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Abstract

We present a central compact hybrid-variable method (CHVM) with spectral-like

accuracy for first-order hyperbolic problems with moderate or less discontinuities.

It incorporates the compact difference strategy and a recently proposed hybrid-

variable discretization technique to achieve even higher accuracy on a given sten-

cil of grid cells. The CHVM is first constructed for the one-dimensional (1D)

model linear advection equations, in which case the accuracy and stability analysis

are conducted; then it is extended to 1D nonlinear problems such as the Burgers’

equation and the Euler equations. A novel Gauss-Seidel type low-pass high-order

filter is constructed to suppress spurious oscillations near discontinuities. The

performance of the proposed method is assessed by extensive benchmark tests.
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1. Introduction

Multi-scale phenomenon plays a crucial role in many physical and engineering

applications such as turbulent flow computations and aeroacoustics. Numerous ef-

forts have been devoted to construct numerical methods that are high accurate in a
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wide spectrum of wavelengths, for example, the methods with so-called spectral-

like accuracy aim at accurately computing waves that are barely resolved by the

mesh grids. A pioneer is the compact difference method proposed in the semi-

nal work by S. K. Lele [1], which constructs finite difference approximations to

one-dimensional hyperbolic problems with spectral-like accuracy. In particular, it

splits the degrees of freedom in its coefficients between two objectives: achiev-

ing a certain formal order of accuracy and obtaining exact wavenumber at certain

pre-selected frequencies in a formal Fourier analysis of the method.

Since then, the compact difference strategy has been adopted in many work to

construct numerical methods with spectral-like accuracy [2, 3, 4, 5, 6, 7], and a

recent one is by Liu et al. [8, 9]. This method differs from others in that it employs

two types of unknowns per mesh cell, with one approximating grid-point values

and the other one approximating the solution at cell centroids. Consequently, all

degrees of freedom can be utilized to achieve the optimal order of accuracy and the

resulting method shows good ability of computing the smallest wavelength that is

resolvable by the computational grid. Like any other central methods, the compact

scheme proposed by Liu et al. relies on the exact cancellation of Taylor series

expansion terms of the numerical solutions in a centered stencil on a uniform grid;

if the mesh is irregular, one expects the formal order of accuracy to be decreased.

In this work, we propose a central compact method that incorporates a recently

developed superconvergent hybrid-variable (HV) discretization framework [10,

11], as a first step to build numerical method with spectral-like accuracy that is

suitable for both uniform and non-uniform computational grids. Following the

HV framework, we employ two types of variables: one approximates the nodal

solutions at grid points and the other one approximates the averaged solutions for

each mesh cell. Therefore, this method shares similar spectral property as the

method by Liu et al., see also the formal Fourier analysis in Section 2.5. Unlike

the other work, however, it is proved in [11] that approximating both nodal values

and cell-averaged values lead to an inherent superconvergence property that is not

possessed by any method that only takes nodal approximations; and such super-

convergence is independent of the mesh uniformity, see for example its numerical

examples on two-dimensional triangular grids in [10].

To this end, combining the compact difference strategy and the HV framework

is a natural next step of constructing high-order and spectral-like accurate method

for general grids and we name it the central compact hybrid-variable method or

CHVM for short. In this work, we focus on the preliminary study of CHVM by

limiting ourselves to one-dimensional problems and we construct optimally sixth-

order accurate method using the smallest grid stencil containing two neighboring

2



cells at each grid point. Furthermore, we shall assume uniform grids throughout

the paper for simpler accuracy and stability analysis hence superconvergence will

not be observed (see the analysis in [11]). Formal analysis on non-uniform grids

and the superconvergence behavior will be presented in future work.

The rest of the paper is organized as follows. In Section 2, the construction of

the compact hybrid-variable scheme is detailed for 1D advection equations with

various boundary conditions. This section also contains the formal accuracy and

stability analyses of the proposed method. Extension to nonlinear scalar problems

and systems is provided in Section 3, demonstrated by its application to solve the

Burgers’ equation and the Euler equations. Since discontinuities generally appear

for nonlinear hyperbolic problems even when the initial data is smooth, we also

construct a Gauss-Seidel type low-pass filter to effectively remove node-to-node

oscillations in this section. The numerical performance of the proposed method is

assessed in Section 4, and lastly Section 5 concludes this paper.

2. A compact hybrid-variable method for 1D advection equations

In this work we focus on the 1D hyperbolic system:

∂u

∂t
+
∂f (u)

∂x
= 0 , (2.1)

where u is a vector-valued function in Rd and f : Rd → Rd is a smooth flux

function. For the construction of the new method, we assume that u has sufficient

regularity so that all required spatial derivatives exist. In this section, we focus on

the model linear advection equation:

∂u

∂t
+ c
∂u

∂x
= 0 , (2.2)

where c is the constant advection velocity; and then we extend the method to

nonlinear scalar equations and systems in Section 3.

2.1. A brief review of the hybrid-variable (HV) discretization strategy

To simplify the situation, in Sections 2.1±2.3 we consider the Cauchy problem

of (2.2) that is defined on the closed interval x ∈ [0, 1] with appropriate initial

condition and the periodic boundary condition u(0, t) = u(1, t). The computational

domain is divided uniformly into N cells [ jh, ( j + 1)h], j = 0, · · · ,N − 1, where

h = 1/N is the cell size. The cell faces and the cell centers are denoted x j = jh

and x j+1/2 = ( j + 1/2)h, respectively. In the HV discretization framework, instead
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of searching for only the nodal approximations (as in finite difference methods)

or only the cell-averaged approximations (as in finite volume methods), we seek

both approximations and evolve them in time. In particular, the semi-discretized

variables are denoted:

u j(t) ≈ u(x j, t) , u j+1/2(t) ≈ 1

h

∫ ( j+1)h

jh

u(x, t)dx , (2.3)

for the nodal and cell-averaged approximations, respectively.

To derive the semi-discretized equations for the cell-averaged variables, we

integrate (2.2) over [ jh, ( j + 1)h] to obtain:

du j+1/2

dt
+

1

h

[

cu j+1 − cu j

]

= 0 , (2.4a)

where the dependence on t is suppressed for simplicity. Similarly, the semi-

discretized equation for the nodal variables is:

du j

dt
+ c[Dxu] j = 0 , (2.4b)

where [Dxu] j approximates ux(x j, t) that characterizes the HV method.

In previous work [11], the hybrid-variable discrete differential operator (HV-

DDO) [Dx] j is constructed explicitly as a linear combination of close-by solutions.

For example, a first-order upwind HV-DDO is given by:

[Dxu] j =















2
h
(u j − u j−1/2) if c ≥ 0

2
h
(u j+1/2 − u j) if c < 0

. (2.5)

In this work, however, we seek implicit construction of these operators following

the compact difference strategy first proposed by Lele [1] in the context of finite

difference approximation to acoustic problems, which is reviewed next.

2.2. A brief review of the central compact difference schemes

In the context of finite difference methods (hence we only consider u j for the

moment), one finds the approximations Dxu j ≈ u(x j) (we do not use the brackets

to distinguish it from the HV-DDOs), such that for a given stencil s > 0 and ∀ j:

s
∑

k=−s

αkDxu j+k =
1

h

s
∑

k=−s

βku j+k , (2.6)
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where α0 is normalized to 1 and the coefficients αk and βk are constructed so that

a target number of leading terms in the Taylor series expansions about x j of:

s
∑

k=−s

αkux(x j+k) and
1

h

s
∑

k=−s

βku(x j+k) (2.7)

are matched, and the rest of degrees of freedom is usually utilized to make sure the

numerical wavenumber equals the exact one at certain pre-selected frequencies in

a formal Fourier analysis, see also the discussion in Section 2.5.

For example, using three grid points (s = 1) and aiming at optimal order of

accuracy, the resulting compact discretization formula is given by:

1

4
Dxu j−1 +Dxu j +

1

4
Dxu j+1 = −

3

4h
u j−1 +

3

4h
u j+1 , ∀ j , (2.8)

which leads to a linear system of all approximations Dxu j. The coefficients in

(2.8) are computed to match the four leading terms in the Taylor series expansions

of (2.7), or alternatively:

1

4
ux(x j−1) + ux(x j) +

1

4
ux(x j+1) = − 3

4h
u(x j−1) +

3

4h
u(x j+1) + O(h4) , ∀ j

for sufficiently smooth u.

2.3. A sixth-order accurate compact hybrid-variable method (CHVM)

Combining the two strategies, given a stencil s > 0 we seek a formula that is

similar to (2.6) but uses both u j and u j+1/2 on the right hand side. In this paper,

we consider the smallest stencil possible, i.e., s = 1, and will see that the CHVM

strategy gives rise to a sixth-order method (c.f., fourth-order by (2.8)). To this

end, the HV-DDOs are constructed by:

α[Dxu] j−1+ [Dxu] j+α[Dxu] j+1 =
1

h

[

−βu j−1 − γu j−1/2 + γu j+1/2 + βu j+1

]

, (2.9)

where the symmetry of the coefficients come form the central nature of the oper-

ator and a uniform grid, and the coefficients α, β, γ are computed such that:

αux(x j−1) + ux(x j) + αux(x j+1)

= − β
h

u(x j−1) − γ
h2

∫ x j

x j−1

u(x)dx +
γ

h2

∫ x j+1

x j

u(x)dx +
β

h
u(x j+1) + O(hp) , (2.10)
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for some integer p as large as possible.

