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The strong equivalence principle is violated by gravity theories of Milgromian dynamics [modified
Newtonian dynamics (MOND)] through the action of the external field effect. We test two different
Lagrangian theories Aquadratic-Lagrangian (AQUAL) and quasilinear MOND (QUMOND) based on their
numerical solutions of the external field effect, by comparing two independent estimates of the mean

external field strength of the nearby universe: a theory-deduced value from fitting the outer rotation curves
of 114 galaxies and an empirical value from the large-scale distribution of cosmic baryons. The AQUAL-
deduced external field strength from rotation curves agrees with that from the large-scale cosmic
environment, while QUMOND-deduced value is somewhat higher. This suggests that AQUAL is likely to
be preferred over QUMOND as an effective nonrelativistic limit of a potential relativistic modified gravity

theory.
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I. INTRODUCTION

The nearly flat rotation curves (RCs) of spiral galaxies
discovered in the 1970s [1-3] have been interpreted as
evidence for particle dark matter. Alternatively, this char-
acteristic feature of RCs may imply the departure from
standard dynamics at accelerations below a critical value
ayp~12x1071 ms™2, as was first proposed by M.
Milgrom [4] in a general theoretical framework called
modified Newtonian dynamics (MOND).

The MOND hypothesis led to the construction of specific
nonrelativistic Lagrangian theories of gravity, such as the
Aquadratic-Lagrangian (AQUAL) theory [5] and the quasi-
linear MOND (QUMOND) [6] theory. Relativistic theories
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of MOND have also been under active development [7,8].
The current status of MOND research is reviewed in [9-12].

A unique feature of MOND is the external field effect
(EFE), experienced by test particles in a self-gravitating
system falling freely under a constant external field. The A
cold dark matter (ACDM) cosmological model invokes
dark matter and dark energy as a consequence of retaining
general relativity and hence the strong equivalence princi-
ple (SEP). MOND gravity violates the SEP through the
EFE. The EFE therefore provides a strong test of MOND
[13], provided dark matter is not fortuitously distributed
just so to imitate this effect [14].

In rotationally supported disk galaxies, the EFE causes
the nearly-flat RC to decline at an acceleration typically
much weaker than a,. Weakly declining RCs in the
outskirts of disk galaxies have been reported [15-18].
The works of Chae et al. [17,18], hereafter Paper I & II,
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FIG.1. (a) The observed rotation curve of a galaxy (NGC 5055)

with a well-defined outer part (blue). The inner rising part
corresponds to R < 2.5R;, where Ry is the disk scale radius
[Eq. 4)]. (b) The radial acceleration relation from AQUAL
numerical simulations of a disk under a weak external field g.,, =
0.02a, for ay = 1.2 x 1071 ms~2. Different lines show expo-
nential disks with the same mass M but different scale radius
Ry = 0.5ry (corresponding approximately to NGC 5055), ry,
and 2ry;, where ry = /GM/ay is the MOND radius. The inner
and outer parts are indicated by red and blue colors as in panel (a).
The inner parts deviate from the algebraic MOND relation (black
dashed curve) for nonspherical mass distributions [22], even
when the external field is very weak [19], thus they are excluded
in our EFE analyses.

have demonstrated that an unbiased sample of > 150 RCs
exhibit a decline in an average sense and that RCs in higher
density environments are more likely to decline than those
in voids, consistent with the generic MOND prediction for
the EFE. These works used a toy model for the EFE based

on a one-dimensional approximation [9] because numerical
solutions were not available at that time.

Here we use numerical solutions [19] of the two non-
linear theories AQUAL and QUMOND to test and compare
these theories through the EFE. For this we consider 114
rotationally supported galaxies, whose RCs have well-
defined outer parts (see Fig. 1(a) for an example and
[20] for further details), from the Spitzer Photometry and
Accurate Rotation Curves (SPARC) database [21]. Thus,
we deduce for the first time AQUAL- and QUMOND-
based values of the mean Newtonian field of the nearby
universe to compare with the value estimated directly from
the large-scale structure of baryons (Paper II). Numerical
values of accelerations are given in units of 10710 ms~2
unless specified otherwise.

