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Abstract

We present a central compact hybrid-variable method (CHVM) with spectral-like
accuracy for first-order hyperbolic problems with moderate or less discontinuities.
It incorporates the compact difference strategy and a recently proposed hybrid-
variable discretization technique to achieve even higher accuracy on a given sten-
cil of grid cells. The CHVM is first constructed for the one-dimensional (1D)
model linear advection equations, in which case the accuracy and stability analysis
are conducted; then it is extended to 1D nonlinear problems such as the Burgers’
equation and the Euler equations. A novel Gauss-Seidel type low-pass high-order
filter is constructed to suppress spurious oscillations near discontinuities. The
performance of the proposed method is assessed by extensive benchmark tests.
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1. Introduction

Multi-scale phenomenon plays a crucial role in many physical and engineering
applications such as turbulent flow computations and aeroacoustics. Numerous ef-
forts have been devoted to construct numerical methods that are high accurate in a
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wide spectrum of wavelengths, for example, the methods with so-called spectral-
like accuracy aim at accurately computing waves that are barely resolved by the
mesh grids. A pioneer is the compact difference method proposed in the semi-
nal work by S. K. Lele [1], which constructs finite difference approximations to
one-dimensional hyperbolic problems with spectral-like accuracy. In particular, it
splits the degrees of freedom in its coefficients between two objectives: achiev-
ing a certain formal order of accuracy and obtaining exact wavenumber at certain
pre-selected frequencies in a formal Fourier analysis of the method.

Since then, the compact difference strategy has been adopted in many work to
construct numerical methods with spectral-like accuracy [2, 3, 4, 5, 6, 7], and a
recent one is by Liu et al. [8, 9]. This method differs from others in that it employs
two types of unknowns per mesh cell, with one approximating grid-point values
and the other one approximating the solution at cell centroids. Consequently, all
degrees of freedom can be utilized to achieve the optimal order of accuracy and the
resulting method shows good ability of computing the smallest wavelength that is
resolvable by the computational grid. Like any other central methods, the compact
scheme proposed by Liu et al. relies on the exact cancellation of Taylor series
expansion terms of the numerical solutions in a centered stencil on a uniform grid;
if the mesh is irregular, one expects the formal order of accuracy to be decreased.

In this work, we propose a central compact method that incorporates a recently
developed superconvergent hybrid-variable (HV) discretization framework [10,
11], as a first step to build numerical method with spectral-like accuracy that is
suitable for both uniform and non-uniform computational grids. Following the
HV framework, we employ two types of variables: one approximates the nodal
solutions at grid points and the other one approximates the averaged solutions for
each mesh cell. Therefore, this method shares similar spectral property as the
method by Liu et al., see also the formal Fourier analysis in Section 2.5. Unlike
the other work, however, it is proved in [11] that approximating both nodal values
and cell-averaged values lead to an inherent superconvergence property that is not
possessed by any method that only takes nodal approximations; and such super-
convergence is independent of the mesh uniformity, see for example its numerical
examples on two-dimensional triangular grids in [10].

To this end, combining the compact difference strategy and the HV framework
is a natural next step of constructing high-order and spectral-like accurate method
for general grids and we name it the central compact hybrid-variable method or
CHVM for short. In this work, we focus on the preliminary study of CHVM by
limiting ourselves to one-dimensional problems and we construct optimally sixth-
order accurate method using the smallest grid stencil containing two neighboring
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cells at each grid point. Furthermore, we shall assume uniform grids throughout
the paper for simpler accuracy and stability analysis hence superconvergence will
not be observed (see the analysis in [11]). Formal analysis on non-uniform grids
and the superconvergence behavior will be presented in future work.

The rest of the paper is organized as follows. In Section 2, the construction of
the compact hybrid-variable scheme is detailed for 1D advection equations with
various boundary conditions. This section also contains the formal accuracy and
stability analyses of the proposed method. Extension to nonlinear scalar problems
and systems is provided in Section 3, demonstrated by its application to solve the
Burgers’ equation and the Euler equations. Since discontinuities generally appear
for nonlinear hyperbolic problems even when the initial data is smooth, we also
construct a Gauss-Seidel type low-pass filter to effectively remove node-to-node
oscillations in this section. The numerical performance of the proposed method is
assessed in Section 4, and lastly Section 5 concludes this paper.

2. A compact hybrid-variable method for 1D advection equations

In this work we focus on the 1D hyperbolic system:

0_u+ Of(u) _
ot ox

0, (2.1)

where w is a vector-valued function in R and f : RY — R¢ is a smooth flux
function. For the construction of the new method, we assume that u has sufficient
regularity so that all required spatial derivatives exist. In this section, we focus on
the model linear advection equation:

ou  Ou
- + c— = 0 , 2.2
ot Ox 2-2)
where ¢ is the constant advection velocity; and then we extend the method to
nonlinear scalar equations and systems in Section 3.

2.1. A brief review of the hybrid-variable (HV) discretization strategy

To simplify the situation, in Sections 2.1-2.3 we consider the Cauchy problem
of (2.2) that is defined on the closed interval x € [0, 1] with appropriate initial
condition and the periodic boundary condition u(0, ) = u(1, ). The computational
domain is divided uniformly into N cells [jh, (j + 1)h], j = 0,--- ,N — 1, where
h = 1/N is the cell size. The cell faces and the cell centers are denoted x; = jh
and x;,1/2 = (j + 1/2)h, respectively. In the HV discretization framework, instead
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of searching for only the nodal approximations (as in finite difference methods)
or only the cell-averaged approximations (as in finite volume methods), we seek
both approximations and evolve them in time. In particular, the semi-discretized
variables are denoted:

(j+1)h
ui(t) ~ u(x;, 1), uj1p() = ;lf u(x,ndx , (2.3)
jh

for the nodal and cell-averaged approximations, respectively.
To derive the semi-discretized equations for the cell-averaged variables, we
integrate (2.2) over [ jh, (j + 1)h] to obtain:

dujp 1
;—; + 7 [Cuj+1 — cuj] =0, (2.4a)
where the dependence on 7 is suppressed for simplicity. Similarly, the semi-

discretized equation for the nodal variables is:

du.,-
o +c[Du]; =0, (2.4b)
where [D,u]; approximates u.(x;, 1) that characterizes the HV method.
In previous work [11], the hybrid-variable discrete differential operator (HV-
DDO) [D,]; is constructed explicitly as a linear combination of close-by solutions.
For example, a first-order upwind HV-DDO is given by:

%(uj - ﬁj_l/g) ifc>0

[D,ul; = { . (2.5)

2 —_ .
;l(ujﬂ/z—uj) ifc<O

In this work, however, we seek implicit construction of these operators following
the compact difference strategy first proposed by Lele [1] in the context of finite
difference approximation to acoustic problems, which is reviewed next.

2.2. A brief review of the central compact difference schemes

In the context of finite difference methods (hence we only consider u; for the
moment), one finds the approximations D,u; ~ u(x;) (we do not use the brackets
to distinguish it from the HV-DDOs), such that for a given stencil s > 0 and Vj:

1
Z Dt jy = A Z,Bkuj+k , (2.6)
i



where a is normalized to 1 and the coefficients a; and §; are constructed so that
a target number of leading terms in the Taylor series expansions about x; of:

N 1 N
Z apu(xjy)  and A Zﬁku(x,~+k) (2.7)

k=—s k=-s

are matched, and the rest of degrees of freedom is usually utilized to make sure the
numerical wavenumber equals the exact one at certain pre-selected frequencies in
a formal Fourier analysis, see also the discussion in Section 2.5.

For example, using three grid points (s = 1) and aiming at optimal order of
accuracy, the resulting compact discretization formula is given by:

1
4

1 3 3 .
Z)xl/tj_] + Dxbtj + Zﬂxuﬁ,] = _Euj_l + Eujﬂ , VJ , (28)
which leads to a linear system of all approximations D.u;. The coefficients in
(2.8) are computed to match the four leading terms in the Taylor series expansions

of (2.7), or alternatively:

1 1 3 3 .
Zux(xj—l) + u (x;) + Zux(xjH) = —Eu(xj—l) + Eu(xjﬂ) +O(hY), Vj

for sufficiently smooth u.