For simplicity, we write u(x j), ux(x j), uxx(x j) as u, ux, u(2), etc.; that is, u(k)

denotes the kth derivative of u for k ≥ 2. Then the Taylor series expansions of the

terms in the left hand side of (2.10) are:

ux(x j) = ux ,

ux(x j−1) + ux(x j+1) = 2ux + h2u(3) +
1

12
h4u(5) + O(h6) ;

and that of the nodal values in the right hand side are given by:

u(x j+1) − u(x j−1) = 2hux +
1

3
h3u(3) +

1

60
h5u(5) + O(h7) ,

whereas in the case of the cell-averaged values we have:

1

h

∫ x j

x j−1

u(x)dx =
1

h

∫ 0

−h

u(x j + s)ds

=
1

h

∫ 0

−h

(

u + sux +
1

2
s2u(2) +

1

6
s3u(3) +

1

24
s4u(4) +

1

120
s5u(5) +

1

720
s6u(6) + O(h7)

)

ds

= u − 1

2
hux +

1

6
h2u(2) − 1

24
h3u(3) +

1

120
h4u(4) − 1

720
h5u(5) +

1

5040
h6u(6) + O(h7) ,

and a similar formula for 1
h

∫ x j+1

x j
u(x)dx, which eventually gives:

1

h

∫ x j+1

x j

u(x)dx − 1

h

∫ x j

x j−1

u(x)dx = hux +
1

12
h3u(3) +

1

360
h5u(5) + O(h7) .

Plugging them into (2.10) results in a linear system for α, β, and γ:

1 + 2α = 2β + γ , α =
1

3
β +

1

12
γ ,

1

12
α =

1

60
β +

1

360
γ ,

with the leading error O(h6), i.e., p = 6. Solving the linear system gives:

α = −1

8
, β = −9

8
, γ = 3 . (2.11)

Denoting the solution vectors as well as the vector of the HV-DDOs by:

u =



































u1/2

u3/2

...

uN−1/2



































, u =



































u0

u1

...

uN−1



































, d =



































[Dxu]0

[Dxu]1

...

[Dxu]N−1



































, (2.12)
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where uN and [Dxu]N are omitted in u and d, respectively, due to the periodic

boundary conditions; we thus have:

Pd =
1

h
Qu +

1

h
Ru , (2.13)

with P , Q, and R being circulant matrices: P = circN(1, α, 0, · · · , 0, α), Q =

circN(γ, 0, · · · , 0, −γ), and R = circN(0, β, 0, · · · , 0, −β). Here we use the no-

tation circN(c0, c1, · · · , cN−1) to designate the matrix C = [ci j]N×N , whose entries

are given by ci j = c( j−i)(mod N).

It is easy to see that P is non-singular for all N, hence we can write the semi-

discretization (2.4) as a system of ODEs in the matrix form:

d

dt

[

u

u

]

+
c

h

[

0 A

P −1Q P −1R

] [

u

u

]

=

[

0

0

]

, (2.14)

where A = circN(−1, 1, 0, · · · , 0).

In this work, the ODE system (2.14) is integrated by the five-stage, fifth-order,

L-stable, and stiffly-accurate Diagonally Implicit Runge-Kutta method [12, Table

24], denoted hereafter by DIRK5 in the rest of the paper. The details of DIRK5

are provided in Appendix A.

2.4. Accuracy analysis

Here we show that the method given by (2.14) is formally sixth-order accurate

in space. The standard von Neumann analysis is utilized for this purpose, that is,

we assume the initial condition is given by a simple wave:

u(x, 0) = eiκx , (2.15)

where κ is an arbitrary constant wavenumber; then the exact solution is given by

u(x, t) = eiκ(x−ct) and the exact nodal and cell-averaged solutions (designated by a

superscript ⋆) are:

u⋆j (t) = e−icκtei jθ , u
⋆
j+1/2(t) =

e−icκt

iθ

(

ei( j+1)θ − ei jθ
)

, (2.16)

with θ = κh being the scaled wavenumber. It is not difficult to see that the solutions

to the ODE system (2.4) as well as [Dxu] can be written as:

u j(t) = N(t)ei jθ, u j+1/2(t) = A(t)
1

iθ

(

ei( j+1)θ − ei jθ
)

, [Dxu] j =
iθ

h
D(t)ei jθ, (2.17)
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where the multipliers N(t), A(t), and D(t) satisfy:

A′(t) + icκN(t) = 0 , (2.18a)

N′(t) + icκD(t) = 0 , (2.18b)

iθD(t)(1 + αeiθ + αe−iθ) = βN(t)(eiθ − e−iθ) +
γ

iθ
A(t)(eiθ − 2 + e−iθ) . (2.18c)

Plugging (2.18c) into (2.18b) gives a system of two ODEs for A(t) and N(t):

d

dt

[

A(t)

N(t)

]

+ icκ

[

0 1
2γ(1−cos θ)

θ2(1+2α cos θ)

2β sin θ

θ(1+2α cos θ)

] [

A(t)

N(t)

]

=

[

0

0

]

. (2.19)

Denoting the coefficient matrix in the left hand side by C(θ), the next step is to

compute its two eigenvalues so that the solutions to (2.19) can be derived. Indeed,

the eigenvalues λ1,2 of C(θ) are the roots of:

λ2 − 2β sin θ

θ(1 + 2α cos θ)
λ − 2γ(1 − cos θ)

θ2(1 + 2α cos θ)
= 0 ,

or equivalently:

λ1,2 =
β sin θ ±

√
∆

θ(1 + 2α cos θ)
, ∆ = β2 sin2 θ + 2γ(1 − cos θ)(1 + 2α cos θ) . (2.20)

To proceed, the terms in ∆ are reorganized:

∆ = β2 sin2 θ + 2γ(1 − cos θ)

[

2β
sin θ

θ
+ 2γ

1 − cos θ

θ2
+ ∆′

]

=

(

β sin θ +
2γ(1 − cos θ)

θ

)2

+ 2γ(1 − cos θ)∆′ ,

where ∆′ = 1 + 2α cos θ − 2β
sin θ

θ
− 2γ

1 − cos θ

θ2
= 1 − 1

4
(1 − 1

2
θ2 +

1

24
θ4)

+
9

4
(1 − 1

6
θ2 +

1

120
θ4) − 6(

1

2
− 1

24
θ2 +

1

720
θ4) + O(θ6) = O(θ6) .

Hence:

∆ =

(

β sin θ +
2γ(1 − cos θ)

θ

)2

+ O(θ8) ⇒
√
∆ = β sin θ +

2γ(1 − cos θ)

θ
+ O(θ7),
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where we used the fact that β sin θ +
2γ(1−cos θ)

θ
= (15/8)θ + O(θ3). Without loss of

generality, we may choose the branches of
√
∆ properly and plug them into (2.20)

and obtain:

λ1 =
1

θ(1 + 2α cos θ)

(

β sin θ + β sin θ +
2γ(1 − cos θ)

θ
+ O(θ7)

)

=
−9

4
θ sin θ + 6(1 − cos θ)

θ2(1 − 1
4

cos θ)
+ O(θ6) = 1 + O(θ6) , (2.21)

λ2 =
1

θ(1 + 2α cos θ)

(

β sin θ − β sin θ − 2γ(1 − cos θ)

θ
+ O(θ7)

)

= − 2γ(1 − cos θ)

θ2(1 + 2α cos θ)
+ O(θ6) = −4 + O(θ6) . (2.22)

Thus the solutions to (2.19) are:

A(t) =
λ2 − 1

λ2 − λ1

e−icκλ1t +
1 − λ1

λ2 − λ1

e−icκλ2t

= [1 + O(θ6)]e−icκt(1+O(θ6)) + O(θ6)e−icκt(−4+O(θ6)) = e−icκt + O(θ6) ,

and similarly:

N(t) =
λ1(λ2 − 1)

λ2 − λ1

e−icκλ1t +
λ2(1 − λ1)

λ2 − λ1

e−icκλ2t = e−icκt + O(θ6) .

In comparison with the exact solutions (2.16), we conclude that the proposed cen-

tral CHVM is formally sixth-order accurate in space.

2.5. Spectral-like accuracy

While there is no unambiguous definition of ªspectral-likeº accuracy in the lit-

erature, it usually refers to a scenario in which that the scaled modified wavenum-

ber θ′ = κ′h remains almost on top of the scaled wavenumber θ = κh when θ

gets close to π, that is, when each wavelength is resolved by exactly two mesh

cells. In the original work by Lele [1], this is achieved by tuning the parameters

in (2.6) such that in addition to the fourth-order accuracy, θ′(θ) = θ is enforced at

θ = 2.2, 2.3, 2.4; whereas in the recent work by Liu et al. [8] as well as in present

work, spectral-like accuracy is mainly due to using more unknowns per mesh cell

and higher-order of accuracy in space.

