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a b s t r a c t

We introduce a new class of autoregressive models for spherical time series. The
dimension of the spheres on which the observations of the time series are situated
may be finite-dimensional or infinite-dimensional, where in the latter case we consider
the Hilbert sphere. Spherical time series arise in various settings. We focus here on
distributional and compositional time series. Applying a square root transformation to
the densities of the observations of a distributional time series maps the distributional
observations to the Hilbert sphere, equipped with the Fisher–Rao metric. Likewise,
applying a square root transformation to the components of the observations of a
compositional time series maps the compositional observations to a finite-dimensional
sphere, equipped with the geodesic metric on spheres. The challenge in modeling
such time series lies in the intrinsic non-linearity of spheres and Hilbert spheres,
where conventional arithmetic operations such as addition or scalar multiplication
are no longer available. To address this difficulty, we consider rotation operators to
map observations on the sphere. Specifically, we introduce a class of skew-symmetric
operators such that the associated exponential operators are rotation operators that for
each given pair of points on the sphere map the first point of the pair to the second
point of the pair. We exploit the fact that the space of skew-symmetric operators is
Hilbertian to develop autoregressive modeling of geometric differences that correspond
to rotations of spherical and distributional time series. Differences expressed in terms
of rotations can be taken between the Fréchet mean and the observations or between
consecutive observations of the time series. We derive theoretical properties of the
ensuing autoregressive models and showcase these approaches with several motivating
data. These include a time series of yearly observations of bivariate distributions of the
minimum/maximum temperatures for a period of 120 days during each summer for the
years 1990-2018 at Los Angeles (LAX) and John F. Kennedy (JFK) international airports. A
second data application concerns a compositional time series with annual observations
of compositions of energy sources for power generation in the U.S..
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Modern day data analysts increasingly encounter complex data types where data are no longer traditional vectors,
nd furthermore are not situated in a linear space such as a Hilbert space. Such non-Euclidean data may also be
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ncountered in the form of a time series. At this point, the methodology available for the analysis of such data is quite
imited. An exception are recent efforts to develop models for distributional time series in the context of the rapidly
volving field of distributional data analysis (DDA) (Petersen et al., 2021). A simple approach for distributional time
eries is to represent distributions by square integrable functions via the log quantile density transformation or a similar
ransformation (Petersen and Müller, 2016); a downside is that such transformations may lead to large metric distortions.
he distributional time series is then transformed to a functional time series, which have been well investigated (Bosq,
000). Geometric approaches that are based on constructing tangent bundles on the Wasserstein manifold have recently
een shown to provide better predictions for autoregressive models (Chen et al., 2021; Zhang et al., 2022), while an
utoregressive model that is intrinsic to the Wasserstein manifold can be based on a recently developed transport algebra
Zhu and Müller, 2021). It bears emphasizing that all these methods are limited to the case of distributional time series
omposed of one-dimensional distributions.
The reason that previous statistical modeling of distributional time series has been limited to the case of sequences

f one-dimensional distribution lies in the challenges of characterizing optimal transport as well as the Wasserstein
anifold and its parallel transport for the case of multivariate distributions. These challenges are formidable and there
re also numerical difficulties. For both multivariate and one-dimensional distributions the Fisher–Rao metric provides an
lternative to the popular Wasserstein metric that is easy to work with both numerically and theoretically, irrespective of
he dimension of the distributions. This distributional metric is characterized by its invariance under diffeomorphisms and
he ease of explicitly computing geodesics in the space of distributions with smooth densities equipped with this metric
Friedrich, 1991; Bauer et al., 2016). Of special interest for statistical applications is that the Fisher–Rao metric can be
asily extended to multivariate distributions. Neither theoretical analysis nor numerical implementations face difficulties
n the multivariate case and the geodesics in distribution space are always well-defined, irrespective of the dimension.

We focus here on time series data with observations that reside naturally or can be equivalently represented as points
n a sphere S = {x ∈ H : ∥x∥H = 1}, where H is a real separable Hilbert space with inner product ⟨·, ·⟩H and norm

∥x∥H :=
√
⟨x, x⟩H. The sphere S can be finite-dimensional, in which case we denote it by Sd if H = Rd+1, or infinite-

imensional where H = L2 or any isomorphic space and in this case we refer to it as the Hilbert sphere and denote it
y S∞. Our focus on spherical time series is motivated by the convenience of incorporating different data types such as
ompositional data, directional data and distributional data into this novel framework.
In contrast to spherical time series, time series analysis for Euclidean vector data is a well-established field and both

arametric and non-parametric methods have been fully developed (Fan and Yao, 2017, 2003). For functional or Hilbert-
pace valued time series autoregressive process models have also been well studied, starting with Bosq (2000). In contrast
o these developments for Euclidean data, there is so far very little work on time series with random objects, i.e., random
ariables in general metric spaces (Müller, 2016). Even for the special case of spherical time series the literature is scarce.
n interesting related approach is spherical regression that has been studied for the non-time series case when one has
.i.d. data with predictors and responses located in S = Sd (Chang, 1986, 1989; Kim, 1998; Marzio et al., 2019), where the
ey ingredient is a rotation matrix in the set of orthogonal matrices SO(d+1) that rotates the predictor to the response. In
ddition, Downs (2003) and Rosenthal et al. (2014) introduced additional families of transformations and Shi et al. (2021)
nvestigated settings where predictors and responses might have mismatches. However, all these methods are established
nder the i.i.d. regression setting and limited to the finite-dimensional case (d < ∞); furthermore, they allow for only
ne predictor, while for autoregressive modeling one needs to accommodate the joint action of predictors from multiple
ags. The main challenge of modeling time series in non-linear spaces such as S is that conventional operations, including
ddition and subtraction, are not available, leading to a fundamental limitation for autoregressive modeling.
This paper provides three key innovations: First, to our knowledge, this is the very first paper that develops statistical

odeling for spherical time series and specifically autoregressive models for such time series. Second, using the proposed
pproaches allows for regression models that feature multivariate distributions as predictors and responses, which was
ot possible with previous distributional regression models that stay within the space of distributions such as Wasserstein
egression, due to the complex geometry of the Wasserstein space for multivariate distributions (Chen et al., 2021).
hile we develop such regression models here in the context of autoregressive modeling using the Fisher–Rao metric in
istribution space, these models are also new for the independent case. Third, we provide the first modeling approach
or spherical regression with multiple predictors for both independent and time series cases, as no spherical regression
odels currently exist that allow for multiple predictors. We emphasize that while we develop the second and third

nnovations in the context of autoregressive time series, the corresponding modeling and estimation for the independent
ase, where these are also new developments, is an immediate consequence.
The rest of the paper is organized as follows. Section 2 provides examples for spherical time series and perspectives

s well as the central ideas of our modeling approach. In Section 3 we introduce rotation and log rotation operators in
ilbert spaces on which our model relies and present a key relationship between rotations and skew-symmetric operators.
ethodology and theory are in Section 4, which also contains the main results. Estimation and prediction are studied in
ection 5. We report results for data applications to distributional and compositional time series in Section 6, which is

ollowed by a discussion section in Section 6.
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. Examples of spherical time series and basic approach