2.3. A sixth-order accurate compact hybrid-variable method (CHVM)

Combining the two strategies, given a stencil s > 0 we seek a formula that is
similar to (2.6) but uses both u; and u;,,, on the right hand side. In this paper,
we consider the smallest stencil possible, i.e., s = 1, and will see that the CHVM
strategy gives rise to a sixth-order method (c.f., fourth-order by (2.8)). To this
end, the HV-DDOs are constructed by:

1 _ _
a[D,ulj 1 +[Dulj+a[Duljyy = 7 [—,Buj—l —YUj_172 T YUjr12 +,3Mj+1] , (2.9)

where the symmetry of the coefficients come form the central nature of the oper-
ator and a uniform grid, and the coeflicients a, 3, y are computed such that:

@i (xj-1) + ux(x)) + au(xji)

= ~Puty - % f Y udx + f " uodx + Putxson) + 009, (210

2
Xj-1 h Xj



for some integer p as large as possible.

For simplicity, we write u(x;), u,(x;), u(x;) as u, u,, u®, etc.; that is, u®
denotes the k™ derivative of u for k > 2. Then the Taylor series expansions of the
terms in the left hand side of (2.10) are:

uy(X;) = uy,
u(xj 1) + u(xjs1) = 2u, + hu® + 1—12h4u(5) +0(h);
and that of the nodal values in the right hand side are given by:
u(xje1) — u(xjoy) = 2hu, + %h3u(3) + 6—10h5u<5> +O(h"),

whereas in the case of the cell-averaged values we have:

lf (0d —1f0< +9)d
hx ulx x—h _hux] S)as

Jj-1

1 1 1 1 1 1
=— f (u + su, + Eszu(z) +=52u® + —s*u® + —u® + —5u® + o)) ds

hJy 6 24 120 720
i Shuy s T - L e L - Lo L g0 Oo(h")
2776 24 120 720 5040 ’

and a similar formula for } [ "' u(x)dx, which eventually gives:

1 (9 1 (Y 1 1
7 jx; u(x)dx — A f u(x)dx = hu, + ﬁh3u(3) + %hsu(s) + O .

Xj-1
Plugging them into (2.10) results in a linear system for «, 5, and 7y:
1 1

1
LR Ea—@f”“%)’,
with the leading error O(h®), i.e., p = 6. Solving the linear system gives:

1 9

1
1+2a=28+7y, a:§ﬁ+

a:—g, B:—g, vy=3. (2.11)
Denoting the solution vectors as well as the vector of the HV-DDOs by:
Ui U [D.ul
a=| L a=| "L a=| P e
Un-1/2 UN-1 (D uly_y



where uy and [D,u]y are omitted in w and d, respectively, due to the periodic
boundary conditions; we thus have:

Pd = 1Qﬂ + lRu , (2.13)
h h

with P, @, and R being circulant matrices: P = circy(l, @, 0, ---, 0, @), Q =
circy(y, 0, ---, 0, —y), and R = circy(0, 5, 0, ---, 0, —B8). Here we use the no-
tation circy(co, ¢, ---, cy-1) to designate the matrix C' = [c;;]nxn, Whose entries
are given by ¢;; = ¢(j—iymod n)-

It is easy to see that P is non-singular for all N, hence we can write the semi-
discretization (2.4) as a system of ODEs in the matrix form:

d|u c 0 A u 0
1 P | B
where A = circy(-1, 1, 0, ---, 0).
In this work, the ODE system (2.14) is integrated by the five-stage, fifth-order,
L-stable, and stiffly-accurate Diagonally Implicit Runge-Kutta method [12, Table

24], denoted hereafter by DIRKS in the rest of the paper. The details of DIRKS
are provided in Appendix A.

2.4. Accuracy analysis

Here we show that the method given by (2.14) is formally sixth-order accurate
in space. The standard von Neumann analysis is utilized for this purpose, that is,
we assume the initial condition is given by a simple wave:

u(x,0) = e, (2.15)
where « is an arbitrary constant wavenumber; then the exact solution is given by

u(x, ) = =" and the exact nodal and cell-averaged solutions (designated by a
superscript *) are:

—ickt
. iio _ e i 1)0 iio
@m:emw,zamm:—?@W”—w), (2.16)

with 8 = kh being the scaled wavenumber. It is not difficult to see that the solutions
to the ODE system (2.4) as well as [D,u] can be written as:

A 1, .. . i6 .
ui() = N, i1 0(0) = A= (e — &), [Dyul; = D", (2.17)
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where the multipliers N(¢), A(¢), and D(¢) satisfy:

A'(t) +ickN(t) =0, (2.18a)
N'(t) + ickD(t) = 0, (2.18b)

i0D(1)(1 + e + ae™) = BN(1)(e” — ™) + %A(z)(eie —-2+e¢ . (2.18¢)

Plugging (2.18c) into (2.18b) gives a system of two ODEs for A(7) and N(¢):

0 1
2y(1—cos ) 2Bsiné H ;\‘,E?) ] = [ 8 ] . (2.19)

2(1+2acosf)  O(1+2a cosb)

d [ A(t)

Denoting the coefficient matrix in the left hand side by C(6), the next step is to
compute its two eigenvalues so that the solutions to (2.19) can be derived. Indeed,
the eigenvalues A, , of C(6) are the roots of:

2 2Bsin 6 B 2y(1 — cos ) _
0(1 + 2a cos 0) 0%(1 + 2a cos 0)

2

or equivalently:

_ PBsinf+ VA

=L = A=p%sin? 0+ 2y(1 —cosO)(1 +2 0. (220
6(1 + 2a cos 6) psin y(1 —cosO)(1 +2acosf) . (2.20)

Aip

To proceed, the terms in A are reorganized:

ind _ 1—cosd
A = *sin® 0 + 2y(1 — cos 6) [Zﬁ% + 2)/% + AN
2y(1 = cos )\’
— (Bsin6 + W) +29(1 = cos A,
ing _ 1—cosd 1.1 1
whereA'=1+2acose—2ﬁSIE _2y HCZOS = 1- (1= 56+ 26"
9 1 1 11 1
2120t — Y —6(= — — 4y — 6y — 6y
+4( 6e+1209) 6(2 249 +72004)+0(9) 0(6%)
Hence:
2y(1 = cos §)\ 2y(1 — cos @
A:(Bsin9+ W) + 06" = VA = gsing+ XL | o,



where we used the fact that Ssin 6 + M = (15/8)0 + O(6*). Without loss of

generality, we may choose the branches of VA properly and plug them into (2.20)
and obtain:

1 . . 2y(1 — cos 0) 7
A= ——— 0 0+ —— +0(0
1 O(1 + 2a cos 0) (ﬂ SInG +fsinf+ + o)
—%95in6’+6(1 —cos ) p 6
= ; +0°) =1+ 00", (2.21)
6*(1 — ; cos 6)
1 ) . 2y(1 — cos ) -
h=—"7-——+— 0 — - —+0(0
2 60(1 + 2a cos 6) (ﬁ Sinf = fsin +0@)
2y(1 — 0
YA=c0s0) o) = -4 + 06" . (2.22)

- _92(1 + 2a cos 6)
Thus the solutions to (2.19) are:

L-1 1-A .
A(l’) = z—e_lc’(/llt + 1 e—lCK/lzt
-4 A= A

— [1 + 0(96)]€—iCKl(1+0(96)) + 0(66)€—iCKt(—4+0(96)) — e—iCKt + 0(66) ,
and similarly:

_ (A — 1)e_ic,<,1][ " (1 - /ll)e—icwlzt —

N@) = et 4 0(6°) .
(1) R ) e 6

In comparison with the exact solutions (2.16), we conclude that the proposed cen-
tral CHVM is formally sixth-order accurate in space.

2.5. Spectral-like accuracy

While there is no unambiguous definition of “spectral-like” accuracy in the lit-
erature, it usually refers to a scenario in which that the scaled modified wavenum-
ber & = «’h remains almost on top of the scaled wavenumber § = xh when 6
gets close to m, that is, when each wavelength is resolved by exactly two mesh
cells. In the original work by Lele [1], this is achieved by tuning the parameters
in (2.6) such that in addition to the fourth-order accuracy, 8'(8) = 6 is enforced at
0 =2.2,2.3,2.4; whereas in the recent work by Liu et al. [8] as well as in present
work, spectral-like accuracy is mainly due to using more unknowns per mesh cell
and higher-order of accuracy in space.