Computing the scaled modified wavenumber for CHVM is a little tricky as

it involves taking the Fourier transforms of the integral of a function. To this
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end, let us ignore the time abscissa and consider a generic function u(x) and its

anti-derivative U(x) =
∫ x

0
u(y)dy. Then the cell-averaged value can be written

u j+1/2 = (U(x j+1) − U(x j))/h. Let us denote the Fourier transform of a scalar

function u by F (u) as usual:

F (u)(κ) =
1
√

2π

∫ ∞

−∞
u(x)e−iκxdx ,

then it is elementary to have:

F (ux) = iκF (u) . (2.23)

Now computing a function [Dxu] ≈ ux by (2.9) and replacing x j by x, one has:

α[Dxu](x − h) + [Dxu](x) + α[Dxu](x + h)

=
1

h

[

−βu(x − h) − γ
h

(U(x) − U(x − h)) +
γ

h
(U(x + h) − U(x)) + βu(x + h)

]

.

Taking the Fourier transform on both sides and realizing that:

u = Ux ⇒ F (U) =
1

iκ
F (u) ,

one obtains:

[

1 + α(e−iκh + eiκh)
]

F ([Dxu]) =
1

h

[

β(eiκh − e−iκh) +
γ

iκh
(eiκh − 2 + e−iκh)

]

F (u) .

Hence F ([Dxu]) = iκ′F (u), where κ′ is the modified wave number given by:

κ′ =
1

h

2β sin(κh) + 2γ(1 − cos(κh))/(κh)

1 + 2α cos(κh)
, (2.24)

or in terms of scaled modified wavenumber:

θ′ =
2β sin θ + 2γ(1 − cos θ)/θ

1 + 2α cos θ
. (2.25)

In Figure 2.1, (2.25) is compared to the scaled modified wavenumber of sev-

eral central methods. Particularly, we select methods that are comparable to (2.9)

in either the grid-stencil1 or the number of terms in both hand sides2. The methods

1That is, no more than two cells for a method centered at x j.
2Three terms in the left-hand side and four terms in the right hand side.
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Table 1: Coefficients of different schemes

Scheme a b c α β Order

SPS 3
2

0 0 1
4

0 4

CTS 14
9

1
9

0 1
3

0 4

LSPS 1.302 0.993 0.037 0.577 0.089 10

CCS-T6 16
9

− 17
18

0 − 1
12

0 6

CCS-T8 2 − 61
50

− 2
25

− 3
20

0 8

sharing the same grid stencil are Standard PadÂe Scheme (SPS) and Compact Tridi-

agonal Scheme (CTS) from [13, Page 538]. The method that shares a similar num-

ber of terms is the sixth-order Compact Central Scheme (CCS-T6) by Liu et al. [8,

Table 2]. In addition, we hand pick two methods that in our opinion have com-

parable spectral properties as CHVM, namely Lele’s Spectral-like Pentadiagonal

Scheme (LSPS) [1, Eq. (3.1.6)] and the eighth-order Compact Central Scheme

(CCS-T8) [8, Table 2]. These two methods, however, require a larger stencil than

CHVM and thus more computationally expensive. The modified wavenumber of

these methods are listed below:

• Modified wavenumber for SPS, CTS and LSPS.

θ′ =
a sin(θ) + (b/2) sin(2θ) + (c/3) sin(3θ)

1 + 2α cos(θ) + 2β cos(2θ)
. (2.26)

• Modified wavenumber for CCS-T6 and CCS-T8.

θ′ = 2
a sin(θ/2) + (b/2) sin(θ) + (c/3) sin(3θ/2)

1 + 2α cos(θ) + 2β cos(2θ)
. (2.27)

where the coefficients and the order of each scheme is summarized in Table 1.

Figure 2.1 shows that the modified wavenumber of CHVM has better reso-

lution than SPS, CTS, LSPS, CCS-T6; whereas CCS-T8 achieved slightly better

resolution than CHVM, with a larger stencil and thus higher computational cost

comparing to the latter.

2.6. Stability analysis

In this part, we first prove the stability of the ODE system (2.14) and then

discuss the stability of the fully-discretized methods. To this end, let us define the

11
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Figure 2.1: Modified wavenumber of CHVM and comparison with other compact methods.

shifting matrix S = circN(0, 1, 0, · · · , 0) and write the coefficients of (2.14) as:

A = S − I , P = I + αS + αSt , Q = γI − γSt , R = βS − βSt , (2.28)

where I is the N ×N identity matrix and St is the transpose of S; it is not difficult

to check that St = S−1. The stability result for the semi-discretized system is

demonstrated by the next theorem, where we extend the discussion to complex

vectors as customary in numerical stability analysis.

Theorem 2.1. There exists a symmetric positive definite matrix H ∈ R2N×2N , such

that the H-norm of the solution w = [u
t
ut]t of (2.14), i.e. ||w||2H = w

t
Hw where

the overline denotes complex conjugate, is preserved for all t > 0. Furthermore,

there exists a λ0 > 0 that is independent of N, such that ||w||H ≥ λ0 ||w|| for all

w ∈ R2N×1.

Proof. Let us define:

H =

[

I 0

0 γ−1P

]

and D =

[

0 A

P −1Q P −1R

]

, (2.29)

then it is clear H is symmetric and (2.14) simplifies to:

dw

dt
= −c

h
Dw .

12



Using (2.28) we have:

M
def
==HD =

[

0 S − I
I − St (β/γ)(S − St)

]

, (2.30)

which is clearly skew-symmetric. To this end:

d

dt
||w||2H =

(

dw

dt

)t

Hw +w
t
H

(

dw

dt

)

= −c

h
w

t
DtH tw − c

h
w

t
HDw

= −c

h
w

t
(M t +M )w = 0 .

It remains to show that H is positive definite and uniformly bounded away from

zero for all N. Indeed, γ−1P is a circulant matrix, whose eigenvalues are:

1

γ

(

1 + 2α cos
kπ

N + 1

)

=
1

3

(

1 − 1

4
cos

kπ

N + 1

)

≥ 1

4
, 1 ≤ k ≤ N .

Hence we can choose λ0 = 1/2 and complete the proof. □

As a direct consequence, all eigenvalues of the coefficient matrix D are pure

imaginary. Indeed, let λ be an eigenvalue of D and w0 be a non-zero (possi-

bly complex) eigenvector, then the solution of the ODE system with the initial

data w(t) = w0 is w(t) = eλtw0. Hence following the theorem, ||w(t)||2H =

e2Reλt ||w0||2H is independent of t. Since the H-norm of the non-zero vector w0 is

not zero, we must have Reλ = 0.

Similarly, D must be diagonalizable for if not, there exists an eigenvalue λ of

D and two non-zero vectors w1 and w2, such that:

Dw1 = λw1 , Dw2 = λw2 +w1 .

Hence the solution corresponding to the initial data w2 is given by w(t) = eλt(w2+

tw1). Thus d(||w(t)||2H)/dt = 0 requires w
t
1Hw1 = 0 and w

t
2Hw1 = 0; but the

former contradicts the condition that w1 , 0 and H is symmetric positive definite.

Because D is diagonalizable with only pure imaginary eigenvalues, we can

easily verify the stability of a fully-discretized method that combines the ODE

system (2.14) and any ODE solver whose stability region contains the entire imag-

inary axis (such as the A-stable methods).

13



2.7. Treatment of incoming flow boundaries

In the case of non-periodic boundary conditions, the formula (2.9) remains

valid for computing interior derivatives, i.e., 1 ≤ j ≤ N − 1; and we need two

additional equations to determine all discrete derivatives [Dxu] j, 0 ≤ j ≤ N. To

this end, we consider biased stencils at both ends and write:

[Dxu]0 + α
l[Dxu]1 =

1

h

[

βl
0u0 + γ

lu1/2 + β
l
1u1

]

(2.31)

at the left boundary and:

αr[Dxu]N−1 + [Dxu]N =
1

h

[

βr
−1uN−1 + γ

ruN−1/2 + β
r
0uN

]

(2.32)

at the right boundary. The coefficients are again obtained by matching the leading

coefficients of the Taylor series expansions and we have:

αl = −1 , βl
0 = −6 , γl = 12 , βl

1 = −6 , (2.33)

and

αr = −1 , βr
−1 = 6 , γr = −12 , βr

0 = 6 , (2.34)

so that (2.31) and (2.32) are O(h3) when the discrete approximations are replaced

by exact values. The formula (2.31) and (2.32) are the foundation to imposing

incoming flow boundary conditions. To fix the idea, let us suppose c > 0 and

consider the initial boundary value problem (IBVP) given as below:































∂u
∂t
+ c∂u

∂x
= 0 , (x, t) ∈ [0, 1] × [0, T ] ,

u(x, 0) = uinit(x) , x ∈ [0, 1] ,

u(0, t) = g(t) , t ∈ [0, T ] .