Compositional data take values in the simplex

Cd
=

{
z = (z1, z2, . . . , zd)T ∈ Rd

⏐⏐⏐⏐⏐ zi ≥ 0 for all i = 1, 2, . . . , d and
∑
i=1

zi = 1

}
,

reflecting that such data are non-negative proportions that sum to 1. By applying the point-wise square root ratio (psr)
transformation psr : Cd

→ Sd−1, defined as

psr(z) =
(√

z1,
√
z2, . . . ,

√
zd
)T
, (1)

Cd can be mapped to a subset of Sd−1. This maps compositional time series to finite-dimensional spherical time series
(Scealy and Welsh, 2011; Dai and Müller, 2018). Examples of compositional time series are common and include for
example repeated election cycles when there are several parties and the compositions correspond to the vote shares of
each party; or color preferences of car buyers that change from year to year, reflected in the percentage of cars sold in a
specific color. In Section 5.2, we illustrate the proposed spherical autoregressive models (SAR) with compositional time
series that correspond to the annually recorded proportions of electricity generated from different energy sources in the
U.S., where energy sources include coal, natural gas or nuclear and renewable sources. The composition of energy sources
has a major impact on the carbon dioxide (CO2) emissions that accrue from electricity generation over time.

Data that can be represented as locations on finite-dimensional spheres are ubiquitous and are not limited to
compositional data but also include directional data such as wind directions. For example, the study of ocean surface
wind over time is important in determining the spread of aerial organisms (Felicísimo et al., 2008). Sequences of hourly
or daily recorded wind directions are naturally represented as a spherical time series with observations in S1, the unit
circle. Another application of Sd-valued time series are vector time series, where the vector observations can be expressed
in polar coordinates and then form a spherical time series and a scalar time series, where the latter corresponds to the
length of the vector at time t . In some cases the length of the vector may not be relevant if one is primarily interested
in the association between the vector components as reflected by the direction of the vector. Then only the sequence
of directions of the vector components matters and if the original vector data have dimension d + 1, the directions are
represented on Sd, giving rise to a spherical time series.

For any density function f : RD
→ R, where the dimension of the domain D is a positive integer, f satisfies f ≥ 0 and

RD f (x)dx = 1, and we define the functional point-wise square root transformation (fpsr) as

fpsr(f ) = g, where g(z) =
√
f (z) for all z ∈ RD.

sing fpsr, distributional data correspond to the elements of a segment of the Hilbert sphere S∞ equipped with the
isher–Rao metric (Dai, 2022) and distributional time series then are represented as S∞-valued time series. An example
re two-dimensional distributions of daily maximum and minimum temperatures recorded for 24 h over the summer
onths at airports in the U.S. Considering these two-dimensional distributions over successive years then forms a time
eries with S∞-valued observations. These time series are of interest for assessing the effects of climate change and the
isks and costs associated with rising temperatures.

To overcome the challenge of non-linearity for the case of spherical time series, we utilize the geometric structure of
pheres S , where the ambient vector space into which the sphere is embedded is Rd or L2. The geodesic distance on S is
efined as d(x1, x2) = arccos(⟨x1, x2⟩) for any x1, x2 ∈ S , where the inner product is defined in the ambient vector space.

Geodesics are locally length-minimizing paths between points that are well-defined in geodesic metric spaces, where the
length of a geodesic path between two points coincides with the distance of the points (Burago et al., 2001). The geodesics
f spheres correspond to great circles. The key idea for the modeling of spherical autoregressive (SAR) time series is that
he geodesic between two points x1, x2 ∈ S can be written as γ (a) = exp(aL), where a ∈ [0, 1] and L : H → H is a
skew-symmetric operator. We then relate the spherical difference between x1 and x2 to the linear operator L. This makes
it possible to model the differenced times series in the linear space of skew-symmetric operators.

We study two versions of autoregressive models for spherical time series. In the basic SAR model the autoregressive
model is based on the spherical equivalent of differences between the observations and the overall Fréchet mean, while
DSAR is a variant based on the spherical differences between consecutive observations. These models can be applied for
autoregressive modeling on any type of sphere S and their implementation is computationally efficient.

3. Rotations and skew-symmetric operators

Let H be a real separable Hilbert space with inner product ⟨·, ·⟩H and norm ∥x∥H :=
√
⟨x, x⟩H. The Hilbert sphere S

s a subset of H whose elements have norm 1, i.e., S = {x ∈ H : ∥x∥H = 1}. Given a set of points {x1, x2, . . . , xm} ⊂ S ,
let span{x1, x2, . . . , xm} = {a1x1 + a2x2 + · · · + amxm : a1, a2, . . . , am ∈ R} ⊂ H denote the m-dimensional subspace of
H spanned by x1, x2, . . . , xm. The set of bounded linear operators on H is denoted as B(H) and an operator Q ∈ B(H) is
skew-symmetric if

⟨Qx, y⟩ + ⟨x,Qy⟩ = 0 for all x, y ∈ H.
3
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Fig. 1. Illustration of the rotation operator exp(ϑQx1,x2 ) when H = R3 . The green plane is the two-dimensional subspace spanned by u1 and u2 . By
construction, u1 , u2 are orthogonal and the angle between them is π/2. Here exp(ϑQx1,x2 )x1 is the location of the image of the rotation operator
exp(ϑQx1,x2 ) applied at x1 and ϑ is the angle between x1 and exp(ϑQx1,x2 )x1 . The blue line is the geodesic between x1 and x2 that is traced by the
path γ (a) := exp(aθQx1,x2 )x1 , where a ∈ [0, 1] and θ = arccos(⟨x1, x2⟩). It can be easily seen that γ (0) = x1 and γ (1) = x2 . (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

For any bounded linear operator L : H → H, consider its exponential exp(L) :=
∑

∞

l=0 L
l/l!. An orthogonal operator

O ∈ B(H) is a rotation operator if and only if there exists a skew-symmetric operator Q such that O = exp(Q ) (Martin,
1932).

