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1. Introduction

Consider the moduli space Maps?, of degree nn maps f: C — P! from a smooth rational curve C such
that f is unramified over infinity. Marking the preimage f~'(co) = {py,...,p,} of such a map induces a
locally closed embedding

Maps, <> Mo, (P, n)
of the S,,-torsor I\//[a\pgz — Maps? parametrizing such f: C — P! as well as a labeling of f!(co) into the
space of n-pointed degree n genus 0 stable maps to IP'. The image of this embedding is the locus of stable
maps (f: C — P1,py,...,p,) such that C is smooth and f(p;) = co for all i. Let Maps,, denote the closure
of this locus.

Question 1. Is there a combinatorial description of the boundary Maps, \ Maps;?

There are several natural combinatorial conditions (see Proposition 2.4 and the discussion preceding it)
n:1 —_
that are necessary for a stable map (f: C — P!,p,...,p,) to lie inside Maps,,:

(1) The evaluations satisfy f(p;) = co for all i.
(2) Every point of f~!(co) C C either is a marked point or is on a contracted component.
(3) For each maximal connected closed subvariety T C C contracted to oo by f, we have

# marked points on T = Z ramification index of f at the nodes TN(C\ T).

More generally, for any tuple of non-negative integers (dy,...,d,) with d =) d;, one can consider the

.....

..........

space. The necessary conditions above naturally generalize to Conditions (*) below.

Definition 1.1. Let (f: C — X, py,...,p,) be a prestable map to a smooth curve, and fix a tuple of positive
integers (dy,...,d,) and a point x € X. We say that f is a relative map to (X, x) with tangency (d4,...,d,)
if it satisfies the following conditions:

Combinatorial conditions (x). ([Gat02, Definition 1.1 & Remark 1.7])

(1) The evaluations satisfy f (p;) = x for all i.
(2) Every point of f~1(x) C C either is a marked point or is on a contracted component.
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(3) For each maximal connected closed subvariety T C f~(x), we have

Y di= ) el

pieT geTN(C\T)

where the first sum is over marked points contained in T and es(q) denotes the ramification of f|x7 at
the point q (see Figure 7).

This question in much greater generality was studied by Gathmann [Gat02, Proposition 1.14], building off
previous work of Vakil [Vak00, Theorem 6.1]. In particular, Gathmann showed that Conditions () relative to
oo are both necessary and sufficient for a stable map to lie in J\_&(dl,_,_,dn). As a consequence, the set of points
of ﬁo,n(nﬂ,d ) satisfying Conditions (*) relative to co are the points of an irreducible closed substack. See
also the balancing condition of Gross-Siebert [GS13, Definition 1.12 and Lemma 1.15].

In [AV02], Abramovich and Vistoli introduced moduli spaces of twisted stable maps, which allows the
target to instead be a Deligne-Mumford stack. To form a compact moduli space, the source curves obtain a
stacky structure. Let X ,,(X,d) denote the moduli space of n-pointed genus 0 degree d twisted stable maps
to a Deligne-Mumford stack X. The goal of this paper is to study the analogue of Question 1 for genus 0
twisted stable maps to a weighted projective line P(a,b), or more generally a genus 0 Deligne-Mumford
curve.

When X is P(a,b) and co € P(a,b) is a fixed point away from [0: 1] and [1 : 0], we have the following
(see Theorem 1.5 for a more general result). For this example, the reader can keep in mind Ml,l =P(4,6)
and the point j = co parametrizing a nodal elliptic curve.

Theorem 1.2. Let (f: C— P(a,b),py,...,p,) be an n-pointed genus 0 twisted stable map such that the coarse
map (g: C — P, qy,...,q,) satisfies Conditions (+) with respect to co. Then f is smoothable in a family with
generic fiber satisfying: f(p;) = oo and f is ramified to order d; at p; foralli=1,...,n.

In what follows, we set up notation needed to state our more general results.

Let (X, xq,...,x,) be a smooth and proper 1-dimensional genus 0 Deligne-Mumford curve, and suppose
the x; € X are points where the coarse moduli space map is étale (equivalently, the x; have the same stabilizer
as the generic point of X). For each j =1,...,7, let [; = (d]'l,...,djn]_) be a tuple of positive integers, and fix
ng>0. Set n = Z]r-zo n; and

r N
d=) ) d

=1 k=1
and let I = (ng,{I},x1},...,{I;, x;}) be the tuple of combinatorial data.

Definition-Notation 1.3. For any tuple of combinatorial data I, let M (X) be the locally closed substack
of X ,,(X,d) parametrizing n-pointed genus 0 degree d twisted stable maps (f: € — X, {{p]-k}Zj:l}]r-:O) such
that

(I) the pjx are marked points with stabilizer of order aj; lying over smooth points gji of the coarse

space C,

(2) for each j > 0, the image of pji is f(pjx) = x;,

(3) for each j > 0, the coarse map h: C — X is ramified to order dj; at gk, and

(4) Cis smooth.
Similarly, we let Np(X) be the locally closed substack of X ,(X,d) of maps satisfying conditions (1), (2)
and (3) above as well as the condition

(4) € is smooth in a neighborhood of f~!(x;) for all j.
We denote by Mg (X) (resp. Ny (X)) the closure of Mp(X) (resp. Nr(X)) inside Ko, (X, d).
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Note that here and throughout, we are fixing a bijection between the set {1,...,n} and the set {{(j, k)};:]:1 };:O
indexing the marked points. Note also that the marked points with j = 0 are the ones with no tangency
conditions, so in the situation of M4, 4 ), we may assume for notational convenience that the first g
entries (dy,...,d, ) of (dy,...,d,) are 0 so that Mg, 4 )= Mp(IP!), where T = (10, {(dnys1s---»dpn), 00}).

Definition-Notation 1.4. For any tuple of combinatorial data I, let ICp(X) denote the subset of K ,,(X,d)
parametrizing those twisted stable maps (f: € — X, {{p]-k}ZL1 };:0) such that for each j =1,...,r, the coarse
moduli map (h: C — X, qjl,...,q]-nj) is a relative map to (X, x;) with tangency I}.

Theorem 1.5. Let X and I' be as above. Then we have an equality Np(X) = Kp(X). That is, every twisted
stable map whose coarse moduli map satisfies the relative condition for {I;, x;} for each j =1,...,r is smoothable
to a twisted stable map parametrized by Ny (X). In particular, K (X) is the set of points of a closed substack
of Ko, d).

Remark 1.6. Note that Theorem L5 is local on the target. Indeed, the definitions of both K (X) and Np(X)
are in terms of local conditions around the points x; € X. Therefore, the theorem has a natural generalization
to higher-genus maps to a higher-genus target X provided we only consider those maps for which the
1-dimensional components of the preimages f~!(x;) are rational curves. In this case, the theorem reads
that any such map which is also contained in K (X) is smoothable in a family with generic fiber contained

in Np(X).
When the target is a weighted projective line, we obtain the following stronger statement.

Theorem 1.7. Let X = P(a,b) be a weighted projective line, and let T be a tuple of combinatorial data as above.
Then we have an equality Mp(X) = Kp(X). That is, every twisted stable map which satisfies the relative condition
Jor {Ij, x;} for each j =1,...,r is smoothable to a family of stable maps from a smooth rational curve satisfying
f(pjx) = xj and with ramification d;i at pjy.