, (2.35)

where T > 0 denotes the terminal time and uinit and g are prescribed initial con-

dition and boundary condition, respectively. The boundary condition at x = 0 is

then enforced by setting u0(t) = g(t) and taking it into account while constructing

[Dxu]0 and [Dxu]1. To this end, we denote (c.f., (2.12)):

u =



































u1/2

u3/2

...

uN−1/2



































, u =



































u1

u2

...

uN



































, d =



































[Dxu]0

[Dxu]1

...

[Dxu]N



































, (2.36)
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which are then related by:

Pd =
1

h
Qu +

1

h
Ru +

g(t)

h
(βl

0e
N+1
1 − βeN+1

2 ) , (2.37)

where eM
j denotes the jth unit vector in RM, and the coefficient matrices P ∈

R
(N+1)×(N+1), Q ∈ R(N+1)×N , and R ∈ R(N+1)×N are:

P =









































1 αl · · · 0 0

α 1 α · · · 0
... · · · · · · · · ·

...

0 · · · α 1 α

0 0 · · · αr 1









































, Q =



















































γl 0 · · · 0 0

−γ γ · · · 0 0

0 −γ · · · 0 0
...
... · · · · · ·

...

0 0 · · · −γ γ
0 0 · · · 0 γr



















































, R =



















































βl
1

0 · · · 0 0

0 β · · · 0 0

−β 0 · · · 0 0
...
... · · · · · ·

...

0 0 · · · 0 β

0 0 · · · βr
1
βr

0



















































.

(2.38)

To this end, the resulting ODE system reads:

d

dt

[

u

u

]

+
c

h

[

0 A

SP −1QSP −1R

] [

u

u

]

=
cg(t)

h

[

eN
1

SP −1(−βl
0
eN+1

1
+ βeN+1

2
)

]

, (2.39)

where A ∈ RN×N and S ∈ RN×(N+1) are given by:

A =









































1 0 · · · 0 0

−1 1 · · · 0 0
...
... · · ·

...
...

0 0 · · · 1 0

0 0 · · · −1 1









































, S =









































0 1 0 · · · 0 0

0 0 1 · · · 0 0
...
...
... · · ·

...
...

0 0 0 · · · 1 0

0 0 0 · · · 0 1









































. (2.40)

The incoming flow boundary condition at the right boundary in the case c < 0 can

be enforced similarly.

At the end of this section, we numerically verify the stability of the method

with previous boundary treatments. In particular, the eigenvalues of
[

0 A
SP −1Q SP −1R

]

in the case N = 1000 are plotted in Figure 2.2. One observes that all eigenvalues

are on the closed right complex plane thus the ODE system (2.39) is stable.

3. Extension to 1D nonlinear problems

In this section we provide the key ingredients extending CHVM to the general

1D problem (2.1), repeated here for convenience:

∂u

∂t
+
∂f (u)

∂x
= 0 , (3.1)

as well as a Gauss-Seidel type low-pass filtering scheme to remove spurious os-

cillations near strong discontinuities.
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Figure 2.2: The eigenvalues of the matrix in the left hand side of (2.39) when N = 1000.

3.1. The CHVM: Semi-discretization in space

Denoting the nodal approximations and the cell-averaged approximations by

u j and u j+1/2, the spatial discretization of CHVM gives rise to the ODE system:

du j+1/2

dt
+

1

h

[

f (u j+1) − f (u j)
]

= 0 , (3.2a)

du j

dt
+ j(u j)[Dxu] j = 0 , (3.2b)

where j(u)
def
== ∂f (u)/∂u ∈ Rd×d is the Jacobian matrix of the flux function.

Assume periodic boundary condition for simplicity, the HV-DDOs [Dxu] j, 0 ≤
j ≤ N − 1 are obtained by a similar formula to (2.13). For later uses, we shall de-

note the entries of the matrices by P −1Q = [qi j]0≤i, j≤N−1 and P −1R = [ri j]0≤i, j≤N−1.

3.2. Newton-Raphson method for CHVM with DIRK time-integrators

Using the notation from Section 2.6, we denote the solution vector by w and

write (3.2) compactly as:
dw

dt
= F (w, t) , (3.3)

where the generic dependence in t is added to account for potential inclusion of

terms due to boundary data. Combining (3.3) with an implicit time-integrator

requires solving nonlinear systems; and we derive the details in the case of Di-

agonally Implicit Runge-Kutta (DIRK) methods here. Let the Butcher tableau of

a chosen DIRK be given in Table 2. Following the notation of Appendix A, the

kth-stage solution w(k), 1 ≤ k ≤ s are computed consecutively by:

w(k) = z(k) + akk∆tF (w(k), tn + ck∆t) , (3.4)
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Table 2: The Butcher tableau of a DIRK method.

c1 a11 0 · · · 0

c2 a21 a22 · · · 0
...
...
... · · ·

...

cs as1 as2 · · · ass

b1 b2 · · · bs

where z(k) = wn +
∑

1≤l<k akl∆tF (w(l), tn + cl∆t) is known while computing w(k).

Each (3.4) is a nonlinear system that is solved by the Newton-Raphson method.

Note that the Jacobian matrix involved in the Newton iterations can easily be as-

sembled from the flux Jacobian j(u), as described briefly below. Rewriting (3.4)

as finding the zero of F (w) = 0, where:

F (w)
def
== w − z(k) − akk∆tF (w, tn + ck∆t) ; (3.5)

then the Jacobian of F is given by ∂F /∂w = I − akk∆tJ (w, tn + ck∆t).

To demonstrate the assembly of J , let us assume periodic boundary conditions

and write w = [u
t
1/2 · · · u

t
N−1/2 ut

0
· · · ut

N−1
]t ∈ R2Nd as before. Then J ∈

R
2Nd×2Nd has the block structure:

J = −1

h

[

0 Jcn

Jnc Jnn

]

, (3.6)

where each block is Nd × Nd as given below.

Writing j(u j) as j j for simplicity, then Jcn and Jnc are given by:

Jcn =









































−j0 j1 · · · 0 0

0 −j1 · · · 0 0
...
... · · ·

...
...

0 0 · · · −jN−2 jN−1

j0 0 · · · 0 −jN−1









































, Jnc =





















q0,0j0 · · · q0,N−1jN−1
... · · ·

...
qN−1,0j0 · · · qN−1,N−1jN−1





















, (3.7)

for qi j see the end of Section 3.1. Computing Jnn is slightly more complicated as

j(u) is generally nonlinear:

Jnn =





















r0,0j0 · · · r0,N−1jN−1
... · · ·

...
rN−1,0j0 · · · rN−1,N−1jN−1





















+ h





















∂j(u0)

∂u
: [Dxu]0 · · · 0
... · · ·

...

0 · · · ∂j(uN−1)

∂u
: [Dxu]N−1





















.

(3.8)
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Here • : • denotes the contraction between the last index of a third-order tensor

and a vector.

Remark. Modification for the case of Dirichlet boundary condition, such as

u0(t) ≡ g(t) at the left boundary, is straightforward. To begin, we replace the

corresponding d entries of the nonlinear function F with u0 − g(tn + ck∆t). To

implement the matrix J , we first replace the constants qi j of Jnc in (3.7) and ri j of

Jnn in (3.8) by the entries of SP −1Q and SP −1R, respectively, see (2.39); next

the rows corresponding to u0 are zeroed out.

For nonlinear systems, occasionally only part of or a combination of u is

enforced at a boundary, depending on the directions of the characteristics; we

shall demonstrate the treatment of such boundaries in Section 3.3.2.

Lastly, as we adopt an L-stable time-integrators in this work, the stability of

the method does not dependent on the size of ∆t, at least in the linear case. Nev-

ertheless, we quantify the time-step size as usual using the Courant number:

∆t =
αcflh

max
(

max j λmax(j(u j+1/2)), max j λmax(j(u j)), ε
) , (3.9)

where λmax denotes the largest absolute value of all eigenvalues of a matrix, αcfl

is a user specified parameter, and ε > 0 is a very small number that prevents

division-by-zero.

3.3. Examples of nonlinear problems and boundary conditions

We illustrate CHVM for nonlinear equations with two examples in this section

as well as the incorporation of various boundary conditions.

3.3.1. The Burgers’ equation

The scalar Burgers’ equation is given by:

∂u

∂t
+
∂

∂x

(

1

2
u2

)

= 0 , (x, t) ∈ [0, 1] × [0, T ] . (3.10)

Hence following the general notations given earlier:

d = 1 , f (u) =
1

2
u2 , j(u) = u ,

∂ j(u)

∂u
= 1 , λmax( j(u)) = |u| .

Enforcing the Dirichlet boundary condition follows the same procedure as de-

scribed in the remark near the end of Section 3.2.
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3.3.2. The Euler equations

A model equation for nonlinear system of conservation laws is given by the

Euler equations that describes the dynamics of inviscid compressible fluids:

u =





















ρ

ρv

E





















, f (u) =





















ρv

ρv2 + p

(E + p)v





















, (3.11)

where ρ, v, E, and p are density, velocity, total energy density, and pressure,

respectively. The system (3.11) has one more unknown than equations, and it is

closed by the ideal gas equation of state:

p = (γ − 1)ρe , (3.12)

with γ being the constant specific heat capacity ratio and e = (E − ρv2/2)/ρ the

specific internal energy density. We take γ = 1.4 throughout the remainder of the

paper. The flux Jacobian matrix and its largest eigenvalue are thus given by:

j(u) =























0 1 0
γ−3

2
v2 (3 − γ)v γ − 1

γ−1

2
v3 − v

E+p

ρ

E+p

ρ
− (γ − 1)v2 γv























, λmax(j(u)) = |v| + cs ,

where cs =
√

γp/ρ is the speed of sound.

