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Abstract

We consider fully discrete embedded finite element approximations for a shallow water hyperbolic problem and its

reduced-order model. Our approach is based on a fixed background mesh and an embedded reduced basis. The Shifted

Boundary Method for spatial discretization is combined with an explicit predictor/multi-corrector time integration to

integrate in time the numerical solutions to the shallow water equations, both for the full and reduced-order model. In

order to improve the approximation of the solution manifold also for geometries that are untested during the offline

stage, the snapshots have been pre-processed by means of an interpolation procedure that precedes the reduced basis

computation. The methodology is tested on geometrically parametrized shapes with varying size and position.

1. Introduction

The computational cost associated with the numerical solution of partial differential equations might be in some

cases prohibitive. This is happening, for example, when the numerical solution is required in nearly real time or a

when large number of system configurations need to be tested. Shape optimization problems are a typical example

of the latter case, where a large number of different geometrical configurations need to be analyzed to converge to an

optimal solution. Reduced order models demonstrated to be a viable approach to reduce the computational burden

and have been developed for a large variety of different linear and nonlinear problems [1, 2].

In recent times, immersed/embedded/unfitted methods have seen a great development from the seminal ideas of

Peskin [3]. The key ideas in embedded methods is the use of grids that are not body-fitted, in which the geometry

of the shapes to be simulated is immersed by way of computational geometry techniques. In this work, we base

the reduced order models on the Shifted Boundary Method (SBM), which is an embedded/unfitted finite element

method originally proposed for the Poisson, Stokes and incompressible Navier-Stokes equations [4, 5] and recently

extended to wave equations and shallow water equations (SWE) [6]. In the SBM, a surrogate boundary is introduced

in proximity of the true immersed boundary, and the boundary conditions are imposed on the surrogate boundary, with

appropriate corrections that rely on Taylor expansions [4, 5]. The SBM does not require complicated data structures

and numerical quadratures to integrate the governing equations on cut element, typical of cutFEM/XFEM approaches.

Compared to other embedded finite element methods such as XFEM or cutFEM [7, 8, 9], the SBM has also the

advantage that the degrees of freedom (unknowns) stay the same for varying geometries, hence existing reduced order

model methodologies are more easily adapted. Specifically, the total number of unknowns in SBM is determined by

the background mesh and it is independent of the location of the embedded geometry. In contrast, XFEM and other

enriched finite element methods alike introduce new degrees of freedom such as the Heaviside functions within cut

elements, hence the total number of unknowns typically varies with the embedded geometry locations and/or depends

on a computationally expensive cutting of elements procedure.
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In this article we focus our attention on projection-based reduced order models specifically tailored to geomet-

rically parametrized problems [10, 11]. The idea is to combine the recently proposed Shifted Boundary Method

[4, 5, 12] with Reduced Order Models based on the Proper Orthogonal Decomposition (POD) with Galerkin projection

(SBM-ROM). This combination, that has been recently proposed in previous works in a different setting [13, 14, 15],

allows to avoid the map of all the parametrized solutions to a common reference geometry, see also [16, 17]. In this

paper, the embedded methodology introduced in the mentioned research works is extended to shallow water equations

with explicit time marching schemes. The idea of merging embedded approaches with reduced order models has

been proposed also in [18] where a fictitious domain method was coupled with a Proper Generalized Decomposition

approach to study uncertain geometries. In [19] the authors proposed a projection based reduced order model starting

from an embedded full order simulation applied to evolving interfaces.

With embedded simulations it is in fact easy to work with a common background mesh also in the case of large

geometrical changes. By comparison, body-fitted meshes often require sophisticated re-meshing techniques, when

complex geometrical deformations are present, and maintaining the topology of the underlying mesh is a difficult

task.

In addition, we introduce a new approach to handle degrees of freedom located in the ªout of interest/ghostº region

which is based on a radial basis function interpolation. We denote this new approach as SBM-iROM. As shown in

the numerical examples, this approach allows to partially reduce the drawback associated with the slow decay of the

Kolmogorov N-width when dealing with embedded full order models.

Remark 1.1. Embedded computations with parametrized geometries are characterized by a slow decay of the Kol-

mogorov N-width which is caused by two different aspects. The first one is related to the embedded geometry that

can arbitrarily move within the background mesh. Therefore, the boundary condition is applied on different elements,

depending on the position of the true boundary with respect to the background mesh. The second aspect, that we

believe is of minor entity, is related to the discontinuity of the solution in the proximity of the jump between the active

and inactive nodes. The methodology that we have developed contributes to partially deal only with the second aspect.

The article is organized as follows: in section 2 we introduce the mathematical formulation of the full order

problem, the associated weak formulation and the details concerning the specific discretization strategy. Section 3

describes in details the approach used for the construction of the reduced order model with a focus on the relevant

changes required for the specific full order model formulation and introduces the employed interpolation prepro-

cessing. In section 5 we introduce three numerical examples to show the properties and accuracy of the proposed

methodology. Finally, in section 6 we report some conclusions and outlooks for future developments.

2. The model problem and the full order approximation

Before introducing the shallow water model, we briefly review the relevant literature: for linearized shallow water

equations arising from the equations of acoustics we refer to the work [20], where only the generation of the second

harmonic wave is considered (the higher order harmonics being neglected) under the assumption of weak non-linearity,

while a set of uncoupled equations for the primary and secondary wave is discretized in space by a finite element

method, and then solved by using the Newmark-β integration scheme for time. In [21], weak boundary conditions are

considered for the hyperbolic structure of the wave equation based on stabilized methods and the variational multiscale

analysis as well as we cite [22] for linear elastodynamics and [23] for Nitsche and wave propagation problems. In

[24] one may see the shallow water equations as a symmetric advective-diffusive systems with source terms solved

using SUPG and GLS stabilized methods via a predictor multi-corrector algorithm. The work of [25] treats two-

dimensional shallow water equations applied to solve practical irrigation problems with large friction coefficients,

dry bed conditions and singular infiltration terms. For a three-step shallow water flow explicit scheme, using parallel

computing, and tidal flow in Tokyo Bay, we refer to [26], while a finite element method for the analysis of nearshore

current, which is one of the principal currents in coastal seas analyzing two main characteristics of the wave, i.e.

direction and height is introduced in [27]. Surface wave motion handled by the Helmholtz equation is studied in

[28]. A new combinative method of boundary-type finite elements and boundary solutions to study wave diffraction-

refraction and harbour oscillation problems is presented in [29] with model the mild-slope equation proved as an

effective and accurate method for water surface wave problems. Large-scale computation of storm surges and tidal

flows carried out with finite element methods are discussed in [30]. The work of [31] presents an adaptive boundary-

type finite element method for wave diffraction-refraction in harbors model based on the mild-slope equation and
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2.2. Weak formulation on body-fitted grids

The SWE is solved by a stabilized piecewise linear nodal finite element method (FEM) using two-dimensional

triangular elements. We first introduce the notation and the weak formulation assuming a body-fitted grid and the

extension to embedded boundaries using the Shifted Boundary Method is given in the next subsection. Let us denote

the vector of conserved variables by U = [h, hv1, hv2]T and the flux function by F(U) with components Fi, 1 ≤ i ≤
d = 2; then the equation (2.1) can be written compactly as:

∂tU + ∇ · F(U) = Z , (x, t) ∈ D × [0, T ] , (2.2)

where Z = [0, S 1, S 2]T . Let T be a tessellation of the domainD, we define the globally continuous piecewise linear

solution and trial spaces:

Sh = Vh =
{

U
h ∈ [C(D)]1+d : U

h
∣

∣

∣

K
∈ [P1(K)]1+d, ∀K ∈ T

}

⊂ H1(D) × Hdiv(D) , (2.3)

where no boundary conditions are specified as they are enforced weakly. The semi-discrete stabilized finite element

method states as finding U
h : [0, T ] 7→ Sh such that for all 0 ≤ t ≤ T and W

h ∈ Vh:

(Wh, ∂tU
h − Z)D − (∇W

h, F)D + avms(W
h, U

h) + b(Wh, U
h) = 0 . (2.4)

Here (·, ·)D denotes the standard inner product for L2 scalar, vectorial, and tensorial functions, avms contains a

variational multiscale stabilization (VMS) term, and b contains all boundary terms.

