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Abstract Flight delays occur in the air transportation system when disrup-
tive events such as weather, equipment outage, or congestion create an imbal-
ance between system capacity and demand. These cycles of disruptions and
subsequent recoveries can be viewed from a dynamical systems perspective:
exogenous inputs (convective weather, airspace restrictions, etc.) disrupt the
system, inducing delays and ine�ciencies from which the system eventually
recovers. We study these disruption and recovery cycles through a state-space
representation that captures the severity and spatial impact of airport delays.
In particular, using US airport delay data from 2008-2017, we first identify rep-
resentative disruption and recovery cycles. These representative cycles provide
insights into the common operational patterns of disruptions and recoveries in
the system. We also relate these representative cycles to specific o↵-nominal
events such as airport outages, and elucidate the di↵ering disruption-recovery
pathways for various o↵-nominal events. Finally, we explore temporal trends in
terms of when and how the system tends to be disrupted, and the subsequent
recovery.
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1 Introduction

The size and scale of the air transportation system render disruptions in-
evitable. In the US, more than 2 million flight operations were delayed in 2018,
caused by everything from extreme weather to equipment outages [2]. Some ex-
amples of extremely disruptive events include the Chicago area control center
fire on September 26, 2014; the March 2017 nor’easter; Hurricane Sandy and
its e↵ects on the New York-area airports; and computer outage issues at Delta
Air Lines’ Atlanta headquarters in August of 2016. Such disruptions, along
with the associated flight delays and cancellations, result in significant mone-
tary and environmental losses [15]. However, as with any resilient engineering
system, a robust design enables swift recoveries with minimal secondary im-
pacts. To this end, the Federal Aviation Administration (FAA) has a goal
of “[achieving] 90% capacity at the top 30 airports with the most passenger
activity within 24 hours [of a disruption], and 90% capacity at facilities that
manage air tra�c at high altitude and in the vicinity of airports within 96
hours” [13].

Disruptions and subsequent recoveries in the air transportation system vary
in their geographical extent (number of airports a↵ected), intensity (severity
of resultant delays and cancellations), and duration (ranging from hours to
days). The inherent variability of factors such as weather in the operating
environment, along with the complex interconnectivity of the system, make it
di�cult to extract actionable insights from past events. Our work focuses on
formalizing and analyzing disruptions and recoveries in the air transportation
system by leveraging techniques that evaluate aviation disruptions from the
perspective of signal processing in networked systems [10].

1.1 Motivation

We now discuss and motivate two questions that we will address in our work.
The first relates to defining and formalizing periods of disruptions and recover-
ies comprehensively. A simple way to do so may be to consider the total delay
as a measure of system disruptions, and then define any time interval in which
delays exceed some threshold as a disrupted period. However, this approach is
unable to capture spatial information regarding the geographical extent of the
disruption. Suppose only one strongly-connected airport – and no other airport
in the system – is experiencing high delays. The total delay metric may not
classify this as a disruption, even though this scenario is unexpected, and may
indicate an impending propagation of delays. Similar approaches that moni-
tor temporal trends in delays at specific airports or origin-destination (OD)
pairs are also unable to account for network connectivity-based information.
Finally, in the context of extreme events such as hurricanes and nor’easters,
the start of an event may not always coincide with the start of the system
disruption. For example, airlines may proactively delay or cancel flights before
the event, in which case the disruption precedes the event; on the other hand,
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airlines may opt to continue operations that progressively deteriorate, in which
case the opposite order occurs. Hence, we address this question by providing
a holistic method to identify both disruptions and the subsequent recovery
phases, based on the magnitude and geographical distribution of delays.

The second motivation relates to understanding broader trends and pat-
terns in historical disruption-recovery cycles in order to improve system pre-
dictability and resilience. As discussed earlier, a significant challenge to an-
alyzing past disruptions and recoveries is their inherently large variability.
Thus, seemingly simple questions – what is the typical duration of disruptions
due to specific o↵-nominal events; do two di↵erent events with similar delay
impacts recover in di↵erent ways; is the recovery phase longer than the disrup-
tion phase; can we predict the onset and duration of the recovery phase; and
so on – become very di�cult to answer. Addressing these questions requires
not only precise definitions for the onset and progression of disruptions and
recoveries, but also the identification of “typical” or “representative” patterns
that disruption-recovery cycles tend to follow.