Computing the scaled modified wavenumber for CHVM is a little tricky as
it involves taking the Fourier transforms of the integral of a function. To this

9



end, let us ignore the time abscissa and consider a generic function u(x) and its
anti-derivative U(x) = fox u(y)dy. Then the cell-averaged value can be written
Ujrip = (U(xjs1) — U(x)))/h. Let us denote the Fourier transform of a scalar
function u by ¥ (u) as usual:

F(u)(x) = \/% f w0 dx .
JT —00

then it is elementary to have:
F(uy) = ikF (u) . (2.23)
Now computing a function [D,u] ~ u, by (2.9) and replacing x; by x, one has:
a[D.ul(x = h) + [Dul(x) + a[D,ul(x + h)
1

= - |-Butx—h) - %(U(x) —U(x-h)) + %(U(x +h) = Ux) + Bu(x + h)|.

Taking the Fourier transform on both sides and realizing that:
1
u=U, = FWU)= ;{T(u) ,

one obtains:

|1 +ate™ + )| F (D)) = % Ble™" — e + ith(e"Kh —2+ e Fu) .

Hence ¥ ([D,u]) = ik’F (u), where «’ is the modified wave number given by:

o = 12Bsin(kh) + 2y(1 — cos(kh))/(kh)

, 2.24
h 1 + 2a cos(kh) ( )
or in terms of scaled modified wavenumber:

g = 2Bsinf + 2y(1 —cos6)/0 . (2.25)

1+2acos@

In Figure 2.1, (2.25) is compared to the scaled modified wavenumber of sev-
eral central methods. Particularly, we select methods that are comparable to (2.9)
in either the grid-stencil' or the number of terms in both hand sides®. The methods

IThat is, no more than two cells for a method centered at x;.
Three terms in the left-hand side and four terms in the right hand side.
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Table 1: Coefficients of different schemes

Scheme a b c a B Order

SPS 2 0 0 : 0 4

CTS u : 0 : 0 4

LSPS 1302 0.993 0.037 0.577 0.089 10

ccste L - 0 -1 0 6
61 2 3

ccs-18 2 -4 -2 -3 0 8

sharing the same grid stencil are Standard Padé Scheme (SPS) and Compact Tridi-
agonal Scheme (CTS) from [13, Page 538]. The method that shares a similar num-
ber of terms is the sixth-order Compact Central Scheme (CCS-T6) by Liu et al. [8,
Table 2]. In addition, we hand pick two methods that in our opinion have com-
parable spectral properties as CHVM, namely Lele’s Spectral-like Pentadiagonal
Scheme (LSPS) [1, Eq. (3.1.6)] and the eighth-order Compact Central Scheme
(CCS-T8) [8, Table 2]. These two methods, however, require a larger stencil than
CHVM and thus more computationally expensive. The modified wavenumber of
these methods are listed below:

e Modified wavenumber for SPS, CTS and LSPS.
_asin(8) + (b/2) sin(20) + (c/3) sin(36)

o 2.26
1 +2a cos(8) + 2B cos(26) ( )

e Modified wavenumber for CCS-T6 and CCS-T8.
g = a sin(0/2) + (b/2) sin(8) + (c¢/3) sin(36/2) 2.27)

1 +2a cos(0) + 2B cos(26)

where the coefficients and the order of each scheme is summarized in Table 1.

Figure 2.1 shows that the modified wavenumber of CHVM has better reso-
lution than SPS, CTS, LSPS, CCS-T6; whereas CCS-T8 achieved slightly better
resolution than CHVM, with a larger stencil and thus higher computational cost
comparing to the latter.

2.6. Stability analysis

In this part, we first prove the stability of the ODE system (2.14) and then
discuss the stability of the fully-discretized methods. To this end, let us define the
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Figure 2.1: Modified wavenumber of CHVM and comparison with other compact methods.

shifting matrix S = circy(0, 1, 0, ---, 0) and write the coeflicients of (2.14) as:
A=S-1I, P=I+aS+aS", Q=yI-yS', R=pBS-BS", (2.28)

where I is the N X N identity matrix and S’ is the transpose of .S it is not difficult
to check that S = S~'. The stability result for the semi-discretized system is
demonstrated by the next theorem, where we extend the discussion to complex
vectors as customary in numerical stability analysis.

Theorem 2.1. There exists a symmetric positive definite matrix H € R*V?N_ such

that the H -norm of the solution w = [u' u']’ of (2.14), i.e. ||'w||%q = w' Hw where
the overline denotes complex conjugate, is preserved for all t > 0. Furthermore,
there exists a Ay > 0 that is independent of N, such that ||w||g > Ao ||w|| for all
w € R*V,

Proof. Let us define:

I 0

0 P (2.29)

H = [ P'Q P'R

] and D = [ 0 A ] ,
then it is clear H is symmetric and (2.14) simplifies to:

dw _ ¢
dt  h



Using (2.28) we have:

def 0 S—-1
M_HD_[I_S, (ﬁ/y)(S—S’)]’ (2.30)
which is clearly skew-symmetric. To this end:
d dw)\' o [dw c_ c_
- w3y = (E) Hw+wH (E) = —Ew’D’H’w - Zw’HDw

= _%w(Mf +Mw=0.

It remains to show that H is positive definite and uniformly bounded away from
zero for all N. Indeed, y~' P is a circulant matrix, whose eigenvalues are:

1 1 1 k 1
“{1+2acos ——| = = [1 - ~ cos —= >—, 1<k<N.
vy N+1 3 4 N +1 4
Hence we can choose 1y = 1/2 and complete the proof. O

As a direct consequence, all eigenvalues of the coefficient matrix D are pure
imaginary. Indeed, let A be an eigenvalue of D and w, be a non-zero (possi-
bly complex) eigenvector, then the solution of the ODE system with the initial
data w(f) = wy is w(t) = eYwy. Hence following the theorem, ||w(t)||il =
e?Redt ||'w0||i, is independent of ¢. Since the H-norm of the non-zero vector wj is
not zero, we must have Red = 0.

Similarly, D must be diagonalizable for if not, there exists an eigenvalue A of
D and two non-zero vectors w; and w,, such that:

le = Aw, , D’LU2 = Adw;, + w; .

Hence the solution corresponding to the initial data w, is given by w(f) = eY(w,+
tw)). Thus d(|w(t)|[3;)/dt = 0 requires w) Hw, = 0 and w,Hw, = 0; but the
former contradicts the condition that w; # 0 and H is symmetric positive definite.

Because D is diagonalizable with only pure imaginary eigenvalues, we can
easily verify the stability of a fully-discretized method that combines the ODE
system (2.14) and any ODE solver whose stability region contains the entire imag-
inary axis (such as the A-stable methods).
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2.7. Treatment of incoming flow boundaries

In the case of non-periodic boundary conditions, the formula (2.9) remains
valid for computing interior derivatives, i.e., | < j < N — 1; and we need two
additional equations to determine all discrete derivatives [D,u];, 0 < j < N. To
this end, we consider biased stencils at both ends and write:

1 _
[Dsulo + /[ Dyt = |Bouo + 2 + Bl | (2.31)

at the left boundary and:

1 _
&' [Dyuly-y + [Dyuly = A 8" un-1 + ¥ un-1/2 + Boun] (2.32)

at the right boundary. The coefficients are again obtained by matching the leading
coeflicients of the Taylor series expansions and we have:

ad=-1, ph=-6, y'=12, pi=-6, (2.33)

and
o =-1, pB,=6, y=-12, B,=6, (2.34)

so that (2.31) and (2.32) are O(h*) when the discrete approximations are replaced
by exact values. The formula (2.31) and (2.32) are the foundation to imposing
incoming flow boundary conditions. To fix the idea, let us suppose ¢ > 0 and
consider the initial boundary value problem (IBVP) given as below:

Lpe=0, (x, ) €[0, 11x [0, T],
u(x,0) = upm(x), x€[0, 1], , (2.35)
u(0,1) =g, tel0,T].

where T > 0 denotes the terminal time and u;,;; and g are prescribed initial con-
dition and boundary condition, respectively. The boundary condition at x = 0 is
then enforced by setting uy(f) = g(¢) and taking it into account while constructing
[D,u]p and [D,u];. To this end, we denote (c.f., (2.12)):

ﬁl/z Uy [D.ul
u u [D.u]

a=| |, w=| |, d=| ], (2.36)
ﬁN—l/Z Un [Z)xu]N



which are then related by:
1 1 t
Pd=Qu+ - Ru+ g;l—) LetV Tl — gel*y (2.37)

where e?” denotes the j™ unit vector in R¥, and the coefficient matrices P €
R(N+l)><(N+l), Q c R(N+l)><N, and R € R(N+1)><N are:

Lo 00 (v 0 -+ 0 0] 110-~ 00
ol -0 -y vy 00 0p8 00
0o 1 a Do el el Do e el
00 a1 00 --—yy 00---0 B

000 00 B Bl

(2.38)
To this end, the resulting ODE system reads:

i u +£ 0 A u :Cg(t) eIIV (2.39)
dt|u| h|SP'QSP'R||u h | SP'(-Bel™ +pel |

2
where A € RV and § € RVWV+D are given by:

10---00 010---00
-11---00 001---00
A= -0, S=)r (2.40)
00---10 000---10
00----11 000---01

The incoming flow boundary condition at the right boundary in the case ¢ < 0 can
be enforced similarly.