The purpose of the VMS term is to prevent spurious oscillations due to the fact that equal-order interpolation is

used for the velocity and fluid height variables. The spatial and full differential operators in linearized form are defined

as:

LU =

d
∑

i=1

Ai∂xi
U , LtU = ∂tU +LU , (2.5)

where Ai
def
== ∂Fi/∂U. Then we may compute the dual operator of L as L∗ = ∑d

i=1 A
T
i ∂xi

and define the VMS term as:

avms(W
h, U

h) = (L∗Wh, τvms A
−1
0 (LtU

h − Z))D , (2.6)

where τvms is a parameter that scales with time and it is computed as τvms = cvms∆t/2 with ∆t being the time step size

and cvms = O(1) being a user defined parameter. A fixed value cvms = 2.0 is used in all computations in this work.

The matrix A0 is the Jacobian matrix converting the conservative variables U to primitive ones Y = [h, v1, v2]T :

A0 =





















1 0 0

v1 h 0

v2 0 h





















. (2.7)

Other options for the scaling matrix A
−1
0 include the Jacobian matrix between conservative and entropy variables, as

suggested in [40]; we adopt (2.7) for simplicity.

Remark. In principle, a discontinuity capturing (artificial viscosity) term could also be included for improved

stability, especially when strong shocks are present. In this work, the problems considered do not involve strong

shocks and we omit the discontinuity capturing operator. We point out however that the proposed methodology can

be applied to the case in which shock capturing operators are used.

Lastly, the boundary condition can be classified into different types depending on the information available, such

as incoming or outgoing flows, or subcritical or supercritical velocities. We shall only consider the boundary terms

that are relevant to the test problem here, namely the Neumann condition, the subcritical inflow condition, and the

subcritical outflow condition, defined on the boundary portions ΓN , ΓI;sub, and ΓO;sub, respectively, see Figure 5.1; for

a complete list of all boundary conditions the readers are referred to [41]. Particularly, the three boundary conditions

are given by:

v · n = vN , x ∈ ΓN , (2.8)

hv · n = mI;sub , v · τ = 0 , x ∈ ΓI;sub, (2.9)

hv · n = mO;sub , x ∈ ΓO;sub . (2.10)
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D

Γ

(a) The geometryD surrounding a disk and its boundary Γ.

D̃

ΓΓ̃

ªGhost areaº

(b) The SBM surrogate geometry D̃, the surrogate boundary Γ̃, and

ghost area.

Figure 2.2: Embedded geometry: (A) The geometry of a disk and (B) the SBM surrogate geometry attached with the ghost area.

Here n is the outer unit normal on the boundary, τ is the tangent vector, and vN , mI;sub < 0, and mO;sub > 0 are

prescribed normal velocity, inflow mass rate, and outflow mass rate, respectively. Note that in principle (2.9) and

(2.10) are only valid when the Froude number is smaller than unity, otherwise the boundary condition needs to be

switched to supercritical ones; the latter scenario, however, does not occur in the tests in this work. While we shall

describe the Neumann condition by assuming a general vN , in all cases the value of vN is set to zero so that the

boundary either represent a slippery wall or a symmetry plane. To this end, the boundary term b is given by:

b(Wh, U
n) = ⟨Wh,Hh

N⟩ΓN
+ ⟨Wh,Hh

I;sub⟩ΓI;sub
+ ⟨Wh,Hh

O;sub⟩ΓO;sub
, (2.11)

where the angle brackets are the inner product on a general boundary piece Γ that is defined as ⟨W,H⟩Γ =
∫

Γ
W ·HdΓ.

Particularly, the vectors H
h
N , H

h
I;sub, and H

h
O;sub are given respectively by:

H
h
N = vN

[

h

hv

]

+
1

2
gh2

[

0

n

]

, H
h
I;sub = mI;sub

[

1

(v · n)n

]

+
1

2
gh2

[

0

n

]

, H
h
O;sub = mO;sub

[

1

v

]

+
1

2
gh2

[

0

n

]

. (2.12)

In the case of an embedded boundary, the boundary term (especially the Neumann one) needs to be modified, as

described next.

2.3. Discretization: the Shifted Boundary Method

In this subsection, we introduce the basic aspects of the Shifted Boundary Method adapted to the shallow water

equations [4, 5, 23, 6]. We consider a surrogate domain D̃ and boundary Γ̃ together with the true computational

domain D and its boundary Γ, as shown in Figure 2.2 and Figure 2.3a. We indicate by ñ the unit outward-pointing

normal to the surrogate boundary Γ̃, which is distinct from the outward-pointing normal n to Γ as seen in Figure 2.3b.

Γ̃ consists of the edges that are closest in some sense to the true boundary Γ, as shown in Figure 2.3b. The mapping

M h : Γ̃ → Γ, (2.13)

is introduced, similarly to [12, Section 2.1], which maps any point x̃ ∈ Γ̃ on the surrogate boundary, to a point

x =M h(x̃) on the true physical boundary Γ. Through M h, an auxiliary distance vector function dM h is defined as

dM h (x̃) = x − x̃ = [M h − I ](x̃) . (2.14)

For brevity, we set d = dM h and write d = ∥d ∥ν, where ν is the unit vector in the direction of d. In the case of

smooth surfaces with one type of boundary condition, the mapping M h corresponds to the closest point projection

and ν = n, see e.g. Figure 2.3b. The general construction and analysis of M h are detailed in [12], including the

case when corners are present or the closures of the Dirichlet boundary ΓD and the Neumann boundary ΓN have non-

empty intersections. Following the analysis therein, we may hypothesize that M h is continuous and Lipschitz. This

assumption makes sense since the true surface is smooth between edges and corners. The mapping M h can be used

to extend the unit normal vector n from the boundary Γ to the surrogate boundary Γ̃ as n̄(x̃) ≡ n(M h(x̃)). In the

next sections, we use the short-hand notation n(x̃), which means n̄(x̃) at a point x̃ ∈ Γ̃. In a similar way, we extend

the boundary conditions on Γ to the boundary Γ̃ of the surrogate domain.
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Γ̃

D̃ Γ
D \ D̃

(a) The true geometry D, the surrogate geometry D̃ and the corre-

sponding boundaries Γ̃ and Γ.

Γ̃h Γ

d
n

ñ τ

(b) The auxiliary distance vector d, the true normal and tangent

vector n and τ respectively.

Figure 2.3: The true and the surrogate geometry and boundary, and the SBM related quantities d, τ, n, ñ.

2.3.1. Semi-discrete shifted boundary weak formulation

We can now set up the semi-discrete SBM weak formulation relying on the surrogate domain D̃ whose boundary

is composed of both body-fitted and embedded portions. With a slight abuse of notation, we indicate with Γ the

portion of the boundary ∂D̃ that is body-fitted, and by Γ̃ the portion of the boundary ∂D̃ that is embedded (see, e.g.,

Figure 5.1, where Γ consists of the four exterior edges and Γ̃ is the surrogate boundary associated with the internal

circle). We discretize now D̃ using a mesh triangulation D̃T consisting of triangles K that belong to a tessellation T .

The weak SBM formulation is now given as:

Find U
h : [0, T ] 7→ S̃h, such that for all 0 ≤ t ≤ T and W

h ∈ Ṽh:

(Wh, ∂tU
h − Z)D̃ − (∇W

h, F)D̃ + avms(W
h, U

h) + b(Wh, U
h) + b̃(Wh, U

h) = 0 , (2.15)

where S̃h and Ṽh are obtained by replacingD in (2.3) with the surrogate D̃. The VMS term remains the same as (2.6),

except the inner product is evaluated on D̃; the boundary term b is given by (2.11) for all body-fitted boundaries; and

the second boundary term b̃ is given below in the case of an embedded Neumann boundary (Γ̃ = Γ̃N):

b̃(Wh, U
h) = ⟨Wh, H̃

h

N⟩Γ̃N
, H̃

h

N =
(

(vN − n
T∇vd)n · ñ+ (v · τ)τ · ñ

)

[

h

hv

]

+
1

2
gh2

[

0

ñ

]

. (2.16)

The first term in the definition of H̃
h

N attempts to enforce a normal velocity shifted to the surrogate interface by using

Taylor series expansions:

v(x̃) · ñ(x̃) = [(v(x̃) · n)n+ (v(x̃) · τ)τ] · ñ
≈ {[(v(x) − ∇v(x̃)d)n] · n+ (v(x̃) · τ)τ} · ñ = (vN − n

T∇vd)n · ñ+ (v · τ)τ · ñ .