Our main contributions lie in formalizing a framework for examining dis-
ruptions and recoveries in networks, drawing from graph signal processing
and the state-space representation of dynamical systems. Specifically, we con-
sider disruptions and recoveries not only in terms of signal magnitudes, but
also their spatial distribution and temporal evolution. Our framework is of
potential use to air tra�c managers who might be interested in characteriz-
ing and improving the resilience of air transportation systems. Airlines and
passengers may also benefit from an improved understanding of disruptions
and subsequent recoveries. Finally, our work generates a reference data set
of disruption-recovery cycles that can be used to benchmark system recovery
(available upon request).

1.2 Prior work

Prior work has defined aviation system recovery in terms of flight delays,
displaced or delayed crews, and disrupted or delayed passengers [4,1]. However,
these recovery definitions and strategies are airline-specific and of limited use
in defining and measuring system-wide characteristics. We expand on this
line of work by incorporating system-wide spatio-temporal information [7,10],
leading to our comprehensive definitions of disruptions and recoveries.

More broadly, analyzing disruptions and recoveries in a networked system
is a growing field of study, and is closely related to understanding system
resilience. Significant prior work has focused on developing models for such
systems, and then analyzing them theoretically or through simulations [8,
12]. In [3], a system-level analysis was performed to model di↵erent types of
synthetic disruptions and recoveries for simplified network models; they found
that in simple aviation networks, there was asymmetry in the disruption and
recovery timescales. Our work complements these literature, as well as other
emerging research regarding the resilience of air transportation systems from
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network science [17] and simulation-based [5] perspectives, by developing a
framework that enables data-driven analyses of historical disruption-recovery
cycles.

Finally, while post-hoc analyses of singular o↵-nominal events [14,9] and
tactical disruption management strategies [16] have been explored, there have
been no cohesive e↵orts to classify multiple types of disruption-recovery events.
There also remains the lack of a formal framework for defining disruptions and
recoveries in networked systems, a concern that we address in Section 2.

1.3 Contributions

The key contributions of this paper are as follows:

1. We leverage techniques from graph signal processing to comprehensively
define the start, progression, and end of flight delay disruption-recovery
cycles in a network of airports. Our method not only considers the magni-
tude of delays, but also their spatial distribution, their relation to historical
delay patterns, and temporal trends.

2. We identify disruption-recovery trajectories using operational data, and
develop appropriate features in order to cluster them into representative
groups. One of our key technical contributions is the choice of incorporating
spectral graph-theoretic and temporal features to describe disruptions and
recoveries in airport networks.

3. We uncover and interpret two interesting observations related to: (1) the
behavior of disruption and recovery during o↵-nominal events (e.g., airport
outages), and (2) the temporal trends in disruption-recovery trajectories.
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2 Data and methodology

2.1 Data sources and processing

We use hourly airport delay data for the years 2008 to 2017 from the FAA’s
Aviation System Performance Metrics (ASPM) database for our analysis, fo-
cusing on the US Core 30 airports (see Figure 1 for a geographical overview),
which were responsible for 72% of all US enplanements in 2017 [6]. For each
hour in this data set, we construct a graph with the airports as nodes, and the
signal at each node being the total average arrival and departure delay experi-
enced by all scheduled flights in that hour at the airport. The adjacency matrix
for these graphs are the hourly 30⇥ 30 correlation matrices evaluated by con-
sidering the hour-by-hour subsets of the 10-year airport delay data set. Thus,
there are 24 adjacency matrices, corresponding to each hour of the day. For
each graph, the graph Laplacian is the di↵erence between the degree and the
adjacency matrix. With the hourly graph Laplacian, we can compute the total
variation (TV) for each hour. The graph signal vector x(t) = [xi,t] 2 R30⇥1

represents the delay xi,t at time t for airport i. The total delay (TD) is the 1-
norm of x(t), and the total variation is TV (x(t)) = x(t)|Lx(t), where L is the
Laplacian for the hour-of-day of time t. The TV is a measure of signal smooth-
ness with respect to the underlying graph. In the case where airport delays
are node-supported signals and correlation coe�cients are the edge weights, a
high TV value indicates an imbalance between delays at airports with histor-
ically highly-correlated delays. This intuition is more clear if we look at the
following equivalent definition of TV:

TV (x(t)) = x(t)|Lx(t) =
X

i<j

rij (xi,t � xj,t)
2
,

where rij denotes the correlation coe�cient between historical airport delays
at airports i and j. For a more in-depth discussion, we refer readers to [10].
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Fig. 1 Geographic locations of the US airports considered in our analysis (IATA code
given). Note that HNL is not shown for simplicity.