For non-periodic boundary conditions, it is usually the case that only part or a

combination of the boundary data is enforced, and we demonstrate the procedure

here using the example of a wall boundary condition at the left end point:

v(0, t) = 0 . (3.13)

In this case, we set the second entry (momentum) of u0 to zero; and to this end

will first construct J as described in the remark near the end of Section 3.2 and

then zero out the row corresponding to the momentum of the first nodal value u0.

3.4. A Gauss-Seidel type low-pass filter

It is well-known that discontinuity generally occurs in finite time for nonlinear

conservation laws, even if the initial data is smooth. In this section, we describe

a Gauss-Seidel type low-pass filter for hybrid data. To this end, let us denote the
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filtered cell-average solutions and nodal solutions for a scalar problem3 by û j+1/2

and û j, respectively, then the Gauss-Seidel filter is given in matrix form by:

[

Ml,cc 0

Ml,nc Ml,nn

] [

û

û

]

=

[

Mr,cc 0

Mr,nc Mr,nn

] [

u

u

]

. (3.14)

A thorough analysis of low-pass filters for hybrid-data is beyond the scope of this

work; and we will present the result in another paper.

3.4.1. Periodic case

In the case of periodic problems, u and u are given by (2.12) and all rows of

matrices in (3.14) are determined from the filtering formula at local cells or grid

points. Particular for the cell-averages, each row of Ml,ccû =Mr,ccu is obtained

from a sixth-order compact-stencil filter that is motivated by Lele [Eqn. (C.2.8)][1]:

û j+1/2 +
3

10

(

û j−3/2 + û j+5/2

)

=
1

2
u j+1/2 +

3

8

(

u j−1/2 + u j+3/2

)

+

3

20

(

u j−3/2 + u j+5/2

)

+
1

40

(

u j−5/2 + u j+7/2

)

; (3.15)

this is the highest-order that one can achieve with the given stencil. For the nodal

variables, each row of Ml,ncû +Ml,nnû = Mr,ncu +Mr,nnu is obtained from a

one-parameter family of optimally eight-order filters4:

û j − 105µ
(

û j−1/2 + û j+1/2

)

+
210µ − 1

2

(

û j−1 + û j+1

)

= (1 − 108µ)u j −
25µ

2

(

u j−1/2 + u j+1/2

)

+
114µ − 1

2

(

u j−1 + u j+1

)

+ (3.16)

25µ

2

(

u j−3/2 + u j+3/2

)

− 3µ
(

u j−2 + u j+2

)

,

where 0 < µ ≤ 1/140 is a tunable parameter; generally speaking, the larger the

value of µ, the better suppression of high frequencies the filter achieves. In fact,

the transfer function of (3.16) is given by:

F (θ) =
1 − 108µ + (114µ − 1) cos θ − 6µ cos 2θ − 25µ sin θ

θ
+ 25µ sin 2θ−sin θ

θ

1 + (210µ − 1) cos θ − 210µ sin θ
θ

.

(3.17)

3The system case is handled similarly.
4Requiring further accuracy on the same stencil reduces the filter to the identity one.
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Note that F (θ) is well-defined for all 0 < θ ≤ 2π, where the range is [0, 2π]

instead of [0, π] as in conventional low-pass filters, because there are two degrees

of freedoms per grid cell; and one can easily see F (0) = 1 by the L’Hôpital’s rule.

Sample F -curves corresponding to different values of µ are given Figure 3.1. We

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

=1/1000

=1/280

=1/150

=1/140

Figure 3.1: The transfer functions of the filter (3.17) given by different µ’s in the range (0, 1/140].

adopt a conservative choice and set µ = 1/140 in all numerical tests in this work.

3.4.2. Non-periodic case

In the case of non-periodic boundary conditions, the filters for interior nodes

and cells are the same as before; but modifications are needed near the two bound-

aries. Let us write u = [u1/2 · · · uN−1/2]t ∈ RN and u = [u0 u1 · · · uN]t ∈ RN+1,

then the dimensions of the matrices in (3.14) are given by:

Ml,cc, Mr,cc ∈ RN×N ; Ml,nc, Mr,nc ∈ R(N+1)×N ; Ml,nn, Mr,nn ∈ R(N+1)×(N+1) .

The strategy in [1] is adopted to construct explicit fifth-order filters near the

boundaries; particularly for the cell-averaged values at the left boundary, the first

three rows of Ml,cc and Mr,cc are modified according to:

û1/2 =
31

32
u1/2 +

5

32
u3/2 −

5

16
u5/2 +

5

16
u7/2 −

5

32
u9/2 +

1

32
u11/2 , (3.18a)

û3/2 =
1

32
u1/2 +

27

32
u3/2 +

5

16
u5/2 −

5

16
u7/2 +

5

32
u9/2 −

1

32
u11/2 , (3.18b)

û5/2 = −
1

32
u1/2 +

5

32
u3/2 +

11

16
u5/2 +

5

16
u7/2 −

5

32
u9/2 +

1

32
u11/2 ; (3.18c)
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the last three rows corresponding to the right boundary are modified symmetri-

cally. A two-step procedure is used to construct the filters at nodes near bound-

aries. Using the left boundary as an example, we first modify the top two rows of

Ml,nc, Ml,nn, Mr,nc, and Mr,nn according to:

û0 =
9

10
u0 +

1

3
u1/2 −

3

5
u1 +

19

30
u3/2 −

3

10
u2 +

1

30
u5/2 , (3.19a)

û1 = −
1

10
u0 +

1

3
u1/2 +

2

5
u1 +

19

30
u3/2 −

3

10
u2 +

1

30
u5/2 , (3.19b)

which are unique filters that are fifth-order accurate and satisfy ReF (2π) = 0 as

suggested by [14, 15] for non-symmetric filters, given the stencil used.

In the second step, one replace (3.19a) with û0 = u0 if a Dirichlet boundary

condition is provided at this location. The nodes near the right boundary are

handled symmetrically.

3.4.3. Selection of number of passes

In practice, one typically needs to decide on the number of passes (denoted by

p) of the selected filter, that is, once the filtering matrices in (3.14) are computed,

the filtered values are actually computed as:

[

û

û

]

=













[

Ml,cc 0

Ml,nc Ml,nn

]−1 [

Mr,cc 0

Mr,nc Mr,nn

]











p [

u

u

]

. (3.20)

In our experience, p = 1 is sufficient for almost all computations unless the grid

is extremely coarse. On the safe side we adopt p = 4 for all examples presented;

note that the additional computational cost is negligible as one can compute the

filtering matrix

(

[

Ml,cc 0

Ml,nc Ml,nn

]−1[ Mr,cc 0

Mr,nc Mr,nn

]

)p

once and store it for all later uses.

Remark. Like all linear filters, while our filter is effective in suppressing

node-to-node oscillations it does not remove all spurious oscillations, especially

when an overshoot or undershoot spreads across several cells. Nevertheless, it suf-

fices our purpose for smooth or weakly discontinuous problems, like those in most

acoustics applications. For hyperbolic conservation laws with strong discontinu-

ities, numerous strategies have been proposed in the linterature to remove as much

overshoot/undershoot as possible for a central compact scheme, such as blending

the central differential operator with an upwind one [9] and using a WENO-type

limiter [4, 16].
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4. Numerical examples

In this section we present numerous tests to assess the numerical performance

of the proposed method. Particularly, Section 4.1 focuses on linear advection

problems with various boundary conditions and Section 4.2 concentrates on non-

linear problems including benchmark shock tube tests for the Euler equations as

well as a multi-scale shock/sinusoidal flow interaction problem. The Courant

number αcfl = 2.0 is used for all computations unless otherwise noted; to our

experience CHVM with DIRK5 is stable with any time step size.

4.1. Linear advection equations

In the first group of tests, we consider the linear advection equation in Sec-

tion 2. Particularly, we verify the order of accuracy of CHVM when the solutions

are smooth. For this purpose, the L1-norm of the numerical errors at the terminal

time t = T is computed as:

err(u) =
h

2

∣

∣

∣u
nT

0
−uref(x0,T )

∣

∣

∣ +

N−1
∑

j=1

h
∣

∣

∣

∣

u
nT

j
−uref(x j,T )

∣

∣

∣

∣

+
h

2

∣

∣

∣u
nT

N
−uref(xN ,T )

∣

∣

∣ , (4.1)

err(u) =

N
∑

j=1

h

∣

∣

∣

∣

∣

∣

u
nT

j−1/2
− 1

h

∫ jh

( j−1)h

uref(x,T )dx

∣

∣

∣

∣

∣

∣

. (4.2)

Here h is the cell size, uref is the reference solution, and nT is the total number of

time steps for the computation reaching t = T . The reference solution is deter-

mined either analytically or by solving the same problem on a much finer grid.

