooth and proper 1-dimensional genus 0 Deligne–Mumford curve, and suppose
the xi 2 X are points where the coarse moduli space map is étale (equivalently, the xi have the same stabilizer
as the generic point of X ). For each j = 1, . . . , r, let �j = (dj1, . . . ,djnj

) be a tuple of positive integers, and Æx
n0 � 0. Set n =

P
r

j=0
nj and

d =

rX

j=1

njX

k=1

djk,

and let � = (n0, {�1,x1}, . . . , {�r ,xr}) be the tuple of combinatorial data.

DeÆnition-Notation 1.3. For any tuple of combinatorial data �, let M�(X) be the locally closed substack
of K0,n(X,d) parametrizing n-pointed genus 0 degree d twisted stable maps (f : C! X, {{pjk}

nj

k=1
}r
j=0

) such
that

(1) the pjk are marked points with stabilizer of order ajk lying over smooth points qjk of the coarse
space C,

(2) for each j > 0, the image of pjk is f (pjk) = xj ,
(3) for each j > 0, the coarse map h : C! X is ramiÆed to order djk at qjk , and
(4) C is smooth.

Similarly, we let N�(X) be the locally closed substack of K0,n(X,d) of maps satisfying conditions (1), (2)
and (3) above as well as the condition

(40) C is smooth in a neighborhood of f �1(xj ) for all j .

We denote by M�(X) (resp. N�(X)) the closure of M�(X) (resp. N�(X)) inside K0,n(X,d).
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Note that here and throughout, we are Æxing a bijection between the set {1, . . . ,n} and the set {{(j,k)}nj
k=1
}r
j=0

indexing the marked points. Note also that the marked points with j = 0 are the ones with no tangency
conditions, so in the situation of M(d1,...,dn)

, we may assume for notational convenience that the Ærst n0
entries (d1, . . . ,dn0) of (d1, . . . ,dn) are 0 so that M(d1,...,dn)

=M�(P1
), where � = (n0, {(dn0+1, . . . ,dn),1}).

DeÆnition-Notation 1.4. For any tuple of combinatorial data �, let K�(X) denote the subset of K0,n(X,d)

parametrizing those twisted stable maps (f : C! X, {{pjk}
nj

k=1
}r
j=0

) such that for each j = 1, . . . , r, the coarse
moduli map (h : C! X,qj1, . . . , qjnj

) is a relative map to (X,xj ) with tangency �j .

Theorem 1.5. Let X and � be as above. Then we have an equality N�(X) = K�(X). That is, every twisted
stable map whose coarse moduli map satisÆes the relative condition for {�j ,xj } for each j = 1, . . . , r is smoothable
to a twisted stable map parametrized by N�(X). In particular, K�(X) is the set of points of a closed substack
of K0,n(X,d).

Remark 1.6. Note that Theorem 1.5 is local on the target. Indeed, the deÆnitions of both K�(X) and N�(X)

are in terms of local conditions around the points xi 2 X. Therefore, the theorem has a natural generalization
to higher-genus maps to a higher-genus target X provided we only consider those maps for which the
1-dimensional components of the preimages f �1(xi ) are rational curves. In this case, the theorem reads
that any such map which is also contained in K�(X) is smoothable in a family with generic Æber contained
in N�(X).

When the target is a weighted projective line, we obtain the following stronger statement.

Theorem 1.7. Let X = P(a,b) be a weighted projective line, and let � be a tuple of combinatorial data as above.
Then we have an equalityM�(X) =K�(X). That is, every twisted stable map which satisÆes the relative condition
for {�j ,xj } for each j = 1, . . . , r is smoothable to a family of stable maps from a smooth rational curve satisfying
f (pjk) = xj and with ramiÆcation djk at pjk .

1.1. Applications to moduli of Æbered surfaces

Our original motivation for writing this paper came from studying compactiÆcations of the moduli space
of Æbered surfaces. Twisted stable maps are used in [AV00, AB19b] to construct a compactiÆcation Fv

g,n(� ,⌫)

of the moduli space of genus � Æbrations over a genus g curve with ⌫ marked sections and n marked Æbers.
The objects of the boundary are certain semi-log canonical unions of birationally Æbered surfaces called
twisted surfaces. This compactiÆcation is closely related to the compactiÆcation via stable log varieties from
the minimal model program. In [AB19b, Section 1.4], we proposed the problem of using log geometry to give
the main component a moduli-theoretic interpretation and classify the boundary components. The present
paper solves this problem for elliptic Æbrations with marked singular Æbers (we refer the reader to [AB21]
and [AB19a, Section 4]). A key observation is that Conditions (⇤) relative to 12M1,1 as well as the choice
of stabilizers on the marked points translate to conditions on the conÆguration of singular Æbers on the
components of the twisted elliptic surface; see [AB19a, Propositions 4.1 and 4.4].

Theorem 1.8. Theorem 1.7 gives necessary and su�cient combinatorial conditions for a twisted elliptic surface
over a genus 0 curve with marked singular Æbers to be smoothable to an elliptic surface over P1 with marked
singular Æbers.

For convenience, we work over an algebraically closed Æeld of characteristic 0.
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Figure 1. In this example, the contracted component is attached to a double branched, unbranched,
and triply branched point, respectively, and thus must have 2+1+3 = 6 marked points.

Figure 2. Maps of this type are given by choosing the map f1 = f |C1
(which is parametrized

by Maps
n
), a point of the Ænite set f �1

1
(1) along which to attach C2, and the conÆguration of

the n + 1 special points on C2 (which is parametrized by M0,n+1), yielding the dimension count
dimMaps

n
+n� 2.

2. Genus 0 relative stable maps to (P1,1)

In this section, we prove the special case of Theorem 1.2 where the target is P1; i.e., a = b = 1. This
special case was originally proved by Gathmann [Gat02]. Our approach di�ers from that of [Gat02] in that
we give a direct construction of smoothings of comb-type maps (see Propositions 2.7 and 2.11) rather than
appealing to [Vak00, Theorem 6.1]. This will be a key step in the proof of the general case of Theorem 1.2.
For the remainder of this section, Æx positive integers � = (d1, . . . ,dn) with d =

P
di .

Example 2.1. We begin with some examples motivating Conditions (⇤) when � = (1, . . . ,1). First, it is clear
that Condition (⇤)(1) is required as the evaluation condition is closed. However, consider a degree n map
f1 : (C1, q1)! P1 from a smooth rational curve C1 with f (q1) =1. Let C = C1 [q1,q2 C2 be a nodal union
of two rational curves, and let p1, . . . ,pn 2 C2 \ q2 be n marked points. Then there is an n-marked degree n
stable map (f : C! P1

,p1, . . . ,pn) given by taking the map f1 on C1 and the constant map with image 1
on C2. While this map satisÆes Condition (⇤)(1), a simple dimension count shows that the dimension of this
locus inside M0,n(P1

,n) is equal to dimMaps
n
+n�2, and so this condition alone is not enough to cut out

the locus Maps
n
at least for n � 3 (see Figure 2).

The above example motivates Condition (⇤)(2), which in this case requires that the map f1 be totally
ramiÆed at q1 so that there are no other points of C1 in f

�1
(1). Requiring f1 to be totally ramiÆed at

q1 means that we impose the vanishing of n derivatives, which is a codimension n condition on Maps
n
.

Thus the locus of maps of this combinatorial type satisfying both Conditions (⇤)(1) and (⇤)(2) has dimension
dimMaps

n
�2. Note that such maps automatically satisfy Condition (⇤)(3) as well. However, the following

example illustrates that Conditions (⇤)(1) and (⇤)(2) do not imply Condition (⇤)(3) in general.