Embedded boundary conditions of other types can be derived similarly but are omitted here, for the sake of brevity,

since they are not applied in the test problems considered here.

2.3.2. Time discretization

An explicit predictor/multi-corrector (PMC) time integration is used to march the numerical solutions in time [23,

6]. To this end, let us denote the time ordinate by t and the spatial coordinate by x. Furthermore, the superscript n

designates a variable associated with the nth time step tn and a subscript A designates a variable associated with a mesh

node xA, 1 ≤ A ≤ nnode, where nnode is the total number of nodes.
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The discrete solution vector at tn is given by:

U(tn, x) ≈ U
n(x)

def
==

nnode
∑

A=1

U
n
ANA(x) , (2.17)

where NA(x) is the piecewise linear shape function associated with the node xA and U
n
A are the degrees of freedom at

the same node. Choosing W
h = eiNA(x) for all 1 ≤ A ≤ nnode and 1 ≤ i ≤ 1 + d in the weak formulation (2.4), where

ei is the ith unit vector in R1+d, we obtain a system of ordinary differential equations:

MU̇(t) + R(U) = 0 , (2.18)

where U(t) : R+ 7→ R(1+d)nnode contains all degrees of freedom at all nodes, i.e., UA ∈ R1+d for all 1 ≤ A ≤ nnode

and M is the diagonal lumped mass matrix. The operator R : R(1+d)nnode 7→ R(1+d)nnode contains the (spatial) residual at

each node for each component of the solution variable and includes the standard finite element terms in continuous

Galerkin formulation, the stabilization term, and the Shifted Boundary Method terms that arise in the transmission

boundary condition at the surrogate boundary.

To update the solution vector from U
n to U

n+1, the explicit PMC method can be considered as a fixed-point iteration

approximation for the midpoint rule,

M(Un+1 − U
n) + δtnR((Un + U

n+1)/2) = 0 , (2.19)

where δtn = tn+1 − tn > 0 is the time step size. In PMC, one seeks successive approximations to U
n+1, denoted by U

(k)

where k = 0, 1, · · · . In particular U
(0) def
== U

n is the ªpredictorº of U
n+1 and once U

(k), k ≥ 0 is computed, one computes

the next iterate U
(k+1) by:

M(U(k+1) − U
n) + δtnR((Un + U

(k))/2) = 0 . (2.20)

In practice, one terminates the iteration after a preset number of correctors (each U
(k) with k ≥ 1 is known as a

ªcorrectorº), i.e., (2.20) is performed for k = 0, · · · , npmc−1 where typical values for npmc is between 2 and 4. Finally,

the update U
n+1 = U

(npmc) is applied.

Remark 2.1. If one sets npmc = 1, the method is equivalent to the explicit forward-Euler method, whereas npmc = 2

gives an implementation of the second-order Runge-Kutta scheme.

3. Reduced order model with a POD-Galerkin method

The reduced order model proposed here is based on a POD-Galerkin approach. It means that the underlying

system of equations is projected onto a linear subspace of smaller dimension spanned by a reduced number of global

basis functions (POD modes). There are different techniques to generate this linear subspace and here we rely on

the POD [42]. The overall methodology is based on the classic offline-online splitting approach [2], which is briefly

recalled in what follows.

Offline Stage

During the offline stage we start with a parametric partial differential equation which is parametrized by means of

a p-dimensional parameter vector µ ∈ P. The full order model is then solved for a finite dimensional set of training

points in {µi}
Nµtrain

i=1
⊂ P.

In the current framework we construct one linear subspace which includes both parameter and time variations.

This means that the snapshots matrix on which the POD is based is assembled as:

S U = [U(t1,µ1),U(t2,µ1), . . . ,U(tNt
,µNµtrain

))] ∈ RNh×Ns , (3.1)

where Nh = (1 + d)nnode is the dimension of the FOM solution vector, Ns = Nt · Nµtrain
is the total number of stored

snapshots where Nt is the number of time steps in which we store the solution and Nµtrain
is the number of training

7



samples in the parameter space. The POD modes are generated using the method of snapshots as originally proposed

by Sirovich [42] which relies on the solution of an eigenproblem on the correlation matrix:

C = S T
US U , (3.2)

and on the computation of the POD bases exploiting the resulting eigenvalues {λi}Ns

i=1
ad eigenvectors {ψi}Ns

i=1
:

ϕi =
1
√
λi

S Uψi. (3.3)

This operation results into to the POD space:

Φfull = span(ϕ1, . . . , ϕNs
). (3.4)

Remark 3.1. Based on the eigenvalue decomposition of the correlation matrix C it is possible to discard some of

the modes and to create a POD space Φr that includes a limited number of the computed POD modes. This space

will be employed for the subsequent Galerkin projection. The correlation matrix has been computed relying onto the

Frobenius inner product. Other options are possible (such as L2 or H1 norms) but in the current setting, due to the fact

that the underlying background mesh is made of finite elements with a similar size, for the sake of simplicity, we have

decided to rely on the Frobenius norm to calculate the POD modes.

3.1. Snapshots Interpolation, the SBM-iROM

The procedure described above is rather straightforward for body-fitted meshes. For unfitted meshes there are

additional complexities that need to be addressed. One of them is related to the inactive nodes that belong to the

so-called ghost area. These nodes are embedded into the body and do not play a role in the computation. As depicted

in Figure 3.1, the number and location of the inactive nodes is changing depending on the shape of the parametrized

geometry. In order to create a global basis function that can be used for any new parameter configuration it is nec-

essary to handle also the inactive nodes. A possible approach would be to set them to a constant value. However,

this approach would introduce a discontinuity in the solution field on the jump between active and inactive nodes.

Therefore, we have decided to preprocess each snapshot with an interpolation strategy, in order to avoid discontinuity

caused by deactivated elements. Another possible option to avoid this issue would be to compute an harmonic ex-

tension from the boundary to the deactivated nodes [43]. The method proposed here has the advantage of ensuring a

sufficient level of smoothness without the solve of the additional partial differential equation problem required by the

harmonic extension. The interpolant function has been evaluated for each snapshot considering only the active nodes

and the values in the inactive nodes have been evaluated using the interpolant function. Each solution field has been

replaced by:

U(x)→ UI(x) =

Nactive
∑

k=1

ωkφ(∥x − xk∥) +
m

∑

j=1

b j p j(x), (3.5)

where ωk are weights that needs to be determined imposing the interpolation condition, φ(∥x − xk∥) are radial basis

functions where xk are the coordinates of the active nodes, {pi(x)}m
i=1

are monomials that span the space of polynomials

with a specific degree. Adding polynomials to the RBF interpolant functions helps to properly capture constant and

linear features in the given data and ensures positive-definiteness of the RBF function, which in turn implies solvability

of the interpolation problem [44]. The coefficient vectors ω =
[

ω1, . . . , ωNactive

]T
and b = [b1, . . . , bm]T are obtained

solving the following linear system of equations:















(

K + σ2I
)

ω + Pb = d,

P Tω = 0,
(3.6)

where (K)i j = φ(∥xi − x j∥), (P )i j = p j(xi), σ is a smoothing parameter that eventually relaxes the interpolation

condition in order to smoothen the ªinterpolantº function, which on this occasion has been chosen σ = 0. Selecting

a RBF which is positive definite of order q with P that has full column rank, the solution is unique provided that the

degree of the monomial terms is at least m = q − 1 [45, 44]. In the specific case, for each snapshot and solution field,
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Table 1: Sample computational costs associated with the residual term and the rest of (3.11) for Test 1, Case R = 0.08 in Section 5.1. The grid for

this test contains 5,419 vertices and a total of 561 snapshots are used to construct the POD basis; note that only 29 POD modes (in bold fonts) are

needed to produce ROM solution that agrees extremely well with the FOM one, in which case the residual computation takes 94% of the overall

computational cost. All computations are performed in serial using a Linux machine with the Xeon E5026 2.10GHz CPU.