At the end of this section, we numerically verify the stability of the method
with previous boundary treatments. In particular, the eigenvalues of [ sp Qs o R]
in the case N = 1000 are plotted in Figure 2.2. One observes that all eigenvalues
are on the closed right complex plane thus the ODE system (2.39) is stable.

3. Extension to 1D nonlinear problems

In this section we provide the key ingredients extending CHVM to the general
1D problem (2.1), repeated here for convenience:

ou N Of(u) _
o ox
as well as a Gauss-Seidel type low-pass filtering scheme to remove spurious os-

cillations near strong discontinuities.

0, (3.1)
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Figure 2.2: The eigenvalues of the matrix in the left hand side of (2.39) when N = 1000.

3.1. The CHVM: Semi-discretization in space

Denoting the nodal approximations and the cell-averaged approximations by
u; and uj,,,, the spatial discretization of CHVM gives rise to the ODE system:

du;, 1
u;tl/z . [f(uj+1) _ f(u.,-)] -0, (3.2a)
a0, a2

where j(u) Caap f(uw)/ou € R is the Jacobian matrix of the flux function.
Assume periodic boundary condition for simplicity, the HV-DDOs [D,u];, 0 <

Jj < N — 1 are obtained by a similar formula to (2.13). For later uses, we shall de-

note the entries of the matrices by P~'Q = [gi;lo<i j<v-1 and P™' R = [r;;]o<i jen-1-

3.2. Newton-Raphson method for CHVM with DIRK time-integrators

Using the notation from Section 2.6, we denote the solution vector by w and

write (3.2) compactly as: p

w

o F(w, 1), (3.3)
where the generic dependence in ¢ is added to account for potential inclusion of
terms due to boundary data. Combining (3.3) with an implicit time-integrator
requires solving nonlinear systems; and we derive the details in the case of Di-
agonally Implicit Runge-Kutta (DIRK) methods here. Let the Butcher tableau of
a chosen DIRK be given in Table 2. Following the notation of Appendix A, the

k"-stage solution w®, 1 < k < s are computed consecutively by:

w® = 20 4 g AtF(w®, 1, + i AY) (3.4)
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Table 2: The Butcher tableau of a DIRK method.

Cc1|ar 0O ---0
colazy axp -+ 0
Cs|ls) Qg+ gy

b, by --- b,

where 20 = w" + 3, auAtF(w", t, + ¢;At) is known while computing w®.

Each (3.4) is a nonlinear system that is solved by the Newton-Raphson method.
Note that the Jacobian matrix involved in the Newton iterations can easily be as-
sembled from the flux Jacobian j(u), as described briefly below. Rewriting (3.4)
as finding the zero of .% (w) = 0, where:

Fw) Z w— 20 _ g AtF(w, t, + ;A ; (3.5)

then the Jacobian of .% is given by 0.7 /0w = I — ayAtd (w, t, + ¢ At).

To demonstrate the assembly of .J, let us assume periodic boundary conditions
and write w = [W), -+ Uy_,, w) - uh ] € R* as before. Then J €
R2Ndx2Nd hag the block structure:

1 0 Jcn
J = ‘E[ T Tun ] ’ G0

where each block is Nd X Nd as given below.
Writing j(u;) as j; for simplicity, then J,, and J,. are given by:

-Jo 1 - O 0
0 -g1--- O 0 qooJo “** qoN-1JN-1
Jo=| ¢ o s ga=] : ER)
0 0 - —Jnv2 Jn qn-10J0 *** gN-1.N-1IN-1
Jo 0 -+ 0 =gy

for g;; see the end of Section 3.1. Computing J,, is slightly more complicated as
J(u) is generally nonlinear:

. . 93
r00Jo -+ ToN-1JN-1 280 Doy 0

Jun = +h : ..
rN-10J0 " TN-1.N-1JN-1 0 co HOND  D ]y

(3.8)
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Here e : o denotes the contraction between the last index of a third-order tensor
and a vector.

Remark. Modification for the case of Dirichlet boundary condition, such as
up(t) = g(r) at the left boundary, is straightforward. To begin, we replace the
corresponding d entries of the nonlinear function .% with wy — g(t, + ¢ At). To
implement the matrix J, we first replace the constants g;; of J,, in (3.7) and r;; of
J,, in (3.8) by the entries of SP~'Q and SP~' R, respectively, see (2.39); next
the rows corresponding to u are zeroed out.

For nonlinear systems, occasionally only part of or a combination of u is
enforced at a boundary, depending on the directions of the characteristics; we
shall demonstrate the treatment of such boundaries in Section 3.3.2.

Lastly, as we adopt an L-stable time-integrators in this work, the stability of
the method does not dependent on the size of At, at least in the linear case. Nev-
ertheless, we quantify the time-step size as usual using the Courant number:

acnh
At = — , : (3.9)
max (max j Amax(J (W j112)), Max; Amax (7 (w))), 6)

where A« denotes the largest absolute value of all eigenvalues of a matrix, a.q
is a user specified parameter, and & > 0 is a very small number that prevents
division-by-zero.

3.3. Examples of nonlinear problems and boundary conditions

We illustrate CHVM for nonlinear equations with two examples in this section
as well as the incorporation of various boundary conditions.

3.3.1. The Burgers’ equation
The scalar Burgers’ equation is given by:

E+8x

ou 0 (1
2

—uz) =0, (x,0el0, 1]1x]0, T]. (3.10)

Hence following the general notations given earlier:
9jw) _
ou

Enforcing the Dirichlet boundary condition follows the same procedure as de-
scribed in the remark near the end of Section 3.2.

1
d=1, fu)= Euz , o Jw) =u, L, Amax(j(0) = |ul
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3.3.2. The Euler equations
A model equation for nonlinear system of conservation laws is given by the
Euler equations that describes the dynamics of inviscid compressible fluids:

Y pv
u=|pv|, fw=| p’+p |, (3.11)
E (E + p)yv

where p, v, E, and p are density, velocity, total energy density, and pressure,
respectively. The system (3.11) has one more unknown than equations, and it is
closed by the ideal gas equation of state:

p= - 1pe, (3.12)

with y being the constant specific heat capacity ratio and e = (E — pv*/2)/p the
specific internal energy density. We take y = 1.4 throughout the remainder of the
paper. The flux Jacobian matrix and its largest eigenvalue are thus given by:

0 1 0
j(u) = 132 G-yv  y=1|, lmG@) =P +cs,

y=1.3 Etp Etp 2
Svi-ve_s =y =Dyt oy

where c; = /yp/p is the speed of sound.
For non-periodic boundary conditions, it is usually the case that only part or a

combination of the boundary data is enforced, and we demonstrate the procedure
here using the example of a wall boundary condition at the left end point:

w0, 1) =0. (3.13)

In this case, we set the second entry (momentum) of u, to zero; and to this end
will first construct J as described in the remark near the end of Section 3.2 and
then zero out the row corresponding to the momentum of the first nodal value uy.