II. THEORY

The basic tenet of MOND for an isolated gravitational
system is encapsulated in the following algebraic relation
between the Newtonian gravitational field gy from a given
baryonic mass distribution and the kinematic acceleration
g = d*q/dt* for position q:

u(g/ap)g = gn.  or g =uv(gn/a0)8n. (1)

where u(X) and v(Y) are interpolating functions (IFs).
For X = g/ay and Y = gn/ay, the IFs have the following
asymptotic behavior: u(X>1)=~1, puX<1)=~X,
v(Y>1)~1, and v(Y < 1)~ Y~"/2. In this work we
use the “simple” IF [23] of u(X) = X/(1 + X) and v(Y) =
1/2 4 +/1/4 4 1/Y which describes well galaxy data at
gy < 1078 ms™2 [24].

Equation (1) 1s often used as a convenient representation of
MOND but its general validity is limited. In modified gravity
theories Eq. (1) is strictly correct only for orbits in spherical
mass distributions [5,6], while in modified inertia theories it
applies only to circular orbits in any mass distribution [25].
If the 3-dimensional nature of galaxies is not considered,
Eq. (1) allows an analytic description of the EFE on the
internal acceleration g by replacing i or v with an appropriate
function of the external field strength [9]. This is the approach
adopted in previous analyses (Paper I, II).

The AQUAL field equation for a mass distribution p is
given by

V- (V| /ag) V] = 4xGp. 2)

where ® is the MOND potential, while the QUMOND field
equation is given by

V2O = V- [u(|Vy|/ag) VOy]. (3)

where @y is the Newtonian potential sourced by p, i.e.,
V2®y = 47Gp. Here G is Newton’s gravitational constant
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and ay ~ 1.2 x 1071 ms72 [26,27]. When an external field
is present, the total potential @ in Eq. (2) satisfies the
boundary condition —-V® — g, (the external MOND field)
and the internal acceleration is given by —V® —g.,.. In
Eq. (3), we obtain the internal acceleration after the appli-
cation of V@y — V®y — gy ox Where gy e« is the external
Newtonian field (from solving the standard Poisson’s equa-
tion for all external baryonic mass). Throughout we use the
notations € = gey/ g, €N = IN.ext/do- and & = Ven,and we
use the relation & = e¢/+/1 + e assuming the simple IF.

Equations (2) and (3) are nonlinear and can only be
solved numerically. For disk systems, one interesting
prediction of these modified gravity theories is that in
the inner part (within about two disk scale lengths) the
centripetal acceleration deviates downward from the alge-
braic MOND relation [Eq. (1)], whether an external field is
present or not [19,22]. Figure 1(b) shows examples for
simulated disks under e = 0.02. The surface density
projected along the symmetry axis of the disk is given
by the exponential profile

X(R) = Xy exp(—R/Ry). 4)

where R, is the disk scale radius. For such a weak external
field, little deviation is expected in the outer part of the RCs
within the acceleration range probed by SPARC galaxies
(gn > 107'%% ms~2). However, sizable deviations unre-
lated to the EFE are expected in the inner part due to
the nonspherical symmetry of disk galaxies (no such
deviations are expected for circular orbits in modified
inertia theories). A strong EFE further adds to the complex-
ity of the inner part. Thus, we will not consider the inner
rising part in this study.

Numerical studies of disk galaxies in AQUAL [19] and
QUMOND [14,19,28] have obtained radial acceleration
relations (RARs) between gy and gyonp depending on the
external field strength for a large acceleration range, except
for the inner rising part. The AQUAL EFE-dependent RAR
is given by [19] as

gi?;O) ’ ﬁ(;ﬂ)] B

where y; = \/(gn/a0)* + (Bex):, f=1.1, y = 1.2 and
P(y) =dlInv(y)/dIny. Equation (5) is the azimuthally
averaged quantity on a plane, so the dependence on the
orientation of the external field is minor [19]. The
QUMOND EFE-dependent RAR is given by [28] as

9gaquaL = gnv(Vp) {1 -+ tanh (

0.825ey 3-7z9(y1)]
gN/aO> 3] (©)

where y; = v/(gn/a0)* + €% (see also [14,19]).