Example 2.2. Consider a degree 3 map f1 : (C1, q1, q2) ! P1 from a smooth rational curve such that
f (qi ) =1, and suppose that f has ramiÆcation index i at qi . Let (C2, q

0
1
,p1,p2) be a smooth pointed rational

curve, and let C = C1 [q1,q01 C2. Then we have a 3-pointed degree 3 stable map (f : C ! P1
, q2,p1,p2)
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Figure 3. The map in Example 2.2 which satisÆes Conditions (1) and (2) but not (3) since the map is
unramiÆed where the contracted component C2 is attached and ramiÆed over 1 elsewhere.

where f |C1
= f1 and f |C2

is constant 1. This map satisÆes Conditions (⇤)(1) and (⇤)(2) but not (⇤)(3). Note
furthermore that this stable map cannot lie in Maps

n
as f1 is ramiÆed to order 2 at the marked point q2,

but the only way this can happen in the limit of a family in Maps
�
n
is if two marked points collided at q2.

Remark 2.3. Note that a degenerate special case of Condition (⇤)(3) is when T = q is itself a point. Since T

must be a maximal closed subvariety contracted by f , this means that q cannot lie on a contracted
component. Therefore, by Condition (⇤)(2), q must be a marked point. Then Condition (⇤)(3) reads that f
must be unramiÆed at q. Indeed, we saw this was necessary in the above Example 2.2 (see Figure 3).

We now prove that conditions (1), (2), and (3) of Conditions (⇤) are necessary.

Proposition 2.4. Conditions (⇤) (1), (2), and (3) are necessary for a stable map to lie inM(d1,...,dn)
.

Proof. It is clear that (1) is necessary as evaluation is continuous so the condition f (pi ) =1 is closed, so we
proceed to (2) and (3). Consider a 1-parameter family of stable maps

C P1

S

f

⇡
�i

over the spectrum S of a DVR with generic Æber lying in Maps
�
n
, and denote by (f0 : C0! P1

,p1, . . . ,pn)

the central Æber.
First we show (2). Let U ⇢ C denote the open complement of the locus of components contracted by the

map f , and consider D := f
�1
(1). As the total space C is normal and f is non-constant, D is a Cartier

divisor. Moreover, note that any ⇡-vertical component of D is contracted by f and therefore is not in U .
Thus, restricting to U , we see that D|U is a Cartier divisor which is horizontal over S , and therefore any
point of D|U lying over 0 2 S must be in the closure of the marked points of the generic Æber.

Finally, we show (3). RamiÆcation corresponds to a polynomial having a multiple root at a point, and
this multiplicity takes into account precisely how many points collided, i.e., the number of marked points
on the relevant contracted component. More formally, we can consider the intersection product T ·D. By
the projection formula, T ·D = 0. On the other hand, D =

P
�i +E, where E is the ⇡-vertical component.

Computing T · (P�i +E) = 0 in terms of local multiplicities gives exactly the equality in Condition (⇤)(3). ⇤

Our task now is to show that Conditions (⇤)(1)–(3) are su�cient for a stable map (f : C! P1
,p1, . . . ,pn)

to lie in M(d1,...,dn)
. We will do this by constructing a smoothing of the marked curve and a linear series on

the total space which restricts to f on the central Æber but whose generic Æber lies in M(d1,...,dn)
.

We begin with a preliminary lemma that shows that nodal curves can be smoothed to surfaces admitting
Am singularities for any m at the nodes.
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Lemma 2.5. Let C0 be a genus 0 nodal curve with k nodes q1, . . . , qk , and let m1, . . . ,mk � 1. Then there exists a
smooth C! S , where S = Spec(R) is the spectrum of a DVR, such that the total space C has an Ami�1 singularity
at qi for each i = 1, . . . , k.

Proof. The miniversal deformation space of a pointed prestable curve of genus 0 is k~t1, . . . , tk�, where ti is
the smoothing parameter of the ith node; i.e., formally locally around the ith node, the miniversal family of
curves looks like xy = ti inside A2

k~t1,...,tk�
. Let R = ~z� be the DVR in the statement. To prove the lemma, it

su�ces to note we can construct a map of rings k~t1 . . . tk�! k~z� such that ti 7! z
mi . Then formally locally

around the i
th node, the family of curves over Spec(R) will be isomorphic to xy = z

mi , as required. ⇤
We now show that it su�ces to consider the case of a stable map where every maximal connected subtree

contracted by f (as in Condition (⇤)(3)) is irreducible.
Lemma 2.6. Let (f0 : C0! P1

,p1, . . . ,pn) be a stable map satisfying Conditions (⇤)(1), (2), and (3). Then there
exists a deformation to a family of stable maps (f : C! P1

,�i )! Spec(R) over the spectrum of a DVR such that

(1) the generic Æber (f⌘ ,C⌘ ! P1
, (�i )⌘ ) satisÆes Conditions (⇤)(1), (2), and (3), and

(2) every connected component of f �1⌘ (1) ⇢ C⌘ is irreducible.

Proof. Let E1
, . . . ,E

k be the 1-dimensional connected components of f �1
0

(1), and write C
1
, . . . ,C

r for the
connected components of the closure of the complement C0 \ {Ei}k

i=1
. Each E

i is pointed by (qij ,pil ), where
the pil are the marked points that lie on E

i and the qij are the points of Ei along which E
i is glued to the

non-contracted components of C . Then each Ei is a pointed genus 0 prestable curve, and there exists a
smoothing eEi ! Spec(R) with sections ⌧ij smoothing the qij and �il smoothing the pil . Now consider the
constant family

F
l
C
l

R
with constant sections corresponding to the marked points and the points q0

ij
along

which the qij are glued.
We can glue

F
l
C
l

R
with

F
t
eEt by identifying the sections q0

ij
⇥ Spec(R) with ⌧ij for all (i, j) and call the

result C! Spec(R), which is now a family of pointed curves. By construction, this is a partial smoothing
of the pointed curve (C0,p1, . . . ,pn). Moreover, there is a stable map f : C ! P1 constructed by taking
fR|Cl

R

: C
l

R
! P1 for each l and taking the constant map 1 on each eEt . This descends to a map f as desired

since f (q
0
ij
) =1. Conditions (⇤)(1), (2) are satisÆed by f⌘ by construction, and (⇤)(3) is satisÆed since the

maximal irreducible components Ẽi
⌘ of f �1⌘ (1) have the same number of marked points as Ei and f⌘ has

the same ramiÆcation at (q0
ij
)⌘ as f0 at q0

ij
. ⇤

We now restrict ourselves to the case where the connected components of f �1(1) are irreducible. Let
(f : C0! P1

,p1, . . . ,pn) be such a map, suppose that E1, . . . ,Ek are the 1-dimensional connected components
of f �1(1), and write E = tiEi . By the above reduction, each Ei is a smooth rational curve.

We write the closure of the complement of E in C0 as a union of connected components C1, . . . ,Cr . Thus
each Ci is a tree of rational curves such that (f0)|Ci

is non-constant and such that the preimage of 1 is
0-dimensional. For each i, let Ii ⇢ {1, . . . ,n} be the subset of indices k such that pk lies on Ei . If Ei and Cj

intersect, we let qij 2 Ei and tij 2 Cj be the points of Ei and Cj , respectively, at which they are glued, and
we let eij be the ramiÆcation index of (f0)|Cj

at tij . Note that Condition (⇤)(3) then reads that for each i,

ni :=

X

k2Ii
dk =

X

j

eij ,

where the left side is a deÆnition and the right sum is over the j such that Ei meets Cj .
Consider a smoothing (C ! S,�1, . . . ,�n) of (C0,p1, . . . ,pn) over the spectrum of a DVR, and let D =P
di�i denote the divisor of �-weighted marked sections on this surface. We wish to construct a rank 1

linear series on such a smoothing so that the central Æber agrees with f0 and the generic Æber satisÆes that
D|⌘ is the preimage of 1. Our strategy is to consider the map ⇡ : C! C

0 which contracts E to a point and
instead construct the appropriate linear series on C

0 .
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Proposition 2.7. In the setting above, there exist a smoothing (C! S,�1, . . . ,�n) and a Cartier divisor D0 on C 0 ,
where ⇡ : C! C

0 is the contraction of the Ei such that

(1) ⇡⇤D0 =D +
P
aiEi for some ai , where D is the divisor of marked sections, and

(2) aiEi ·Cj = eij tij for all i and j such that Ei meets Cj .