3.4. A Gauss-Seidel type low-pass filter

It is well-known that discontinuity generally occurs in finite time for nonlinear
conservation laws, even if the initial data is smooth. In this section, we describe
a Gauss-Seidel type low-pass filter for hybrid data. To this end, let us denote the
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filtered cell-average solutions and nodal solutions for a scalar problem? by u +1)2
and #1;, respectively, then the Gauss-Seidel filter is given in matrix form by:

Ml,cc 0 ﬁ Mr cc 0 u
[Ml,nc Ml,nn:| |:ﬁ/:| [Mrm Mrnn] [ ] ’ (314)
A thorough analysis of low-pass filters for hybrid-data is beyond the scope of this
work; and we will present the result in another paper.

3.4.1. Periodic case

In the case of periodic problems, w and w are given by (2.12) and all rows of
matrices in (3.14) are determined from the filtering formula at local cells or grid
points. Particular for the cell-averages, each row of M,,ccﬁ = M, . u is obtained
from a sixth-order compact-stencil filter that is motivated by Lele [Eqn. (C.2.8)][1]:

3 2 1_ 3, —
M]+1/2 + 5 10 (%‘—3/2 + Mj+5/2) = St + 3 (Mj—l/z + Mj+3/2) +
3 1

0 (Mj 32 + Mj+5/2) 0 (ﬁj—S/z + ﬁj+7/2) ; (3.15)

this is the highest-order that one can achieve with the given stencil. For the nodal
variables, each row of M, ,.u + M;,, 4 = M, u + M,,,u is obtained from a
one-parameter family of optimally eight-order filters*:

A o 2 210/1 -1

uj— 105u (Mj—l/z + Mj+1/2) T (MJ 1t u]+1)
114u -1

> (wjmt +upm)+  (3.16)

251 ,_ _
= (1 -108u)u; - T,u (uj_l/z + uj+1/2) +
25,u

2
where 0 < p < 1/140 is a tunable parameter; generally speaking, the larger the

value of u, the better suppression of high frequencies the filter achieves. In fact,
the transfer function of (3.16) is given by:

(”J 32+ ”J+3/2) 3u (Mj—z + Mj+2) ;

1 — 108y + (114 — 1) cos  — 6u cos 26 — 25388 4 25, Sin2b-sing

7:(9) = sin @
1+ (210u — 1) cos 6 — 210u>3>

(3.17)

3The system case is handled similarly.
4Requiring further accuracy on the same stencil reduces the filter to the identity one.
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Note that ¥ (6) is well-defined for all 0 < 6 < 2, where the range is [0, 27]
instead of [0, x] as in conventional low-pass filters, because there are two degrees
of freedoms per grid cell; and one can easily see ¥ (0) = 1 by the L’Hopital’s rule.
Sample ¥ -curves corresponding to different values of u are given Figure 3.1. We

]
0.8}
0.6}
S
[y
0.4}
—,=1/1000
021 1280
n=1/150
—=1/140
0 1

Figure 3.1: The transfer functions of the filter (3.17) given by different y’s in the range (0, 1/140].

adopt a conservative choice and set ¢ = 1/140 in all numerical tests in this work.

3.4.2. Non-periodic case

In the case of non-periodic boundary conditions, the filters for interior nodes
and cells are the same as before; but modifications are needed near the two bound-
aries. Let us write w = [uyy -+ uy_12]' € RN and w = [up uy -+ uy]’ € RV,
then the dimensions of the matrices in (3.14) are given by:

NXN . N+DxN . N+Dx(N+1
MZ’CC’ MV,CC eR™ ’ Ml,nca Mr,nc € R( Thx 5 M[,nna Mr,nn € R( XN+ .

The strategy in [1] is adopted to construct explicit fifth-order filters near the
boundaries; particularly for the cell-averaged values at the left boundary, the first
three rows of M, .. and M, .. are modified according to:

~ 31_ 5 _ 5 5_ 5 L1 1 (3.18)

u —u iy ) iy —u —u )
112 =35 12+ 322" 1g 52 + gl — 352 + oty

~ 1_ 27 _ 5 5 5 1

U = 252 + 32143/2 + 16”5/2 - 16“7/2 32M9/2 - 32M11/2 , (3.18b)

~ 1 5 11_ 5 5 1

Us/p = 32u1/2 + 32u3/2 + 16”5/2 + 16”7/2 - 32149/2 + 32M11/2 ; (3.18¢)
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the last three rows corresponding to the right boundary are modified symmetri-
cally. A two-step procedure is used to construct the filters at nodes near bound-
aries. Using the left boundary as an example, we first modify the top two rows of
M., M, ,,, M,,., and M, ,, according to:

o9 1. 3 1 3 1 (3.192)
Uy = —U —U — —U u - u u 5 .
07 070 T 3T 5 T3 0 T 30
R 1 ) 19_ 3 1_
u = ——1Ou0 + §u1/2 + gul + %lxtg/z - l—OI/tz + %LlS/z 5 (319b)

which are unique filters that are fifth-order accurate and satisfy Re# (2r) = 0O as
suggested by [14, 15] for non-symmetric filters, given the stencil used.

In the second step, one replace (3.19a) with ity = uy if a Dirichlet boundary
condition is provided at this location. The nodes near the right boundary are
handled symmetrically.

3.4.3. Selection of number of passes

In practice, one typically needs to decide on the number of passes (denoted by
p) of the selected filter, that is, once the filtering matrices in (3.14) are computed,
the filtered values are actually computed as:

@] (Mg o |'[M. 0o \[= (3.20)
'a/ B M[,nc Ml,nn Mr,nc Mr,nn u ' '
In our experience, p = 1 is sufficient for almost all computations unless the grid

is extremely coarse. On the safe side we adopt p = 4 for all examples presented;

note that the additional computational cost is negligible as one can compute the
filtering matrix ([ %j 1\/2 ]_1 [ % zvg ])p once and store it for all later uses.

Remark. Like all linear filters, while our filter is effective in suppressing
node-to-node oscillations it does not remove all spurious oscillations, especially
when an overshoot or undershoot spreads across several cells. Nevertheless, it suf-
fices our purpose for smooth or weakly discontinuous problems, like those in most
acoustics applications. For hyperbolic conservation laws with strong discontinu-
ities, numerous strategies have been proposed in the linterature to remove as much
overshoot/undershoot as possible for a central compact scheme, such as blending
the central differential operator with an upwind one [9] and using a WENO-type
limiter [4, 16].
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4. Numerical examples

In this section we present numerous tests to assess the numerical performance
of the proposed method. Particularly, Section 4.1 focuses on linear advection
problems with various boundary conditions and Section 4.2 concentrates on non-
linear problems including benchmark shock tube tests for the Euler equations as
well as a multi-scale shock/sinusoidal flow interaction problem. The Courant
number a4 = 2.0 is used for all computations unless otherwise noted; to our
experience CHVM with DIRKS is stable with any time step size.

4.1. Linear advection equations

In the first group of tests, we consider the linear advection equation in Sec-
tion 2. Particularly, we verify the order of accuracy of CHVM when the solutions
are smooth. For this purpose, the L;-norm of the numerical errors at the terminal
time ¢t = T is computed as:

N-1

h
h ‘u;fT—uref(xj, T)' + 5 |u71</T_uref(-xN’ T)| ’ (41)

hy,, —
err(u) = 5 | = ttrer (o, T)| +
J=1

N
err(zi) = Z h
j=1

Here £ is the cell size, u. is the reference solution, and ny is the total number of
time steps for the computation reaching t = 7. The reference solution is deter-
mined either analytically or by solving the same problem on a much finer grid.

jh

oy 1
Ui~ g f Urer(x, T)dx

(=Dh

. (4.2)

4.1.1. A Cauchy problem: Fixed Courant number computations

In this test and the next, we solve the advection problem (2.2) with ¢ = 1 on
the domain (x, 7) € [0, 1]X[0, 1], the periodic boundary condition u(0, t) = u(1,1)
for all 0 < ¢ < 1, and a composite wave initial condition:

u(x,0) = sin(2x) + cos(4nx), 0<x<1. (4.3)

The reference solution at 7 = 1 is the same as the initial condition u.¢(x,1) =
u(x,0), which is used to compute the L;-errors reported in Table 3. Here we use a
sequence of six uniform grids with the number of cells ranging from 8 to 256. As
the spatial discretization method (CHVM) is sixth-order accurate and the time-
integrator (DIRKS) is fifth-order, we expect overall fifth-order of convergence,
which is indeed the case whether the filter is applied or not.