6 Max Z. Li et al.

2.2 Disruption-recovery trajectories (DRTs)

We represent disruptions and the subsequent recoveries as disruption-recovery
trajectories (DRTs) in the TV-TD state space. We define a DRT Tt⇤ to be
a chronologically ordered set of TD and TV values, capturing the evolution
of the magnitude (TD) and spatial distribution (TV) of airport delays. DRTs
project the state of the system in a qualitatively interpretable manner. For
example, we can assess how the system evolves in terms of airport delays from
t1 to t2 by looking at the progression of the TV-TD state space trajectory
(kx(t1)k ,TV (x(t1))) ! (kx(t2)k ,TV (x(t2))).

We further divide the TV-TD space into regions according to operationally-
interesting regimes. We illustrate one potential (disjoint) partition that we
utilize for our analysis in Figure 2(a). This partition distinguishes a nominal
region (i.e., nominal TD and TV levels), a high-TD region (i.e., delay magni-
tudes are high), and an unexpected TV region (i.e., the spatial distribution of
delays is unexpected). Prior work has shown that unexpected spatial distri-
butions correspond to regions with very high or low TV [7,10]. In particular,
given an observation x(t) belonging to a certain hour, we can compute the
bounds on the TV for identifying delay distributions that are spatially per-

turbed at time t, denoted as
h
b⇥, b⇥

i

hour(t)
, using the methods proposed in

[7,11,10]. We also compute a delay threshold f
hour(t)
TD 2 R�0 for each hour

to identify delay distributions that have a very high magnitude of TD. The
regions in Figure 2(a) are defined as follows:

N Region (nominal): TV (x(t)) 2
h
b⇥, b⇥

i

hour(t)
(i.e., spatial distribution

is nominal), and kx(t)k is less than f
hour(t)
TD (i.e., the magnitude of delay is

not abnormally high).

S Region (scale): TV (x(t)) 2
h
b⇥, b⇥

i

hour(t)
(i.e., the spatial distribution

is nominal), but kx(t)k is greater than f
hour(t)
TD (i.e., the magnitude of delay

is currently elevated).

D Region (distribution): TV (x(t)) /2
h
b⇥, b⇥

i

hour(t)
(i.e., the spatial distri-

bution of delays is unexpected).

Algorithm 1 describes a method for constructing an operationally-significant
DRT Tt⇤ , given the 3-region partition from Figure 2(a). Specifically, it anchors
a DRT at a particular time index t

⇤ such that (kx(t⇤)k ,TV (x(t⇤))) 2 D . Al-
gorithm 1 is O(T ) where T is the total number of hours, and it constructs
t
⇤-anchored DRTs forward in time. This algorithm identifies minimal-length
trajectories that have at least one state in the region with unexpected spatial
delay distributions, i.e., region D , and the start and end state in region N .
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Fig. 2 (a) A disjoint partition of the TV-TD state space into three regions; (b) Schematic
representation of a disruption-recovery trajectory Tt⇤ constructed via Algorithm 1 anchored
in time at t⇤.

Algorithm 1 Constructing DRTs given a 3-region disjoint decomposition of
the TV-TD state space.
Input: Labeled states indexed by time t 2 [0 : �t : T ], where �t = 1 hour; Region labels

R(t) 2
n

N , S , D
o

Output: Set of DRTs Tt⇤ 2 T

ts  ;; T ;; DRT  FALSE
for t 2 [0 : �t : T ] do

if R(t) = N then

ts  t
end

if R(t) = D ^ ts 6= ; then
DRT  TRUE

t⇤  t
end

if R(t) = N ^ DRT = TRUE then

Tt⇤ := {(kx(⌧)k ,TV (x(⌧))) | ⌧ 2 [ts, t]}
ts  t

DRT  FALSE
end

end

2.3 Nomenclature and definitions

The state at time t is the TD and TV of the system, i.e., (kx(t)k ,TV (x(t))).
We refer to a sequence of consecutive states as a trajectory, and a trajectory
of length 2 as a maneuver. A DRT of length N consists of N � 1 maneuvers
between consecutive hours. The TV-TD state space is partitioned into regions
N , S , and D . Hence, every point on the TV-TD space (i.e., every state)
belongs to one of three regions. A transition is a maneuver where the two
consecutive states are in di↵erent regions. Note that a DRT is the minimal
trajectory (shortest-length trajectory) that starts and ends in region N and