1.1. Applications to moduli of fibered surfaces

Our original motivation for writing this paper came from studying compactifications of the moduli space
of fibered surfaces. Twisted stable maps are used in [AV00, ABI9b] to construct a compactification Fg ,,(y, v)
of the moduli space of genus ) fibrations over a genus g curve with v marked sections and 7 marked fibers.
The objects of the boundary are certain semi-log canonical unions of birationally fibered surfaces called
twisted surfaces. This compactification is closely related to the compactification via stable log varieties from
the minimal model program. In [AB19b, Section 1.4], we proposed the problem of using log geometry to give
the main component a moduli-theoretic interpretation and classify the boundary components. The present
paper solves this problem for elliptic fibrations with marked singular fibers (we refer the reader to [AB2]]
and [AB19a, Section 4]). A key observation is that Conditions (+) relative to co € Ml’l as well as the choice
of stabilizers on the marked points translate to conditions on the configuration of singular fibers on the
components of the twisted elliptic surface; see [AB19a, Propositions 4.1 and 4.4].

Theorem 1.8. Theorem 1.7 gives necessary and sufficient combinatorial conditions for a twisted elliptic surface
over a genus O curve with marked singular fibers to be smoothable to an elliptic surface over P! with marked
singular fibers.

For convenience, we work over an algebraically closed field of characteristic 0.
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Figure 1. In this example, the contracted component is attached to a double branched, unbranched,
and triply branched point, respectively, and thus must have 2+ 1 + 3 = 6 marked points.

m O

&

Figure 2. Maps of this type are given by choosing the map f; = f|c, (which is parametrized
by Maps,,), a point of the finite set f;!(co0) along which to attach C,, and the configuration of
the 7+ 1 special points on C, (which is parametrized by M ,,.1), yielding the dimension count
dimMaps, +n—2.

2. Genus 0 relative stable maps to (IP', co)

In this section, we prove the special case of Theorem 1.2 where the target is IP'; i.e, a=b = 1. This
special case was originally proved by Gathmann [Gat02]. Our approach differs from that of [Gat02] in that
we give a direct construction of smoothings of comb-type maps (see Propositions 2.7 and 2.11) rather than
appealing to [Vak00, Theorem 6.1]. This will be a key step in the proof of the general case of Theorem 1.2.
For the remainder of this section, fix positive integers I = (dy,...,d,,) with d =} d;.

Example 2.1. We begin with some examples motivating Conditions (*) when I' = (1,...,1). First, it is clear
that Condition (+)(1) is required as the evaluation condition is closed. However, consider a degree n map
fi: (C1,q1) — P! from a smooth rational curve C; with f(q;) = co. Let C = C, Ug, 4, C2 be a nodal union
of two rational curves, and let py,...,p,, € C, \ g, be n marked points. Then there is an n-marked degree n
stable map (f: C — IP!,py,...,p,) given by taking the map f; on C; and the constant map with image co
on C,. While this map satisfies Condition (*)(1), a simple dimension count shows that the dimension of this

locus inside Mg ,(IP!, n) is equal to dim Maps, + 7 — 2, and so this condition alone is not enough to cut out
the locus Maps,, at least for n > 3 (see Figure 2).

The above example motivates Condition (*)(2), which in this case requires that the map f; be totally
ramified at g; so that there are no other points of C; in f~!(co). Requiring f; to be totally ramified at
q1 means that we impose the vanishing of n derivatives, which is a codimension 7 condition on Maps,,.
Thus the locus of maps of this combinatorial type satisfying both Conditions (x)(1) and (+)(2) has dimension
dimesn — 2. Note that such maps automatically satisfy Condition (*)(3) as well. However, the following
example illustrates that Conditions (+)(1) and (*)(2) do not imply Condition (+)(3) in general.

Example 2.2. Consider a degree 3 map fi: (Cy,q1,q2) — P! from a smooth rational curve such that
f(qi) = o0, and suppose that f has ramification index i at q;. Let (C,, 4}, p1,p2) be a smooth pointed rational
curve, and let C = C; Uy, o+ C;. Then we have a 3-pointed degree 3 stable map (f: C — PL,q5,p1,p2)
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Cy

Figure 3. The map in Example 2.2 which satisfies Conditions (1) and (2) but not (3) since the map is
unramified where the contracted component C, is attached and ramified over co elsewhere.

where f|c, = f; and f|c, is constant co. This map satisfies Conditions (+)(I) and (+)(2) but not (x)(3). Note
furthermore that this stable map cannot lie in Maps,, as f; is ramified to order 2 at the marked point g5,
but the only way this can happen in the limit of a family in Maps; is if two marked points collided at g5.

Remark 2.3. Note that a degenerate special case of Condition (+)(3) is when T = q is itself a point. Since T
must be a maximal closed subvariety contracted by f, this means that g cannot lie on a contracted
component. Therefore, by Condition (+)(2), ¢ must be a marked point. Then Condition (+)(3) reads that f
must be unramified at g. Indeed, we saw this was necessary in the above Example 2.2 (see Figure 3).

We now prove that conditions (1), (2), and (3) of Conditions (*) are necessary.
Proposition 2.4. Conditions (+) (1), (2), and (3) are necessary for a stable map to lie in ﬂ(dl,...,dn)-

Proof. 1t is clear that (1) is necessary as evaluation is continuous so the condition f(p;) = oo is closed, so we
proceed to (2) and (3). Consider a 1-parameter family of stable maps

oL
Gl(ls/n

over the spectrum S of a DVR with generic fiber lying in Maps?, and denote by (fy: Co — P!, py,...,p,)
the central fiber.

First we show (2). Let U C C denote the open complement of the locus of components contracted by the
map f, and consider D := f~1(c0). As the total space C is normal and f is non-constant, D is a Cartier
divisor. Moreover, note that any 7t-vertical component of D is contracted by f and therefore is not in U.
Thus, restricting to U, we see that D[y is a Cartier divisor which is horizontal over S, and therefore any
point of Dy lying over 0 € S must be in the closure of the marked points of the generic fiber.

Finally, we show (3). Ramification corresponds to a polynomial having a multiple root at a point, and
this multiplicity takes into account precisely how many points collided, i.e., the number of marked points
on the relevant contracted component. More formally, we can consider the intersection product T - D. By
the projection formula, T - D = 0. On the other hand, D =) 0; + E, where E is the 7t-vertical component.
Computing T-()_o0;+E) = 0 in terms of local multiplicities gives exactly the equality in Condition (+)(3). [

Our task now is to show that Conditions (x)(1)-(3) are sufficient for a stable map (f: C — P!, py,...,p,)
to lie in ﬁ(ﬂll,---;dﬂ)' We will do this by constructing a smoothing of the marked curve and a linear series on
the total space which restricts to f on the central fiber but whose generic fiber lies in Mg, . 4 ).

We begin with a preliminary lemma that shows that nodal curves can be smoothed to surfaces admitting
A, singularities for any m at the nodes.
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Lemma 2.5. Let Cyy be a genus O nodal curve with k nodes qq,...,qx, and let mq,...,my > 1. Then there exists a
smooth C — S, where S = Spec(R) is the spectrum of a DVR, such that the total space C has an A,, _; singularity
at q; foreachi=1,...,k.