4.1.1. A Cauchy problem: Fixed Courant number computations

In this test and the next, we solve the advection problem (2.2) with c = 1 on

the domain (x, t) ∈ [0, 1]× [0, 1], the periodic boundary condition u(0, t) = u(1, t)

for all 0 ≤ t ≤ 1, and a composite wave initial condition:

u(x, 0) = sin(2πx) + cos(4πx), 0 ≤ x ≤ 1 . (4.3)

The reference solution at T = 1 is the same as the initial condition uref(x, 1) =

u(x, 0), which is used to compute the L1-errors reported in Table 3. Here we use a

sequence of six uniform grids with the number of cells ranging from 8 to 256. As

the spatial discretization method (CHVM) is sixth-order accurate and the time-

integrator (DIRK5) is fifth-order, we expect overall fifth-order of convergence,

which is indeed the case whether the filter is applied or not.
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Table 3: The L1-errors by CHVM with or without the filter to solve a Cauchy problem for advec-

tion equation with fixed Courant number in Section 4.1.1.

CHVM without filter CHVM with filter

N Error in u Order Error in u Order Error in u Order Error in u Order

8 3.571e-1 2.607e-1 5.318e-1 6.366e-1

16 2.561e-2 3.80 2.685e-2 3.28 1.109e-1 2.26 1.109e-1 2.52

32 1.132e-3 4.50 1.137e-3 4.56 3.582e-3 4.95 3.535e-3 4.97

64 3.850e-5 4.88 3.853e-5 4.88 1.124e-4 4.99 1.119e-4 4.98

128 1.229e-6 4.97 1.229e-6 4.97 3.516e-6 5.00 3.512e-6 4.99

256 3.861e-8 4.99 3.861e-8 4.99 1.099e-7 5.00 1.099e-7 5.00

4.1.2. A Cauchy problem: Fixed time step size computations

In the second test, we consider the same problem as before but fix the time

step size to ∆t = 0.01; to this end the reference solution is computed by using

CHVM without filter on a grid of 1280 uniform cells. Using the same time step

size and the same sequence of grids, the computed L1-errors by CHVM with and

without the filter are reported in Table 4.

Table 4: The L1-errors by CHVM with or without the filter to solve a Cauchy problem for advec-

tion equation with fixed time step size in Section 4.1.2.

CHVM without filter CHVM with filter

N Error in u Order Error in u Order Error in u Order Error in u Order

8 1.228e-3 1.627e-3 8.063e-1 7.084e-1

16 2.294e-5 5.74 2.506e-5 6.02 5.270e-1 0.61 5.514e-1 0.36

32 3.662e-7 5.97 3.942e-7 5.99 1.540e-2 5.10 1.557e-2 5.15

64 5.871e-9 5.96 6.109e-9 6.01 2.319e-4 6.05 2.324e-4 6.07

128 9.397e-11 5.97 9.493e-11 6.01 3.579e-6 6.02 3.580e-6 6.02

256 1.482e-12 5.99 1.483e-12 6.00 5.573e-8 6.00 5.573e-8 6.01

4.1.3. An initial boundary value problem.

The last accuracy test for the advection equation concerns the enforcement of

boundary conditions as well as the boundary filters. Particularly we consider es-

sentially the same problem as before, except that instead of the periodic boundary
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condition we enforce the following Dirichlet condition at the left boundary:

u(0, t) = sin(2πt) + cos(4πt) . (4.4)

The exact solution at T = 1 remains the same as the initial condition; and the

L1-errors are reported in Table 5 for CHVM both with and without the filters.

Table 5: The L1-errors by CHVM with or without the filter to solve an initial boundary value

problem for the advection equation with fixed Courant number in Section 4.1.3.

CHVM without filter CHVM with filter

N Error in u Order Error in u Order Error in u Order Error in u Order

8 2.028e-1 1.254e-1 2.690e-1 2.796e-1

16 1.289e-2 3.98 1.203e-2 3.38 4.742e-2 2.50 4.874e-2 2.52

32 5.514e-4 4.55 5.333e-4 4.50 1.771e-3 4.74 1.785e-3 4.77

64 1.914e-5 4.85 1.871e-5 4.83 5.578e-5 4.99 5.570e-5 5.00

128 6.197e-7 4.95 5.945e-7 4.98 1.620e-6 5.11 1.614e-6 5.11

256 1.939e-8 5.00 1.789e-8 5.05 5.799e-8 4.80 5.786e-8 4.80

From Tables 3± 5, we verify the numerical order of accuracy of the proposed

method, and observe that the application of filter leads to slightly larger errors but

it does not deteriorate the formal order of accuracy.

4.1.4. Advection of Gaussian, square, sharp triangle, and half ellipse waves

In the last test of linear problems, we consider the advection of an initial wave

that is composed of a smooth but narrow Gaussians, a square wave, a sharp trian-

gle wave, and a half ellipse [17]. The governing equation is again given by (2.2)

with c = 1 on the computational domain −1 ≤ x ≤ 1 and the time interval

t ∈ [0, 8], with the periodic boundary condition and the initial data given below:

u(x, 0) =























































1
6

[

Gβ, z−δ(x) + 4Gβ, z(x) +Gβ, z+δ(x)
]

, −0.8 ≤ x ≤ −0.6 ;

1 , −0.4 ≤ x ≤ −0.2 ;

1 − |10(x − 0.1)| , 0 ≤ x ≤ 0.2 ;
1
6

[

Lα, a−δ(x) + 4Lα, a(x) + Lα, a+δ(x)
]

, 0.4 ≤ x ≤ 0.6 ;

0 , otherwise .

, (4.5)

where Gβ, z(x)
def
== e−β(x−z)2

and Lα, a(x)
def
==

√

max(1 − α2(x − a)2, 0), and the con-

stants are taken as a = 0.5, z = −0.7, δ = 0.005, α = 10, and β = log(2)/(36δ2).
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Using a uniform grid with 400 cells, the CHVM solutions without and with

the filter are plotted in the left and the right columns of Figure 4.1, respectively.
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(a) Cell-averaged solutions without filter.
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(b) Cell-averaged solutions with filter.
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(c) Nodal solutions without filter.
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(d) Nodal solutions with filter.

Figure 4.1: Numerical solutions at T = 8.0 obtained by CHVM to solve (4.5).

We can see that using the filter slightly decreases the magnitudes of the oscilla-

tions in the upstream direction of discontinuities and it produces a more symmetric

profile comparing to the CHVM solution without a filter, particularly as seen in

the local view provided in Figure 4.2.

To compare the performance of CHVM with existing compact schemes, we

solve the same problem with LSPS and CCS-T6 (see Section 2.5) and plot the

numerical solutions in Figure 4.3. A uniform grid with 200 cells are used for all

computations and only nodal values are plotted, that is, cell averages by CHVM

and mid-cell solutions by CCS-T6 are omitted from the figures. Furthermore, all

three methods are used without application of any filter. From the plots, it seems

that all three methods lead to Gibbs type oscillation with similar magnitudes, but

CHVM introduces much less phase error than the others.

A closer investigation of the solutions to the left of the Gaussians (see the

dashed box region of Figure 4.3a as well as Figure 4.4) demonstrates that CHVM

and CCS-T6 provide better stability than LSPS, as the latter causes node-to-node

oscillations in this region.
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(a) Cell-averaged solutions without filter.
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(b) Cell-averaged solutions with filter.
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(c) Nodal solutions without filter.
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(d) Nodal solutions with filter.

Figure 4.2: Local view around the square wave of the CHVM solutions at T = 8.0 for (4.5).

4.2. Nonlinear problems

The performance of CHVM for solving nonlinear problems is assessed in this

section and we consider the scalar Burgers’ equation and the system of Euler

equations. In particular, we will verify the order of accuracy for nonlinear systems

and will evaluate the impact of the wall boundary condition on the formal order

of accuracy. Furthermore, since discontinuities generally develop for nonlinear

conservation laws even when the initial data is smooth, we shall illustrate the

necessity of applying the filters by various tests given below.

4.2.1. The Burgers’ equation: Development of an N-wave

First we consider a nonlinear scalar problem governed by the 1D Burgers’

equation (3.10). The computational domain is [0, 1] and the periodic boundary

condition and initial data are given by:















u(0, t) = u(1, t), t ≥ 0 ,

u(x, 0) = u0(x) = sin(2πx) + 1, x ∈ [0, 1] .
(4.6)

This problem admits a smooth solution until t = 1/(2π) ≈ 0.1592, at which mo-

ment a shock wave originates at x = (1 + π)/(2π); the location of the shock wave
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(a) Numerical solutions for the left two waveforms.
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(b) Numerical solutions for the right two waveforms.

Figure 4.3: Nodal solution comparison among CHVM without filter, LSPS, and CCS-T6 for (4.5).
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Figure 4.4: Local view of the solutions by CHVM without filter, LSPS, and CCS-T6 for (4.5).

at t > 1/(2π) is (t + 1/2). The numerical solutions are consistent with the analy-

sis; indeed, using a 200-cell grid, the CHVM solutions at T = 0.15 (Figures 4.5a

and 4.5b) demonstrate a smooth profile, whereas we start to see the shock wave

development in the solutions at T = 0.2 (Figures 4.5c and 4.5d) and the formation

of an N-wave is clearly observed at T = 1.0 (Figures 4.5e and 4.5f), at least when

the filter is applied.