contains at least one state in region D . We further classify each maneuver into
two categories (Figure 3). A symbiotic maneuver is one in which both TD and
TV are increasing, or that both are decreasing. On the other hand, a trade-
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o↵ maneuver is one in which the TV and TD change in opposite directions.
Symbiotic maneuvers indicate pure disruptions or recoveries, whereas trade-o↵
maneuvers are more nuanced, as one quantity is recovering at the detriment
of the other. For example, a trade-o↵ maneuver could indicate that although
the system delay is decreasing, its spatial variability is increasing.
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Symbiotic
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Trade-off
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Trade-off
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Fig. 3 Symbiotic and trade-o↵ maneuvers in TV-TD space. The star at the center indicates
the current state.

2.4 Disruptions and recoveries

In order to define disruptions and recoveries, we take into account the maneu-
ver type (i.e., symbiotic versus trade-o↵) and whether or not a transition has
occurred. For a DRT of length N , we define the start of a disruption to be
a transition out of N , and the end of a recovery to be a transition into N .
Among the remaining maneuvers, symbiotic maneuvers with increasing TV
and TD are defined as a disruption segment, and symbiotic maneuvers with
decreasing TV and TD are defined as a recovery segment. Trade-o↵ maneuvers
inherit disruption or recovery classifications from the previous maneuver. The
four possible trade-o↵ maneuvers are defined as follows:

i. Disruption-in-TV segment: Increasing TV and decreasing TD following a
disruption.

ii. Disruption-in-TD segment: Increasing TD and decreasing TV following a
disruption.

iii. Recovery-in-TD segment: Increasing TV and decreasing TD following a
recovery.

iv. Recovery-in-TV segment: Increasing TD and decreasing TV following a
recovery.

Trade-o↵ maneuvers are, by definition, a recovery along one axis and a
disruption along the other. Our convention therefore assumes that a trade-o↵
maneuver predominantly follows the trend of the preceding maneuver.
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1700Z, 5/22/2014
1800Z, 5/22/2014

0000Z, 5/23/2014

0400Z, 5/23/2014

Fig. 4 A 12-hour long DRT transitions out of the nominal region at 1700Z. Arrows denote
maneuvers, and their colors denote the succeeding region (see Figure 2). Select DRT fea-
tures from Section 2.5 such as signed enclosed area and trade-o↵ maneuvers (brown dashed
indicators) are annotated. Note that each state is a one hour interval.

2.5 DRT clustering features

We cluster DRTs using twelve features that capture various operational char-
acteristics:

DRT length: This feature, denoted by |Tt⇤ |, captures the duration of a DRT.
The minimum DRT length is 3 hours; the shortest DRT is given by N ! D !
N .

Duration in S and D regions: These features represent the number of
hours in a DRT during which the system is either experiencing high delays (re-
gion S ) or unexpected spatial delay distributions (region D ). The minimum
number of states in region D is 1.

Average TD and TV intensity: For each DRT, we calculate the average
TV and TD, and normalize them by their respective maximum values. The
resultant features reflect the intensity in terms of the magnitude or spatial
distribution of delay. A DRT where every hour attains a TD and/or TV value
close to the maximum is considered to be more intense, with TD and/or TV
intensity values close to 1.

Signed enclosed area: Figure 4 illustrates how in some DRTs, the disrup-
tion phase is characterized by higher spatial variability in the delay patterns,
whereas in others, the spatial variability is higher during recovery. We use the
signed enclosed area of a DRT as a feature:

1

2

X
(kx(ti+1)k � kx(ti)k) (TV (x(ti+1)) + TV (x(ti))) ,
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where the summation is over all maneuvers in the DRT. This computation
is shown in Figure 5. If the area is negative, then more unexpected spatial
delay distributions are associated with decreasing TD, whereas if the area
is positive, these unexpected spatial delay distributions are associated with
increasing TD. Note that this is an aggregate measure over an entire DRT.
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Fig. 5 A DRT where higher TV is associated with recovery (left), and a DRT where higher
TV is associated with disruption (right).