For each skew-symmetric operator Q there is a unique rotation operator exp(Q ). Let R(H) and S (H) be the set of
rotation operators and skew-symmetric operators, respectively; by definition R(H) = exp(S (H)). If {e1, e2, . . .} is an
orthonormal basis of H, then S (H) admits the orthonormal basis

S (H) = span
{
ei ⊗ ej − ej ⊗ ei : i, j = 1, 2, . . .

}
⊂ H⊗H,

where H⊗H is the tensor product of the Hilbert space H with itself and is also a Hilbert space with inner product

⟨x1 ⊗ y1, x2 ⊗ y2⟩H⊗H = ⟨x1, x2⟩H⟨y1, y2⟩H,

with x1, x2, y1, y2 ∈ H; the inner product ⟨·, ·⟩H⊗H can be extended to any element in H⊗H by linearity. Observing that
S (H) is a closed subspace of H⊗H with respect to ⟨·, ·⟩H⊗H, S (H) is seen to be a complete separable Hilbert space.

Given two points x1, x2 ∈ H such that x1 ̸= x2 and x1 ̸= −x2, the proposed methodology relies on rotation operators
that provide a rotation on S within the two dimensional subspace span{x1, x2}.

Theorem 1. Set u1 = x1 and u2 = (x2 − ⟨x2, u1⟩u1)/∥x2 − ⟨x2, u1⟩u1∥H. Let I be the identity operator and Qx1,x2 :=

u1 ⊗ u2 − u2 ⊗ u1 ∈ S (H). Then, given an angle ϑ ∈ [0, 2π ],

exp(ϑQx1,x2 ) = I + sin(ϑ)Qx1,x2 + (1− cos(ϑ))Q 2
x1,x2 (2)

is a rotation operator that rotates counterclockwise within span{u1, u2} by ϑ , i.e.,

• For any y1, y2 ∈ H, ⟨exp(ϑQx1,x2 )y1, exp(ϑQx1,x2 )y2⟩H = ⟨y1, y2⟩H.
• For any x ∈ span{u1, u2} ∩ S , arccos⟨exp(ϑQx1,x2 )x, x⟩H = ϑ .
• For any y ∈ H perpendicular to span{u1, u2}, i.e., ⟨y, u1⟩H = 0 and ⟨y, u2⟩H = 0, it holds that exp(ϑQx1,x2 )y = y.

For H = R3, Fig. 1 provides an illustration of the rotation operator exp(ϑQx1,x2 ). We note that (2) reduces to the
Rodrigues rotation formula in this special case. For a rotation operator exp(ϑL) in higher dimensional Hilbert spaces such
as Rd with d > 3, where L is an arbitrary skew-symmetric operator, the equality exp(ϑL) = I + sin(ϑ)L+ (1− cos(ϑ))L2
will not hold in general. That (2) is satisfied for any separable space H is due to the fact that exp(ϑQx1,x2 ) is a special
rotation that only rotates within the two-dimensional subspace span{x , x }.
1 2
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. Spherical autoregressive models

Based on the rotation operator introduced earlier, the geodesic γ : [0, 1] → S between two points x1, x2 ∈ S can be
traced by rotating x1 to x2 within the two dimensional subspace spanned by {x1, x2} around the origin, i.e.,

γ (a) = exp(aθQx1,x2 )x1. (3)

where a ∈ [0, 1], θ = arccosin(⟨x1, x2⟩) is the angle between x1 and x2 and Qx1,x2 is as defined in Theorem 1; see Fig. 1 for
demonstration of γ (a) when H = R3. We then utilize geodesics on S to arrive at a notion of difference between points
n S .
Starting with the Euclidean space Rd and considering two elements w1, w2 ∈ Rd, the difference V = w2 − w1 can

e interpreted as an optimal (in the sense of minimizing Euclidean distance) transport map that moves w1 to w2 and
he connecting geodesic in Euclidean space is represented as the straight line r(a) = w1 + aV where a ∈ [0, 1], with
orresponding transport on the sphere given by the geodesic (3), which is γ (a) = exp(aθQx1,x2 ); see Zhu and Müller
(2021) for a similar extension of this idea to the Wasserstein space. Therefore, recalling that θ = arccosin(⟨x1, x2⟩) is the
angle between x1 and x2, Qx1,x2 := u1 ⊗ u2 − u2 ⊗ u1 ∈ S (H) is the rotation operator that rotates x1 to x2 and u1 = x1,
u2 = (x2 − ⟨x2, u1⟩u1)/∥x2 − ⟨x2, u1⟩u1∥H, it makes sense to define a spherical difference between points x1 and x2 on S
as

x2 ⊖ x1 := θQx1,x2 . (4)

Given a sequence of data points x1, x2, . . . , xn ∈ S with the same Fréchet mean µx, i.e., µx := argminz∈S E[d2S(z, xt )]
for all t = 1, 2, . . . , n, we then construct a new series by taking differences between the xt and the Fréchet mean µx,

{Rt := xt ⊖ µx : t = 1, 2, . . . , n} ⊂ S (H).

Assuming that {Rt} is a stationary sequence (Bosq, 2000), we propose the following spherical autoregressive (SAR) model
of order p,

Rt − µR = α1(Rt−1 − µR)+ · · · + αp(Rt−p − µR)+ εt where Rt = xt ⊖ µx, (5)

where α1, . . . , αp ∈ R, µR = E[Rt ] and {εt} ⊂ S (H) are i.i.d random innovations with mean 0.
To elucidate the connection of this model with the previously studied spherical regression (Chang, 1986, 1989; Kim,

1998; Marzio et al., 2019), which has not yet been extended to a time series framework and admits only one predictor,
consider a regression setting with xt as single predictor and yt as response. In the above difference notation (4), this
previously studied spherical regression model can be written as yt⊖xt = R0+εt . In the Euclidean space Rd this corresponds
to an intercept only regression model zt −wt = β0 + ϵt , where zt ∈ Rd is the response, wt ∈ Rd is the predictor, β0 ∈ Rd

is the intercept and {ϵt} ⊂ Rd are i.i.d. errors. By taking expectation on both sides, we observe that E[zt ] − E[wt ] = β0.
In some sense, this corresponds to a special case of Model (5) where p = 1 and the single ‘‘slope’’ is α1 = 1 as then
one obtains yt ⊖ µy = xt ⊖ µx + εt and its Euclidean counterpart zt − E[zt ] = wt − E[wt ] + ϵt , which is equivalent to
zt − wt = β0 + ϵt .