Proof. For each i, we let ai =
Q

r

j=1
eij and let mij =

Q
k,j eik . By Lemma 2.6, there exists a smoothing

(C ! S,�1, . . . ,�n) of (C0,p1, . . . ,pn) such that C has an Amij�1 singularity at the node tij . Computing
intersection products in the surface C , we have Ei ·C0 = 0 since C0 is a Æber containing Ei . Moreover, if Ei

and Cj intersect, then

Ei ·Cj =
1

mij

tij

since locally around the node ti , the curves Ei and Cj are distinct lines through an Amij�1 singularity.
Therefore,

E
2

i
=

X

j

� 1

mij

,

where the sum is over those j for which Ci and Ej meet. Here, we go back and forth between viewing these
intersection products as numbers or as divisors on the curves depending on whether it is convenient to
emphasize the particular intersection points.

Now consider the divisor D +
P
aiEi . We can compute that D ·Ei =

P
k2Ii dk = ni since D is the divisor

of weighted marked sections and Ei contains pk for k 2 Ii . On the other hand,

aEi ·Cj =
ai

mij

=

Q
j
eijQ

k,j eik
= eij .

Finally,
✓
D +

X
akEk

◆
·Ei = ni �

X

j

ai

mij

= ni �
X

j

Q
i
eijQ

k,j eik
= ni �

X

j

eij = 0

by Condition (⇤)(3). Here we have used that Ek ·Ei = 0 if i , k.
Therefore, we need to show that D +

P
aiEi descends to a Cartier divisor D

0 along the contraction
⇡ : C ! C

0 . Note that ⇡ exists, C 0 is a normal quasiprojective surface, and ⇡⇤OC = OC 0 by [KM98,
Theorem 3.7]. Moreover, we have an exact sequence

(2.1) 0 // Pic(C 0) ⇡
⇤
// Pic(C) // Z,

where the map Pic(C)! Z is the restriction L 7! L|E ; see [KM98, Corollary 3.17]. In particular, since
OC(D +

P
aiEi ) is in the kernel of this map, there exists a line bundle L on C

0 such that ⇡⇤L = OC(D + aE).
On the other hand, ⇡⇤OC = OC 0 , and so by the projection formula,

⇡⇤OC

✓
D +

X
aiEi

◆
= L.

Therefore, there exists a section s 2H0
(L) which pulls back to the section cutting out D +

P
aiEi on C , and

so D
0
= div(s) is the required Cartier divisor. ⇤

Remark 2.8. Fix a list of positive integers rij for i and j such that Ei meets Cj . Then in the construction
of of the smoothing in Proposition 2.7, we can replace eij with rij eij in the deÆnitions of ai and mij . In
this way, we get a smoothing satisfying the properties of Proposition 2.7, where the total space has Amij�1
singularities with mij divisible by any Æxed choice of integers.

Let 0 2 P1 be a general point of the target, and consider the divisor B0 ⇢ C0 given by f
�1
0

(0). Then B0

consists of a union of points on C0 which are disjoint from E and contained in the locus where f0 is étale.
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Since C! S is a family of genus 0 curves birational to P1

S
, we can extend the collection of points B0 into a

Cartier divisor B on C which is horizontal and satisÆes B|C0
= B0.

Proposition 2.9. With notation as above, D +
P
aiEi ⇠ B are linearly equivalent Cartier divisors on C .

Proof. Let  : C! S denote the morphism to the base, and consider  ⇤N , where N = OC(D +
P
aiEi �B).

First we claim that H1
(C0,N |C0

) = 0. Indeed, since C0 is a nodal genus 0 curve, it su�ces to show that
the degree of N restricted to each component of C0 is at least 0. Now N |E = OE by construction since
(D +

P
aiEi ) ·E = 0 and B avoids E. On the other hand, for each i, we have (D +

P
aiEi ) ·Cj = f

�1
0

(1)|Cj

and B ·Cj = f
�1
0

(0)|Cj
, so these divisors are linearly equivalent. Therefore, we in fact have that N is trivial

on each component of C0. Hence, by cohomology and base change,  ⇤N is a vector bundle whose formation
commutes with base change. Moreover, over the generic Æber, C⌘ � P1

⌘ , and B and D +
P
aiEi are divisors

of the same degree n by construction. Therefore, H0
(C⌘ ,N |C⌘ ) = 1. Since any line bundle on the spectrum

of a DVR is trivial, we conclude that  ⇤N � OS . Consequently, N has a non-vanishing section which exhibits
the required linear equivalence D +

P
aiEi ⇠ B. ⇤

Remark 2.10. Note that the vanishing claimed in the above proof does not hold if we replace C0 with a
genus 0 Deligne–Mumford stack. See Remark 5.7 for an example.

Now let B0 be the image of B under ⇡, which is also a Cartier divisor since B is contained in the locus
where ⇡ is an isomorphism. By the exact sequence (2.1), the linear equivalence in Proposition 2.9 is equivalent
to a linear equivalence D

0 ⇠ B
0 . In particular, D0 and B

0 form a basepoint-free rank 1 linear subseries of
H

0
(C
0
,L), where L = OC 0 (D

0
).

Proposition 2.11. With notation as above, let g : C 0 ! P1 be the morphism induced by the basepoint-free linear

series hB0 ,D0i. Then the composition C
⇡�! C

0 g�! P1 satisÆes (g �⇡)|C0
= f0.

Proof. The map (g � ⇡) contracts E to 1 by construction. Moreover, on each Cj , the restrictions of B0

and D
0 satisfy

B
0 |Cj

= f
�1
0

(0)|Cj

and
D
0 |Cj

= f
�1
0

(1)|Cj

by Proposition 2.7. Therefore, (g �⇡)|Cj
= (f0)Cj

for all j = 1, . . . , k. We conclude that (g �⇡)|C0
= f0 as it

agrees with f0 on each component of C0. ⇤
Putting these together, we conclude the following.

Theorem 2.12. Let (f0 : C0 ! P1
,p1, . . . ,pn) be a stable map satisfying Conditions (⇤)(1), (2), and (3). Then

there exist a smoothing (C ! S,�1, . . . ,�n) over S = Spec(R), the spectrum of a DVR, and a stable map
f : C ! P1 such that the generic Æber (f⌘ ,C⌘ ! P1

⌘ , (�i )⌘ ) is contained in M(d1,...,dn)
and f |C0

= f0. In
particular, Conditions (⇤)(1), (2), and (3) are both necessary and su�cient for a stable map to be contained in
M(d1,...,dn)

.

Proof. By Propositions 2.7 and 2.11, there exist a smoothing (C ! S,�i ) and a map f : C ! P1 such that
f |C0

= f0 and f
�1
(1) = D +

P
aiEi , where D is the divisor of weighted marked sections and the Ei are

contained on C0. Therefore, f |C⌘ is in M(d1,...,dn)
. ⇤

3. Log twisted curves and maps

We refer the reader to [ACG+13] for the standard deÆnitions in log geometry and to [CJR+18, Section 2]
for log twisted stable maps. We always work with Æne and saturated (fs) log structures. We will use MX to
denote the log structure of X , which will be implicit if no confusion arises. The characteristic of the log
structure will be denoted by MX .
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3.1. Log geometry

We will need the following results regarding log smooth morphisms.