Maximum TD and TV values: These features are the maximum observed
TD and TV values for each DRT.

Number of symbiotic and trade-o↵ maneuvers: These features are the
counts of each type of maneuver in a DRT.

Length of symbiotic and trade-o↵ maneuvers: The length of a maneuver
is defined as the Euclidean norm of the maneuver in R2. We use the total
length of the symbiotic and trade-o↵ maneuvers as features that indicate the
dominance of each maneuver type. For example, given a maneuver from (1,
1) to (10, 10) and a maneuver from (1, 1) to (100, 100), both are symbiotic
maneuvers, but the latter is a more pronounced, dominant evolution within
the TV-TD state space.
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3 Representative DRTs

3.1 Average DRT characteristics

Algorithm 1 yields 2,322 DRTs composed of 12,350 hours (approximately 14%
of all hours) within the 10-year span contained in our data set. The average
length of a DRT, i.e., the average time between the system state leaving and
returning to the nominal N region, is 5.3 hours. Hence, the average duration
during which the system is either in the disruption or recovery phase is 3.3
hours (subtracting the start and end nominal hours). Two of these hours are in
the high-delay region S , and one hour is in the unexpected distribution region
D . In other words, although most of the duration of a typical DRT involves
only high magnitudes of delay (the conventional measure of a disruption),
one-third of the duration is associated with the unusual spatial distribution of
delay, and not necessarily its magnitude.

Recall that the TD and TV intensities measure how the values for each
hour within a DRT compare to the maximum TD or TV values for that DRT.
Operationally, a higher intensity indicates that both the disruption as well
as the recovery of the system happened in a shorter time span, or in other
words, most of the hours were spent close to the peak disruption state. Figure
6 shows the histograms of the average TD and TV intensities for each DRT.
The distribution of kxk (i.e., the TD) is left-skewed with a mean of 0.83,
whereas the distribution of TV values is more symmetric with a mean of 0.57.
The figure implies that when disruptions (and subsequently, recoveries) occur,
the TD increases (and decreases) rapidly in time, but the e↵ect on the spatial
distribution of delay is more variable and evolves slowly. In other words, DRTs
display faster changes along the horizontal (TD) axis than the vertical (TV)
axis.

Recall that the signed enclosed area of a DRT reflects whether the TV was
higher during increasing delays (positive area) or decreasing delays (negative
area), aggregated across the entire DRT. The average signed area is positive
(6.72 ⇥ 106 min3), indicating that the spatial distribution of delays tends to
be more varied and unexpected during the disruption phase as compared to
the recovery phase.

The last feature that we discuss in an average sense across all 2,322 DRTs is
the number of symbiotic and trade-o↵ maneuvers. Since the average length of
a DRT is approximately 5 hours, the average number of maneuvers in the TV-
TD state space is 4. Out of these, the average number of symbiotic maneuvers
is 3, with 1 maneuver being a trade-o↵ between TD and TV. Although the sys-
tem prefers to evolve such that both TD and TV are increasing or decreasing,
25% of the times the system state exhibits a decrease in TD and an increase
in TV, or vice versa. Since TV(x) = x|Lx, there is a positive quadratic rela-
tionship between TV and TD, indicating that the system typically will evolve
symbiotically. The 25% of times where the system state exhibits trade-o↵ ma-
neuvers form an interesting set of airport delay behaviors, possibly reflecting
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Fig. 6 Distribution of TD and TV intensity values.

the influence of external inputs (Tra�c Management Initiatives or TMIs, air-
line recovery actions, etc.) in the disruption-recovery process.

3.2 Clustering DRTs

We used k-means clustering with the squared Euclidean distance metric to
determine representative DRTs from the set of 2,322 DRTs, given the 12 fea-
tures from Section 2.5. While other clustering methods such as DBSCAN could
be used, we chose k-means clustering for its interpretable parameter choice
(i.e., number of clusters) and simplicity. Prior to clustering, we standardize all
feature observations by the feature mean and standard deviation. We select
k = 7 clusters, taking into account the within cluster sum-of-square (WCSS)
error (Figure 7), and the cluster population and interpretability. Each cluster
centroid provides an average representation of the DRTs that belong to that
cluster. We list the centroids, along with pertinent DRT features, descriptive
labels, and cluster population in Table 1 in the Appendix.