As alternative to the SAR model (5) we also consider a second model that is based on the spherical differences of
consecutive observations. This difference based spherical autoregressive model (DSAR) is given by

Rt − µR = α1(Rt−1 − µR)+ · · · + αp(Rt−p − µR)+ εt , where Rt = xt+1 ⊖ xt , (6)

where as before, α1, . . . , αp ∈ R, µR = E[Rt ] and {εt} ⊂ S (H) are i.i.d random innovations with mean 0.
Differencing is an inherent feature of DSAR models and is a common technique to reduce trend and seasonality for

nonstationary time series in Euclidean space. It may also be useful for some spherical time series. For example, the US
energy mix compositional time series, which we will discuss further in Section 5.2, shows a trend over the years, as more
clean energy is generated each year and coal/petroleum fuels are increasingly phased out.

We note that both model (5) and model (6) have scalar coefficients. When H is an infinite-dimensional space, we can
extend the two models by considering bounded linear operators as coefficients, i.e.,

Rt − µR = L1(Rt−1 − µR)+ · · · + Lp(Rt−p − µR)+ εt ,

where L1, . . . , Lp ∈ B(H). Regarding the existence of stationary solutions of the proposed SAR model, the following result
is a consequence of Theorem 3.3 of Zhang et al. (2022).

Theorem 2. Assuming that {Rt : t ∈ N} is stationary, E⟨εt , εt⟩H⊗H < ∞ and the roots of φ(z) = 1− α1z − · · · − αpzp are
outside the unit circle, then

Rt − µR =

∞∑
i=0

ψiεt−i

is a unique stationary solution of

Rt − µR = α1(Rt−1 − µR)+ · · · + αp(Rt−p − µR)+ εt , t ∈ N,∑
∞ i
where {ψt} is absolutely summable and determined by 1/φ(z) = i=0 ψiz .

5
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The above theorem uses the stationarity of {Rt}. It follows from the definition of {Rt}, i.e., Rt = xt ⊖ µx in SAR and
t = xt+1 ⊖ xt in DSAR, that the stationarity of xt will imply the stationarity of {Rt}.

. Estimation and prediction

.1. Estimation

We use Yule–Walker type estimators for the estimation of the coefficients α1, α2, . . . , αp of the SAR and DSAR models.
etting

λk = E[⟨R1 − µR, Rk+1 − µR⟩H⊗H],

t is straightforward to check that the model parameters satisfy⎛⎜⎜⎝
λ1
λ2
...

λp

⎞⎟⎟⎠ =

⎛⎜⎜⎝
λ0 λ1 · · · λp−1
λ1 λ0 · · · λp−2
...

...
...

λp−1 λp−2 · · · λ0

⎞⎟⎟⎠
⎛⎜⎜⎝
α1
α2
...

αp

⎞⎟⎟⎠ .
eplacing λk by sample estimates

λ̂k =
1

n− k

n−k∑
t=1

⟨Rt − µ̂R, Rt+k − µ̂R⟩H⊗H, µ̂R =
1
n

n∑
t=1

Rt (7)

then suggests the following estimates α̂1, . . . , α̂p for the model parameters α1, . . . , αp,⎛⎜⎜⎝
α̂1
α̂2
...

α̂p

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎝
λ̂0 λ̂1 · · · λ̂p−1
λ̂1 λ̂0 · · · λ̂p−2
...

...
...

λ̂p−1 λ̂p−2 · · · λ̂0

⎞⎟⎟⎟⎠
−1⎛⎜⎜⎜⎝

λ̂1
λ̂2
...

λ̂p

⎞⎟⎟⎟⎠ . (8)

riting λ = (λ0, λ1, . . . , λp)T and λ̂ = (̂λ0, λ̂1, . . . , λ̂p)T , we next establish asymptotic normality for λ̂.

heorem 3. Under the assumptions of Theorem 2, it holds that

√
n(̂λ − λ) →d N(0, V ), V =

(
∞∑

h=−∞

Γ h
u,v

)
u,v=0,1,...,p

,

where, setting κ(u) =
∑

∞

i=−∞
ψiψi+u,

Γ h
u,v =

(
E[⟨ε1, ε1⟩2] − (E[⟨ε1, ε1⟩])2 − 2E[⟨ε1, ε2⟩2]

) ∞∑
i=−∞

ψiψi+uψi+hψi+h+v

+(E[⟨ε1, ε1⟩])2κ(u)κ(v)+ E[⟨ε1, ε2⟩2] (κ(h)κ(h+ v − u)+ κ(h+ v)κ(h− u)) .

For the case where {εt} are i.i.d random innovations in R, the Γ h
u,v are identical to those in Bartlett’s formula. To show

he convergence of α̂1, . . . , α̂p, we set

Λ =

⎛⎜⎜⎝
λ0 λ1 · · · λp−1
λ1 λ0 · · · λp−2
...

...
...

λp−1 λp−2 · · · λ0

⎞⎟⎟⎠ and Λ̂ =

⎛⎜⎜⎜⎝
λ̂0 λ̂1 · · · λ̂p−1
λ̂1 λ̂0 · · · λ̂p−2
...

...
...

λ̂p−1 λ̂p−2 · · · λ̂0

⎞⎟⎟⎟⎠ .
f det(Λ) ̸= 0, it follows from the continuous mapping theorem that Λ̂−1

→
p Λ−1 and thus by Theorem 3,

orollary 1. Under the assumptions of Theorem 2, if det(Λ) ̸= 0,

√
n

⎛⎜⎝
⎛⎜⎝α̂1
...

α̂p

⎞⎟⎠−

⎛⎜⎝α1
...

αp

⎞⎟⎠
⎞⎟⎠→

d N
(
0,ΛṼ (ΛT )−1) , where Ṽ =

(
∞∑

h=−∞

Γ h
u,v

)
u,v=1,...,p

.