Number of POD Modes. 15 29 52 71 85

Cost on computing R() (sec). 2017 2003 1999 2565 2587

Cost on the rest of (3.11) (sec). 37 136 454 1125 1640

where the basis functions ϕi ∈ RNh are computed by POD applied on the interpolated snapshots. The coefficients of

the POD expansion are then retrieved by means of Galerkin projection of the original system of equations onto the

space spanned by the POD modes. Also at the reduced order level we have decided to use exactly the same time

marching as the one employed at the full order level. This results in:

ΦT
r MΦr(a

(k+1) − an) + δtnΦT
r R(Φr(a

n + a(k))/2) = 0. (3.10)

That can be reformulated as:

Mr(a
(k+1) − an) + δtnΦT

r R(Φr(a
n + a(k))/2) = 0. (3.11)

In the expression above, Mr = ΦT
r MΦr ∈ RNr×Nr can be precomputed and does not depend on the input parameters

µ. The problem can be therefore expressed in terms of reduced coefficients a with the only difficulty that we will

have to assemble the residual R also at every iteration of the ROM problem. Moreover, the residual term R has

a nonlinear dependency with respect to the input parameter µ which parametrizes the embedded geometry. Such

possibly expensive residual computation could be substituted by point-wise evaluation of the residual function in

some selected points of the domain using an hyper-reduction technique such as the empirical interpolation method

[46], the discrete empirical interpolation method [10, 47] or the Gauss±Newton with approximated tensors (GNAT)

[48]. Further, for a discrete empirical method adapted to embedded methods we refer to [17]. However, in this work,

since the main concern is to test the applicability of the methodology and the application of the proposed interpolation

strategy, we have decided to assemble the full residual and to project it onto the reduced basis spaces at each iteration.

In fact, we observe that the computation time spent on the full residual term R(Φr(a
n + a(k))/2) is significant larger

than that spent on the rest of the algorithm (3.11) for a reasonable number of POD modes, see Table 1. Thus we

expect significant computation time reduction in ROM computations with an appropriate choice of hyper-reduction

technique for the residual term. In what follows, for the sake of completeness, we provide a possible approach to deal

with hyper-reduction of the method.

4. A possible implementation of hyper-reduction using the discrete empirical interpolation method

The most natural approach to have an efficient implementation of the methodology would be to perform hyper-

reduction directly on the residual term R. In what follows we present a possible implementation using the discrete

empirical interpolation method as originally introduced in [47]. During the offline stage there is the need also to store

snapshots of the residual vector R and to assemble a snapshots matrix for the residual vector:

S R = [R(t1,µ1),R(t2,µ1), . . . ,R(tNt
,µNµtrain

))] ∈ RNh×Ns . (4.1)

Then the procedure requires to find a suitable basis ΦR to interpolate the residual vector and a set of indices iNR where

the interpolation condition is imposed. The basis can be constructed employing POD:

ΦR = [ϕR1
, . . . , ϕRNR

] = POD(S R), (4.2)

where the dimension of the POD space NR is selected fixing a prescribed number of POD elements or a prescribed

error on the projection error. The residual vector can be then approximated as:

R(t, µ) ≈
NR
∑

i=1

aRi (t, µ)ϕRi
. (4.3)
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During the online stage, when a new value of the input parameter µ need to be tested, for a generic time instant t, it is

necessary to compute the coefficient vector aR
i

. This computation requires the evaluation of the residual R(t,µ) only

in the location identified by the indices iNR . The expression to compute the coefficient vector aR is in fact given by:

aR(t, µ) = (P TΦR)RI(t, µ) with RI(t, µ) = P TR(t, µ), (4.4)

where P and ΦR are obtained following the procedure reported in algorithm 1. Therefore, the residual function needs

to be evaluated only in a relatively small number of points (magic points) which is usually much smaller with respect

to the total number of degrees of freedom used to discretize the domain.

Moreover, during the online stage, for a new untested geometry we need to check which magic points are marked

as active and which ones are marked as inactive. However, this procedure scales with the number of magic points so

it will not lead to a drastic increase of the online computational cost.

Remark 4.1. With respect to the implementation in a standard scenario with conforming meshes there is an additional

complexity that we believe would require further studies. In the discrete empirical interpolation method, the residual

is in fact interpolated using a basis obtained with snapshots having different sets of active and inactive nodes. It is

therefore important to understand how to deal with the residual values on inactive nodes. We believe that the first step

would be to study if a preprocessing of the residual snapshots matrix, similar to the one used for the snapshots, is

beneficial or a ªdo nothingº approach is preferred.

Algorithm 1 The DEIM procedure

Input: snapshots matrix S R = [R(t1,µ1),R(t2,µ1), . . . ,R(tNt
,µNµtrain

))], tolerance tol.

Output: DEIM basis Functions ΦR = [ϕR1
, . . . , ϕRNR

], Interpolation indices iΦR = [i1, . . . , iNR ].

compute the DEIM modes ΦR = [ϕR1
, . . . , ϕRNR

] = POD(S R)

ε = tol + 1, k = 1

i1 = arg max
j=1,Nh

|(ϕR1
) j|

ΦR = [ϕR1
], iNR = [i1], P = [ei1 ]

while ε > tol do

k = k + 1

Solve (P TΦR)c = P TϕRk

r = ϕRk
−ΦRc

ik = arg max
j=1,Nh

|(r) j|

ΦR = [ΦR, ϕRk
], P = [P , eik ], iNR = [iNR , ik]

end while

5. Numerical experiments

We consider three test cases featuring symmetric SWE flow past a stationary cylinder, based on the configuration in

Figure 5.1. The straight channel is represented by the computational domain Ω = [−1.5, 1.5] × [0.3, 0.3]. Denoting

the unit outer normal vector to ∂Ω by n, the upper and lower boundary conditions are given by slippery walls, for

which v · n = 0, the left boundary is set to a constant inflow flux hv · n = −0.02, and the right boundary condition is a

constant outflow with flux hv · n = 0.02. The flow direction is indicated by the arrows in the same figure. The cylinder

location determined by two parameters, namely the radius R and the x-coordinate of its center xc. In all computations,

the initial condition is given by the uniform flow condition with h = 0.2 and v = (0.1, 0.0) at all active nodes. The

first two test cases consist of geometrical parameterization using a one-dimensional parameter space with either xc or

R fixed, respectively. The third test case consists of a geometrical parameterization with a two-dimensional parameter

space where both xc and R are left free. All results for the test problems are obtained using a background triangular

mesh with 5,419 vertices and 10,476 elements; the average element edge size is 0.02.

In all test cases, we generate the snapshots using FOM solutions that are obtained by a fixed CFL number

αcfl = 0.5. Denoting the numerical solution at time tn by U
n as before, then the snapshots are picked as U

knfreq ,
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xc

R

Figure 5.1: Symmetric SWE flow past a stationary cylinder in a straight channel, together with the two parameters characterizing the configuration

in the numerical examples, namely the cylinder radius R and the x-coordinate of the cylinder center xc.

k = 1, 2, · · · , where nfreq is the sampling frequency; the solution at the terminal time is always picked as a snapshot, if

not sampled already. To assess the performance of the reduced-order models, we instead compute both the ROM and

FOM solutions using a fixed time step size ∆t = 0.002, which corresponds to a CFL number slightly smaller than 0.5,

to avoid interpolation error at different time steps.

For each test, we consider two sets of ROM computations: the first set uses the unprocessed POD basis vectors1

and the second set uses POD basis vectors with interpolated values at inactive nodes. In all tables and plots, the

two sets are designated by the standard SBM-ROM (without interpolation) and with interpolation (SBM-iROM),

respectively. Given a prescribed energy threshold Epod, the number of POD modes used in the ROM computations is

determined by the smallest number n such that:

∑n
i=1 λi

∑Ns

i=1
λi

≥ Epod ,

where λ1 ≥ λ2 ≥ · · · ≥ λNs
are all the non-zero eigenvalues of the correlation matrix given in (3.2). As the test is

convection dominated, we choose thresholds that are very close to unity, with the particular number of POD modes

summarized in Table 2. In the first row of the table, we also indicate the sampling frequency nfreq for each test.