Remark 3.1.

• If a morphism of log schemes f : X! pt is log smooth (where the point has the trivial log structure),
then U ⇢ X is a toroidal embedding, where U is the locus with trivial log structure and MX is the
divisorial log structure.
• If C is a curve, then log smooth is equivalent to nodal; see [ACG+13, Theorem 5].
• Given a family f : C! S of nodal curves, there is a minimal log structure MS on S such that any
other log structure that makes f log smooth is pulled back from it; see [ACG+13, Section 7.3]. We call
the corresponding log structure and structure morphism f

[
: f
⇤
MS ! M̃C the canonical log structure

of f : C ! S . Note here that M̃C does not include marked points. If f is equipped with marked
points, then we denote the natural log structure by

MC := M̃C

M

O⇤
C

⇣
�O⇤

C
,iNi

⌘
,

where the sum is over marked points and Ni is the divisorial log structure associated to the i
th

marked point; we call MC the canonical log structure associated to a pointed curve if there is no
confusion.

There exists a log cotangent complex Llog

X/Y
(see [Ols05] or [ACG+13, Section 7]) for morphisms of log

schemes f : X ! Y , and deformation theory of log schemes is controlled by the log cotangent complex
(see [Ols05, Theorem 5.2]).

Remark 3.2. If f is a log smooth morphism, then the log cotangent complex Llog

X/Y
is represented by the

sheaf of log di�erentials (see [Ols05, Section 1.1(iii)]). There does not exist a distinguished triangle in general;
however, Olsson constructs a distinguished triangle for log Øat or integral morphisms (see [Ols05, 1.3]).

3.2. (log) Twisted curves

Our main reference is [Ols07]. To compactify moduli spaces of maps f : C!M, where M is a Deligne–
Mumford stack, one needs to allow C to be a stack as well, known as a twisted curve (see e.g. [AV02, AB19b]).

DeÆnition 3.3. A twisted curve is a purely 1-dimensional Deligne–Mumford stack C, with at most nodes as
singularities, satisfying the following conditions:

(1) If ⇡ : C! C denotes the coarse space morphism, then Csm
= ⇡

�1
C
sm, and ⇡ is an isomorphism over

a dense open subset of C .
(2) If x̄ ! C is a node such that the strictly henselian local ring OC,x̄ is the strict henselization of

k[x,y]/(xy), then

C⇥C Spec
�
OC,x̄

�
�
"
Spec

�
OC,x̄[z,w]/(zw,z

m � x,wm � y)� /µm
#
,

where ⇠ 2 µm acts by (z,w) 7! (⇠z,⇠
�1
w).

DeÆnition 3.4. An n-pointed twisted curve C/S marked by disjoint closed substacks {⌃i}ni=1 in C is assumed
to satisfy the following:

(1) The ⌃i are contained in Csm.
(2) Each ⌃i is a tame étale gerbe over S .
(3) The map Csm \[⌃i ! C is an open embedding.
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Let X be a Deligne–Mumford stack. We say that a Æne log structure MX is locally free if for every
geometric point x̄! X, the characteristic sheaf satisÆes MX �Nr for some r .

DeÆnition 3.5. In the above situation, we say that a morphism of sheaves of monoids M!M
0 is simple if

for every geometric point x̄! X, we have

MX M
0
X

Nr Nr ,
�

where � is given by (m1, . . . ,mr ).

DeÆnition 3.6. An n-pointed twisted log curve over S is the data

(C/S, {�i , ai}, l : MS !M
0
S
),

where

• (C, {�i})/S is an n-pointed nodal curve,
• MS is the minimal log structure for the family C! S ,
• the ai : S!Z>0 are locally constant, and
• l is a simple morphism.

Theorem 3.7 (cf. [Ols07, Theorem 1.8]). The Æbered category of n-pointed twisted curves is naturally equivalent
to the stack of n-pointed log twisted curves.

There is a natural map from the stack of twisted curves to the stack of (pre)stable curves induced by
taking the coarse space ⇡ : C! C . The induced map on local deformation spaces Def(C)!Def(C) can
be described as a root stack of order mi along the boundary divisor {ti = 0}, where ti is the deformation
parameter of the ith-node of C and mi is the stabilizer order of C at the ith node. The stabilizer orders mi

correspond via Theorem 3.7 to the data of the simple extension l as in DeÆnition 3.5. For more details, see
the discussion following [Ols07, Theorem 1.9 and Remark 1.10].

Example 3.8. Consider a smoothing of a nodal curve as in Lemma 2.5, and let (C,MC )! (S,MS ) be the
minimal log structure. The appearance of Ami�1 singularities on the total space of the smoothing at the
nodes of C0 is equivalent to the existence of a simple extension MS ,!M

0
S
with � = (m1, . . . ,mk). Thus,

by Olsson’s Theorem 3.7, such a smoothing is the coarse space of a smoothing of the twisted curve with
stabilizer µmi

at the i
th node of C0. Note that we can see this directly by taking the canonical stack of the

total space C which introduces a stabilizer µmi
at the Ami�1 singularity.

Let us brieØy explicate the construction of Theorem 3.7 as we will use it further on. If ⇡ : C! C is the
coarse map of a twisted curve over S , then the simple extension l : MS ,!M

0
S
is the map between the

minimal log structures of h : C! S and f : C! S , respectively. The pushforward log structure ⇡⇤M̃C sits
in a pushout square

h
⇤
MS

h
⇤
l //

h
[

✏✏

h
⇤
M
0
S

⇡⇤f [
✏✏

M̃C
// ⇡⇤M̃C.

Each ai keeps track of the stabilizer of C/C along �i , and we have simple extensions NC,i ,! ⇡⇤NC,i

corresponding to multiplication by ai on characteristic monoids.
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DeÆnition 3.9. Let (X,MX) be a separated Deligne–Mumford stack with fs log structure. A log twisted
prestable map is a diagram

(C,MC) (X,MX)

(S,MS ),

(f ,f
[
)

where C! S is a twisted curve and (C,MC)! (S,MS ) is log smooth. A log twisted prestable map is stable
if the underlying map f is representable and the coarse map h : C/S! X is a stable map.

We will also make use of the root stack construction of Borne–Vistoli [BV12, Section 4.2] in the case of
a locally free log structure. Suppose (X,MX ) is a locally free log scheme and � : MX !M

0
is a simple

extension. The root stack �

p
(X,MX ) is a log algebraic stack over SchX which associates to s : T ! X

the groupoid of pairs (l,'), where l : s
⇤
MX ! M

0
T
is a simple extension of log structures and ' is an

isomorphism of maps of characteristic monoids l � s
⇤
�.

We conclude this section by comparing the sheaves of log di�erentials between C and C . This simple
comparison is one of the advantages of using log geometry to study twisted curves. Let (f , f [) : (C,MC)!
(S,M

0
S
) and (h,h

[
) : (C,MC )! (S,MS ) denote the natural log smooth maps, where MS ,!M

0
S
is a simple

extension.

Notation 3.10. We set ⌦log

C/S :=⌦
log

(f ,f [)
and ⌦

log

C/S
:=⌦

log

(h,h[)
and similarly for the cotangent complex.

Proposition 3.11. Let ⇡ : C! C be the coarse space of a twisted curve. Then

Llog

C/S 'qis ⌦
log

C/S [0] � ⇡
⇤⌦log

C/S
[0] 'qis L⇡⇤Llog

C/S
.