We note that in applications involving distributional time series the distributions and specifically the density functions
f are usually not directly observed and must be inferred from available samples of size N , {z ∈ RD

: i =
t t i,t

6
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Fig. 2. Illustration of the two projection operators Proj1 and Proj2 .

1, 2, . . . ,Nt} ∼
i.i.d ft that they generate, separately for each t . The random mechanism that generates the samples is

assumed to be independent from the mechanism that generates the random distributions.
To assess the impact of this preliminary estimation step requires additional assumptions as follows: All densities ft have

the same compact domain A ⊂ RD and are continuously differentiable on their support; and there is a sequence N → ∞

such that Nt ≥ N for all t; there exists a constant M such that for all t , supa∈A |ft (a)|, supa∈A 1/|ft (a)|, supa∈A ∥f ′t (a)∥ are all
bounded by M , where ∥f ′t (a)∥ is the norm of the gradient vector. Extending the arguments and construction in Petersen
and Müller (2016) to the case of multivariate distributions then leads to density estimators f̂t that satisfy

sup
t

P
(
sup
a∈A

⏐⏐⏐f̂t (a)− ft (a)
⏐⏐⏐ > c1N−c2

)
→ 0

for constants c1, c2 > 0, where c2 depends on the dimension of the distributions and decreases when the dimension
increases. Making the additional assumption that the sample size N = N(n) available for the estimation of each density
ft is such that N−c2 = op(n−1/2), one can then show that when substituting f̂t for ft in Rt in models (5) and (6), Theorem 3
and Corollary 1 still hold when using estimated instead of true densities.

5.2. Prediction

With estimates α̂1, . . . , α̂p (7), (8) based on a data sequence {R1, . . . , Rn} in hand, the prediction for the skew-symmetric
operator at time n+ 1 is

R̂n+1 = µ̂R + α̂1(Rn − µ̂R)+ · · · + α̂p(Rn−p+1 − µ̂R),

with a slight abuse of notation, as in model DSAR, the sequence of observations available for the prediction is of length
n+ 1, i.e., {xi : i = 1, 2, . . . , n+ 1}, whereas in model SAR it is of length n. Once R̂n+1 has been obtained, the prediction
of the next observation in the original time series is x̂n+1 := exp(̂Rn+1)µx for SAR and x̂n+2 := exp(̂Rn+1)xn+1 for DSAR.

For a distributional time series with D-dimensional distributions (or density functions), we set H = {f : RD
→ R |∫

RD f 2(a)da < ∞} with inner product ⟨f , g⟩H =
∫
RD f (a)g(a)da and require the predictions to be constrained in the

positive orthant H+ := {f ∈ H : f (a) ≥ 0 for all a ∈ RD
}. Similarly, for compositional time series one has H = Rd and the

prediction is constrained to lie in H+ = {z = (z1, . . . , zd)T ∈ Rd
: zi ≥ 0 for all i}. Writing xrot = exp(Q )x for the rotation

exp(Q ) of x ∈ H+, we use projection operators to enforce the constraint; see Chen et al. (2021) and Pegoraro and Beraha
(2022) for related projections in Wasserstein space. For the projection operators we consider two options.

A first option is to use a projection operator Proj1 to rotate xrot back to the boundary of H+, i.e., Proj1(xrot) := exp(c1Q )x,
where c1 = sup{c : c ∈ [0, 1] and exp(cQ )x ∈ H+}. A second option is to employ an operator Proj2 to project xrot to the
nearest point in H+, i.e., Proj2(xrot) = argminy∈H+

⟨xrot − y, xrot − y⟩; see Fig. 2 for a schematic illustration. We note that
Proj1 may be more useful for SAR, as all the predictions are based on rotations from the Fréchet mean, which may be
more likely to stay away from the boundary of H+ under stationarity assumptions. Applying Proj1 when constructing
predictions of SAR leads to constrained predictions that are closer to the Fréchet mean than those obtained with Proj2.
On the other hand, Proj1 may be less useful for DSAR, as one may obtain x̂n+2 := exp(̂Rn+1)xn+1 ≈ xn+1. Therefore Proj2

appears to be more suitable for DSAR. In the following, we use Proj1 for SAR and Proj2 for DSAR.
7
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. Applications

.1. Temperature data

Global warming is expected to lead to more heat waves in the summer. It is then of interest to study and model
he time series of the bivariate distributions of daily minimum and maximum temperature. Extreme temperatures are
ssociated with increased health and economic risks. The analysis reported here was inspired by Bhatia and Katz (2021).
he temperature data we used have been recorded at airport weather stations in the U.S. over the years and are available
t https://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND.
On the ith day of year t = 1990, . . . , 2019, we observe two temperatures (zt,i, wt,i), where zt,i, wt,i are the minimum

nd maximum temperature over each 24 h period, respectively. We assume that the distribution of (zt,i, wt,i) over the
ummer months in year t has a two-dimensional density ft such that

{(zt,i, wt,i) : i = 1, 2, . . . ,N} ∼i.i.d ft , (9)

here N = 122, as the summer period is from June 1 to September 30. Here, xt = ft and H = L2(T ), where T ⊂ R2 is
he temperature range.

In a preprocessing step we obtained estimates of the bivariate density functions ft based on samples (9). A quick and
ast smoother that adjusts for boundaries is histogram smoothing, which we implemented with histogram bins of size
0 × 50. We then applied the R package ‘‘fdapace’’ (Gajardo et al., 2021) for the smoothing step, where the bandwidths
ere chosen as (maxi zt,i − mini zt,i)/5 and (maxiwt,i − miniwt,i)/5, then adjusted the results so that the estimates are
ona fide densities. We thus obtained 30 bivariate density functions for the years from 1990 to 2019, some of which
re shown as contour plots in the top six panels of Figs. 3 and 4 for Los Angeles International Airport (LAX) and John
. Kennedy International Airport (JFK) respectively. We used the observed density for 2019 to illustrate the predictions
btained with SAR and DSAR using only the data before 2019 to construct the prediction. The predicted densities are
hown as contour plots at the bottom of Figs. 3 and 4, where we chose the order p = 5 for both SAR and DSAR. We
conclude from both the contour plots and the Fisher–Rao distances that SAR works better than DSAR for this prediction.
In addition, we plotted the FR distances between the observed and the fitted densities across time in Fig. 5. There is no
obvious trend, indicating a basic level of stationarity. Interestingly, the temperature sequence for LAX contains an outlier
for 2012, a year with the highest temperature on record (113 ◦F) since 1921.