Table 2: Number of POD modes for each ROM computation in all three test cases. ªSBM-iROMº and ªSBM-ROMº stand for ROM with and

without interpolation, respectively. The row with Epod = 1 corresponds to the sizes of full sets of POD modes.

Test 1 (nfreq = 2) Test 2 (nfreq = 10) Test 3 (nfreq = 10)

Epod SBM-iROM SBM-ROM SBM-iROM SBM-ROM SBM-iROM SBM-ROM

1 − 10−5 15 16 63 67 83 107

1 − 10−6 29 30 120 127 160 200

1 − 10−7 52 53 178 181 275 350

1 − 10−8 71 72 223 223 465 535

1 − 10−9 85 86 256 256 646 679

1 561 561 344 344 1032 1032

The performance of each set of ROM computations is demonstrated both qualitatively and quantitatively:

• Qualitatively, the final water height solution is plotted and compared among the FOM computation and two

ROM computations, for the latter the number of POD modes is determined by Epod = 1 − 10−6.

• Quantitatively, we compute and tabulate the relative error in Frobenius norm of ROM computations using the

POD modes determined using the thresholds Epod = 1 − 10−5, 1 − 10−6, 1 − 10−7, 1 − 10−8, and 1 − 10−9, and

compare them to the projected FOM solutions (let the interpolated basis functions beΦr as before, the projected

1That is, a constant value zero is filled at all inactive nodes in the snapshots, see Section 3.1 for more details.
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solution of the full-order solution Ufom is given by (ΦT
r Φr)

−1
Φ

T
r Ufom). In particular, the Frobenius norm of a

generic solution vector U ∈ Rnnode is defined as:

||U||Frob(D̃)

def
==



















nnode
∑

A=1, xA∈D̃

U2
A



















1
2

. (5.1)

To this end, the relative space-time Frobenius error of the ROM solution is computed as:

(∫ T

0

||Ufom − Urom||2Frob(D̃)
dt

)

1
2 /

(∫ T

0

||Ufom||2Frob(D̃)
dt

)

1
2

; (5.2)

whereas the relative space-time Frobenius error of the projected FOM solution is given by:

(∫ T

0

∣

∣

∣

∣

∣

∣Ufom − (ΦT
r Φr)

−1
Φ

T
r Ufom

∣

∣

∣

∣

∣

∣

2

Frob(D̃)
dt

)

1
2 /

(∫ T

0

||Ufom||2Frob(D̃)
dt

)

1
2

. (5.3)

In both (5.2) and (5.3), the time integral is approximated by weighted sum of discrete solutions in a straight

forward manner.

5.1. Test 1: Geometrical parameterization with varying cylinder radius

In this test case we fix xc = 0.0 and generate the FOM snapshots using three radii R = 0.1, R = 0.15, and R = 0.2;

in all tests the computation is performed until T = 0.8. A total number of 561 snapshots are created from the three

FOM computations with a sampling frequency nfreq = 2, and we assess the performance of ROM by computing the

flow past cylinders with radii R = 0.08, R = 0.13, R = 0.17, and R = 0.22.

Among the four, R = 0.08 is the most challenging one in the sense that several active nodes are inactive in

all snapshots, hence it is not surprising to see that all ROM computations without interpolation fail to deliver any

reasonable solutions. For the other three radii tested, all active nodes are also active in some snapshots and thus a

solution is obtained whether the interpolation is employed or not; in these cases, we still observe that no interpolation

leads to significantly worse ROM solution, as demonstrated by the height solution surfaces for the case R = 0.13

in Figure 5.2. In particular, SBM-ROM leads to an overall ªshiftº in the entire computational domain whereas the

Figure 5.2: The solution surfaces for water height at T = 0.8 in the case R = 0.13 of Test 1 for SBM-iROM (left panel) and SBM-ROM (right

panel). In both plots, the ROM solution (solid surface) is plotted on top of the FOM one (color surface).

SBM-iROM solution agrees much better with the FOM one. It is worth noting here that in other two tests (that is

when xc is varying), the SBM-ROM solutions demonstrate oscillation with very large magnitude; hence one expects

no significant improvement for ROM without interpolation, even if some non-zero value is used to fill all the inactive

nodes in the snapshots.

Next in Figures 5.3±5.6, we plot the water height solutions at terminal time T = 0.8 in all four cases. As mentioned

at the beginning of this section, the ROM computations are performed using POD modes corresponding to the energy

threshold Epod = 1−10−6, that is, 29 modes for SBM-iROM and 30 modes for SBM-ROM, see also Table 2. Note that
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Figure 5.3: The height (h) in the case of R = 0.08 computed by FOM (top left), SBM-iROM (top right), and initial height of unsuccessful ROM

computations without interpolation (bottom row). The legend range is set according to the FOM computation except the bottom right panel, where

the SBM-ROM solution is plotted using its own range. All ROM computations are performed using POD modes corresponding to Epod = 1− 10−6.

when R = 0.08, SBM-ROM is unsuccessful and thus only the initial data is plotted (see the bottom row of Figure 5.3);

furthermore, because the SBM-ROM solution is very different from the FOM one, we plot them both in the scale

of the FOM solution and in the scale of its own. In comparison, when all active nodes in the ROM computation is

captured by some snapshots, the SBM-ROM computations are successful and they produce fairly reasonable solutions,

as shown in the bottom rows of Figures 5.4±5.6, where the SBM-ROM heights at the terminal time are plotted in both

the FOM scale and its own scale, respectively.

Figure 5.4: The height (h) in the case of R = 0.13 computed by FOM (top left), SBM-iROM (top right), and SBM-ROM (bottom row). The legend

range is set according to the FOM computation except the bottom right panel, where the SBM-ROM solution is plotted using its own range. All

ROM computations are performed using POD modes corresponding to Epod = 1 − 10−6.

The relative space-time Frobenius errors of ROM computations using different number of POD modes and the

projected FOM solutions are summarized in Table 3±Table 6 for the four radii, respectively. These errors are also

plotted against the number of POD modes in Figure 5.7. The correspondence between the number of POD modes

and Epod is documented in Table 2. From these figures we see that the errors by SBM-iROM are very close to the

projection error by the same set of POD modes, and these errors typically decrease as the number of modes increases.

In contrast, without interpolation on the one hand the errors by the ROM solutions are far from the projection error,

and they seem to increase as a larger number of POD modes is used.
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Figure 5.5: The height (h) in the case of R = 0.17 computed by FOM (top left), SBM-iROM (top right), and SBM-ROM (bottom row). The legend

range is set according to the FOM computation except the bottom right panel, where the SBM-ROM solution is plotted using its own range. All

ROM computations are performed using POD modes corresponding to Epod = 1 − 10−6.

Figure 5.6: The height (h) in the case of R = 0.22 computed by FOM (top left), SBM-iROM (top right), and SBM-ROM (bottom row). The legend

range is set according to the FOM computation except the bottom right panel, where the SBM-ROM solution is plotted using its own range. All

ROM computations are performed using POD modes corresponding to Epod = 1 − 10−6.

5.2. Test 2: Geometrical parameterization with varying cylinder center location

In the second test case we fix R = 0.15 and generate the FOM snapshots using three cylinder locations with

xc = −0.5, xc = 0.0, and xc = 0.5, with termination times being T = 0.5, T = 0.8, and T = 0.5, respectively. The

shorter simulation period is selected to avoid interaction between the reflected waves and the left or right boundaries.

A total number of 344 snapshots are created from the three FOM computations with a sampling frequency nfreq = 10,

and we assess the performance of ROM by computing the flow past cylinders with the same radius and locations

xc = −0.65, xc = −0.15, xc = 0.3, and xc = 0.8, with termination times given by T = 0.4, T = 0.7, T = 0.6, and

T = 0.3, respectively.