JQUMOND = gnv(01) [1 + tanh <

In a disk galaxy, the internal Newtonian gravitational field
can be computed from the observed distribution of baryons
(gas and stars) and is usually indicated as gy, [27,29]. The
radial (centripetal) acceleration is measured as go,, = V?/R,
where V is the average rotation speed in a ring centered at
radius R. Hence g, corresponds to the azimuthally averaged
radial acceleration in the disk midplane and can be matched
with the dynamical acceleration of Egs. (5) or (6).

III. DATA ANALYSIS

We consider a sample of 162 SPARC galaxies (Paper II)
excluding only 13 galaxies with low quality rotation curves
(Q = 3) from the SPARC database [21]. This provides
3200 measurements of gy, and g,,,. Given that Egs. (5) and
(6) apply only to the outer RCs (see Fig. 1), we exclude
1479 data points from the inner rising part and are left with
1721 data points from 114 galaxies (this means that 48 out
of 162 galaxies lack measured outer parts). The median
inner-outer transition radius for all 175 SPARC galaxies is
2.5R4 or 1.7R where Ry and R are the exponential disk
scale length and effective (i.e., half-mass) radius [21].

We use two complementary approaches. One is a stat-
istical approach where x = log( gpar and y = log; gops from
different galaxies are stacked and modeled with a common é,
which represents the mean gravitational field of the nearby
Universe. We perform a joint fit of € and a; this is important
because the numerical value of a, has usually been derived
neglecting the EFE. We adopt a Bayesian approach and use a
Gaussian likelihood function:

1 A7,
int = =557 (e nl2e(si, + i)
i 0% x; 0% yi

(7)

where A | ; is the orthogonal distance of point (x;, y;) from the
model curve and its error is contributed by syo,. and cyo,,
with sy = sin @ and ¢y = cos 0 for the angle 6 of the tangent
line of the curve from the x-axis. The use of orthogonal
distances guarantees a robust fit to the data with uncertainties
in both (x and y) directions as we have verified with simulated
data. From a Markov chain Monte Carlo (MCMC) procedure,
posterior probability distribution functions (PDFs) of € and a,
are derived. All MCMC simulations are carried out using the
public package EMCEE [30]. A flat prior on ¢ is set between
—2.6 < log;yé < —0.15 using the limits derived in Paper II
from the large-scale structure of cosmic baryons. A Gaussian
prior is set on ap = (1.24 4 0.14) x 10719 ms~2 based on
the baryonic Tully-Fisher relation of gas-dominated galaxies
[26], obtained largely independent of SPARC data. However,
because the Gaussian width is broad, this prior is practically
similar to a flat prior.

We estimate ¢, and g, using empirical quantities
taken from the SPARC database. They depend on the
measured disk inclination 7, galaxy distance D, mass-to-
light ratios of stellar disk (Yg) and bulge (Tyyq), and
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FIG. 2. Fitting results from the statistical approach. Top and bottom rows: AQUAL and QUMOND fits of the stacked SPARC data. Ist
column: data points (cyan dots) are compared with the EFE-free algebraic MOND relation (red line). Green dashed curves with a band
show the result of the Bayesian joint fit of the mean external field € and a taking into account individual error bars (typical one is
indicated in the bottom-right corner of the upper panel). The magenta band represents the possible range of the mean environmental field
.,y from cosmic baryons. Red dotted lines define bins orthogonal to the red solid curve. The inset shows the definition of xy and A |
(orthogonal residual from the red solid curve). 2nd column: A, as a function of xy. The inset shows weighted means and their
uncertainties in the bins. 3rd column: corner plots showing the posterior PDFs of & and a,. The purple vertical lines indicate the
maximum value of &.,, from Paper II. 4th column: Same as the 3rd column but for a subsample of galaxies without bulges.

gas-to-HI mass ratio (V). We take Tgg = 0.5,
Tpuge = 0.7Mg/Lg, and Ty, = 1.33 correcting atomic
gas for the presence of primordial helium [27] along with
common uncertainties of 25% for T gig and T, and 20%
for Yy

The advantage of this statistical approach is that all outer
data points from all galaxies can be used on an equal
footing. The caveat is that individual peculiarities are
ignored. In reality, mass-to-light ratios of the disk and
the bulge may vary from galaxy to galaxy. More impor-
tantly, galaxies are under different environments so that
each galaxy should have its own value of & under the
MOND framework. Our working assumption it that these
peculiarities are averaged out by stacking > 100 galaxies
(see [20] for further details).