6.2. Energy data

Data on the sources of energy expressed as fractions or percentages for electricity generation across the entire U.S.
are available at https://www.eia.gov/electricity/data/state/ and constitute a compositional time series. For our analysis
we consider three energy sources: (i) Coal or Petroleum; (ii) Natural gas; (iii) Nuclear and Renewables. Sources (i) are
known to produce the highest amounts of CO2 and health damaging air pollutants per Watt generated, while sources (ii)
are cleaner but still produce sizable amounts of CO2. Sources (iii) do not directly produce damaging gases but may have
some residual risks such as nuclear energy production. Here we consider the compositional time series consisting of the
annual proportions of energy generated from sources (i)-(iii), which thus has three components.

The data are available for the years t = 2005, 2006, . . . , 2019 and we denote the resulting time series by (Ut , Vt ,Wt ),
where Ut , Vt ,Wt ≥ 0 and Ut +Vt +Wt = 1 for all t . We then obtain the spherical time series xt = (

√
Ut ,

√
Vt ,

√
Wt ) ∈ S2.

For this example, we have H = R3. The data {xt}2018t=2005 are used as training set to fit SAR and DSAR models and we aim
to predict the proportions of the energy sources for the year 2019. The observed compositions from 2005 to 2018 and
the observed, fitted and predicted compositions for 2019 are shown in Fig. 6 and illustrated with two types of graphical
representations for compositional data. A ternary plot is in the top panel and spherical plot in the bottom panel, where
for the latter we plotted the longitude and latitude of each point xt ∈ S2.

Both plots show a strong trend over the years and the ternary plot indicates that the proportion of energy generated
from source (iii) is continuously increasing each year. Correspondingly, the proportion of energy from coal or petroleum
is continuously decreasing. The trend indicates some degree of non-stationarity of xt , while no trend seems to be present
when considering the annual increments that correspond to the spherical rotations from one year to the next. It thus
appears that the differences {xt+1 ⊖ xt} are sufficiently stationary. Consequently, we applied model DSAR. Fig. 6 indicates
that DSAR not only fits the observed data quite well but also produces a reasonable prediction for the energy mix in the
year 2019. For comparison, we also applied the vector autoregressive model (VAR) for these data. The order of VAR was
selected using an AIC criterion as implemented in Pfaff (2008). This approach ignores the spherical nature of the data.
The Fisher–Rao distance between predicted and observed with the leave-out method is 0.046, while the proposed DSAR
method, also implemented with the leave-out method, has a Fisher–Rao distance of 0.022. Further details about leave-out
cross-validation for order selection are provided in the next section.
8
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Fig. 3. Contour plots of observed and predicted two-dimensional density functions for the distributional time series of temperatures as recorded at
AX. The top six panels show the observed density functions in the training set. The bottom left panels show the observed distribution for 2019
left); the predicted density using SAR (middle), with Fisher–Rao distance between predicted and observed of 0.197; and the predicted density using
SAR, with Fisher–Rao distance 0.236.

. Simulation results

We demonstrate that ignoring the spherical structure of the data may lead to inferior performance by using simulated
ata. For a fair comparison, the data example used in this section is generic and not generated from our model. Let {εt}
e i.i.d. 6-dimensional Gaussian with mean 0 and covariance matrix Σε . We generate a sequence of points {xi} on S5 as

follows,

yi = µ+ α1xi−1 + α2xi−2 + α3xi−3 + εi,

xi = yi/∥yi∥2,
(10)

where we consider two models for {εi}: (i) µ = (1, 0, 0, 0, 0, 0)T and Σε = (σij)6i,j=1, where σij = 0.25 if i = j and
otherwise σij = 0; (ii) µ = (0, 0, 0, 0, 0, 0)T and Σε = (σij)6i,j=1, where σij = exp(−|i− j|)/4.

To apply SAR or DSAR, we select the order p of the corresponding model using a cross-validation type criterion. For
instance, given {x , . . . , x }, we can use a portion of the data as test set and adopt the rolling window approach. More
1 n

9
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Fig. 4. Contour plots of observed and predicted two-dimensional density functions for the distributional time series of temperatures as recorded
at JFK. The top six panels show the observed density functions in the training set. The bottom left panels show the observed distribution for 2019
(left); the predicted density using SAR (middle), with Fisher–Rao distance between predicted and observed of 0.147; and the predicted density using
DSAR, with Fisher–Rao distance 0.186.

specifically, for K = ⌊ρn⌋, where ρ ∈ (0, 1) and k = 1, . . . , K , we use {xK−k+1, . . . , xn−k} to train models SAR or DSAR and
o obtain a prediction x̂n−k+1 at time n− k+ 1. We select the order p so as to minimize

∑K
k=1 dS (̂xn−k+1, xn−k+1)/K .

In our simulation, we compare the proposed models with vector autoregressive models (VAR) for Euclidean valued
ime series that ignore the spherical structure of the data. The VAR model is conveniently implemented through the R
ackage ‘‘vars’’ (Pfaff, 2008). For each experiment, a spherical time series {xi}51i=1 is sampled from model (10). We use
xi}50i=1 as training data to predict x51 and repeat this 300 times, then calculate the average Fisher–Rao distance between
he prediction x̂51 and the observed value x51. The results are summarized in Table 1.

We find that the proposed SAR is the best method for case (i), the variant DSAR is the best method for case (ii) and
oth SAR and DSAR consistently outperform VAR. The simulation results thus suggest that taking the geometric structure
f spherical time series into account is worthwhile and leads to better results for prediction by capturing the underlying
tructure.
10
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Fig. 5. Fisher–Rao distances between observed and fitted densities for each year for distributional time series of two-dimensional temperature
distributions.