Proof. The miniversal deformation space of a pointed prestable curve of genus 0 is k[[t1,..., t]|, where t; is
the smoothing parameter of the i" node; i.c., formally locally around the i node, the miniversal family of
suffices to note we can construct a map of rings k[t ... tx]] = k[[z]] such that t; > z™. Then formally locally
around the i*M node, the family of curves over Spec(R) will be isomorphic to xy = 2™, as required. U

We now show that it suffices to consider the case of a stable map where every maximal connected subtree
contracted by f (as in Condition (+)(3)) is irreducible.

Lemma 2.6. Let (fy: Co — P, py,...,p,) be a stable map satisfying Conditions (+)(1), (2), and (3). Then there
exists a deformation to a family of stable maps (f : C — P!, 0;) — Spec(R) over the spectrum of a DVR such that
(1) the generic fiber (f,,C, — IPI,(GZ-)W) satisfies Conditions (+)(1), (2), and (3), and
(2) every connected component of fq_l(oo) C C,, is irreducible.

Proof. Let E',..., EX be the 1-dimensional connected components of fo_l(oo), and write C1,...,C" for the
connected components of the closure of the complement Cy \ {E i}i-(:l. Each E' is pointed by (g;;, pi;), where
the p;; are the marked points that lie on E’ and the g;; are the points of E' along which E' is glued to the
non-contracted components of C. Then each E; is a pointed genus 0 prestable curve, and there exists a
smoothing E' - Spec(R) with sections 7;; smoothing the q;; and 0;; smoothing the p;;. Now consider the
constant family | |; Cllz with constant sections corresponding to the marked points and the points g; j along
which the g;; are glued.

We can glue | |, Clle with | |, E! by identifying the sections q;j x Spec(R) with 7;; for all (i, ;) and call the
result C — Spec(R), which is now a family of pointed curves. By construction, this is a partial smoothing
of the pointed curve (Cy,p1,...,p,). Moreover, there is a stable map f: C — P! constructed by taking
fR|C£: CIZQ — IP! for each I and taking the constant map co on each E!. This descends to a map f as desired
since f(q; ].) = co. Conditions (+)(I), (2) are satisfied by f, by construction, and (x)(3) is satisfied since the

maximal irreducible components E% of f,l_l(oo) have the same number of marked points as E? and fy has
the same ramification at (qlfj)q as fy at qlfj. 0O

We now restrict ourselves to the case where the connected components of f~!(co) are irreducible. Let
(f: Co — IPL,py,...,p,) be such a map, suppose that Ej,..., Ej are the 1-dimensional connected components
of f~!(c0), and write E = LI;E;. By the above reduction, each E; is a smooth rational curve.

We write the closure of the complement of E in Cj as a union of connected components Cy,...,C,. Thus
each C; is a tree of rational curves such that (fy)|c, is non-constant and such that the preimage of oo is
0-dimensional. For each i, let I; C {1,...,n} be the subset of indices k such that py lies on E;. If E; and C;
intersect, we let g;; € E; and t;; € C; be the points of E; and Cj}, respectively, at which they are glued, and
we let e;; be the ramification index of ( f0)|Cj at t;;. Note that Condition (+)(3) then reads that for each i,

n; = de = Zé‘l’j,
kel; j

where the left side is a definition and the right sum is over the j such that E; meets C;.

Consider a smoothing (C — S,074,...,0,) of (Cy,p1,...,p,) over the spectrum of a DVR, and let D =
Y d;o; denote the divisor of I'-weighted marked sections on this surface. We wish to construct a rank 1
linear series on such a smoothing so that the central fiber agrees with f; and the generic fiber satisfies that
D, is the preimage of co. Our strategy is to consider the map 7: C — C’ which contracts E to a point and
instead construct the appropriate linear series on C’.
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Proposition 2.7. In the setting above, there exist a smoothing (C — S,04,...,0,) and a Cartier divisor D" on C’,
where 10: C — C’ is the contraction of the E; such that

(1) 7*D’ =D +Y a;E; for some a;, where D is the divisor of marked sections, and
(2) a;E; - Cj = e;jt;j forall i and j such that E; meets C;.

Proof. For each i, we let a; = ]_[] )
(C —S,01,...,0y,) of (Cy,p1,-..,p,) such that C has an Ami,-—l singularity at the node t;;. Computing

ejj and let m;; = nk¢j ejx. By Lemma 2.6, there exists a smoothing

intersection products in the surface C, we have E; - Cy = 0 since Cj is a fiber containing E;. Moreover, if E;
and C; intersect, then

1
Ei . C] = —t
mij
since locally around the node f;, the curves E; and C; are distinct lines through an A, _; singularity.
Therefore,
1
Ef=) -——,
ml-j

)
where the sum is over those j for which C; and E; meet. Here, we go back and forth between viewing these
intersection products as numbers or as divisors on the curves depending on whether it is convenient to
emphasize the particular intersection points.

Now consider the divisor D +}_a;E;. We can compute that D - E; =} ;¢ dy = n; since D is the divisor
of weighted marked sections and E; contains py for k € I;. On the other hand,
LZEi-C]':ﬁ:M:eZ’j.
mij [liejeir

(D+ ZakEk)-E,- = — ml] an_k[ i Ze,] =0
i]

j

Finally,

by Condition (*)(3). Here we have used that Ek -E;=0ifi=k.

Therefore, we need to show that D + ) a;E; descends to a Cartier divisor D’ along the contraction
7t: C —» C’. Note that 1t exists, C’ is a normal quasiprojective surface, and 7,0 = O by [KM98,
Theorem 3.7]. Moreover, we have an exact sequence

(2.1) 0 — Pic(C’) —== Pic(C) —= Z,

where the map Pic(C) — Z is the restriction L +— L|g; see [KM98, Corollary 3.17]. In particular, since
Oc(D + Y a;E;) is in the kernel of this map, there exists a line bundle L on C’ such that 77*L = O¢(D + aE).
On the other hand, 7,0¢ = O¢/, and so by the projection formula,

K*OC(D + Za,-Ei) =L.

Therefore, there exists a section s € H°(L) which pulls back to the section cutting out D + Y a;E; on C, and
so D’ = div(s) is the required Cartier divisor. 0

Remark 2.8. Fix a list of positive integers r;; for i and j such that E; meets C;. Then in the construction
of of the smoothing in Proposition 2.7, we can replace ¢;; with 7;je;; in the definitions of a; and m;;. In
this way, we get a smoothing satisfying the properties of Proposition 2.7, where the total space has Amij—l
singularities with m;; divisible by any fixed choice of integers.

Let 0 € P! be a general point of the target, and consider the divisor By C Cy given by f;(0). Then By
consists of a union of points on C which are disjoint from E and contained in the locus where f; is étale.
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Since C — S is a family of genus 0 curves birational to H’}g, we can extend the collection of points B into a
Cartier divisor B on C which is horizontal and satisfies B|c, = By.

Proposition 2.9. With notation as above, D + ) a,E; ~ B are linearly equivalent Cartier divisors on C.