Proof. Since both (f , f
[
) and (h,h

[
) are log smooth, Llog

C/S 'qis ⌦
log

C/S and Llog

C/S
'qis ⌦log

C/S
. Since ⌦

log

C/S
is

locally free, L⇡⇤⌦log

C/S
[0] 'qis ⇡⇤⌦log

C/S
[0]. Therefore, it su�ces to show that the natural map

⇢ : ⇡
⇤⌦log

C/S
!⌦

log

C/S

is an isomorphism which we can compute étale locally. Toward that end, suppose S = Spec(R). In an
étale neighborhood of a marked gerbe with stabilizer µa, the map ⇡ can be written as R[u] 7! R[x] with
u 7! x

a, so ⇢ : dlogu 7! adlogx. In a neighborhood of a node with stabilizer µa, we have R[u,v]/(uv�ta)!
R[x,y]/(xy � t) with (u,v) 7! (x

a
,y

a
), so ⇢ is given by dlogu 7! adlogx, dlogv 7! adlogy. In either case, ⇢

is an isomorphism since a 2 R is invertible. ⇤

4. Log maps to 1-dimensional targets

In this section, we collect some results on log twisted maps to stacky curves which we will use to lift the
smoothings from Section 2 to the twisted case.

4.1. Introducing log structures

We begin by giving a criterion to lift a prestable map with 1-dimensional target to a log map. More
precisely, suppose g : C ! X is a prestable map to a smooth curve X with log structure MX such that
(X,MX ) is log smooth over the trivial log point. We wish to Ænd a log structure MC on C such that (C,MC )

is a log smooth curve and g lifts to a log map. For the purpose of constructing smoothings, it su�ces by
Lemma 2.6 to consider the case where the connected components of C which are contracted to the marked
points of (X,MX ) are smooth (see also Remark 4.2).



Smoothability of relative stable maps to stacky curves 13Smoothability of relative stable maps to stacky curves 13

Proposition 4.1. Let g : C ! X be a prestable map with (X,MX ) as above. Suppose that the 1-dimensional
connected components of the support of f ⇤(MX ) are smooth genus 0 curves. Then g lifts to a prestable logarithmic
map. That is, there exist log structures MC on C and M on S = Spec(k) and a map g[ : g⇤MX !MC such that
(C,MC )! (S,M) is log smooth.

Proof. The question is étale local on the target, so we may pull back to a chart for the log structure (X,MX ).
Hence without loss of generality, we may assume that the target is (A1

,0) = (X,D) with its toric log structure
and that g : C !A1 is a proper map satisfying the assumptions of the proposition. Moreover, we write
g
�1
(0) = {p1, . . . ,pk,E1, . . . ,Er} as a disjoint union of points and smooth rational curves. Let us denote by

qij the nodes of C along Ei and by eij the ramiÆcation of g at these points. First we claim that g factors
through an expansion of the target

C
h // eX

'
// X.

Indeed, consider eX = E [0 A1, where E = P(ND/X +OD). To construct such a factorization, it su�ces to
construct non-constant maps hi : Ei ! E with hi(qij ) = 0 and such that the order of tangency of hi at qij is
equal to eij . Since the Ei are smooth rational curves, such maps exist.

Therefore, we have a factorization h : C ! eX , and it su�ces to show that h can be lifted to a log map
where

MeX = eMeX �O⇤eX '
⇤
MX

since ' underlies a log map (eX,MeX )! (X,MX ) and a composition of log maps is a log map. Now we
have reduced to the case where the support of h⇤(M eX/N) is {p1, . . . ,pk,pk+1, . . . ,pn}, a union of isolated
points. Here the copy of N in the quotient is the pullback of the minimal log structure on Spec(k) along
X̃! Spec(k). In a neighborhood of the smooth pi , there is a unique divisorial log structure such that the
map lifts, encoding the order of tangency. In a neighborhood of the nodal pi , the map lifts to a log map by
the tangency condition above, which is precisely the predeformability condition for a map to an expansion
(see for example [ACG+13, Section 12]). ⇤
Remark 4.2. Proposition 4.1 may be generalized to the case where the 1-dimensional connected components
of the support of f ⇤MX are trees of rational curves at the expense of allowing C to be blown up at the nodes.
To do this, one needs to consider the map g

trop of tropical curves and subdivide the source and target to
make g

trop tropically transverse (see [Ran22, Sections 2.5 and 2.6] for more details). Such a subdivision
corresponds to choosing a possibly larger expansion eX! X and a sequence of log blowups eC! C after
which we may lift g to a map h : eC! eX which underlies a log map as in the proposition. Since this is not
strictly necessary for our stated goal of constructing smoothings, we leave the details to the reader.

Next we address the question of lifting the log structure to a twisted map from its coarse space. More
precisely, consider a proper morphism f : C/S ! X from a twisted curve to a smooth Deligne–Mumford
curve X. Let MX be a log structure making (X,MX) a log twisted curve with coarse space (X,MX ,!M

0
X
).

Here (X,MX ) is log smooth, and MX ,!M
0
X
is the simple extension encoding the stabilizers of X. Suppose

furthermore that there exist log structures MC and MS on the coarse space C of C and on S , respectively,
such that

(C,MC )
g
//

✏✏

(X,MX )

(S,MS )

is a prestable log map.

Proposition 4.3. Let f : C/S ! X and f : (C,MC )/(S,MS )! (X,MX ) be as above. Then there exist a root
stack ⇡ : C̃! C and log structures MC̃ on C̃ and M

0
S
on S such that (C̃,MC̃)! (S,M

0
S
) is a log smooth curve,

and there exists a map f [ : (f �⇡)⇤MX!MC̃ making f into a prestable log map.
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Proof. Let g : C ! X be the coarse map. By Theorem 3.7, we have simple extensions of log structures
MC ,!M

0
C
, MS ,!M

0
S
, andMX ,!M

0
X
on C , S , and X , respectively, such that (C! S, {ai ,�i},MS ,!M

0
S
)

and (X! Spec(k), {bi ,xi}, k⇤ ! k
⇤
) are log twisted curves. Here the �i : S! C correspond to the marked

gerbes of C! S with order of stabilizer given by ai . Similarly, the xi 2 X correspond to the marked gerbes
of X with stabilizer order bi .

The question is local on X , so we can restrict to a neighborhood of one of the marked points xi with
stabilizer µbi on X and suppose without loss of generality that there is a single marked point x 2 X with
stabilizer µb . This point is exactly the support of MX =N and M

0
X =N, and the simple extension is simply

the map 1 7! b.
By assumption, there exists a map g

[
: g
⇤
MX !MC making (g,g

[
) into a log map. By Theorem 3.7, it

su�ces to show that there exist a further simple extension M
0
C
,!M

00
C
which is an isomorphism away from

Ænitely many smooth points and a map of log structures f [ : g⇤M 0
X
!M

0
C
such that the square

g
⇤
MX

g
[

//

✏✏

MC

s

✏✏
g
⇤
M
0
X

f
[

// M 00
C

commutes. Note that M 0
X
=MX �N/(e = be

0
), where e is the element corresponding to a local parameter of

x 2 X and e
0 is the generator of the copy of N. By the universal property of this pushout, to construct f [,

it su�ces to show that s(g[(e)) is divisible by b. However, we can guarantee this by taking a large enough
simple extension s. ⇤

4.2. Deformations of log twisted maps and their coarse spaces

Let
(C,MC)

(f ,f
[
)
//

✏✏

(X,MX)

(S,MS )

be a stable log map from a log twisted curve, and suppose that (X,MX) is a log smooth curve. We deÆne
the critical locus of f to be the support of the cokernel of the natural map

f
⇤⌦log

X !⌦
log

C/S .

Note that this map, viewed as a two-term complex, is a presentation of the log cotangent complex Llog

f

relative to S , so we may equivalently deÆne the critical locus to be the support of H0
(Llog

f
).