Table 1
Simulation results for model (10), where SAR, DSAR are defined in Eq. (10).
(α1, α2, α3) Case (i) Case (ii)

SAR DSAR VAR SAR DSAR VAR

(0.5, 0, 0) 0.684 0.743 0.973 1.350 1.160 1.438
(0.6, −0.3, 0) 0.741 0.829 1.049 1.340 1.151 1.419
(0.3, −0.1, 0.4) 0.658 0.722 0.943 1.367 1.310 1.511

8. Discussion

While both compositional and distributional time series can be represented as spherical time series, such time series
lso arise for directional data (Mardia, 2014). Vector time series may also be represented with a spherical component if

one is primarily interested in the directions of the vectors over time and less in their length, via polar coordinates. All of
this adds to the motivation to study spherical time series. There is not much in terms of methodology available at this
time and there is clearly room for the development of advanced time series models. In this paper we attempt to address
this dearth of methodology by developing an autoregressive spherical model. We propose to represent rotation operators
on spheres by skew-symmetric operators that can be viewed as elements of a Hilbert space so that linear operations
become available. Other approaches may also be of future interest. Our goal is to provide a first modeling approach as a
baseline with which future approaches can be compared.

It is of course possible to use alternative metrics for both compositional and distributional time series. For com-
positional data, a classical alternative is the Aitchison geometry (Aitchison, 1986), which also has been extended to
istributional data (Hron et al., 2016). However, in applications to compositional data this approach does not work if
11
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Fig. 6. Observed (circles), fitted (triangles) and prediction target (19, circle is observed and triangle is predicted) for the US energy sources
compositional time series data, when fitting model DSAR. The numbers 08, . . . , 09, 10, . . . , 19 indicate the years from 2008 to 2019. Top panel:
ernary plot reflecting the compositional nature of the data; here the corner A represents coal or petroleum; B represents natural gas; and C
epresents nuclear and renewables. Bottom panel: The compositional time series and predictions shown in spherical coordinates. The Fisher–Rao
istance between predicted and observed compositions for 2019 is 0.0223.

ome of the component fractions are zero, requiring arbitrary adjustments; it also requires the arbitrary selection of a
aseline component; the spherical approach does not face these difficulties (Scealy and Welsh, 2014).
For distributional time series an obvious alternative is to consider the space of distributions equipped with the

Wasserstein metric (Villani, 2009) that is connected with optimal transport. When adopting this metric, the time series
s not spherical and needs to be modeled in the Wasserstein manifold, where one can use tangent bundles (Chen et al.,
021; Zhang et al., 2022) or an intrinsic optimal transport approach (Zhu and Müller, 2021). However when dealing with
he Wasserstein space for multivariate distributions one faces major hurdles in both theory and computation. In contrast,
he Fisher–Rao metric that we consider here allows seamless extensions to any dimension. When the distributions are
nknown, they need to be estimated and density estimation in higher dimensions is subject to the curse of dimensionality.
his can be counteracted by assuming that the number of data from which each of the densities is estimated is large
elative to the number of densities that one considers in the model.

Further in-depth comparisons of the various possible approaches to distributional and compositional time series will
eed to await future research. Beyond these two signature applications, autoregressive models for spherical time series
rovide a useful tool for directional time series and other situations where one has a natural representation of data on
12
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finite- or infinite-dimensional sphere. Another area of future research will be the development of other time series
pproaches for such data that extend autoregressive models to more complex models for time series such as GARCH
odels or to the frequency domain.
Finally, the spherical regression models that we have proposed here are also applicable for the case of a multiple

egression in a non-time series context, for situations where both predictors and responses are spheres. In this case one
as n i.i.d. pairs (Xi1, . . . , Xim, Yi) ∈ S and aims to model and obtain fits for the regression relation E(Y |X1, . . . , Xm). To
ur knowledge, such multiple spherical regression models have not been studied yet.

. Technical details

.1. Proof of Theorem 1

By construction, {u1, u2} is an orthonormal basis for span{x1, x2}. To rotate a point x ∈ H, we decompose x into two
parts

x = Proju1,u2x+ (x− Proju1,u2x),

where Proju1,u2 = u1 ⊗ u1 + u2 ⊗ u2 is the projection onto span{u1, u2}. The part that is orthogonal to span{u1, u2} stays
the same before and after rotating. Observe that for any y ∈ H

Q 2(y) = Q (Q (y))
= Q (⟨u1, y⟩u2 − ⟨u2, y⟩u1)
= −(⟨u1, y⟩u1 + ⟨u2, y⟩u2)
= −(u1 ⊗ u1 + u2 ⊗ u2)y

which entails that Q 2
= −Proju1,u2 . For the part within span{u1, u2}, we can apply the two dimensional rotations and

map the result back to H, i.e., Proju1,u2x is rotated to

(cos(ϑ)⟨u1, x⟩ − sin(ϑ)⟨u2, x⟩)u1 + (sin(ϑ)⟨u1, x⟩ + cos(ϑ)⟨u2, x⟩)u2

= cos(ϑ)(u1 ⊗ u1 + u2 ⊗ u2)x+ sin(ϑ)(u1 ⊗ u2 − u2 ⊗ u1)x

= (cos(ϑ)(−Q 2)+ sin(ϑ)Q )x,

Using Q 2
= −Proju1,u2 and rearranging the terms, the point x is seen to be rotated to

(cos(ϑ)(−Q 2)+ sin(ϑ)Q )x+ (I + Q 2)x =
(
I + sin(ϑ)Q + (1− cos(ϑ))Q 2) x.

To show identity (2), observe that for any y ∈ H,

Q 3(y) = Q (Q 2(y))
= −Q (⟨u1, y⟩u1 + ⟨u2, y⟩u2)
= −(⟨u1, y⟩u2 − ⟨u2, y⟩u1)
= −Qy,

which entails that Q 3
= −Q . By adopting the idea for rotations in SO(n) (Gallier and Xu, 2003), we expand the exponential

ap and apply Q 3
= −Q repeatedly,

exp(ϑQ ) =
∞∑
l=0

ϑ lQ l

l!

= I +

(
∞∑
l=1

ϑ2l−1(−1)l−1

(2l− 1)!

)
Q +

(
∞∑
l=1

ϑ2l(−1)l−1

(2l)!

)
Q 2

= I + sin(ϑ)Q + (1− cos(ϑ))Q 2.

e then prove that exp(ϑQ ) is orthogonal. By applying the identities ⟨Qy1, y2⟩ = −⟨y1,Qy2⟩ and Q 3
= −Q , some

straight-forward algebra show that

⟨exp(ϑQ )y1, exp(ϑQ )y2⟩

= ⟨y1, y2⟩ + (1− cos(ϑ))(⟨y1,Q 2y2⟩ + ⟨Q 2y1, y2⟩)

+ sin2(ϑ)⟨Qy1,Qy2⟩ + (1− cos(ϑ))2⟨Q 2y1,Q 2y2⟩
= ⟨y1, y2⟩ − 2(1− cos(ϑ))⟨Qy1,Qy2⟩

+ (sin2(ϑ)+ (1− cos(ϑ))2)⟨Qy1,Qy2⟩

= ⟨y1, y2⟩.