Furthermore, we see from Figure 4.5 that applying the filter or not has almost

negligible impact on the quality of the numerical solutions when the curves are

smooth (T = 0.15); but not applying the filter leads to inconsistent numerical

solution shortly after the shock develops (T = 0.2) and eventually breaks down

the computation in the long run (T = 1.0).

4.2.2. The Euler equations: Wave collision with periodic boundary conditions.

Here we consider the nonlinear Euler equations (3.11) with specific heat ratio

γ = 1.4 on the computational domain Ω = [−2, 2] and periodic boundary condi-
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(a) Cell-averaged solutions at T = 0.15.
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(b) Nodal solutions at T = 0.15.
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(c) Cell-averaged solutions at T = 0.2.
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(d) Nodal solutions at T = 0.2.
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(e) Cell-averaged solutions at T = 1.0.
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(f) Nodal solutions at T = 1.0.

Figure 4.5: CHVM solutions to the Burgers’ equation in Section 4.2.1 using 200 cells.

tions u(−2, t) = u(2, t) and the following initial data:































ρ(x, 0) = 1.4 + 1.4εB(x) ,

v(x, 0) = 0.0 , ∀x ∈ [−2, 2] .

p(x, 0) = 1 + εB(x) ,

(4.7)
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Here ε = 0.1 and B(x) describes two symmetric bumps and it is given by:

B(x) =







































[

1
2
(1 − cos(2π(x + 0.5)))

]4
, −1.5 ≤ x ≤ −0.5

[

1
2
(1 − cos(2π(x − 0.5)))

]4
, 0.5 ≤ x ≤ 1.5

0.0 , otherwise.

(4.8)

This test is inspired by a similar problem in [18, 19], where we modified the initial

waveform to allow accuracy analysis beyond second-order. Due to the symmetry

of the profiles in B(x), the solution consists of two symmetric waves moving in

opposite directions originating from the bump centered x = −0.5, and two similar

waves originating from the bump centered at x = 0.5. The two outward moving

waves will then run into each other at x = −2 (or equivalently, x = 2) when

T ≈ 0.64, see Figures 4.6a and 4.6b; and the two inward moving waves will run

into each other at x = 0 about the same time. Hence we refer to this test as a

ªwave collisionº problem; and it admits a smooth solution until T = 1.2, see

sample solution curves in Figures 4.6c and 4.6d.
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(a) Cell averages before wave collision (T = 0.64).
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(b) Nodal values before wave collision (T = 0.64).
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(c) Cell averages at T = 1.2.
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(d) Nodal values at T = 1.2.

Figure 4.6: CHVM solutions to the wave collision problem in Sections 4.2.2 and 4.2.3.

We compute the numerical solutions using a sequence of five uniform grids

with the number of cells ranging from 40 to 640; and a reference solution is com-
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puted using a finer grid with 2560 cells. All computations are performed with

the filter enabled. Sample solution curves at different times are provided in Fig-

ure 4.6; note that we only plot solutions computed using 80 cells, as the those

computed with 160 cells or more are visually indistinguishable from the refer-

ence curves. To assess the numerical convergence, the L1-errors for the primitive

variables (density, velocity, and pressure) are reported in Table 6. Note that the

numerical error for all nodal variables and the cell-averaged density can be com-

puted using formula that are similar to (4.1) and (4.2), respectively; whereas for

the ªcell-averagedº velocity and pressure (denoted v and p for simplicity), they

are first computed from the cell-averaged conservative variables as shown below:

v =
ρv

ρ
, p = (γ − 1)

(

E − 1

2

ρv
2

ρ

)

, (4.9)

and then compared to the reference values to calculate the numerical errors.

Table 6: The L1-errors by CHVM with filter to solve a smooth wave collision problem with peri-

odic boundary conditions for the Euler equation in Section 4.2.2.

Cell-averaged values

Density Velocity Pressure

N Error in ρ Order Error in v Order Error in p Order

40 2.199e-2 1.127e-2 2.224e-2

80 5.335e-3 2.04 3.264e-3 1.79 4.310e-3 2.37

160 4.426e-4 3.59 2.632e-4 3.63 3.968e-4 3.44

320 1.929e-5 4.52 1.234e-5 4.41 1.803e-5 4.46

640 5.937e-7 5.02 3.821e-7 5.01 5.567e-7 5.02

Nodal values

Density Velocity Pressure

N Error in ρ Order Error in v Order Error in p Order

40 2.617e-2 1.260e-2 2.578e-2

80 5.600e-3 2.22 3.361e-3 1.91 4.712e-3 2.45

160 4.533e-4 3.63 2.717e-4 3.63 4.080e-4 3.53

320 1.896e-5 4.58 1.213e-5 4.49 1.770e-5 4.53

640 5.937e-7 5.00 3.822e-7 4.99 5.567e-7 4.99
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From Table 6 we clearly observe that when the grid is sufficiently refined, the

fifth-order accuracy is obtained as expected and the usage of the filter does not

impact the formal order of accuracy as in the linear case.

4.2.3. The Euler equations: Wave collision with wall boundary conditions.

In the second test for Euler equations, we consider essentially the same test as

in Section 4.2.2, but apply the wall boundary conditions at both x = −2 and x = 2

instead of the periodic boundary condition. Note that due to symmetry, the two

problems are mathematically equivalent to each other, see Figure 4.6; and we use

the same reference solution as before to compute the L1-errors for the primitive

variables and convergence rates, as reported in Table 7. From the table, we see

Table 7: The L1-errors by CHVM with filter to solve a smooth wave collision problem with wall

boundary conditions for the Euler equation in Section 4.2.3.

Cell-averaged values

Density Velocity Pressure

N Error in ρ Order Error in v Order Error in p Order

40 2.018e-2 9.776e-3 1.910e-2

80 5.060e-3 2.00 3.010e-3 1.70 4.034e-3 2.24

160 4.247e-4 3.57 2.537e-4 3.57 3.788e-4 3.41

320 1.907e-5 4.48 1.218e-5 4.38 1.780e-5 4.41

640 5.930e-7 5.01 3.816e-7 5.00 5.560e-7 5.00

Nodal values

Density Velocity Pressure

N Error in ρ Order Error in v Order Error in p Order

40 2.488e-2 1.122e-2 2.315e-2

80 5.308e-3 2.23 3.094e-3 1.86 4.392e-3 2.40

160 4.353e-4 3.61 2.621e-4 3.56 3.897e-4 3.49

320 1.876e-5 4.54 1.199e-5 4.45 1.750e-5 4.48

640 5.931e-7 4.98 3.818e-7 4.97 5.560e-7 4.98

that our wall boundary condition enforcement does not affect the formal order of

accuracy of the method.
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4.2.4. The Euler equations: The Sod shock tube problem.

In this example and the next, we consider two Riemann problems for the Euler

equations with moderate discontinuities. The current one is the well-known Sod

shock tube test [20], where we consider the computational domain Ω = [−5, 5]

and set the initial data as:































ρ(x, 0) = 1.0 ,

v(x, 0) = 0.0 , x ∈ [−5, 0] ;

p(x, 0) = 1.0































ρ(x, 0) = 0.125 ,

v(x, 0) = 0.0 , x ∈ (0, 5] .

p(x, 0) = 0.1

(4.10)

The admissible solution consists of a left-going rarefaction, a middle contact dis-

continuity, and a right-going shock wave. By the termination time T = 2.0 neither

the rarefaction nor the shock wave hit the boundaries, thus the Dirichlet boundary

condition is applied at both end points throughout the computations.

In the top row of Figure 4.7, we present the density plots computed by CHVM

with filter on a sequence of four grids with number of cells ranging from 40 to

640, and compare these curves to the exact one. In the bottom row of the same

figure, the zoomed-in plots around the two discontinuities are shown and we ob-

serve the overall convergence of numerical solutions towards the analytical one.

Particularly, the L1-errors are computed as before and reported in Table 8, where

we observe 1st order of convergence as expected due to the discontinuities.

4.2.5. The Euler equations: The Lax shock tube problem.

Next, we consider the Lax shock tube problem [21] that contains a stronger

shock than the previous one. The computational domain is again set to Ω =

[−5, 5] and the initial condition is given by:































ρ(x, 0) = 0.445 ,

v(x, 0) = 0.698 , x ∈ [−5, 0] ;

p(x, 0) = 3.528































ρ(x, 0) = 0.5 ,

v(x, 0) = 0.0 , x ∈ (0, 5] .

p(x, 0) = 0.571

(4.11)

The problem is solved until T = 1.5 with Dirichlet boundary condition applied at

both ends of the domain. In Figure 4.8, the density curves computed by CHVM

on the same sequence of grids are plotted against the exact one, with the top

row and bottom row demonstrating the global view and local view around the

discontinuities, respectively. Finally, the L1-errors are computed and provided in

Table 9, from which we observe the 1st order of convergence as expected.
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Figure 4.7: CHVM solutions (density) to the Sod shock tube problem at T = 2.0.