Proof- Let ip: C — S denote the morphism to the base, and consider ,N, where N = O¢(D + ) _a;E; — B).
First we claim that Hl(CO,N|CO) = 0. Indeed, since C is a nodal genus 0 curve, it suffices to show that
the degree of N restricted to each component of Cj is at least 0. Now N|g = Of by construction since
(D +) a;E;)-E =0 and B avoids E. On the other hand, for each i, we have (D + ) 4,E;)-C; = fo_1(°°)|C]-
and B-C; = f0_1(0)|cj, so these divisors are linearly equivalent. Therefore, we in fact have that N is trivial
on each component of Cy. Hence, by cohomology and base change, ¢,N is a vector bundle whose formation
commutes with base change. Moreover, over the generic fiber, C, = IP,ll, and B and D + ) a;E; are divisors
of the same degree n by construction. Therefore, H 0(C,I,N |Cn) = 1. Since any line bundle on the spectrum
of a DVR is trivial, we conclude that )N = Og. Consequently, N has a non-vanishing section which exhibits
the required linear equivalence D + ) a;E; ~ B. O

Remark 2.10. Note that the vanishing claimed in the above proof does not hold if we replace Cy with a
genus 0 Deligne-Mumford stack. See Remark 5.7 for an example.

Now let B” be the image of B under 7t, which is also a Cartier divisor since B is contained in the locus
where 77 is an isomorphism. By the exact sequence (2.1), the linear equivalence in Proposition 2.9 is equivalent
to a linear equivalence D’ ~ B’. In particular, D’ and B” form a basepoint-free rank 1 linear subseries of

HY(C’,L), where L = O¢/(D’).
Proposition 2.11. With notation as above, let g: C' — P! be the morphism induced by the basepoint-free linear
series (B’,D’). Then the composition C o i p satisfies (g o 10)|c, = fo-
Proof. The map (g o 7) contracts E to co by construction. Moreover, on each C;, the restrictions of B’
and D’ satisfy

Ble, = fo ' (O)le,
and

D'l¢, = fy ' (o0)le,
by Proposition 2.7. Therefore, (g o 71)|C]_ = (fo)cj for all j =1,...,k. We conclude that (g o 7)|c, = fo as it
agrees with fy on each component of C. U

Putting these together, we conclude the following.

Theorem 2.12. Let (fy: Co — P, py,...,p,) be a stable map satisfying Conditions (+)(1), (2), and (3). Then
there exist a smoothing (C — S,04,...,0,) over S = Spec(R), the spectrum of a DVR, and a stable map

,,,,,,,

Ma,,...d,)-
Proof. By Propositions 2.7 and 2.11, there exist a smoothing (C — S, ;) and a map f: C — P! such that

flc, = fo and f7!(c0) = D + Y a;E;, where D is the divisor of weighted marked sections and the E; are
contained on Cj. Therefore, f |C,7 is in Mg, 4 U

.....

3. Log twisted curves and maps

We refer the reader to [ACG*13] for the standard definitions in log geometry and to [CJR*18, Section 2]
for log twisted stable maps. We always work with fine and saturated (fs) log structures. We will use My to
denote the log structure of X, which will be implicit if no confusion arises. The characteristic of the log
structure will be denoted by M.
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3.1. Log geometry
We will need the following results regarding log smooth morphisms.

Remark 3.1.

e If a morphism of log schemes f: X — pt is log smooth (where the point has the trivial log structure),
then U C X is a toroidal embedding, where U is the locus with trivial log structure and My is the
divisorial log structure.

e If C is a curve, then log smooth is equivalent to nodal; see [ACG*13, Theorem 5].

e Given a family f: C — S of nodal curves, there is a minimal log structure Mg on S such that any
other log structure that makes f log smooth is pulled back from it; see [ACG*13, Section 7.3]. We call
the corresponding log structure and structure morphism f b, f*Mg — Mc the canonical log structure
of f: C — S. Note here that M¢ does not include marked points. If f is equipped with marked
points, then we denote the natural log structure by

MC = Mc @ (GBO*C,Z'Ni)'
O¢

where the sum is over marked points and N; is the divisorial log structure associated to the it
marked point; we call M the canonical log structure associated to a pointed curve if there is no
confusion.

There exists a log cotangent complex IL;)};Y (see [Ols05] or [ACG'13, Section 7]) for morphisms of log
schemes f: X — Y, and deformation theory of log schemes is controlled by the log cotangent complex
(see [Ols05, Theorem 5.2]).

Remark 3.2. If f is a log smooth morphism, then the log cotangent complex ILI;()}(%Y is represented by the
sheaf of log differentials (see [Ols05, Section 1.1(iii)]). There does not exist a distinguished triangle in general;
however, Olsson constructs a distinguished triangle for log flat or integral morphisms (see [Ols05, 1.3]).

3.2. (log) Twisted curves

Our main reference is [Ols07]. To compactify moduli spaces of maps f: C — M, where M is a Deligne-
Mumford stack, one needs to allow C to be a stack as well, known as a twisted curve (see e.g. [AV02, AB19b]).

Definition 3.3. A twisted curve is a purely 1-dimensional Deligne-Mumford stack €, with at most nodes as
singularities, satisfying the following conditions:

(1) If 7t: € — C denotes the coarse space morphism, then C5™ = 7t C*™, and 7 is an isomorphism over
a dense open subset of C.
2) If ¥ — C is a node such that the strictly henselian local ring O¢ ; is the strict henselization of
y g YCx

k[x,v]/(xp), then
Cxc Spec(Oc,z) = [Spec(Oclz wl/(zw, 2" —x, w™ =) /pim |,

where & € p,,, acts by (z,w) — (Ez, & w).

Definition 3.4. An n-pointed twisted curve C/S marked by disjoint closed substacks {¥;};; in C is assumed

to satisfy the following:
(1) The ¥; are contained in C*™.
(2) Each ¥; is a tame étale gerbe over S.
(3) The map €™\ UY; — C is an open embedding.
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Let X be a Deligne-Mumford stack. We say that a fine log structure My is locally free if for every
geometric point £ — X, the characteristic sheaf satisfies My = IN" for some 7.

Definition 3.5. In the above situation, we say that a morphism of sheaves of monoids M — M’ is simple if
for every geometric point X — X, we have

Lo

N7 L) Nf’

where ¢ is given by (my,...,m,).
Definition 3.6. An n-pointed twisted log curve over S is the data
(C/S,{oj,ai},1: Mg — My),

where

e (C,{0;})/S is an n-pointed nodal curve,

e Mg is the minimal log structure for the family C — S,
e the a;: S — Z. are locally constant, and

e [ is a simple morphism.

Theorem 3.7 (¢f. [Ols07, Theorem 1.8]). The fibered category of n-pointed twisted curves is naturally equivalent
to the stack of n-pointed log twisted curves.

There is a natural map from the stack of twisted curves to the stack of (pre)stable curves induced by
taking the coarse space 7: € — C. The induced map on local deformation spaces Def(C) — Def(C) can
be described as a root stack of order m; along the boundary divisor {t; = 0}, where t; is the deformation
parameter of the it -node of C and m; is the stabilizer order of C at the i*" node. The stabilizer orders m;
correspond via Theorem 3.7 to the data of the simple extension [ as in Definition 3.5. For more details, see
the discussion following [Ols07, Theorem 1.9 and Remark 1.10].

Example 3.8. Consider a smoothing of a nodal curve as in Lemma 2.5, and let (C, M) — (S, Mg) be the
minimal log structure. The appearance of A, _; singularities on the total space of the smoothing at the
nodes of Cy is equivalent to the existence of a simple extension Mg < M{ with ¢ = (my,...,my). Thus,
by Olsson’s Theorem 3.7, such a smoothing is the coarse space of a smoothing of the twisted curve with
stabilizer y,, at the i node of C,. Note that we can see this directly by taking the canonical stack of the
total space C which introduces a stabilizer y,, at the A, _; singularity.