13
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n addition, for any x ∈ span{u1, u2} ∩ S , we can write x = c1u1 + c2u2 such that c21 + c22 = 1. Since Qx = c1u2 − c2u1 and
2x = −c2u2 − c1u1, we have

⟨exp(ϑQ )x, x⟩
=⟨x+ sin(ϑ)(c1u2 − c2u1)− (1− cos(ϑ))x, x⟩
=cos(ϑ).

his shows that arccos(⟨exp(ϑQ )x, x⟩) = ϑ . Finally, since Qy = 0 for any y perpendicular to span{u1, u2}, we have
xp(ϑQ )y = y.

.2. Proof of Theorem 3

Hereafter, we drop the subscript H ⊗ H in ⟨·, ·⟩H⊗H for simplicity. Denote λ̃ = (̃λ0, λ̃1, . . . , λ̃p), where for k =

0, 1, 2, . . . , p, λ̃k is defined as

λ̃k =
1
n

n∑
t=1

⟨Rt − µR, Rt+k − µR⟩.

To prove the theorem, we show the asymptotic normality of λ̃ and then we show that |̂λk − λ̃k| = op(1) for any
k = 0, 1, 2, . . . , p. For convenience, we define ψi = 0 if i < 0 and write

Rt − µR =

∞∑
i=−∞

ψiεt−i

Next, we compute the asymptotic covariance of λ̃. To this end, we observe

E[⟨εi, εj⟩⟨εk, εl⟩] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

E[⟨ε1, ε1⟩2], i = j = k = l,
(E[⟨ε1, ε1⟩])2, i = j ̸= k = l,
E[⟨ε1, ε2⟩2], i = k ̸= j = l,
E[⟨ε1, ε2⟩2], i = l ̸= j = k,

0, otherwise.

Some algebra leads to

E[⟨Rt − µR, Rt+u − µR⟩⟨Rt+h − µR, Rt+h+v − µR⟩] = Γ h
u,v,

where

Γ h
u,v =

(
E[⟨ε1, ε1⟩2] − (E[⟨ε1, ε1⟩])2 − 2E[⟨ε1, ε2⟩2]

)∑
i

ψiψi+uψi+hψi+h+v

+(E[⟨ε1, ε1⟩])2κ(u)κ(v)+ E[⟨ε1, ε2⟩2] (κ(h)κ(h+ v − u)+ κ(h+ v)κ(h− u)) .

he absolute summability of {Γ h
u,v}h∈N is guaranteed by the absolute summability of {ψi}. For h = s− t ,

cov(̃λu, λ̃v) =
1
n2

n∑
s,t=1

E[⟨Rt − µR, Rt+u − µR⟩⟨Rs − µR, Rs+v − µR⟩]

=
1
n2

∑
|h|<n

(n− |h|)Γ h
u,v.

Thus, let V = limn→n n×cov(̃λ), it can be seen that Vu,v := limn→∞ n×cov(̃λu, λ̃v) =
∑

∞

h=−∞
Γ h
u,v . To derive the asymptotic

distribution of λ̃, we follow the idea in Chapter 7 of Brockwell and Davis (1991) by defining Tm
t =

∑m
i=−m ψiεt−i,

λmk =
∑n

t=1⟨T
m
t , T

m
t+k⟩/n and λ̃

m
= (̃λm0 , λ̃

m
1 , . . . , λ̃

m
p )

T . Notice that for any k, {⟨Tm
t , T

m
t+k⟩}

n
t=1 is a (2m + p)-dependent

sequence. Applying the CLT for m-dependent data leads to
√
n
(̃
λ
m
− λm

)
→

d N(0, Vm),

where λm
= E [̃λm

] and Vm
:= limn→∞ n× cov(̃λm). It is clear that Vm

→ V as m → ∞. Next, we show that

lim limsup P
(⏐⏐⏐√n(̃λm

− λm
− λ̃ + λ)

⏐⏐⏐ > ϵ

)
→ 0, (11)
m→∞ n→∞

14
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here | · | is the L2-distance. Notice that the above probability is bounded by
∑p

k=0 P(
√
n|̃λmk − λmk − λ̃k + λk| >

ϵ/
√
p+ 1) and

P(
√
n|̃λmk − λmk − λ̃k + λk| > ϵ/

√
p+ 1) ≤

p+ 1
ϵ2

n
(
var(̃λmk )+ var(̃λk)− 2cov(̃λmk , λ̃k)

)
.

Since limm→∞ limn→∞ n(var(̃λmk )+ var(̃λk)− 2cov(̃λmk , λ̃k)) = (Vk,k + Vk,k − 2Vk,k) = 0, Eq. (11) holds, then it follows from
roposition 6.3.9 of Brockwell and Davis (1991) that

√
n
(̃
λ − λ

)
→

d N(0, V ).

Finally, we show that λ̃− λ̂ = op(1). It suffices to show
√
n(̃λk − λ̂k) = op(1) for any k = 0, 1, . . . , p. Some algebra shows

hat

λ̃k − λ̂k = Op (⟨µ̂R − µR, µ̂R − µR⟩) .

ince {κ(u)}u∈N is absolutely summable,

E(⟨µ̂R − µ̂R, µ̂R − µR⟩) = E

(
1
n2

n∑
s,t=1

⟨Rs − µR, Rt − µR⟩

)

=
1
n
O

(
κ(0)+

n−1∑
k=1

2(1− k/n)κ(k)

)

= O
(
1
n

)
.

Also, as {Γ h
u,v}u∈N is absolutely summable, we have

var(⟨µ̂R − µ̂R, µ̂R − µR⟩)

=
1
n4

∑
s1,t1,s2,t2

cov
(
⟨Rs1 − µR, Rt1 − µR⟩, ⟨Rs2 − µR, Rt2 − µR⟩

)
=

1
n
O

(
1
n3

∑
s1,s2,t2

(∑
t1

Γ
|s2−s1|
|t1−s1|,|t2−s2|

))
= O(1/n).

We conclude that ⟨µ̂R − µR, µ̂R − µR⟩ = op(1) and
√
n(̂λ − λ) →d N(0, V ).
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