With varying xc, SBM-ROM is highly unstable, as demonstrated by the height solution surfaces for the case

xc = −0.15 in Figure 5.8; in contrast, the SBM-iROM solution agrees very well with the FOM one.

Next in Figures 5.9±5.12, we plot the water height solutions at terminal times using FOM and SBM-iROM; the

SBM-ROM solutions are omitted as they are highly unstable, as also seen by the relative space-time Frobenius errors

reported in Tables 7±10 and Figure 5.13.
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Table 3: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.08 of Test 1. Note that

SBM-ROM fails to deliver any solution.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 1.53e-3 2.28e-2 2.12e-1 1.83e-3 3.21e-2 3.02e-1 ± ± ±

1 − 10−6 6.46e-4 1.44e-2 1.69e-1 1.30e-3 2.45e-2 2.14e-1 ± ± ±

1 − 10−7 3.88e-4 1.23e-2 1.54e-1 5.81e-4 1.84e-2 1.98e-1 ± ± ±

1 − 10−8 3.67e-4 1.19e-2 1.51e-1 5.39e-4 1.81e-2 1.98e-1 ± ± ±

1 − 10−9 3.59e-4 1.19e-2 1.50e-1 5.44e-4 1.81e-2 1.97e-1 ± ± ±

Table 4: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.13 of Test 1.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 1.23e-3 1.79e-2 9.81e-2 1.84e-3 2.69e-2 1.31e-1 5.82e-3 9.09e-2 3.97e-1

1 − 10−6 4.75e-4 9.12e-3 6.40e-2 6.97e-4 1.32e-2 7.35e-2 3.51e-3 2.55e-2 1.13e-1

1 − 10−7 2.56e-4 7.02e-3 5.97e-2 4.24e-4 1.14e-2 6.44e-2 3.87e-3 3.03e-2 1.46e-1

1 − 10−8 2.38e-4 6.84e-3 5.85e-2 4.29e-4 1.14e-2 6.33e-2 4.67e-3 4.25e-2 2.12e-1

1 − 10−9 2.29e-4 6.82e-3 5.80e-2 4.29e-4 1.13e-2 6.37e-2 4.96e-3 4.72e-2 2.31e-1

5.3. Test 3: Geometrical parameterization study with two-dimensional parameter space

In the last test case, we vary R the same way as in Test 1 and xc the same way as in Test 2; hence there are 9 FOM

computations with a total number of 1032 snapshots sampled with the frequency nfreq = 10. The ROM computations

also follow the same variation in R and in xc as in previous two test cases. In Figure 5.14 and Figure 5.15, we plot

the height solution surfaces for the case R = 0.08, xc = −0.15 and R = 0.15, xc = 0.3, respectively. Note that

as all nodes are active in some snapshots, SBM-ROM can handle R = 0.08 (c.f. Test 1), but the solution is highly

unstable. The situation for SBM-ROM slightly improves when R = 0.15; nevertheless, in both demonstrations ROM

with interpolation is significant superior to that without interpolation. Similar as in Test 2, we omit the solution plots

for SBM-ROM, and compare the terminal water height solutions computed by FOM and SBM-iROM in Figures 5.16±

5.19.

Lastly, we summarize the relative space-time Frobenius errors in Tables 11±22 and Figure 5.20.

6. Concluding remarks and future developments

In this article we have proposed and analyzed the coupling between the Shifted Boundary Method and POD-

Galerkin methods for reduced order modelling in presence of geometrical parameters considering a case of hyperbolic

systems. The methodology has been applied to shallow water equations discretized using an explicit time integration

scheme and tested on three numerical benchmarks of increasing complexity.

In order to tackle one of the issues arising with the coupling of immersed methods and projection-based reduced-

order models we proposed a new preprocessing technique applied on the full-order snapshots prior to the POD basis

computation. This interpolation techniques demonstrates to increase considerably the accuracy of the results with

respect to the unpreprocessed approach without any increase of the online computational costs.

The proposed preprocessing approach produces accurate results for cases that would otherwise yield completely

unreliable results. This fact was particularly evident when the reduced-order model required to activate grid nodes

that remained inactive for all training snapshots.

From a general remark, we observe that the coupling of immersed methods and projection based reduced models

suffer from the necessity to use a large number of training points in order to produce accurate results during the online

computations.
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Table 5: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.17 of Test 1.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 1.25e-3 1.79e-2 7.58e-2 1.60e-3 2.45e-2 9.07e-2 5.30e-3 2.45e-2 9.81e-2

1 − 10−6 5.60e-4 1.04e-2 5.65e-2 6.90e-4 1.73e-2 7.14e-2 5.75e-3 2.81e-2 1.20e-1

1 − 10−7 3.99e-4 8.84e-3 5.19e-2 5.45e-4 1.45e-2 6.57e-2 8.31e-3 7.65e-2 2.82e-1

1 − 10−8 3.51e-4 8.38e-3 4.87e-2 5.28e-4 1.55e-2 6.70e-2 9.85e-3 1.02e-1 3.60e-1

1 − 10−9 3.42e-4 8.34e-3 4.85e-2 5.09e-4 1.57e-2 6.73e-2 1.01e-2 1.08e-1 3.63e-1

Table 6: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.22 of Test 1.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 2.20e-3 2.95e-2 9.05e-2 2.58e-3 3.67e-2 1.09e-1 1.60e-2 4.56e-2 1.15e-1

1 − 10−6 9.71e-4 1.42e-2 4.76e-2 1.53e-3 2.38e-2 7.34e-2 1.60e-2 4.84e-2 1.09e-1

1 − 10−7 5.55e-4 9.37e-3 3.70e-2 1.02e-3 1.63e-2 4.63e-2 1.60e-2 7.46e-2 2.04e-1

1 − 10−8 4.78e-4 8.74e-3 3.52e-2 7.40e-4 1.15e-2 4.28e-2 1.58e-2 7.62e-2 2.39e-1

1 − 10−9 4.57e-4 8.55e-3 3.47e-2 8.02e-4 1.16e-2 4.41e-2 1.51e-2 7.39e-2 2.00e-1

In future works we aim to study possible approaches in order to circumvent this limitation applying suitable trans-

formations to the POD basis. A promising approach could be the preprocessing of the solution snapshots employing

suitable non-linear transformation using neural networks [49] or other types of transformations [50]. In order to

speed-up the online computations, other interesting aspects are related to the hyper-reduction of the problem using

residual evaluations only in a limited number of nodes. Despite the fact that hyper-reduction techniques are now well

developed, their application to immersed methods might be challenging.

We also plan to extend the proposed methodologies to fluid structure interaction problems.

Acknowledgments

This research has been supported by the Army Research Office (ARO) under Grant W911NF-18-1-0308 (GS), the

U.S. National Science Foundation under Grant DMS-2137934, European Union Funding for Research and Innova-

tion -Horizon 2020 Program- in the framework of European Research Council Executive Agency: Consolidator Grant

H2020 ERC CoG 2015 AROMA-CFD project 681447 ªAdvanced Reduced Order Methods with Applications in Com-

putational Fluid Dynamicsº (PI Prof. Gianluigi Rozza). We also acknowledge the INDAM-GNCS project ªTecniche

Numeriche Avanzate per Applicazioni Industrialiº, and by project FSE-European Social Fund-HEaD ªHigher Educa-

tion and Developmentº SISSA operazione 1, Regione Autonoma Friuli-Venezia Giulia, the HFRI and GSRT under

grant agreement No 1115, the ªFirst Call for H.F.R.I. Research Projects to support Faculty members and Researchers

and the procurement of high-cost research equipmentº grant 3270, and the support of the National Infrastructures for

Research and Technology S.A. (GRNET S.A.) under project ID pa190902.

References

[1] P. Benner, M. Ohlberger, A. Patera, G. Rozza, K. Urban, Model Reduction of Parametrized Systems, Vol. 17 of MS&A series, Springer, 2017.

[2] Model Order Reduction: Volume 2: Snapshot-Based Methods and Algorithms, Berlin, Boston, De Gruyter, 2020,

https://doi.org/10.1515/9783110671490.