Let us briefly explicate the construction of Theorem 3.7 as we will use it further on. If 77: € — C is the
coarse map of a twisted curve over S, then the simple extension [: Mg <> M/ is the map between the
minimal log structures of h: C — S and f: € — S, respectively. The pushforward log structure 7t,Mp sits

in a pushout square
Mg " My
Y
M —— m,Me.

Each a; keeps track of the stabilizer of C/C along o0;, and we have simple extensions N¢; <> m,Neg;
corresponding to multiplication by a; on characteristic monoids.
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Definition 3.9. Let (X, My) be a separated Deligne-Mumford stack with fs log structure. A log twisted
prestable map is a diagram

b
(€, Mg) L

l

(S, Ms),

(X, My)

where C — S is a twisted curve and (C, Me) — (S, Ms) is log smooth. A log twisted prestable map is stable
if the underlying map f is representable and the coarse map h: C/S — X is a stable map.

We will also make use of the root stack construction of Borne-Vistoli [BV12, Section 4.2] in the case of
a locally free log structure. Suppose (X, My) is a locally free log scheme and ¢: My — M isa simple
extension. The root stack {/(X,My) is a log algebraic stack over Schy which associates to s: T — X
the groupoid of pairs (I, @), where [: s"My — M7 is a simple extension of log structures and ¢ is an
isomorphism of maps of characteristic monoids / = s*.

We conclude this section by comparing the sheaves of log differentials between C and C. This simple
comparison is one of the advantages of using log geometry to study twisted curves. Let (f, f by: (€, M¢g) —
(S,M) and (h, Wb): (C,Mc) — (S, Mjs) denote the natural log smooth maps, where Mg < M is a simple

extension.

Notation 3.10. We set Qleo/gs = Qt(;’%f") and QICO}(;S = Qi(;f’hb) and similarly for the cotangent complex.

Proposition 3.11. Let 1t: C — C be the coarse space of a twisted curve. Then

log log s log N «r lOg
Le/s =qis Qeys[0]= 10 Q /5 [0] =gis LT L5

. log log log log . log .
Proof. Since both (f, f°) and (h, hlb) are log smooth, Lo/s ~4is /g and Ly ~gis Q-/5. Since Q¢ is
08

locally free, Ln*QICO;gS[O] ~qis 7' Q/5[0]. Therefore, it suffices to show that the natural map
. _xlog log
p: 1 Qess = Qeys
is an isomorphism which we can compute étale locally. Toward that end, suppose S = Spec(R). In an
étale neighborhood of a marked gerbe with stabilizer p,, the map 7 can be written as R[u] — R[x] with
u — x% so p: dlogu — adlogx. In a neighborhood of a node with stabilizer y,, we have R[u,v]/(uv—-t*) —
Rlx,v)/(xy —t) with (u,v) — (x%,v%), so p is given by dlogu > adlogx, dlogv + adlogy. In either case, p
is an isomorphism since a € R is invertible. O

4. Log maps to 1-dimensional targets

In this section, we collect some results on log twisted maps to stacky curves which we will use to lift the
smoothings from Section 2 to the twisted case.

4.1. Introducing log structures

We begin by giving a criterion to lift a prestable map with 1-dimensional target to a log map. More
precisely, suppose g: C — X is a prestable map to a smooth curve X with log structure My such that
(X, My) is log smooth over the trivial log point. We wish to find a log structure M on C such that (C, M)
is a log smooth curve and g lifts to a log map. For the purpose of constructing smoothings, it suffices by
Lemma 2.6 to consider the case where the connected components of C which are contracted to the marked
points of (X, Mx) are smooth (see also Remark 4.2).
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Proposition 4.1. Let g: C — X be a prestable map with (X, My) as above. Suppose that the 1-dimensional
connected components of the support of f*(Mx) are smooth genus O curves. Then g lifts to a prestable logarithmic
map. That is, there exist log structures M on C and M on S = Spec(k) and a map g°: g*My — M¢ such that
(C,Mc) — (S, M) is log smooth.

Proof. The question is étale local on the target, so we may pull back to a chart for the log structure (X, My).
Hence without loss of generality, we may assume that the target is (A',0) = (X, D) with its toric log structure
and that g: C — A! is a proper map satisfying the assumptions of the proposition. Moreover, we write
g_l(O) ={p1,...,p-E1,..., E,} as a disjoint union of points and smooth rational curves. Let us denote by
qij the nodes of C along E; and by e;; the ramification of g at these points. First we claim that g factors
through an expansion of the target

h ¢

C—>X—=X.

Indeed, consider X = E Ug A, where E = P(Np/x + Op). To construct such a factorization, it suffices to
construct non-constant maps h;: E; — E with h;(g;;) = 0 and such that the order of tangency of h; at q;; is
equal to ¢;;. Since the E; are smooth rational curves, such maps exist.
Therefore, we have a factorization h: C — X, and it suffices to show that & can be lifted to a log map
where
Mg = My Do Q"Mx

since @ underlies a log map ()?,M)?) — (X, Mx) and a composition of log maps is a log map. Now we
have reduced to the case where the support of h*(MXV/IN) is {p1,---»PksPks1s---»Pn}> @ union of isolated
points. Here the copy of IN in the quotient is the pullback of the minimal log structure on Spec(k) along
X — Spec(k). In a neighborhood of the smooth p;, there is a unique divisorial log structure such that the
map lifts, encoding the order of tangency. In a neighborhood of the nodal p;, the map lifts to a log map by
the tangency condition above, which is precisely the predeformability condition for a map to an expansion
(see for example [ACG™13, Section 12]). O

Remark 4.2. Proposition 4.1 may be generalized to the case where the 1-dimensional connected components
of the support of f*M are trees of rational curves at the expense of allowing C to be blown up at the nodes.

To do this, one needs to consider the map g'™°P

of tropical curves and subdivide the source and target to
make ¢'P tropically transverse (see [Ran22, Sections 2.5 and 2.6] for more details). Such a subdivision
corresponds to choosing a possibly larger expansion X — X and a sequence of log blowups C — C after
which we may lift ¢ to a map h: C — X which underlies a log map as in the proposition. Since this is not

strictly necessary for our stated goal of constructing smoothings, we leave the details to the reader.

Next we address the question of lifting the log structure to a twisted map from its coarse space. More
precisely, consider a proper morphism f: €/S — X from a twisted curve to a smooth Deligne-Mumford
curve X. Let My be a log structure making (X, My) a log twisted curve with coarse space (X, Mx < My).
Here (X, My) is log smooth, and My <> My is the simple extension encoding the stabilizers of X. Suppose
furthermore that there exist log structures M and Mg on the coarse space C of € and on S, respectively,
such that

(C,Mc) —= (X, My)

|

(S, Ms)
is a prestable log map.
Proposition 4.3. Let f: C/S — X and f: (C,M¢)/(S,Ms) — (X, Mx) be as above. Then there exist a root

stack t: € — C and log structures My on C and Mé on S such that (é,M@) - (S,Mé) is a log smooth curve,
and there exists a map f°: (f o 70)*My — Mg making f into a prestable log map.
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Proof. Let g: C — X be the coarse map. By Theorem 3.7, we have simple extensions of log structures
M¢ <= M(, Mg < M, and Mx < My on C, S, and X, respectively, such that (C — S, {a;, 0;}, Mg < M)
and (X — Spec(k),{b;, x;},k* — k*) are log twisted curves. Here the 0;: S — C correspond to the marked
gerbes of € — S with order of stabilizer given by a;. Similarly, the x; € X correspond to the marked gerbes
of X with stabilizer order b;.