The critical locus is a union of nodes of C, branch points of f , and contracted components of f . By
contrast, the kernel of the above map, or equivalently H�1(Llog

f
), is supported solely on the contracted

components of f .
Let A1, . . . ,Ak be the connected components of the critical locus and U1, . . . ,Uk be a�ne étale neighbor-

hoods of the Ai with log structure pulled back from C. Suppose each Ui avoids Aj for j , i . Let Def(f ,f [)

be the versal deformation space of the log map (f , f
[
). Since the moduli space is a Deligne–Mumford

stack, Def(f ,f [) is pro-representable. Let Defi be the miniversal deformation space of the restriction
(fi := f |Ui

: Ui ! X, f [|Ui
). We have the following proposition (see also [Vak00, Proposition 4.3]).

Proposition 4.4. In the setting above, the natural map

Def(f ,f [)!Def1⇥ · · ·⇥Defk

is an isomorphism.



Smoothability of relative stable maps to stacky curves 15Smoothability of relative stable maps to stacky curves 15

Proof. The deformation space Def(f ,f [) (resp. Defi ) is constructed via the complex

RHom(Llog

f
,OC) (resp. RHom(Llog

fi
,OUi

)).

Since the gi : Ui ! C are strict étale, Lg⇤
i
Llog

f
= Llog

fi
. Let Ki be the component of K = H�1(Llog

f
)

supported on Ai ⇢ Ui and Qi the component of Q = H0
(Llog

f
) supported on Ai ⇢ Ui . Since the Ai are

disjoint, we have K = �Ki and Q = �Qi and Ki =H�1(Llog

fi
) and Qi =H0

(Llog

fi
).

Since both Llog

f
and Llog

fi
are two-term complexes, we have distinguished triangles

K[1]! Llog

f
!Q! and Ki [1]! Llog

fi
!Qi ! .

There is a natural map RHom(Llog

f
,OC)! RHom(Llog

fi
,OUi

) given by restricting f to Ui . This map
corresponds to the map on deformation spaces Def(f ,f [)!Defi . Taking direct sums yields the diagram of
distinguished triangles

(4.1) RHom(Q,OC)
// RHom(Llog

f
,OC)

//

✏✏

RHom(K[1],OC)
//

L
RHom(Qi,OUi

) //
L

RHom(Llog

fi
,OUi

) //
L

RHom(Ki [1],OUi
) //

where the vertical maps are equalities via the identiÆcations K = �Ki and Q = �Qi . The middle map
corresponds to the product of the restriction map on deformation spaces

Def(f ,f [)!Def1⇥ · · ·⇥Defk .

Since the vertical maps on the ends are equalities, the middle map is an isomorphism by the properties of
distinguished triangles, or equivalently the Æve lemma, from which we conclude. ⇤

Remark 4.5. Via Diagram (4.1), we see that in fact the deformation spaces Defi of an étale neighborhood Ui

of the component Ai of the critical locus is independent of the choice of Ui since the Qi- and Ki-terms are
independent of Ui .

Now we address the question of lifting log smooth deformations along the coarse space map of a log
twisted curve. Let

(C0,MC0
)

h0 //

✏✏

(X,MX )

(S0,MS0
)

be a prestable log map, and suppose that there exists a simple extension of log structures MS !M
0
S
such

that (C0/S0, (�i , ai ), l0 : MS0
!M

0
S0
) is a log twisted curve. Let (C0,⌃i )! S0 be the corresponding twisted

curve with log map (C0,MC0
) ! (S0,M

0
S0
), and let g0 : (C0,MC0

) ! (X,MX ) be the composition of h0
with the coarse space map ⇡0 : C0! C . Let (S0, l0 : MS0

!M
0
S0
) ,! (S, l : MS !M

0
S
) be a strict closed

immersion of log schemes with simple extensions deÆned by a square 0 ideal I ⇢ OS .

Proposition 4.6. With notation as above, suppose we have a log smooth deformation

(4.2) (C,MC )
h //

✏✏

(X,MX )

(S,MS )
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of h0 over (S,MS ). Then h lifts uniquely to a log smooth deformation

(C,MC)
g
//

✏✏

(X,MX )

(S,M
0
S
)

of g0 factoring through h.

Proof. We can summarize the situation with the commutative diagram below:

(C0,MC0
)

⇡0

''OO
O

O

O

O

O

O

O

O

O

g0

++

##

(C0, (⇡0)⇤MC0
)
(id,s0) //

✏✏

(C0,MC0
)

✏✏

h0

// (X,MX )

(S0,M
0
S0
)

(id,l0) // (S0,MS0
),

where the middle square is a pullback in the category of fs log schemes by [Ols07, Lemma 4.6, Diagram
4.6.2, and Lemma 4.7]. Given a strict square 0 thickening (S, l : MS !M

0
S
) of (S0, l0 : MS0

!M
0
S0
) with

ideal I and a log smooth deformation h as in Diagram (4.2), we can form the pullback

(C,M
0
C
) //

✏✏

(C,MC )

✏✏

h // (X,MX )

(S,M
0
S
) // (S,MS )

in the category of fs log schemes to obtain a log smooth deformation of h0 � (id, s0). Then MC ,!M
0
C
is a

simple extension, and by Theorem 3.7, this is equivalent to a log smooth deformation g . ⇤

5. Smoothing twisted stable maps

Our goal now is to lift the smoothings constructed in Section 2 to the case of twisted maps. More precisely,
suppose we have a genus 0 twisted stable map (f0 : C0! X,p1, . . . ,pn) such that

• X is a smooth stacky curve with coarse map ⌧ : X! X = P1,
• the coarse map (h0 : C0! X,q1, . . . , qn) satisÆes Conditions (⇤) relative to 12 X , and
• ⌧ is étale over 1.

The situation can be summarized in the following diagram, where S0 = Spec(k):

(C0,p1, . . . ,pn)
f0 //

⇡0

✏✏

X

⌧

✏✏
(C0, q1, . . . , qn)

h0 //

✏✏

X

S0.

By Theorem 2.12, there is a smoothing h : (C,�i )/S! X of h0 over S = Spec(R), the spectrum of a DVR,
with generic Æber contained in M(d1,...,dn)

, and we wish to lift this to a smoothing f : (C,⌃i )/S ! X of f0
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with generic Æber contained in M�(X). That is, we wish to Æll in the dotted arrows in the diagram

(C0,pi )
//___

⇡0

✏✏

(C,⌃i )
f
//___

⇡

✏✏
�

�

�

X

⌧

✏✏
(C0, qi )

//

✏✏

(C,�i )
h //

✏✏

X

S0
// S .

The di�culty is that there are global obstructions to lifting from a map to X to a map to X. For example,
the j-invariant of a map to M1,1 must satisfy that the discriminant is a sum of a square and a cube which
cuts out a high-codimension locus inside the space of maps to P1. The key observation is that ⌧ is étale.
Thus we can lift such a smoothing locally around 1 (see Theorem 5.1) to obtain a partial smoothing of f0.
Then we can construct a further global smoothing when X has some positivity (see Theorem 5.6).

Theorem 5.1. In the situation above, there exists a partial smoothing f : (C,⌃i )/S! X of f0 such that

• f (⌃i ) =1,
• C⌘ is smooth in a neighborhood of f �1⌘ (1), and
• the coarse map on the generic Æber h⌘ is ramiÆed to order di at (�i )⌘ .

Proof. We wish to use the log deformation theory results of Section 4.2. To do this, we begin by showing that
the smoothing of the coarse map h : (C,�i )/S! X can be endowed with the structure of a stable log map.