3.3 Analyzing representative DRTs

For each representative DRT listed in Table 1, we discuss the operational char-
acteristics that describe the disruption and subsequent recovery. Furthermore,
these representative DRTs help identify when a disruption begins, when the
recovery begins, and when the event ends, using historical data. We now list
the representative DRTs, along with a shortened tag that we will use to refer
to them:



Dynamics of Disruption and Recovery in Air Transportation Networks 13

Fig. 7 Within cluster sum-of-square (WCSS) error versus the number of clusters.

Short DRTs with spatially-perturbed disruption segments (Short Dis):
This type of DRT is the most prevalent (50% of all DRTs), and is a short-
duration (3 hours) event. Short Dis DRTs indicate brief disruptions; for ex-
ample, a transient pop-up thunderstorm around the vicinity of a major airport.
In comparison to the other short representative DRT (Short Rec), the aver-
age area for Short Dis is positive, indicating that the airport delays were
spatially distributed in a more unexpected manner during disruption than
recovery. Furthermore, the maximum TV value observed for Short Dis is sig-
nificantly higher than Short Rec, even though their maximum TD values are
comparable.

Short DRTs with spatially-perturbed recovery segments (Short Rec):
This DRT type accounts for 33% of all DRTs. Similar to Short Dis, these
DRTs represent transient o↵-nominal conditions, with an average length of
4 hours. The average TD and TV intensity values for Short Rec are smaller
than those of Short Dis, indicating that the system state does not typically
attain the maximum TD and TV values. Furthermore, the area is negative but
of the same magnitude as Short Dis, meaning that the spatial distribution of
airport delays was more unexpected during recovery segments than disruption
segments.

Medium-length DRTs (Med): These DRTs have an average length of around
6 hours, indicating that these disruptions and subsequent recoveries account
for significant portions of an operational day in the US airspace system. The
relative rarity of these longer-duration events are reflected in its cluster pop-
ulation: only 196 out of 2,322 DRTs (about 8%) are classified as Med. We also
note that, similar to Short Rec, the airport delays were spatially distributed
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in a more unexpected manner during recovery segments than disruption seg-
ments.

Operational day-long DRTs with spatially-perturbed disruption seg-
ments (OpsDay Dis): With average DRT lengths of approximately 15 hours,
these disruptions and subsequent recoveries account for a major portion of an
operational day. For example, a DRT in OpsDay Dis beginning in the morn-
ing would not recover back into the nominal N region until well into the
evening. Similar to the di↵erence between Short Dis and Short Rec DRTs,
OpsDay Dis and OpsDay Rec DRTs di↵er by the signed enclosed area. The
spatial distribution of airport delays was more unexpected during disruption
segments for OpsDay Dis DRTs. This DRT type accounts for less than 1% of
all DRTs.

Operational day-long DRTs with spatially-perturbed recovery seg-
ments (OpsDay Rec): The temporal persistence of these DRTs is similar to
OpsDay Dis, with an average length of 18 hours. As we have noted in OpsDay Dis,
the spatial delay distribution for OpsDay Rec is more unexpected during recov-
ery segments. Furthermore, the maximum TV value is significantly lower than
OpsDay Dis. Both OpsDay Rec and MultiDay DRTs tend to occur in winter
months, as we will discuss further in Section 4 when we combine informa-
tion regarding specific o↵-nominal events (nor’easters, hurricanes, etc.) and
month-of-occurrence.

Multi-day DRTs (MultiDay): This cluster of DRTs represents a prolonged
disruption and subsequent recovery event, with average lengths of over 2 days
(55 hours). The maximum observed TD and TV values are also some of the
highest among all clusters, indicating that these lengthy DRTs impact the sys-
tem severely in terms of both magnitude and spatial distribution of delays. We
also note that the spatial distribution of delays tend to be more unexpected
during disruption segments for MultiDay DRTs, as signified by the positive
average area. The unique characteristic of these MultiDay DRTs is that there
was no recovery back to a nominal N region even during the overnight hours,
when the system typically has low tra�c and enough slack to reset the dis-
ruption.