In the other approach, we carry out Bayesian fits to
individual RCs to infer PDFs of galaxy parameters
{i, D, Tgisk» (Thurge ) Yeas }» together with critical acceler-
ation a, and individual external field strength &, which
constitute 6 (or 7) free parameters. Priors on galactic
parameters are the same as in Paper 1.

The advantage of this approach is that galaxy-specific
parameters including mass-to-light ratios and their

uncertainties are derived. Also, a; and & may be well-
constrained for exceptional systems with good quality RCs.
However, because the reported uncertainties of indivi-
dual RCs vary from galaxy to galaxy as the sample is a
collection from various heterogeneous observations, the
Bayesian inferred individual values of & and their uncer-
tainties may, in general, need to be taken with caution.

Given that the maximum number of free parameters in
the Bayesian fits is 7 as specified above, we consider only
galaxies possessing at least 8 rotation velocities from the
outer RCs. By this criterion, 73 out of 162 galaxies are
selected. From modeling these galaxies, we notice that RCs
covering a narrow acceleration range cannot constrain well
the fitting functions. Thus, we further apply a dynamic
range cut (Ax0)1/2 = |x0,0utermost - xO,median| > 0.2 so that
the weaker acceleration part of the RC covers at least twice
the typical uncertainty of x. Here x, for a given x is defined
in Fig. 2. By this cut, we are left with 65 galaxies that can
be used for individual Bayesian modeling.

IV. RESULTS

Figure 2 summarizes our fitting results for AQUAL and
QUMOND based on the statistical approach. We present

103025-4



TESTING MODIFIED GRAVITY THEORIES WITH NUMERICAL ...

PHYS. REV. D 106, 103025 (2022)

results not only for all selected galaxies but also for a
subsample of galaxies without bulges. Due to significant
noncircular motions in the bulge, the reported rotation
velocities and their uncertainties may be less reliable in the
inner RC if a bulge is present. Thus, it is interesting to
consider a sample excluding those with bulges.

For AQUAL, we have & = 0.079100% (68% confidence
5+0.014

limit, hereafter) based on all galaxies, or & = 0.0657; )3
based on bulgeless galaxies. The subsample of bulgeless
galaxies is considered to investigate possible systematic
biases when a bulge is present. Two values agree with each
other and overlap well with the range .,y mi, (= 0.025 £
0.001) < &.py < @enymax(= 0.071 £0.001) for the mean
environmental field in the nearby universe from Paper II,
where €.y max (€eny.min) refers to the limiting value when
intergalactic (and circumgalactic) baryons (those not in
galaxies and clusters of galaxies) make maximal (no)
contribution to &.,,. (The values of &.,, nax and &gy min
are unchanged even if only bulgeless galaxies are used.)
The above results indicate that the AQUAL-deduced values
of & prefer a high value close t0 &gy mux-

Posterior PDFs of & are not normal but have tails toward
zero as shown in the 3rd and 4th columns of Fig. 2. Table I
shows probabilities of p(& < ey max) and p(€ < €epymin)-
For AQUAL, the probability of p(& < €.y max) is suffi-
ciently high for both the full and bulgeless samples. Table I
also shows an intermediate case for the mean €., yean =
(Cenv.max T @env.min)/2 of the two boundaries. The proba-
bility of 0.21 for the bulgeless sample is sufficiently high
while 0.02 for the full sample is not. This may indicate that
AQUAL would be consistent only with an environmental
field higher than the mean of the two extremes or data of
galaxies with bulges need to be taken with caution.

For QUMOND, the fitted values are & = 0.103753

based on all galaxies, or & = 0.08770:0;; based on bulgeless

galaxies. These values are higher than the AQUAL values
by =~ 0.023 and less consistent with the environmental field.
Probability tests given in Table I also show that QUMOND
is less consistent with the environmental field.