Lemma 5.2. Let (h0 : C0! P1
, q1, . . . , qn) be as above, and let

C P1

S

h

�i

be a smoothing constructed in Theorem 2.12. Denote by M the divisorial log structure on P1 corresponding to the
point 1. Then there exist log structures MC and MS on C and S and a map h[ : h⇤M !MC such that h is a
stable log map over S .

Proof. First note that C! S is log smooth, where we equip S = Spec(R) with the standard log structure and
C with the divisorial log structure induced by the union of the central Æber and marked sections. Indeed,
this follows since C! S is a toroidal morphism of the corresponding toroidal embeddings. Endow P1 with
the divisorial log structure for 1⇢ P1; the pullback of the monomial x1 cutting out 1 is locally a sum of
monomials for the toroidal structure on C since h⇤[1] is supported on the toroidal boundary. Thus, there is
a natural map h

[ of divisorial log structures recording the exponents of the monomial h⇤x1. ⇤
Suppose (R,m) is complete, and let hn : (Cn,�i,n)/Sn! X be the compatible system of deformations over

Sn = Spec(R/mn
) obtained by truncating the smoothing over S . We will lift these to a compatible system of

deformations of h0 in two steps.
First let (g0, g

[

0
) : (C0,MC0

)! (X,M) be the composition h0 �⇡0, where we note that h0 is a log map by
Lemma 5.2 and ⇡0 is a log map by the deÆnition of log twisted curves. By Lemma 4.6 and induction on n,
the map hn extends to a log smooth deformation gn : (Cn,MCn

)! (X,MX ) over (Sn,M 0Sn), where MS ,!M
0
S

a simple extension and (Sn,M
0
Sn
) ,! (S,M

0
S
) is a strict closed embedding. Moreover, the gi are compatible

by construction. In this way, we get an R-point of the formal deformation space SpfR!Def
(g0,g

[

0
)
.

Next we will use Proposition 4.4 to lift this R-point of Def
(g0,g

[

0
)
, at least in a neighborhood of 1, to a

smoothing of f0. Note that f0 lifts to a log map (f0, f
[

0
) by Proposition 4.3, where we endow X with the
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pullback log structure ⌧⇤M . Equivalently, this is the divisorial log structure for 1 but is di�erent from
the canonical log structure on a log twisted curve. Let U ⇢ P1 be an étale neighborhood of 1 such that
⌧|V : V ! U is étale, where V = ⌧

�1
(U ), and such that U avoids all the components of the critical loci

of both f0 and g0 away from 1. Let Deff0,1 be the miniversal deformation space of the restriction of
(f0, f

[

0
) to an étale neighborhood of f �1

0
(1) and similarly for Defg0,1. Note that by the independence of the

chosen étale neighborhood (see Remark 4.5), we have that these are the miniversal deformation spaces of
(f0)|U : f

�1
0

(U )!U ⇢ P1 and (g0)|V : g
�1
0
(V )! V ⇢ X. We set U 0 = f

�1
0

(U ) = g
�1
0
(V ) and denote by U

00

a neighborhood of the critical loci of both f0 and g0 away from 1.
By Proposition 4.4, we have

Def
(f0,f

[

0
)
�Deff0,1⇥Deff0,,1

and
Def

(g0,g
[

0
)
�Defg0,1⇥Defg0,,1,

where Deff0,,1 (resp. Defg0,,1) is the miniversal deformation space of a neighborhood of the critical loci of
(f0, f

[

0
) (resp. (g0, g

[

0
)) which are away from 1.

Lemma 5.3. The natural map Deff0,1 !Defg0,1 induced by composition with ⌧ is an isomorphism.

Proof. We proceed as in Proposition 4.4 and see that there is a natural isomorphism

RHom(Llog

f0
,OC) = RHom(Llog

f
0
0

,OU 0 )�RHom(Llog

f
00
0

,OU 00 )

and similarly

RHom(Llog

g0
,OC) = RHom(Llog

g
0
0

,OU 0 )�RHom(Llog

g
00
0

,OU 00 ).

We now compute

Llog

f
0
0

= [f
⇤
0
⌦U !⌦

log

U 0 ],

Llog

g
0
0

= [g
⇤
0
⌦V !⌦

log

U 0 ].

Since ⌧|V is étale, we have that g⇤
0
⌦V � g

⇤
0
⌧
⇤⌦U = f

⇤
0
⌦U by the functorality of pullbacks. Therefore, the

natural map

Llog

g
0
0

! Llog

f
0
0

is an isomorphism, so we conclude that the natural map

RHom(Llog

f
0
0

,OU 0 )! RHom(Llog

g
0
0

,OU 0 )

is an isomorphism. ⇤

Now let SpfR!Deff0,1 be the composition of the formal R-point of Def
(g0,g

[

0
)
constructed above with

composition
Def

(g0,g
[

0
)
!Defg0,1 !Deff0,1,

where the Ærst map is the projection from Proposition 4.4 and the second map is the inverse of the
isomorphism in Lemma 5.3. There is a canonical splitting of the projection Def

(f0,f
[

0
)
! Deff0,1 via

the isomorphism of Proposition 4.4 given by picking the constant deformation in Deff0,,1. Further
composing with this splitting gives us a formal deformation SpfR ! Def

(f0,f
[

0
)
. Since Def

(f0,f
[

0
)
is the

formal neighborhood of a point of a locally of Ænite type algebraic stack (see [Che14, GS13]), this formal
deformation algebraizes to a family (f , f

[
) : (C,MC)/(S,M

0
S
)! (X,⌧⇤M) of log twisted stable maps (see for

example [Bha16, Theorem 1.1] and [BHL17, Corollary 1.5]). Let us denote by f : (C,⌃i )/S! X the underlying
twisted stable map. By construction, the coarse map of f agrees with h over an étale neighborhood of 1, so
we conclude that f satisÆes the required conditions. ⇤
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Remark 5.4. By construction, the smoothing of Theorem 5.1 induces the constant inÆnitesimal deformation
of the restriction of f0 away from 1. More precisely, suppose A is a component of the critical locus of f0
which is disjoint from f

�1
0

(1), and let U ! C be an étale neighborhood of A which is disjoint from all other
critical loci. Then f |U modmn is the constant inÆnitesimal deformation of f0|U⇥CC0

.

Remark 5.5. In Theorem 5.1 and the situation above, we can drop the assumption that ⌧ is étale over 1
at the cost of replacing C0 with a root stack. Indeed, if ⌧ is not étale, then ⌧ factors through a non-trivial
root stack along 1. In this case, one obtains a corresponding simple extension of log structures M!M

0

on P1. Then by Proposition 4.3, the map f0 can be extended to a log map after taking a further root
stack C1! C0. The rest of the argument goes through as written to produce a partial smoothing of the
composition C1! C0! X with the required properties as in the theorem. We leave the details to the reader
since our main interest is in the case of (M1,1,1), where ⌧ is étale over 1.

5.1. Global smoothings for target weighted projective lines

Next we consider the problem of smoothing twisted stable maps to a weighted projective line P = P(a,b)

without any tangency conditions.

Theorem 5.6. Let (f0 : C0! P,⌃i,0) be a genus 0 twisted stable map to a weighted projective line P = P(a,b).
Then there exists a smoothing

C P

S

f

⌃i

over S = Spec(R), the spectrum of a DVR.

Proof. Suppose (R,m) is complete. We will construct such a smoothing by building a compatible system
of deformations over R/mn. Since the stack of not necessarily representable twisted stable maps to P

is a locally of Ænite type algebraic stack, such a compatible system automatically algebraizes as in the
proof of Theorem 5.1. First note that if a = ka

0 and b = kb
0 with a

0
, b
0 coprime, then the canonical map

⇢ : P(a,b)! P(a0 , b0) is étale, and so inÆnitesimal deformations lift uniquely along ⇢. Thus, without loss of
generality, we may assume that a and b are coprime and P is a twisted curve.