23



Table 3: The L;-errors by CHVM with or without the filter to solve a Cauchy problem for advec-
tion equation with fixed Courant number in Section 4.1.1.

CHVM without filter CHVM with filter

N Errorinu Order Errorinu Order Errorinu Order Errorinu Order
8 3.571e-1 2.607e-1 5.318e-1 6.366e-1

16 2.561e-2 3.80 2.685e-2 3.28 1.109e-1 2.26 1.109e-1 2.52
32 1.132e-3  4.50 1.137e-3  4.56 3.582e-3 495 3.535¢-3  4.97
64 3.850e-5 4.88 3.853e-5 4.88 1.124e-4 499 1.119e-4 498
128 1.229e¢-6  4.97 1.229e-6  4.97 3.516e-6 5.00 3.512e-6 4.99
256 3.861e-8 499 3.861e-8 4.99 1.099¢-7  5.00 1.099¢-7  5.00

4.1.2. A Cauchy problem: Fixed time step size computations

In the second test, we consider the same problem as before but fix the time
step size to At = 0.01; to this end the reference solution is computed by using
CHVM without filter on a grid of 1280 uniform cells. Using the same time step
size and the same sequence of grids, the computed L,-errors by CHVM with and
without the filter are reported in Table 4.

Table 4: The L;-errors by CHVM with or without the filter to solve a Cauchy problem for advec-

tion equation with fixed time step size in Section 4.1.2.

CHVM without filter CHVM with filter

N Errorinu Order Errorinu Order Errorinu Order Errorinu Order
8 1.228e-3 1.627e-3 8.063e-1 7.084e-1

16 2.294e-5 5.74 2.506e-5 6.02 5.270e-1 0.61 5.514e-1 0.36
32 3.662e-7 5.97 3.942¢-7 5.99 1.540e-2  5.10 1.557e-2  5.15
64 5.871e-9 5.96 6.109e-9 6.01 2.319e-4  6.05 2.324e-4  6.07
128 9.397e-11 597 9.493e-11 6.01 3.579e-6  6.02 3.580e-6 6.02
256 1.482e-12 5.99 1.483e-12 6.00 5.573e-8 6.00 5.573e-8 6.01

4.1.3. An initial boundary value problem.

The last accuracy test for the advection equation concerns the enforcement of
boundary conditions as well as the boundary filters. Particularly we consider es-
sentially the same problem as before, except that instead of the periodic boundary
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condition we enforce the following Dirichlet condition at the left boundary:
u(0, t) = sin(2xt) + cos(4nt) . 4.4)

The exact solution at 7 = 1 remains the same as the initial condition; and the
L-errors are reported in Table 5 for CHVM both with and without the filters.

Table 5: The L,-errors by CHVM with or without the filter to solve an initial boundary value
problem for the advection equation with fixed Courant number in Section 4.1.3.

CHVM without filter CHVM with filter
N Errorinu Order Errorinu Order Errorinu Order Errorinu Order
8 2.028e-1 1.254e-1 2.690e-1 2.796e-1

16 1.28%-2 398 1.203e-2 3.38 4.742e-2 250 4.874e-2 252
32 5.514e-4 455 5333e-4 4.50 1.771e-3 4774 1.785e-3  4.77
64 1.914e-5 485 1.871e-5 4.83 5.578e-5 499 5570e-5 5.00
128 6.197e-7 495 5.945e-7  4.98 1.620e-6  5.11 1.614e-6 5.11
256 1.939e-8 5.00 1.789%e-8  5.05 5.79%-8 4.80 5.786e-8  4.80

From Tables 3— 5, we verify the numerical order of accuracy of the proposed
method, and observe that the application of filter leads to slightly larger errors but
it does not deteriorate the formal order of accuracy.

4.1.4. Advection of Gaussian, square, sharp triangle, and half ellipse waves

In the last test of linear problems, we consider the advection of an initial wave
that is composed of a smooth but narrow Gaussians, a square wave, a sharp trian-
gle wave, and a half ellipse [17]. The governing equation is again given by (2.2)
with ¢ = 1 on the computational domain —1 < x < 1 and the time interval

t € [0, 8], with the periodic boundary condition and the initial data given below:

1Gpes(0) +4Gp (1) + Gpos(x)| . —08<x<-06;
1, —-04<x<-02;
u(x,0) =1 1-[10(x-0.1)], 0<x<02; , (4.5)
H[Loya-s(x) + 4Lo, o(X) + Lo, ars(®)] , 04 <x<0.6;
0, otherwise .

where G (x) &L 5027 and Le. o(x) &L ymax(1 — a?(x — a)?,0), and the con-

stants are taken as a = 0.5, z = —0.7, § = 0.005, & = 10, and 8 = log(2)/(366).
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Using a uniform grid with 400 cells, the CHVM solutions without and with
the filter are plotted in the left and the right columns of Figure 4.1, respectively.
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(a) Cell-averaged solutions without filter. (b) Cell-averaged solutions with filter.
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(c) Nodal solutions without filter. (d) Nodal solutions with filter.
Figure 4.1: Numerical solutions at T = 8.0 obtained by CHVM to solve (4.5).

We can see that using the filter slightly decreases the magnitudes of the oscilla-
tions in the upstream direction of discontinuities and it produces a more symmetric
profile comparing to the CHVM solution without a filter, particularly as seen in
the local view provided in Figure 4.2.

To compare the performance of CHVM with existing compact schemes, we
solve the same problem with LSPS and CCS-T6 (see Section 2.5) and plot the
numerical solutions in Figure 4.3. A uniform grid with 200 cells are used for all
computations and only nodal values are plotted, that is, cell averages by CHVM
and mid-cell solutions by CCS-T6 are omitted from the figures. Furthermore, all
three methods are used without application of any filter. From the plots, it seems
that all three methods lead to Gibbs type oscillation with similar magnitudes, but
CHVM introduces much less phase error than the others.

A closer investigation of the solutions to the left of the Gaussians (see the
dashed box region of Figure 4.3a as well as Figure 4.4) demonstrates that CHVM
and CCS-T6 provide better stability than LSPS, as the latter causes node-to-node
oscillations in this region.
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Figure 4.2: Local view around the square wave of the CHVM solutions at 7 = 8.0 for (4.5).

4.2. Nonlinear problems

The performance of CHVM for solving nonlinear problems is assessed in this
section and we consider the scalar Burgers’ equation and the system of Euler
equations. In particular, we will verify the order of accuracy for nonlinear systems
and will evaluate the impact of the wall boundary condition on the formal order
of accuracy. Furthermore, since discontinuities generally develop for nonlinear
conservation laws even when the initial data is smooth, we shall illustrate the
necessity of applying the filters by various tests given below.

4.2.1. The Burgers’ equation: Development of an N-wave

First we consider a nonlinear scalar problem governed by the 1D Burgers’
equation (3.10). The computational domain is [0, 1] and the periodic boundary
condition and initial data are given by:

u(0,t) = u(l,1), t>0,
u(x,0) = up(x) = sin(Qrx) + 1, xe|[0, 1].

(4.6)

This problem admits a smooth solution until # = 1/(27) ~ 0.1592, at which mo-
ment a shock wave originates at x = (1 + m)/(2r); the location of the shock wave
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Figure 4.3: Nodal solution comparison among CHVM without filter, LSPS, and CCS-T6 for (4.5).
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Figure 4.4: Local view of the solutions by CHVM without filter, LSPS, and CCS-T6 for (4.5).

att > 1/(2m) is (¢t + 1/2). The numerical solutions are consistent with the analy-
sis; indeed, using a 200-cell grid, the CHVM solutions at 7 = 0.15 (Figures 4.5a
and 4.5b) demonstrate a smooth profile, whereas we start to see the shock wave
development in the solutions at 7 = 0.2 (Figures 4.5¢ and 4.5d) and the formation
of an N-wave is clearly observed at 7 = 1.0 (Figures 4.5¢ and 4.5f), at least when
the filter is applied.

Furthermore, we see from Figure 4.5 that applying the filter or not has almost
negligible impact on the quality of the numerical solutions when the curves are
smooth (7" = 0.15); but not applying the filter leads to inconsistent numerical
solution shortly after the shock develops (I = 0.2) and eventually breaks down
the computation in the long run (7 = 1.0).