[3] C. S. Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics 25 (3) (1977) 220±252.

[4] A. Main, G. Scovazzi, The Shifted Boundary Method for embedded domain computations. Part I: Poisson and Stokes problems, Journal of

Computational Physics 372 (2018) 972±995.

17



20 40 60 80 100 120

Number of POD modes

10
-4

10
-3

10
-2

10
-1

10
0

R
e

la
ti
v
e

 F
ro

b
e

n
iu

s
 e

rr
o

r

SBM-iROM h

FOM proj. h

SBM-iROM hv
1

FOM proj. hv
1

SBM-iROM hv
2

FOM proj. hv
2

(a) R = 0.08. No solution is computed by SBM-ROM.
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(b) R = 0.13.
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Figure 5.7: The relative Frobenius errors of Test 1 by SBM-iROM (marked by ∗), SBM-ROM (marked by x), and FOM projection error (FOM

proj., marked by o) in logarithmic scale plotted against the number of POD modes. The errors in h, hv1, hv2 are plotted in black, blue, and cyan

colors, respectively.

Table 7: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case xc = −0.65 of Test 2.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2
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Figure 5.8: The solution surfaces for water height at T = 0.7 in the case xc = −0.15 of Test 2 for SBM-iROM (left panel) and SBM-ROM (right

panel). In both plots, the ROM solution (solid surface) is plotted on top of the FOM one (color surface).

Figure 5.9: The height (h) in the case of xc = −0.65 computed by FOM (left panel) and SBM-iROM (right panel), with the legend range set

according to the FOM computation. The ROM computation is performed using POD modes corresponding to Epod = 1 − 10−6.
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Figure 5.10: The height (h) in the case of xc = −0.15 computed by FOM (left panel) and SBM-iROM (right panel), with the legend range set

according to the FOM computation. The ROM computation is performed using POD modes corresponding to Epod = 1 − 10−6.

Figure 5.11: The height (h) in the case of xc = 0.3 computed by FOM (left panel) and SBM-iROM (right panel), with the legend range set according

to the FOM computation. The ROM computation is performed using POD modes corresponding to Epod = 1 − 10−6.
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Figure 5.12: The height (h) in the case of xc = 0.8 computed by FOM (left panel) and SBM-iROM (right panel), with the legend range set according

to the FOM computation. The ROM computation is performed using POD modes corresponding to Epod = 1 − 10−6.

Table 8: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case xc = −0.15 of Test 2.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 1.93e-3 2.53e-2 1.61e-1 3.12e-3 4.50e-2 2.51e-1 6.80e-2 4.76e-1 1.73e+0

1 − 10−6 1.18e-3 1.61e-2 1.29e-1 1.97e-3 2.91e-2 1.72e-1 6.27e-2 5.63e-1 2.17e+0

1 − 10−7 1.05e-3 1.33e-2 9.94e-2 1.63e-3 2.78e-2 1.67e-1 6.21e-2 5.21e-1 2.23e+0

1 − 10−8 1.01e-3 1.21e-2 8.90e-2 1.46e-3 2.64e-2 1.68e-1 5.53e-2 4.76e-1 2.17e+0

1 − 10−9 9.82e-4 1.16e-2 8.64e-2 1.44e-3 2.66e-2 1.64e-1 5.33e-2 4.60e-1 2.15e+0

Table 9: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case xc = 0.3 of Test 2.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 2.42e-3 3.78e-2 2.43e-1 3.67e-3 5.34e-2 3.88e-1 7.06e-2 3.86e-1 1.50e+0

1 − 10−6 1.99e-3 2.86e-2 2.16e-1 2.76e-3 4.50e-2 2.90e-1 6.85e-2 4.59e-1 1.99e+0

1 − 10−7 1.84e-3 2.38e-2 1.86e-1 2.68e-3 4.31e-2 2.97e-1 6.54e-2 4.45e-1 2.40e+0

1 − 10−8 1.76e-3 2.21e-2 1.71e-1 2.56e-3 4.15e-2 2.71e-1 6.20e-2 4.43e-1 2.42e+0

1 − 10−9 1.74e-3 2.19e-2 1.68e-1 2.53e-3 4.26e-2 2.74e-1 6.09e-2 4.34e-1 2.40e+0

Table 10: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case xc = 0.8 of Test 2.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 4.13e-3 5.48e-2 3.63e-1 6.02e-3 8.29e-2 4.90e-1 7.90e-2 3.48e-1 1.69e+0

1 − 10−6 3.78e-3 4.68e-2 3.28e-1 5.77e-3 7.39e-2 4.37e-1 7.96e-2 3.86e-1 2.17e+0

1 − 10−7 3.69e-3 4.29e-2 3.03e-1 5.87e-3 7.24e-2 4.07e-1 7.86e-2 3.85e-1 2.38e+0

1 − 10−8 3.57e-3 4.11e-2 2.93e-1 5.57e-3 6.78e-2 3.98e-1 7.72e-2 4.03e-1 2.56e+0

1 − 10−9 3.54e-3 4.05e-2 2.86e-1 5.48e-3 6.69e-2 3.86e-1 7.64e-2 3.99e-1 2.52e+0
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(a) xc = −0.65.
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(b) xc = −0.15.
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(c) xc = 0.3.
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Figure 5.13: The relative Frobenius errors of Test 2 by SBM-iROM (marked by ∗), SBM-ROM (marked by x), and FOM projection error (FOM

proj., marked by o) in logarithmic scale plotted against the number of POD modes. The errors in h, hv1, hv2 are plotted in black, blue, and cyan

colors, respectively.

Figure 5.14: The solution surfaces for water height at T = 0.7 in the case R = 0.08 and xc = −0.15 of Test 3 for SBM-iROM (left panel) and

SBM-ROM (right panel). In both plots, the ROM solution (solid surface) is plotted on top of the FOM one (color surface).

Figure 5.15: The solution surfaces for water height at T = 0.6 in the case R = 0.15 and xc = 0.3 of Test 3 for SBM-iROM (left panel) and

SBM-ROM (right panel). In both plots, the ROM solution (solid surface) is plotted on top of the FOM one (color surface).
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(a) R = 0.08.

(b) R = 0.15.

(c) R = 0.22.

Figure 5.16: The height (h) in the case of R = 0.08 (top row), R = 0.15 (middle row), or R = 0.22 (bottom row), and xc = −0.65 computed by FOM

(left panels) and SBM-iROM (right panels), with the legend range set according to the FOM computations. The ROM computations are performed

using POD modes corresponding to Epod = 1 − 10−6.

Table 11: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.08 and xc = −0.65 of

Test 3.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 1.54e-3 3.26e-2 3.91e-1 2.85e-3 5.62e-2 5.84e-1 5.26e-2 2.70e-1 2.16e+0

1 − 10−6 1.12e-3 2.61e-2 3.19e-1 2.14e-3 4.52e-2 4.85e-1 5.14e-2 2.75e-1 2.47e+0

1 − 10−7 9.83e-4 1.92e-2 2.24e-1 1.67e-3 4.04e-2 4.20e-1 3.60e-2 3.61e-1 5.76e+0

1 − 10−8 7.49e-4 1.39e-2 1.63e-1 9.65e-4 2.93e-2 3.10e-1 2.69e-2 2.66e-1 2.81e+0

1 − 10−9 6.85e-4 1.15e-2 1.31e-1 8.53e-4 2.60e-2 2.58e-1 2.63e-2 2.79e-1 2.65e+0

Table 12: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.15 and xc = −0.65 of

Test 3.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 2.10e-3 2.75e-2 1.71e-1 3.37e-3 5.01e-2 2.74e-1 1.28e-2 1.56e-1 7.46e-1

1 − 10−6 1.25e-3 1.83e-2 1.27e-1 1.82e-3 3.19e-2 1.90e-1 1.22e-2 1.38e-1 7.64e-1

1 − 10−7 7.10e-4 8.25e-3 7.28e-2 1.10e-3 2.03e-2 1.33e-1 1.05e-2 1.22e-1 6.58e-1

1 − 10−8 3.91e-4 5.10e-3 4.18e-2 6.49e-4 1.19e-2 8.47e-2 9.78e-3 1.11e-1 6.37e-1

1 − 10−9 3.06e-4 4.14e-3 3.48e-2 5.05e-4 1.01e-2 6.99e-2 8.91e-3 1.03e-1 5.78e-1
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(a) R = 0.08.