The question is local on X, so we can restrict to a neighborhood of one of the marked points x; with
stabilizer y;,, on X and suppose without loss of generality that there is a single marked point x € X with
stabilizer y;. This point is exactly the support of Mx =N and M;( =N, and the simple extension is simply
the map 1 — b.

By assumption, there exists a map g”: g*My — M making (g, ") into a log map. By Theorem 3.7, it
suffices to show that there exist a further simple extension M/, <> M/ which is an isomorphism away from

finitely many smooth points and a map of log structures f b §'My — M(. such that the square
b

\ g
&§Mx — Mc

L

My e M¢

commutes. Note that M§, = My @IN/(e = be’), where e is the element corresponding to a local parameter of
x € X and ¢’ is the generator of the copy of IN. By the universal property of this pushout, to construct f°,
it suffices to show that s(g”(e)) is divisible by b. However, we can guarantee this by taking a large enough
simple extension s. O

4.2. Deformations of log twisted maps and their coarse spaces

Let b
(f:")

|

(S, Ms)

be a stable log map from a log twisted curve, and suppose that (X, My) is a log smooth curve. We define
the critical locus of f to be the support of the cokernel of the natural map
10 lo
f1Q® = Qg

1
Note that this map, viewed as a two-term complex, is a presentation of the log cotangent complex IL fo &

relative to S, so we may equivalently define the critical locus to be the support of fJ-CO(IL?g).

The critical locus is a union of nodes of C, branch points of f, and contracted components of f. By
contrast, the kernel of the above map, or equivalently J—C‘l(IL;Og), is supported solely on the contracted
components of f.

Let Aq,..., A be the connected components of the critical locus and Uy,..., Uy be affine étale neighbor-
hoods of the A; with log structure pulled back from C. Suppose each U; avoids A; for j = i. Let Def s rv)
be the versal deformation space of the log map (f, f?). Since the moduli space is a Deligne-Mumford

stack, Def(f,fb) is pro-representable. Let Def; be the miniversal deformation space of the restriction

(fi=fly,: Ui— ?C,fb|U1,). We have the following proposition (see also [Vak00, Proposition 4.3]).
Proposition 4.4. In the setting above, the natural map

Def(f,fb) - D€f1 Xeee X Defk
is an isomorphism.
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Proof. The deformation space Def s rv) (resp. Def;) is constructed via the complex

RHom(L'®, 0¢) (resp. RHom(IL'® Oy,))-

f fi?
. . , «q 108 log 1/ log
Since the g;: U; — C are strict étale, Lg; ILf =1L.° Let K; be the component of K = (ILf )
supported on A; C U; and Q; the component of Q = H%( ;Og) supported on A; C U;. Since the A; are
disjoint, we have K = ®K; and Q = ®Q; and K; = H~}(IL ;Og) and Q; = (]Lifg).

1 1
Since both IL fo $and IL ;) ® are two-term complexes, we have distinguished triangles

K[1] —>1L;0g —-Q— and K;[1] —>1L10g - Q;—

There is a natural map RHom(IL?g,O@) - RHom(lLﬁ :OU,v) given by restricting f to U;. This map
corresponds to the map on deformation spaces Def ¢ ) — Def;. Taking direct sums yields the diagram of
distinguished triangles

(4.1) RHom(Q, O¢) RHom(IL;Og,O@) RHom(K[1],0¢) —

|

P RHom(Q;, 0y.) — P RHom( ILf 8,0y,) — P RHom(K;[1],0y) —

where the vertical maps are equalities via the identifications K = ®K; and Q = ®&Q);. The middle map

corresponds to the product of the restriction map on deformation spaces
Def(f’fb) - Def1 Xeee X Defk .
Since the vertical maps on the ends are equalities, the middle map is an isomorphism by the properties of

distinguished triangles, or equivalently the five lemma, from which we conclude. O

Remark 4.5. Via Diagram (4.1), we see that in fact the deformation spaces Def; of an étale neighborhood U;
of the component A; of the critical locus is independent of the choice of U; since the Q;- and K;-terms are
independent of U;.

Now we address the question of lifting log smooth deformations along the coarse space map of a log
twisted curve. Let

h
(Co, Mc,) —— (X, Mx)

|

(SO;MSO)
be a prestable log map, and suppose that there exists a simple extension of log structures Mg — Mg such
that (Co/So, (0i,4;),lo: Mg, — Mgo) is a log twisted curve. Let (Cy, X;) — Sp be the corresponding twisted
curve with log map (Cy, Me,) — (SO,MéO), and let gg: (€9, Mg,) — (X, Mx) be the composition of h
with the coarse space map 7p: €p — C. Let (So,lp: Mg, — M;O) — (S,1: Mg — M) be a strict closed
immersion of log schemes with simple extensions defined by a square 0 ideal I C Og.

Proposition 4.6. With notation as above, suppose we have a log smooth deformation

(4.2) (C,M¢) —~ (X, My)

|

(S,Ms)
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of hy over (S, Mg). Then h lifts uniquely to a log smooth deformation

8
(G;MG) - (XJMX)
(S, M})
of go factoring through h.

Proof. We can summarize the situation with the commutative diagram below:

(GO’ Meo )

\
\
(id,SO)

(Co, (10)eMe,) — (Co, Mc,) " (X, Mx)

l (id,lp) i

(So,Mg,) —— (S0, Ms, ),

where the middle square is a pullback in the category of fs log schemes by [Ols07, Lemma 4.6, Diagram
4.6.2, and Lemma 4.7]. Given a strict square 0 thickening (S,: Mg — M) of (So,ly: Mg, — Méo) with
ideal I and a log smooth deformation / as in Diagram (4.2), we can form the pullback

(C,M[) — (C,M¢) — (X, My)

L

(S, M) —— (S, Ms)

in the category of fs log schemes to obtain a log smooth deformation of h o (id, sy). Then M¢ <> M/, is a
simple extension, and by Theorem 3.7, this is equivalent to a log smooth deformation g. g

5. Smoothing twisted stable maps

Our goal now is to lift the smoothings constructed in Section 2 to the case of twisted maps. More precisely,
suppose we have a genus 0 twisted stable map (fy: €y — X, py,...,p,;) such that
e X is a smooth stacky curve with coarse map 7: X — X = P!,
e the coarse map (hy: Cy — X,41,...,4,) satisfies Conditions (*) relative to co € X, and

e T is étale over co.

The situation can be summarized in the following diagram, where Sy = Spec(k):

f
(Co,P1rerPu) —= X
Tloi \L’[

ho
(Colfhf---;%) —X

|

So-
By Theorem 2.12, there is a smoothing h: (C,0;)/S — X of hy over S = Spec(R), the spectrum of a DVR,

.....
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with generic fiber contained in Mp(X). That is, we wish to fill in the dotted arrows in the diagram

(Copi)— = (@)L

X
I

ﬂol TC | ir
Y

X

h
(Co,qi) — (C,0i) —

L

Sg —— .