4.2.2. The Euler equations: Wave collision with periodic boundary conditions.
Here we consider the nonlinear Euler equations (3.11) with specific heat ratio
v = 1.4 on the computational domain Q = [-2, 2] and periodic boundary condi-
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Figure 4.5: CHVM solutions to the Burgers’ equation in Section 4.2.1 using 200 cells.

tions u(—2, t) = w(2, t) and the following initial data:
p(x,0) =14+ 1.4eB(x),
v(x,0) =0.0, Vx e [-2, 2]. 4.7)
p(x,0) =1+ &B(x),
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Here € = 0.1 and B(x) describes two symmetric bumps and it is given by:

[0 - cos2n(x+0.5)] . ~1.5<x<-05

B() =1 [L(1 —cosa(x-0.5)| , 05<x<15 (4.8)

0.0,

otherwise.

This test is inspired by a similar problem in [18, 19], where we modified the initial
waveform to allow accuracy analysis beyond second-order. Due to the symmetry
of the profiles in B(x), the solution consists of two symmetric waves moving in
opposite directions originating from the bump centered x = —0.5, and two similar
waves originating from the bump centered at x = 0.5. The two outward moving
waves will then run into each other at x = —2 (or equivalently, x = 2) when
T =~ 0.64, see Figures 4.6a and 4.6b; and the two inward moving waves will run
into each other at x = 0 about the same time. Hence we refer to this test as a
“wave collision” problem; and it admits a smooth solution until 7 = 1.2, see
sample solution curves in Figures 4.6c and 4.6d.
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Figure 4.6: CHVM solutions to the wave collision problem in Sections 4.2.2 and 4.2.3.

We compute the numerical solutions using a sequence of five uniform grids
with the number of cells ranging from 40 to 640; and a reference solution is com-
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puted using a finer grid with 2560 cells. All computations are performed with
the filter enabled. Sample solution curves at different times are provided in Fig-
ure 4.6; note that we only plot solutions computed using 80 cells, as the those
computed with 160 cells or more are visually indistinguishable from the refer-
ence curves. To assess the numerical convergence, the L;-errors for the primitive
variables (density, velocity, and pressure) are reported in Table 6. Note that the
numerical error for all nodal variables and the cell-averaged density can be com-
puted using formula that are similar to (4.1) and (4.2), respectively; whereas for
the “cell-averaged” velocity and pressure (denoted v and p for simplicity), they
are first computed from the cell-averaged conservative variables as shown below:

<

—
=2 ﬁ:(y—l)(E—lﬂ), (4.9)
p 2 p

and then compared to the reference values to calculate the numerical errors.

Table 6: The L,-errors by CHVM with filter to solve a smooth wave collision problem with peri-
odic boundary conditions for the Euler equation in Section 4.2.2.

Cell-averaged values

Density Velocity Pressure

N Errorinp Order Errorinv  Order Errorin p  Order

40  2.199e-2 1.127e-2 2.224e-2

80  5.335e-3 2.04 3.264e-3  1.79 4.310e-3  2.37
160 4.426e-4 3.59 2.632e-4  3.63 3.968e-4 344
320 1.929e-5 4.52 1.234e-5 441 1.803e-5 4.46
640 5.937e-7  5.02 3.821e-7 5.01 5.567e-7  5.02

Nodal values

Density Velocity Pressure

N Errorinp  Order Errorinv  Order Errorin p  Order

40  2.617e-2 1.260e-2 2.578e-2

80  5.600e-3  2.22 3.36le-3 191 4.712e-3 245
160 4.533e-4  3.63 2.717e-4  3.63 4.080e-4  3.53
320 1.896e-5 4.58 1.213e-5 4.49 1.770e-5  4.53

640 5.937e-7  5.00 3.822e-7 499 5.567e-7  4.99
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From Table 6 we clearly observe that when the grid is sufficiently refined, the
fifth-order accuracy is obtained as expected and the usage of the filter does not
impact the formal order of accuracy as in the linear case.

4.2.3. The Euler equations: Wave collision with wall boundary conditions.

In the second test for Euler equations, we consider essentially the same test as
in Section 4.2.2, but apply the wall boundary conditions at both x = =2 and x = 2
instead of the periodic boundary condition. Note that due to symmetry, the two
problems are mathematically equivalent to each other, see Figure 4.6; and we use
the same reference solution as before to compute the L;-errors for the primitive
variables and convergence rates, as reported in Table 7. From the table, we see

Table 7: The L;-errors by CHVM with filter to solve a smooth wave collision problem with wall
boundary conditions for the Euler equation in Section 4.2.3.

Cell-averaged values

Density Velocity Pressure

N Errorinp Order Errorinv  Order Errorinp Order

40  2.018e-2 9.776e-3 1.910e-2

80  5.060e-3  2.00 3.010e-3  1.70 4.034e-3 224
160 4.247e-4  3.57 2.537e-4  3.57 3.788e-4 341
320 1.907e-5 448 1.218e-5 4.38 1.780e-5 4.41

640 5.930e-7 5.01 3.816e-7  5.00 5.560e-7  5.00

Nodal values

Density Velocity Pressure

N Errorinp  Order Errorinv  Order Errorin p  Order

40  2.488e-2 1.122e-2 2.315e-2

80  5.308e-3 2.23 3.094e-3  1.86 4.392e-3 240
160 4.353e4 3.61 2.621e-4  3.56 3.897e-4 349
320 1.876e-5 4.54 1.199e-5 445 1.750e-5  4.48
640 5.931e-7 4.98 3.818e-7  4.97 5.560e-7  4.98

that our wall boundary condition enforcement does not affect the formal order of
accuracy of the method.
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4.2.4. The Euler equations: The Sod shock tube problem.

In this example and the next, we consider two Riemann problems for the Euler
equations with moderate discontinuities. The current one is the well-known Sod
shock tube test [20], where we consider the computational domain Q = [-5, 5]
and set the initial data as:

o(x,0)=1.0, p(x,0)=0.125,
v(x,0)0=0.0, xe[-5, 0]; v(x,0) =0.0, x € (0, 5]. (4.10)
p(x,0)=1.0 p(x,0) =0.1

The admissible solution consists of a left-going rarefaction, a middle contact dis-
continuity, and a right-going shock wave. By the termination time 7 = 2.0 neither
the rarefaction nor the shock wave hit the boundaries, thus the Dirichlet boundary
condition is applied at both end points throughout the computations.

In the top row of Figure 4.7, we present the density plots computed by CHVM
with filter on a sequence of four grids with number of cells ranging from 40 to
640, and compare these curves to the exact one. In the bottom row of the same
figure, the zoomed-in plots around the two discontinuities are shown and we ob-
serve the overall convergence of numerical solutions towards the analytical one.
Particularly, the L,-errors are computed as before and reported in Table 8, where
we observe 1st order of convergence as expected due to the discontinuities.

4.2.5. The Euler equations: The Lax shock tube problem.

Next, we consider the Lax shock tube problem [21] that contains a stronger
shock than the previous one. The computational domain is again set to Q =
[-5, 5] and the initial condition is given by:

o(x,0) = 0.445 p(x,0)= 0.5,
v(x,0) = 0.698, xe[-5, 0]; v(x,0)=00, xe(,5]. (411
p(x,0) = 3.528 p(x,0) = 0.571

The problem is solved until 7 = 1.5 with Dirichlet boundary condition applied at
both ends of the domain. In Figure 4.8, the density curves computed by CHVM
on the same sequence of grids are plotted against the exact one, with the top
row and bottom row demonstrating the global view and local view around the
discontinuities, respectively. Finally, the L,-errors are computed and provided in
Table 9, from which we observe the 1st order of convergence as expected.
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Figure 4.7: CHVM solutions (density) to the Sod shock tube problem at 7 = 2.0.

4.2.6. The Euler equations: A small-scale smooth flow interacting with a shock.

Lastly, we consider a model problem for multi-scale shock-turbulence inter-
action, which is motivated by the Shu-Osher test [22, 9]. In particular, a Mach 2
shock wave is moving into a smooth flow field with sinusoidal density disturbance.
The computational domain is Q = [-0.2, 1.8] and the initial data is:

o(x,0) = 3.733333
v(x,0)=1.25,
p(x,0)=4.5

The problem is solved until 7 = 0.79, which allows Dirichlet boundary condition
to be enforced at both ends of  with data given by their initial values.