We refer to the last cluster in Table 1 as Dec08Event; the fact that one
unique DRT was placed in a cluster by itself indicates that it di↵ers signif-
icantly from the other representative DRTs. Since it is a singular, extreme
disruption-recovery event spanning almost 10 days (229 hours) in December
2008, we analyze it separately and present it as a case study.

In Section 3.1, we saw that the average DRT was composed of 75% symbi-
otic maneuvers and 25% trade-o↵ maneuvers. Even though this average does
not have to hold within each representative DRT cluster, the ratio of symbiotic
to trade-o↵ maneuvers is robust to variations in the actual length of the DRT,
assuming that it is long enough to observe such behavior. This indicates that
even during prolonged disruption-recovery events, the preferred evolution of
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the system state is still in symbiotic directions, with maneuvers occurring in
the trade-o↵ direction at a frequency of only 20-25%.
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4 Evaluating o↵-nominal events and temporal trends

4.1 Mapping o↵-nominal events to DRTs

We identify the following types of o↵-nominal events using weather data and
news sources: nor’easters, hurricanes, thunderstorms, and airline- or airport-
specific outages. This yields a set of 178 days which are then cross-referenced
with the set of DRTs, allowing us to examine what type of DRTs are common
during each of these events. Figure 8 shows a normalized bar plot depicting
the DRT type breakdown for each of the four o↵-nominal events.

Fig. 8 Frequency of representative DRTs, given the occurrence of an o↵-nominal event.
The extreme Dec08Event cluster is not shown.

Long-lasting DRTs (i.e., OpsDay Rec, OpsDay Dis, and MultiDay) are pres-
ent in over 70% of nor’easter- and thunderstorm-type days, but only around
37% of days with an airline- or airport-specific outage. In particular, 37% of
DRTs during nor’easters are of type OpsDay Rec, and 44% of DRTs during
thunderstorms are MultiDay. The spatial distribution of airport delays during
nor’easter days, particularly during recovery segments, tends to be more un-
expected than during disruption segments. This could be indicative of airline-
specific recovery e↵orts that result in airport delays at unusual combinations of
airports. Examining the average representative DRT lengths, the time it takes
the system to be disrupted and recover from nor’easter-type days tends to be
shorter than for thunderstorm-type days, which are dominated by MultiDay

DRTs. This may be explained by the more volatile and disruptive nature of
thunderstorm squall lines compared to large winter storms, resulting in more
unpredictable DRTs.

63% of DRTs are Med-length or shorter on outage-type days, indicating that
the disruption and recovery of the system during these events are short-lived.
Similar to nor’easters, the spatial distribution of airport delays is higher during
recovery segments, with 68% of DRTs having a negative area. Finally, we
note that for many hurricane-type days, due to pre-emptive cancellations and
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airport closures, both TD and TV values are suppressed. Hence, most DRTs
(84%) during hurricane-type days are short-term disruptions and recoveries.

4.2 Monthly distribution of DRTs

In order to observe temporal trends in DRT occurrences, we plot the fre-
quency of occurrence of representative DRT types in Figure 9, splitting the
data set into a 2008-2016 subset, and a 2017 subset. The reason for this split is
that certain representative DRTs in the year 2017 behaved di↵erently than in
the preceding 9 years. Specifically, MultiDay DRTs primarily appeared only
in the winter months prior to 2017. By contrast, 42%, 30% and 23% of all
DRTs in April, July, and August 2017 were MultiDay DRTs. Furthermore,
MultiDay DRTs in April and July 2017 are predominantly thunderstorm-type
o↵-nominal days. This indicates an increased vulnerability of the system to
thunderstorms in the summer of 2017. Further investigation would be needed
to determine what specific initiatives and policies might have caused this shift
in disruption-recovery dynamics in 2017.

(a)

(b)

Fig. 9 Occurrence counts of DRT hours for each month, split by representative DRT clus-
ters; counts (a) averaged across 2008-2016 and (b) for 2017.
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4.3 December 2008 DRT: Case study

Dec08Event was an extremely long DRT (229 hours) with a sequence of disrup-
tions and subsequent partial recoveries, occurring between December 15 and
December 25, 2008. To better understand this DRT, we superimpose FAA-
issued advisories related to Airspace Flow Programs (AFP), Ground Stops
(GS), and Ground Delay Programs (GDP) for the duration of the Dec08Event
DRT (Figure 10). The combined number of GS- and GDP-related advisories,
a measure of airport capacity reductions, remained at, or above, 29 for most
of the Dec08Event DRT. There was a brief drop in the number of GS- and
GDP-related advisories on December 22, but the continuity in the Dec08Event
DRT indicates that the system was unable to return to a nominal TV-TD state
before undergoing another disruption-recovery event between December 23 to
December 25. The system returned to a nominal state for about 48 hours,
before entering into a OpsDay Rec-type DRT between December 27 and 28.