Individual Bayesian modeling provides individually
fitted values of & and a, for 65 galaxies. The value of ¢
can usually be poorly constrained in individual galaxies
(Paper I, II), but it is important to check whether individual

TABLE 1.

values of & are statistically consistent with their environ-
mental estimate within the errors. We define the quantity
d= (u_v)/ \% 65"'5% where u = log) Ceny,max> U = logo e,
and 0, and o,, are their estimated uncertainties. Thirty six out
of 65 galaxies are in the Sloan area and have &, ., values
from Paper II. For this subsample, we find (d) = 0.35 +
0.31 for AQUAL models and (d) =0.57+0.34 for
QUMOND models. The AQUAL results indicate good
galaxy-by-galaxy agreement between the independent exter-
nal field estimates from the RC fits and the large-scale
distribution of baryons in agreement with the statistical fit
results of the stacked data shown in Fig. 2.

V. DISCUSSIONS AND CONCLUSION

We have addressed the question of whether numerical
solutions of Lagrangian theories of modified gravity
(AQUAL and QUMOND) give an RC-fitted external field
strength consistent with that from the large-scale distribu-
tion of baryons from Paper II.

The baryons that reside in galaxies and clusters of
galaxies account for about one eighth of the total [31]
from big bang nucleosynthesis (which is expected to
proceed normally in MOND [32]), with the remainder
being in the intergalactic (and circumgalactic) media
[33-35]. The distribution of these intergalactic baryons
is uncertain, so we have considered bracketing limits in
which these baryons are completely uniform in distribution
(so provide no enhancement to the EFE) or maximally
correlated with observed galaxies.

Our investigation reveals two important results. First, the
AQUAL-deduced field overlaps well with the environmen-
tal range while the QUMOND-deduced field does not as
well. Thus, AQUAL is preferred, though QUMOND is not
excluded given the uncertainties in the galaxy data. The
consistency between the theory(in particular, AQUAL)-
deduced value and the environmental field is not a trivial
result. A small systematic change in outer RCs can easily
lead to an order of magnitude discrepancy in é.

Second, the preferred environmental field strength is
close to the maximum value. Thus, MONDian gravity
implies that the spatial distribution of intergalactic baryons
is correlated with the large scale structure of galaxies, as
expected in structure formation with MOND [36].

Probability tests. The third and fourth columns give the probability for the external field strength

derived from rotation curves to be less than the cosmic environmental field from the baryonic large-scale structure,
when intergalactic baryons are maximally (€., max) OF minimally (&g, min) clustered. The last column is for the

mean of the two 1imits, €.ny mean = (Cenv.max + Cenv.min)/2-

MOdel Sample p(é < Eenv.max) p(é < Eenv,min) p(é < éenv.mean)
AQUAL All 0.25 0.004 0.02
AQUAL Bulgeless 0.68 0.06 0.21
QUMOND All 0.04 0.004 0.01
QUMOND Bulgeless 0.27 0.04 0.12
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Given that the outer parts of galactic rotation curves can
be successfully described by numerical solutions of EFE
in AQUAL as shown in this work, there naturally arises
the question of whether AQUAL could predict correctly
the inner parts (see Fig. 1). This is indeed the case as
demonstrated in [20].

Although AQUAL appears to perform better than
QUMOND in the EFE phenomenology, the two theories
are similar in many aspects of galactic dynamics. For
example, as shown in [19], the predictions of the two
theories on the inner parts of flattened systems are very
similar.,. QUMOND has the advantage of being more
tractable mathematically and numerically. Thus, the theory
may well continue to be used in various studies such as
numerical simulations of galactic dynamics (e.g., [37])
although its prediction on EFE may not be as accurate as
AQUAL. It may also be possible to use an effective external

field in QUMOND rather than the true external field to
compensate for the small difference with AQUAL.

In conclusion, the AQUAL theory of MOND provides a
successful description of galactic rotation curves, and thus
AQUAL may be preferred over QUMOND as an effective
nonrelativistic limit of a potential relativistic theory of
MOND (or other modified) gravity.
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