4.2.6. The Euler equations: A small-scale smooth flow interacting with a shock.

Lastly, we consider a model problem for multi-scale shock-turbulence inter-

action, which is motivated by the Shu-Osher test [22, 9]. In particular, a Mach 2

shock wave is moving into a smooth flow field with sinusoidal density disturbance.

The computational domain is Ω = [−0.2, 1.8] and the initial data is:































ρ(x, 0) = 3.733333 ,

v(x, 0) = 1.25 , x ≤ 0 ;

p(x, 0) = 4.5































ρ(x, 0) =
7+sin(5πx)

5
,

v(x, 0) = 0.0 , x > 0 .

p(x, 0) = 1.0

(4.12)

The problem is solved until T = 0.79, which allows Dirichlet boundary condition

to be enforced at both ends of Ω with data given by their initial values.

Since no analytical solution is available, we compute a reference one on a very

fine grid with 12,000 uniform cells using the second-order MUSCL method [23]

built on the Roe flux [24] and the slope limiter by van Albada [25]. In Figure 4.9,

the cell-averaged density computed by CHVM on a uniform 200-cell grid is plot-

ted against the reference one. For comparison, we also plot the MUSCL solutions

using either the same grid as CHVM (i.e., 200 cells) or the same number of un-

knowns as the CHVM computation (i.e., 400 cells). From the plots we see that
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Table 8: The L1-errors by CHVM with filter to solve the Sod shock tube problem in Section 4.2.4.

Cell-averaged values

Density Velocity Pressure

N Error in ρ Order Error in v Order Error in p Order

40 1.328e-1 4.004e-1 1.531e-1

80 7.808e-2 0.77 2.256e-1 0.83 7.509e-2 1.03

160 3.917e-2 0.96 1.099e-1 1.04 3.535e-2 1.09

320 2.088e-2 0.90 5.395e-2 1.03 1.722e-2 1.04

640 1.042e-2 1.00 2.775e-2 0.96 8.485e-3 1.02

Nodal values

Density Velocity Pressure

N Error in ρ Order Error in v Order Error in p Order

40 1.436e-1 3.683e-1 1.461e-1

80 8.283e-2 0.79 2.151e-1 0.78 7.310e-2 1.00

160 4.520e-2 0.87 1.264e-1 0.77 3.840e-2 0.93

320 2.381e-2 0.92 6.304e-2 1.00 1.919e-2 1.00

640 1.278e-2 0.90 3.427e-2 0.88 1.013e-2 0.92

the CHVM solution is almost on top of the reference one in the small-scale post-

shock density disturbances, while the MUSCL solution is much more diffusive at

these locations whether the same grid or the same number of unknowns is used.

The spurious oscillations computed by CHVM near the shock fronts are expected

as our method is linear; suppressing these wiggles would require a nonlinear filter,

which will be left for future investigation.

5. Conclusions

In this work we present a new central compact hybrid-variable method (CHVM)

with spectral-like accuracy for one-dimensional first-order hyperbolic problems

with no more than moderate discontinuities. While we do not foresee any dif-

ficulty extending the methodology to multiple space dimensions, the technical

details and analysis will be left for future work.

The proposed CHVM incorporates the compact difference strategy [1] and a
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Figure 4.8: CHVM solutions (density) to the Lax shock tube problem at T = 1.5.

recently developed hybrid-variable discretization framework [11] to achieve the

optimally sixth-order accuracy in space using a small stencil of two neighboring

cells at each grid point. In particular, the numerical solutions approximate both

nodal values and cell-averaged values of the conservative variable and are ad-

vanced in time using method of lines. The spatial discretization of cell-averaged

variables is derived from the weak form of the governing hyperbolic equation

whereas the spatial discretization of nodal variables builds on a discrete approxi-

mation to the nodal derivatives. The discrete nodal derivatives are computed simi-

larly as in the compact difference method and it takes into account of both nearby

nodal and cell-averaged solutions. We proved that the semi-discretized method is

formally sixth-order accurate in space and neutrally stable when it is applied to

linear problems. To this end, we pair the CHVM discretization with an L-stable,

five-stage, and fifth-order accurate diagonally implicit Runge-Kutta method for

integration in time; and the resulting method is unconditionally stable.

As discontinuity usually occurs for nonlinear hyperbolic problems even when

the initial data is smooth, we design a Gauss-Seidel type low-pass filter to remove

node-to-node oscillations. Since the filter is linear, it does not remove spurious

oscillations completely but we demonstrate that it is valuable for problems with no

more than moderate discontinuities, which usually occur in acoustic applications
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Table 9: The L1-errors by CHVM with filter to solve the Lax shock tube problem in Section 4.2.5.

Cell-averaged values

Density Velocity Pressure

N Error in ρ Order Error in v Order Error in p Order

40 4.856e-1 7.501e-1 8.219e-1

80 2.683e-1 0.86 3.933e-1 0.93 4.441e-1 0.89

160 1.455e-1 0.88 1.965e-1 1.00 2.072e-1 1.10

320 9.087e-2 0.68 1.098e-1 0.84 1.227e-1 0.76

640 4.774e-2 0.93 5.649e-2 0.96 6.323e-2 0.96

Nodal values

Density Velocity Pressure

N Error in ρ Order Error in v Order Error in p Order

40 5.401e-1 7.548e-1 8.141e-1

80 3.247e-1 0.73 4.385e-1 0.78 4.847e-1 0.75

160 1.785e-1 0.86 2.067e-1 1.08 2.323e-1 1.06

320 1.015e-1 0.81 1.216e-1 0.77 1.279e-1 0.86

640 5.555e-2 0.87 6.225e-2 0.97 6.549e-2 0.97

and turbulent flow computations.

The numerical performance of the proposed method as well as the impact of

the filter is assessed by extensive benchmark tests. In particular, we verify the

theoretical order of accuracy by solving smooth problems governed by either lin-

ear advection equations or the nonlinear system of Euler equations, with periodic

boundary condition, Dirichlet boundary condition, or wall boundary condition in

the case of Euler equations. In these accuracy tests, we also show that the filter

does not affect the formal order of accuracy of the method. Next, we apply CHVM

to solve benchmark nonlinear problems with discontinuities, including the devel-

opment of N-wave by the scalar Burgers’ equation and the Sod and Lax shock tube

tests governed by the Euler equations; and it is shown that the low-pass filter sig-

nificantly reduce the impact of Gibbs type oscillation near discontinuities. Finally,

CHVM is shown to compute much more accurate solution than the second-order

MUSCL scheme in solving the interaction between a Mach 2 shock wave and a

smooth flow with small-scale density disturbances.
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Figure 4.9: Comparison of ρ computed by CHVM (200 cells) and MUSCL (200 cells, 400 cells)

against a reference solution.
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Appendix A. An L-stable five-stage and fifth-order DIRK method

We review the time-integrator that is used in the numerical examples of this

paper. To fix the idea, let us consider integrating the ODE system:

w′ = F (w, t) , (A.1)

where w(t) is the solution vector at time t and F (w, t) is obtained from the semi-

discretization. For example, corresponding to the ODE system (2.14) we have:

w =

[

u

u

]

and F (w, t) = −c

h

[

0 A

P −1Q P −1R

]

w .

The purpose is to integration (A.1) from time tn to tn+1 = tn + ∆t, or updating the

discrete solutions from wn to wn+1.

The DIRK5 method is a five-stage, fifth-order, L-stable, and stiffly-accurate

scheme [12, Table 24] that first computes the intermediate solutions w(k), 1 ≤ k ≤
5, such that:

w(k) = wn +

k
∑

l=1

akl∆tF (w(l), tn + cl∆t) , 1 ≤ k ≤ 5 ,
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and then compute wn+1 by:

wn+1 = wn +

5
∑

k=1

bk∆tF (w(k), tn + ck∆t) . (A.2)

The values of akl, bk, and ck are summarized by the classical Butcher tableau in

Table A.10. In particular, the left-most column contains the values ck, 1 ≤ k ≤ 5

from top to bottom; the bottom row provides bl, 1 ≤ l ≤ 5 from left to right; and

the upper-right block contains akl, 1 ≤ l ≤ k ≤ 5, where k and l are the row number

and column number, respectively.

Table A.10: The Butcher tableau for the DIRK5 method.

4024571134387
14474071345096

4024571134387
14474071345096

5555633399575
5431021154178

9365021263232
12572342979331

4024571134387
14474071345096

5255299487392
12852514622453

2144716224527
9320917548702

−397905335951
4008788611757

4024571134387
14474071345096

3
20

−291541413000
6267936762551

226761949132
4473940808273

−1282248297070
9697416712681

4024571134387
14474071345096

10449500210709
14474071345096

−2481679516057
4626464057815

−197112422687
6604378783090

3952887910906
9713059315593

4906835613583
8134926921134

4024571134387
14474071345096

−2522702558582
12162329469185

1018267903655
12907234417901

4542392826351
13702606430957

5001116467727
12224457745473

1509636094297
3891594770934
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