Dec08Event OpsDay_Rec Short_Dis

Fig. 10 Plot of AFP-, GS-, and GDP-related advisories issued by the FAA during the
primary December 2008 DRT and subsequent shorter DRTs.

The Dec08Event DRT captures a series of disruptions caused by winter
weather; it began with widespread ice storms throughout the US on December
11-12, and was followed by a separate, larger weather system that resulted in
heavy rains in the West Coast, before transforming into a disruptive winter
storm over the Midwest. The inability of the system state to return to the
nominal N region, even during late evening and early morning periods when
the system typically resets, was pronounced during this event.
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5 Concluding remarks

This paper defined disruptions and subsequent recoveries using the delay mag-
nitude (TD) and the spatial distribution (TV) of the delays, in conjunction
with a low-dimensional state-space trajectory representation. We presented a
partition of the TV-TD state space into various regions, representing nomi-
nal conditions, high-delay conditions, and conditions with unexpected spatial
distributions of delay. We then focused on the problem of finding representa-
tive DRTs. The seven representative DRT clusters identified had interpretable
characteristics in terms of lengths (i.e., the duration of disruptions and sub-
sequent recovery), intensities, and delay behavior during the disruption or
recovery segments.

The next steps will be to examine each of the individual DRTs at a more
microscopic level, with a focus on time periods involving trade-o↵ maneuvers.
Doing so will help reveal whether these trade-o↵ maneuvers correspond to the
implementation of certain TMIs, driving the TD and TV values in a direction
not normally traversed by them. Similarly, we could also analyze DRTs from a
more microscopic level geographically. For example, we would focus on the sub-
network of US East Coast airports during nor’easter-type blizzard events. The
Laplacian eigenvectors are relevant for these geographically-centered analyses.
These eigenvectors are closely related to the TV, and demarcate the airport
delays that contribute to unexpected spatial delay distributions [11,10]. An-
other direction of future research is to leverage the representative DRTs as
features for predicting future system behavior, both at the system-wide and
airline-specific levels. Interesting prediction problems that could be formu-
lated via DRTs include predicting whether or not the next hour will be part
of a disruption- or recovery-phase, given information regarding current and
previous hours. Such prediction problems could be addressed through recur-
rent neural networks, and could be useful for system managers (e.g., FAA or
Eurocontrol) to decide on interventions.
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Appendix

Table 1 The seven representative DRTs and their features.
Note that clusters are sorted in increasing order by the average DRT duration, i.e., |Tt⇤ |.

DRT name
|Tt⇤ |
(hours)

Region S
(hours)

Region D
(hours)

Avg. TD
intensity

Avg. TV
intensity

Area
(min3)

Short Dis 3 0 1 0.91 0.70 1.04⇥106

Short Rec 4 1 1 0.76 0.47 -1.11⇥106

Med 6 2 2 0.76 0.43 -5.74⇥106

OpsDay Dis 15 11 2 0.62 0.26 5.43⇥108

OpsDay Rec 18 15 1 0.68 0.35 -4.98⇥106

MultiDay 55 49 4 0.59 0.22 2.20⇥108

Dec08Event 229 221 6 0.57 0.23 8.46⇥108

Table 1 (continued)

DRT name
Max. TD
(min)

Max. TV
(min2)

Symbiotic Trade-o↵
Pop.
(%)

Short Dis 6.50⇥102 4.66⇥104 1 1
1163
(50%)

Short Rec 6.65⇥102 1.05⇥105 2 1
777
(33%)

Med 1.19⇥103 5.50⇥105 4 1
196
(8%)

OpsDay Dis 2.21⇥103 2.19⇥106 12 2
21
(1%)

OpsDay Rec 1.68⇥103 5.02⇥105 13 4
142
(6%)

MultiDay 2.28⇥103 1.07⇥106 40 14
22
(1%)

Dec08Event 3.09⇥103 1.21⇥106 173 55 1