Since no analytical solution is available, we compute a reference one on a very
fine grid with 12,000 uniform cells using the second-order MUSCL method [23]
built on the Roe flux [24] and the slope limiter by van Albada [25]. In Figure 4.9,
the cell-averaged density computed by CHVM on a uniform 200-cell grid is plot-
ted against the reference one. For comparison, we also plot the MUSCL solutions
using either the same grid as CHVM (i.e., 200 cells) or the same number of un-
knowns as the CHVM computation (i.e., 400 cells). From the plots we see that

__ T+sin(5mx)
p(x,0) = +T ,
v(x,0) =
p(x,0)=1.0

x<0; x>0. (412
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Table 8: The L;-errors by CHVM with filter to solve the Sod shock tube problem in Section 4.2.4.

Cell-averaged values

Density Velocity Pressure

N Errorinp Order Errorinv  Order Errorin p  Order

40 1.328e-1 4.004e-1 1.531e-1

80  7.808e-2  0.77 2.256e-1  0.83 7.509e-2  1.03
160 3917e-2  0.96 1.099e-1  1.04 3.535e-2  1.09
320 2.088e-2  0.90 5.395e-2  1.03 1.722e-2  1.04

640 1.042e-2  1.00 2.775e-2  0.96 8.485e-3  1.02

Nodal values

Density Velocity Pressure

N Errorinp Order Errorinv  Order Errorin p  Order

40 1.436e-1 3.683e-1 1.461e-1

80  8.283e-2 0.79 2.151e-1  0.78 7.310e-2  1.00
160 4.520e-2  0.87 1.264e-1  0.77 3.840e-2  0.93
320 2.38le-2  0.92 6.304e-2  1.00 1.919%-2  1.00
640 1.278e-2  0.90 3.427e-2  0.88 1.013e-2 092

the CHVM solution is almost on top of the reference one in the small-scale post-
shock density disturbances, while the MUSCL solution is much more diffusive at
these locations whether the same grid or the same number of unknowns is used.
The spurious oscillations computed by CHVM near the shock fronts are expected
as our method is linear; suppressing these wiggles would require a nonlinear filter,
which will be left for future investigation.

5. Conclusions

In this work we present a new central compact hybrid-variable method (CHVM)
with spectral-like accuracy for one-dimensional first-order hyperbolic problems
with no more than moderate discontinuities. While we do not foresee any dif-
ficulty extending the methodology to multiple space dimensions, the technical
details and analysis will be left for future work.

The proposed CHVM incorporates the compact difference strategy [1] and a
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Figure 4.8: CHVM solutions (density) to the Lax shock tube problem at 7 = 1.5.

recently developed hybrid-variable discretization framework [11] to achieve the
optimally sixth-order accuracy in space using a small stencil of two neighboring
cells at each grid point. In particular, the numerical solutions approximate both
nodal values and cell-averaged values of the conservative variable and are ad-
vanced in time using method of lines. The spatial discretization of cell-averaged
variables is derived from the weak form of the governing hyperbolic equation
whereas the spatial discretization of nodal variables builds on a discrete approxi-
mation to the nodal derivatives. The discrete nodal derivatives are computed simi-
larly as in the compact difference method and it takes into account of both nearby
nodal and cell-averaged solutions. We proved that the semi-discretized method is
formally sixth-order accurate in space and neutrally stable when it is applied to
linear problems. To this end, we pair the CHVM discretization with an L-stable,
five-stage, and fifth-order accurate diagonally implicit Runge-Kutta method for
integration in time; and the resulting method is unconditionally stable.

As discontinuity usually occurs for nonlinear hyperbolic problems even when
the initial data is smooth, we design a Gauss-Seidel type low-pass filter to remove
node-to-node oscillations. Since the filter is linear, it does not remove spurious
oscillations completely but we demonstrate that it is valuable for problems with no
more than moderate discontinuities, which usually occur in acoustic applications
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Table 9: The L;-errors by CHVM with filter to solve the Lax shock tube problem in Section 4.2.5.

Cell-averaged values

Density Velocity Pressure

N Errorinp Order Errorinv  Order Errorin p  Order

40  4.856e-1 7.501e-1 8.219e-1

80  2.683e-1 0.86 3.933e-1  0.93 4.441e-1  0.89
160 1.455e-1  0.88 1.965e-1  1.00 2.072e-1 1.10
320 9.087e-2  0.68 1.098e-1  0.84 1.227e-1  0.76

640 4.774e-2  0.93 5.64%-2  0.96 6.323e-2  0.96

Nodal values

Density Velocity Pressure

N Errorinp Order Errorinv  Order Errorin p  Order

40  5.401e-1 7.548e-1 8.141e-1

80  3.247e-1  0.73 4.385e-1  0.78 4.847e-1  0.75
160 1.785e-1  0.86 2.067e-1  1.08 2.323e-1  1.06
320 1.015e-1  0.81 1.216e-1  0.77 1.27%-1 0.86
640 5.555e-2  0.87 6.225e-2  0.97 6.54%¢-2  0.97

and turbulent flow computations.

The numerical performance of the proposed method as well as the impact of
the filter is assessed by extensive benchmark tests. In particular, we verify the
theoretical order of accuracy by solving smooth problems governed by either lin-
ear advection equations or the nonlinear system of Euler equations, with periodic
boundary condition, Dirichlet boundary condition, or wall boundary condition in
the case of Euler equations. In these accuracy tests, we also show that the filter
does not affect the formal order of accuracy of the method. Next, we apply CHVM
to solve benchmark nonlinear problems with discontinuities, including the devel-
opment of N-wave by the scalar Burgers’ equation and the Sod and Lax shock tube
tests governed by the Euler equations; and it is shown that the low-pass filter sig-
nificantly reduce the impact of Gibbs type oscillation near discontinuities. Finally,
CHVM is shown to compute much more accurate solution than the second-order
MUSCL scheme in solving the interaction between a Mach 2 shock wave and a
smooth flow with small-scale density disturbances.
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Appendix A. An L-stable five-stage and fifth-order DIRK method

We review the time-integrator that is used in the numerical examples of this
paper. To fix the idea, let us consider integrating the ODE system:

w' =F(w, 1), (A.1)

where w(?) is the solution vector at time # and F'(w, f) is obtained from the semi-
discretization. For example, corresponding to the ODE system (2.14) we have:

u 0 A
w:[Z] and F(w’t):_%[P‘lQ P‘IR]w'

The purpose is to integration (A.1) from time ¢, to t,,; = t, + At, or updating the
discrete solutions from w” to w"*'.

The DIRKS method is a five-stage, fifth-order, L-stable, and stiffly-accurate
scheme [12, Table 24] that first computes the intermediate solutions w®, 1 < k <
5, such that:

k
w® = w" + Z auhtF(w 1, + cAt), 1<k<5,
I=1
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and then compute w"*! by:

5
wn+1 =w" + Z bkAtF(w(k), t, + CkAt) . (A2)

k=1

The values of ay, by, and ¢, are summarized by the classical Butcher tableau in
Table A.10. In particular, the left-most column contains the values ¢;, 1 <k <5
from top to bottom; the bottom row provides b;, 1 <[ < 5 from left to right; and
the upper-right block contains ay;, 1 </ < k <5, where k and / are the row number
and column number, respectively.

Table A.10: The Butcher tableau for the DIRKS method.

4024571134387 4024571134387
14474071345096 14474071345096
5555633399575 9365021263232 4024571134387
5431021154178 12572342979331 14474071345096
5255299487392 2144716224527 —397905335951 4024571134387
12852514622453 9320917548702 4008788611757 14474071345096
3 —291541413000 226761949132 —1282248297070 4024571134387
20 6267936762551 4473940808273 9697416712681 14474071345096
10449500210709 —2481679516057 —197112422687 3952887910906 4906835613583 4024571134387
14474071345096 4626464057815 6604378783090 9713059315593 8134926921134 14474071345096
—2522702558582 1018267903655 4542392826351 5001116467727 1509636094297
12162329469185 12907234417901 13702606430957 12224457745473 3891594770934
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