>

The difficulty is that there are global obstructions to lifting from a map to X to a map to X. For example,
the j-invariant of a map to M, ; must satisfy that the discriminant is a sum of a square and a cube which
cuts out a high-codimension locus inside the space of maps to IP!. The key observation is that 7 is étale.
Thus we can lift such a smoothing locally around co (see Theorem 5.1) to obtain a partial smoothing of f.
Then we can construct a further global smoothing when X has some positivity (see Theorem 5.6).

Theorem 5.1. In the situation above, there exists a partial smoothing f: (C,X;)/S — X of fo such that
i f(zl) = 0o,
o C, is smooth in a neighborhood off,fl(oo), and
o the coarse map on the generic fiber h,1 is ramified to order d; at (cri)q.

Proof. We wish to use the log deformation theory results of Section 4.2. To do this, we begin by showing that
the smoothing of the coarse map h: (C,0;)/S — X can be endowed with the structure of a stable log map.

Lemma 5.2. Let (hy: Cy — P',qy,...,q,) be as above, and let

c Iy pt

"l

S

be a smoothing constructed in Theorem 2.12. Denote by M the divisorial log structure on P! corresponding to the
point oo. Then there exist log structures Mc and Mg on C and S and a map h’: i*M — Mc such that h is a
stable log map over S.

Proof. First note that C — S is log smooth, where we equip S = Spec(R) with the standard log structure and
C with the divisorial log structure induced by the union of the central fiber and marked sections. Indeed,
this follows since C — S is a toroidal morphism of the corresponding toroidal embeddings. Endow P! with
the divisorial log structure for co C P!; the pullback of the monomial x,, cutting out co is locally a sum of
monomials for the toroidal structure on C since h*[oo] is supported on the toroidal boundary. Thus, there is
a natural map h’ of divisorial log structures recording the exponents of the monomial h*x. 0

Suppose (R, m) is complete, and let h,: (C,,, 0; ,)/S,, — X be the compatible system of deformations over
S, = Spec(R/m") obtained by truncating the smoothing over S. We will lift these to a compatible system of
deformations of h in two steps.

First let (go,gg): (Co, Mg,) — (X, M) be the composition hg o 17y, where we note that h is a log map by
Lemma 5.2 and 7t is a log map by the definition of log twisted curves. By Lemma 4.6 and induction on #,
the map h,, extends to a log smooth deformation g,,: (C,, M¢, ) — (X, Mx) over (S”,Mén), where Mg < M
a simple extension and (Sn,Mén) — (S, M) is a strict closed embedding. Moreover, the g; are compatible
by construction. In this way, we get an R-point of the formal deformation space SpfR — Def

by-
80:80)
Next we will use Proposition 4.4 to lift this R-point of Def(go &) at least in a neighborhood of oo, to a

smoothing of fy. Note that f; lifts to a log map (fy, fob) by Proposition 4.3, where we endow X with the
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pullback log structure T*M. Equivalently, this is the divisorial log structure for co but is different from
the canonical log structure on a log twisted curve. Let U C IP! be an étale neighborhood of oo such that
tly: V — U is étale, where V = t=!1(U), and such that U avoids all the components of the critical loci
of both fy and gy away from co. Let Defy ., be the miniversal deformation space of the restriction of
(fo fO ) to an étale neighborhood of fO o) and similarly for Def, ... Note that by the independence of the
chosen étale neighborhood (see Remark 4. 5) we have that these are the miniversal deformation spaces of
(fo)lu: fofl(U) — U C P! and (go)ly: gal(V) -V cX. Weset U = fofl(U) = g&l(V) and denote by U”
a neighborhood of the critical loci of both f; and g, away from co.
By Proposition 4.4, we have

Def(fOlf()b) = Deffo;oo X Deff()r;too
and
Def(go’g )= Defgo oo X Defgo,mo,

where Defy ., (resp. Defy ..) is the miniversal deformation space of a neighborhood of the critical loci of

(fo fO (resp. (8o gg)) which are away from oo.
Lemma 5.3. The natural map Defy, ., — Defy ., induced by composition with T is an isomorphism.

Proof. We proceed as in Proposition 4.4 and see that there is a natural isomorphism

lo

o0y ))& RHom(IL'8, ;)

RHom(IL'%, 0 pi

£ ,0¢) = RHom(LL

and similarly
log log log
RHom(ILg°, O¢) = RHom(IL / , Oy )@RHom(IL ” ,Ou»).
We now compute

Lo = [f;00 - Of]

1Ll°g [g5Qy — Q%].

Since 7|y is étale, we have that g3Qy = g7 Qy = f7(Q); by the functorality of pullbacks. Therefore, the

natural map

ILIO,g — ILlO,g
8o fo

is an isomorphism, so we conclude that the natural map

RHom(IL;O,g, Oy) — RHom(ILl;g, Oy)
0 0

is an isomorphism. g

Now let SpfR — Defy , be the composition of the formal R-point of DEf(go,gB) constructed above with
composition

Def — Defy o, — Defy o,

(80:80)
where the first map is the projection from Proposition 4.4 and the second map is the inverse of the
isomorphism in Lemma 5.3. There is a canonical splitting of the projection Def(fOrfob) — DEffO,oo via
the isomorphism of Proposition 4.4 given by picking the constant deformation in Defy ... Further
composing with this splitting gives us a formal deformation SpfR — Def o f)" Since Def (fofh) 1 the
formal neighborhood of a point of a locally of finite type algebraic stack (see [Chel4, GS13]), this formal
deformation algebraizes to a family (f, f°): (€, Me)/(S, M, 5) = (X, T°M) of log twisted stable maps (see for
example [Bhal6, Theorem 1.1] and [BHL17, Corollary 1.5]). Let us denote by f: (C,X;)/S — X the underlying
twisted stable map. By construction, the coarse map of f agrees with h over an étale neighborhood of co, so
we conclude that f satisfies the required conditions. O
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Remark 5.4. By construction, the smoothing of Theorem 5.1 induces the constant infinitesimal deformation
of the restriction of f; away from co. More precisely, suppose A is a component of the critical locus of f,
which is disjoint from fo_1 (c0), and let U — C be an étale neighborhood of A which is disjoint from all other
critical loci. Then f|; mod m" is the constant infinitesimal deformation of fy|yx.c,-

Remark 5.5. In Theorem 5.1 and the situation above, we can drop the assumption that 7 is étale over oo
at the cost of replacing Cy with a root stack. Indeed, if 7 is not étale, then 7 factors through a non-trivial
root stack along co. In this case, one obtains a corresponding simple extension of log structures M — M’
on P!, Then by Proposition 4.3, the map f; can be extended to a log map after taking a further root
stack C; — €. The rest of the argument goes through as written to produce a partial smoothing of the
composition C; — €y — X with the required properties as in the theorem. We leave the details to the reader
since our main interest is in the case of (ml,l,oo), where 7 is étale over oo.

5.1. Global smoothings for target weighted projective lines

Next we consider the problem of smoothing twisted stable maps to a weighted projective line P = P(a, b)
without any tangency conditions.

Theorem 5.6. Let (fy: Co — P, X, o) be a genus O twisted stable map to a weighted projective line P = P(a, b).
Then there exists a smoothing

. e Ly
(!
S

over S = Spec(R), the spectrum of a DVR.