First we reduce to the case where every connected component in the Æbers of f0 : C0! P is irreducible.
We can argue as in Lemma 2.6. If E is a connected component of the preimage f �1

0
(p) for some p, then we

can view f0|E as a map to the residual gerbe Gp where E is pointed by the nodes. Then since Gp is étale
over Spec(k), it su�ces to smooth the composition E! Spec(k) as a marked twisted curve and then glue
together the smoothing of E with the constant family of maps f |

C0\E along the markings corresponding to
nodes exactly as in the proof of Lemma 2.6 to obtain a partial smoothing where each connected component
of the contracted locus is irreducible. Therefore, without loss of generality, we may suppose that every
connected component of the contracted locus of f0 is irreducible.

By Propositions 4.1 and 4.3, there exists a twisted curve C̃0 with a partial coarse space map ⇡0 : C̃0! C0

such that g0 := f0 �⇡0 : C̃0! P can be endowed with a log structure where P has the toric log structure
and (C̃0,MC̃0

)! (Spec(k),M) is log smooth. Since (P,MP) is toric, the log cotangent complex Llog

P � OP is
trivial. Moreover, since C̃0 is genus 0,

(5.1) Ext
1
(g
⇤
0
Llog

P ,OC̃0
) =H

1
(C̃0,OC̃0

) = 0.

Therefore, the log deformation space of (g0, g
[

0
) is log smooth over the log deformation space of the curve

(C̃0,MC̃0
). By Theorem 3.7, Def(C̃0,MC̃0

) is a root stack over Def(C0,p1, . . . ,pn), where the pi are the
smooth marked points lying under ⌃i,0. In particular, we can build a smoothing (C/S,�i ) of (C0,pi ) whose
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truncations (Cn/Spec(R/m
n
),�i,n) lift to a formal smoothing of (C̃0,MC̃0

), after possibly extending the log

structure on S . By the vanishing obstruction group (5.1), the map (g0, g
[

0
) can then be lifted to a compatible

family (gn : C̃n! P, g[n) of log smooth deformations over R/mn.
Thus, after algebraizing, we have a smoothing (g : C̃/S! P,⌃i ) of g0. Taking the relative coarse space

of g gives a Øat family of maps f : C/Spec(R)! P whose formation commutes with base change (see [AOV11,
Proposition 3.4] and [AOV08, Corollary 3.3]). Therefore, we conclude that the central Æber of f agrees
with f0 and that the generic Æber is smooth since it is a partial coarse space of the smooth generic Æber
of C̃/S . ⇤
Remark 5.7. For the proof of Theorem 5.6, it is necessary to use log deformation theory even though the
statement does not make any reference to log geometry. The reason is that the stack P is not convex in the
classical sense. The tangent bundle is not necessarily e�ective even though it has positive degree, and there
are examples of genus 0 twisted stable maps where the vanishing (5.1) does not hold for the usual tangent
bundle. For example, consider C = [E/⌧], where E is an elliptic curve with hyperelliptic involution ⌧ : E! E,
⇡ : C! P1 is the coarse space, and pi 2 P1 are the points lying under the Æxed points of ⌧. Then the line
bundle L = OC

⇣
1

2
p1 � 1

2
p2 +

1

2
p3 � 1

2
p4

⌘
with sections 0 2 L and 1 2 L⌦2 induces a map f : C! P(1,2) with

f
⇤
TP = L and h

1
(C,L) = h

1
(P1

,⇡⇤L) = h
1
(P1

,O(�2)) , 0.

6. Proofs of the main theorems

We use the notation from the introduction. Let (X,x1, . . . ,xr ) be a smooth and proper pointed stacky
curve, and suppose that the coarse map ⌧ : X! X is étale at the points xi (see also Remark 5.5). Fix a tuple
of discrete data � = (n0, {�1,x1}, . . . , {�r ,xr}).
Proposition 6.1. The lociM�(X) and N�(X) (see DeÆnition 1.3 ) are locally closed substacks of K0,n(X,d).

Proof. We run through the conditions of DeÆnition 1.3. Condition (1) is both open and closed by the deÆnition
of a twisted curve, and condition (2) is closed. Conditions (4) and (40) are open by the openness of the
smooth locus. For condition (3), we consider the cohomology sheaves of the cotangent complex Llog

f
. The

locus where f is constant is given by the support of H�1(Llog

f
). Since the universal family of curves over the

moduli space is proper, the locus where the marked points avoid SuppH�1(Llog

f
) is open, and therefore so

is the condition of f being non-constant along the marked points. Finally, under this condition, the order of
tangency of f at xi is measured by the length of coker(f ⇤⌦1

X!⌦1

C)x, and by semicontinuity, there is a
locally closed subset where this length is constant di . ⇤
Proof of Theorem 1.5. The marked points p0k for k = 1, . . . ,n0 with no tangency conditions do not change the
outcome of the problem. Indeed, if we can construct such a smoothing with n0 > 0, then by forgetting and
stabilizing, we obtain a smoothing with n0 = 0, and, conversely, if we have a partial 1-parameter smoothing
over a base S with n0 = 0, then up to a Ænite base change S

0 ! S , we can pick generic sections passing
through p0k to obtain a smoothing with n0 > 0. So without loss of generality, suppose n0 = 0.

We proceed by induction on r . The base case is precisely Theorem 5.1. In general, let (f : C !
X, {{pjk}

nj

k=1
}r
j=1

) be a map in K�(X). Applying Theorem 5.1 to (f : C ! X,pr1, . . . ,prnr ) produces a
1-parameter deformation whose generic Æber is a relative map to (X,xr ) with tangency �r which also satisÆes
that the curve is smooth along the preimage of xr . Moreover, by Remark 5.4, the generic Æber is contained
in K�(X). Therefore, without loss of generality, we may assume that C is smooth in a neighborhood
of f �1(xr ). By the inductive hypothesis, there exists a 1-parameter deformation of f with generic Æber
contained in N�0 (X), where �0 = ({�1,x1}, . . . , {�r�1,xr�1}). Moreover, by Remark 5.4, this partial smoothing
induces the constant deformation in an étale neighborhood of f �1(xr ), and so the generic Æber is contained
in N�(X). ⇤
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Proof of Theorem 1.7. Let (f : C! X,pjk) be a map contained in K�(X). By Theorem 1.5, there exists a
partial smoothing of (f : C! X,pjk) with generic Æber contained in N�(X), so without loss of generality,
suppose that (f : C! X,pjk) is contained in N�(X). By Theorem 5.6, there exists a smoothing of the stable
map into the interior of K0,n(X,d) since X = P is a weighted projective line. Let SpfR! Deff be the
corresponding formal deformation. By Proposition 4.4, we can write

Deff = Deff ,x1
⇥ · · ·⇥Deff ,xr

⇥Deff ,, ,

where Deff ,xi
is a miniversal deformation space of a small étale neighborhood of the Æber f �1(xi ) and

Deff ,, is a miniversal deformation space of the critical loci of f which are disjoint from the Æbers f �1(xi ) for
each i . Then projecting onto Deff ,, and then composing with the section Deff ,,!Deff which picks the
constant deformation on each of the Deff ,xi

factors produces a new formal deformation SpfR!Deff which
agrees with the smoothing from Theorem 5.6 away from the Æbers f �1(xi ) but is the constant deformation in
a neighborhood of f �1(xi ) for all i . After algebraizing this formal deformation as in the proof of Theorem 5.1,
we obtain a 1-parameter family over Spec(R) such that the generic Æber is contained in N�(X) but is also
smooth away from the union of the Æbers f �1(xi ). Therefore, the generic Æber is smooth everywhere and
thus contained in M�(X). ⇤
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