Proof. Suppose (R, m) is complete. We will construct such a smoothing by building a compatible system
of deformations over R/m”. Since the stack of not necessarily representable twisted stable maps to P
is a locally of finite type algebraic stack, such a compatible system automatically algebraizes as in the
proof of Theorem 5.1. First note that if a = ka” and b = kb’ with a’,b’ coprime, then the canonical map
p: P(a,b) — P(a’,b’) is étale, and so infinitesimal deformations lift uniquely along p. Thus, without loss of
generality, we may assume that 4 and b are coprime and P is a twisted curve.

First we reduce to the case where every connected component in the fibers of fy: €y — P is irreducible.
We can argue as in Lemma 2.6. If E is a connected component of the preimage fo_l(p) for some p, then we
can view fo|p as a map to the residual gerbe G, where E is pointed by the nodes. Then since G, is étale
over Spec(k), it suffices to smooth the composition E — Spec(k) as a marked twisted curve and then glue
together the smoothing of E with the constant family of maps f |m along the markings corresponding to
nodes exactly as in the proof of Lemma 2.6 to obtain a partial smoothing where each connected component
of the contracted locus is irreducible. Therefore, without loss of generality, we may suppose that every
connected component of the contracted locus of f is irreducible.

By Propositions 4.1 and 4.3, there exists a twisted curve Gy with a partial coarse space map 17¢: Cy— €y
such that gy := fyomy: €y — P can be endowed with a log structure where P has the toric log structure
and (éOrMéo) — (Spec(k), M) is log smooth. Since (P, M) is toric, the log cotangent complex IL;?g =~ Oy is
trivial. Moreover, since € is genus 0,

(5.0) Ext! (g5 Liy®, 0g,) = H' (&), 0,) = 0.

Therefore, the log deformation space of (g, gg) is log smooth over the log deformation space of the curve
(éO,MéO). By Theorem 3.7, Def(éo,Méo) is a root stack over Def(Cy,py,...,p,), where the p; are the
smooth marked points lying under ¥; . In particular, we can build a smoothing (C/S, ;) of (Cy, p;) whose
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truncations (C,/Spec(R/m"), 0; ,,) lift to a formal smoothing of (éO,MéO), after possibly extending the log
structure on S. By the vanishing obstruction group (5.1), the map (g, gg) can then be lifted to a compatible
family (g,: C, — P, ¢") of log smooth deformations over R/m".

Thus, after algebraizing, we have a smoothing (g: /S — P,Y;) of g;. Taking the relative coarse space
of g gives a flat family of maps f: €/Spec(R) — P whose formation commutes with base change (see [AOV1I,
Proposition 3.4] and [AOV08, Corollary 3.3]). Therefore, we conclude that the central fiber of f agrees
with f; and that the generic fiber is smooth since it is a partial coarse space of the smooth generic fiber

of C/S. 0

Remark 5.7. For the proof of Theorem 5.6, it is necessary to use log deformation theory even though the
statement does not make any reference to log geometry. The reason is that the stack P is not convex in the
classical sense. The tangent bundle is not necessarily effective even though it has positive degree, and there
are examples of genus 0 twisted stable maps where the vanishing (5.1) does not hold for the usual tangent
bundle. For example, consider C = [E/7], where E is an elliptic curve with hyperelliptic involution 7: E — E,
7: € — P! is the coarse space, and p; € IP! are the points lying under the fixed points of 7. Then the line
bundle L = O¢ (%Pl - %pz + %p3 - %p4) with sections 0 € L and 1 € L®? induces a map f: € — P(1,2) with
f*Tp=Land h'(C,L)=h' (P, 7,L) = h'(P!,0(-2)) = 0.

6. Proofs of the main theorems

We use the notation from the introduction. Let (X, xq,...,x,) be a smooth and proper pointed stacky
curve, and suppose that the coarse map 7: X — X is étale at the points x; (see also Remark 5.5). Fix a tuple
of discrete data I' = (ng, {7, x1},...,{[}, x,}).

Proposition 6.1. The loci M (X) and Ny (X) (see Definition 1.3) are locally closed substacks of K ,,(X,d).

Proof. We run through the conditions of Definition 1.3. Condition (1) is both open and closed by the definition
of a twisted curve, and condition (2) is closed. Conditions (4) and (4’) are open by the openness of the

smooth locus. For condition (3), we consider the cohomology sheaves of the cotangent complex lL;og. The
locus where f is constant is given by the support of ! (IL?g). Since the universal family of curves over the

moduli space is proper, the locus where the marked points avoid Suppﬂ-(‘l(IL;Og) is open, and therefore so
is the condition of f being non-constant along the marked points. Finally, under this condition, the order of
tangency of f at x; is measured by the length of coker(f*Q}. — Q¢),, and by semicontinuity, there is a
locally closed subset where this length is constant d;. O

Proof of Theorem 1.5. The marked points pgy for k =1,...,ny with no tangency conditions do not change the
outcome of the problem. Indeed, if we can construct such a smoothing with ny > 0, then by forgetting and
stabilizing, we obtain a smoothing with ny = 0, and, conversely, if we have a partial 1-parameter smoothing
over a base S with ny = 0, then up to a finite base change S’ — S, we can pick generic sections passing
through po; to obtain a smoothing with 1y > 0. So without loss of generality, suppose ny = 0.

We proceed by induction on r. The base case is precisely Theorem 5.1. In general, let (f: C —
x,{{p]-k};(lil}]r-:l) be a map in Kp(X). Applying Theorem 5.1 to (f: € — X,p,1,...,p,s,) produces a
1-parameter deformation whose generic fiber is a relative map to (X, x,) with tangency I}, which also satisfies
that the curve is smooth along the preimage of x,. Moreover, by Remark 5.4, the generic fiber is contained
in Kp(X). Therefore, without loss of generality, we may assume that € is smooth in a neighborhood
of f~!(x,). By the inductive hypothesis, there exists a 1-parameter deformation of f with generic fiber
contained in Np/(X), where I = ({I', x1},...,{I,_1,x,_1}). Moreover, by Remark 5.4, this partial smoothing
induces the constant deformation in an étale neighborhood of f~!(x,), and so the generic fiber is contained

in Np(X). O
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Proof of Theorem 1.7. Let (f: C — X,pjx) be a map contained in Kp(X). By Theorem 1.5, there exists a
partial smoothing of (f: € — X, pjx) with generic fiber contained in Np(X), so without loss of generality,
suppose that (f: C— X, pjk) is contained in Np(X). By Theorem 5.6, there exists a smoothing of the stable
map into the interior of Ky ,(X,d) since X = P is a weighted projective line. Let SpfR — Defy be the
corresponding formal deformation. By Proposition 4.4, we can write

Deff — Deff’x1 X X Deff,xr xDeff’i,

where Defy . is a miniversal deformation space of a small étale neighborhood of the fiber f ~1(x;) and
Def .. is a miniversal deformation space of the critical loci of f which are disjoint from the fibers f ~(x;) for
each i. Then projecting onto Deff’;,: and then composing with the section Deff,;ﬁ - Deff which picks the
constant deformation on each of the Def ,, factors produces a new formal deformation SpfR — Def which
agrees with the smoothing from Theorem 5.6 away from the fibers f ~!(x;) but is the constant deformation in
a neighborhood of f~1(x;) for all i. After algebraizing this formal deformation as in the proof of Theorem 5.1,
we obtain a l-parameter family over Spec(R) such that the generic fiber is contained in Np(X) but is also
smooth away from the union of the fibers f ~!(x;). Therefore, the generic fiber is smooth everywhere and

thus contained in Mp(X). O
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