(b) R = 0.15.

(c) R = 0.22.

Figure 5.17: The height (h) in the case of R = 0.08 (top row), R = 0.15 (middle row), or R = 0.22 (bottom row), and xc = −0.15 computed by FOM

(left panels) and SBM-iROM (right panels), with the legend range set according to the FOM computations. The ROM computations are performed

using POD modes corresponding to Epod = 1 − 10−6.

Table 13: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.22 and xc = −0.65 of

Test 3.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 2.76e-3 2.93e-2 1.50e-1 3.90e-3 5.27e-2 2.69e-1 1.85e-2 2.09e-1 8.46e-1

1 − 10−6 1.68e-3 1.93e-2 1.14e-1 2.45e-3 3.39e-2 2.08e-1 1.80e-2 2.11e-1 8.75e-1

1 − 10−7 7.22e-4 7.85e-3 5.48e-2 1.10e-3 1.64e-2 9.50e-2 1.77e-2 2.06e-1 9.13e-1

1 − 10−8 4.14e-4 4.83e-3 3.34e-2 7.16e-4 1.14e-2 6.62e-2 1.71e-2 1.99e-1 8.37e-1

1 − 10−9 2.87e-4 3.84e-3 2.49e-2 5.67e-4 8.76e-3 4.91e-2 1.62e-2 1.97e-1 7.60e-1

Table 14: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.08 and xc = −0.15 of

Test 3.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 1.33e-3 2.96e-2 3.63e-1 2.47e-3 5.05e-2 6.32e-1 5.38e-2 3.06e-1 1.99e+0

1 − 10−6 9.88e-4 2.37e-2 3.14e-1 2.04e-3 4.90e-2 4.72e-1 5.20e-2 3.62e-1 2.40e+0

1 − 10−7 1.05e-3 1.81e-2 2.28e-1 1.36e-3 4.57e-2 4.35e-1 3.58e-2 4.57e-1 6.01e+0

1 − 10−8 6.71e-4 1.32e-2 1.45e-1 8.21e-4 3.61e-2 3.12e-1 2.57e-2 3.14e-1 2.76e+0

1 − 10−9 5.72e-4 1.07e-2 1.17e-1 6.48e-4 2.72e-2 2.46e-1 2.39e-2 3.32e-1 2.55e+0

24



(a) R = 0.08.

(b) R = 0.15.

(c) R = 0.22.

Figure 5.18: The height (h) in the case of R = 0.08 (top row), R = 0.15 (middle row), or R = 0.22 (bottom row), and xc = 0.3 computed by FOM

(left panels) and SBM-iROM (right panels), with the legend range set according to the FOM computations. The ROM computations are performed

using POD modes corresponding to Epod = 1 − 10−6.

Table 15: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.15 and xc = −0.15 of

Test 3.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 1.77e-3 2.53e-2 1.40e-1 3.26e-3 5.45e-2 2.99e-1 1.21e-2 1.55e-1 6.19e-1

1 − 10−6 1.15e-3 1.64e-2 1.13e-1 1.58e-3 3.19e-2 1.73e-1 1.12e-2 1.21e-1 6.49e-1

1 − 10−7 6.90e-4 7.94e-3 6.54e-2 1.05e-3 2.59e-2 1.41e-1 8.07e-3 8.99e-2 4.81e-1

1 − 10−8 3.46e-4 4.74e-3 3.38e-2 5.21e-4 1.36e-2 7.70e-2 7.07e-3 8.09e-2 4.03e-1

1 − 10−9 2.71e-4 3.77e-3 2.68e-2 4.34e-4 1.12e-2 6.19e-2 6.19e-3 7.14e-2 3.46e-1

Table 16: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.22 and xc = −0.15 of

Test 3.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 2.23e-3 2.72e-2 1.09e-1 3.44e-3 5.10e-2 2.37e-1 1.96e-2 2.46e-1 7.27e-1

1 − 10−6 1.42e-3 1.94e-2 8.15e-2 2.23e-3 3.29e-2 1.35e-1 1.62e-2 1.89e-1 6.91e-1

1 − 10−7 6.86e-4 8.64e-3 4.42e-2 1.16e-3 2.10e-2 9.41e-2 1.43e-2 1.71e-1 6.22e-1

1 − 10−8 3.27e-4 5.09e-3 2.49e-2 5.72e-4 1.15e-2 5.33e-2 1.19e-2 1.43e-1 5.20e-1

1 − 10−9 2.24e-4 3.98e-3 1.95e-2 4.49e-4 9.05e-3 3.78e-2 1.00e-2 1.23e-1 4.40e-1
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(a) R = 0.08.

(b) R = 0.15.

(c) R = 0.22.

Figure 5.19: The height (h) in the case of R = 0.08 (top row), R = 0.15 (middle row), or R = 0.22 (bottom row), and xc = 0.8 computed by FOM

(left panels) and SBM-iROM (right panels), with the legend range set according to the FOM computations. The ROM computations are performed

using POD modes corresponding to Epod = 1 − 10−6.

Table 17: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.08 and xc = 0.3 of

Test 3.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 1.89e-3 4.15e-2 5.38e-1 2.96e-3 6.30e-2 7.55e-1 5.34e-2 2.79e-1 2.13e+0

1 − 10−6 1.78e-3 3.43e-2 4.99e-1 2.26e-3 4.67e-2 5.94e-1 4.90e-2 3.17e-1 2.42e+0

1 − 10−7 1.55e-3 2.48e-2 3.59e-1 1.68e-3 4.43e-2 4.89e-1 3.18e-2 4.06e-1 5.51e+0

1 − 10−8 1.04e-3 1.67e-2 1.85e-1 9.46e-4 3.52e-2 3.23e-1 2.31e-2 2.98e-1 2.50e+0

1 − 10−9 8.60e-4 1.33e-2 1.42e-1 6.98e-4 2.95e-2 2.80e-1 2.18e-2 2.92e-1 2.29e+0

Table 18: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.15 and xc = 0.3 of

Test 3.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 2.24e-3 3.76e-2 2.13e-1 3.34e-3 5.79e-2 3.86e-1 1.28e-2 1.68e-1 7.46e-1

1 − 10−6 1.88e-3 2.88e-2 1.87e-1 2.47e-3 4.78e-2 2.81e-1 1.32e-2 1.52e-1 7.98e-1

1 − 10−7 1.20e-3 1.38e-2 1.35e-1 1.51e-3 3.58e-2 2.25e-1 9.16e-3 1.04e-1 6.12e-1

1 − 10−8 6.31e-4 9.09e-3 7.39e-2 8.05e-4 2.43e-2 1.57e-1 6.38e-3 7.33e-2 4.45e-1

1 − 10−9 5.23e-4 7.44e-3 5.71e-2 7.21e-4 1.98e-2 1.30e-1 5.30e-3 6.29e-2 3.71e-1
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Table 19: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.22 and xc = 0.3 of

Test 3.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 2.61e-3 3.66e-2 1.44e-1 4.12e-3 6.08e-2 2.72e-1 2.14e-2 2.54e-1 8.82e-1

1 − 10−6 2.02e-3 2.72e-2 1.13e-1 2.86e-3 4.45e-2 2.09e-1 1.74e-2 2.06e-1 7.61e-1

1 − 10−7 9.48e-4 1.03e-2 6.58e-2 1.67e-3 2.29e-2 1.14e-1 1.52e-2 1.83e-1 7.02e-1

1 − 10−8 4.93e-4 6.32e-3 3.85e-2 8.07e-4 1.36e-2 7.29e-2 1.07e-2 1.30e-1 5.20e-1

1 − 10−9 3.85e-4 5.07e-3 2.85e-2 6.24e-4 1.23e-2 6.33e-2 8.90e-3 1.11e-1 4.25e-1

Table 20: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.08 and xc = 0.8 of

Test 3.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 2.61e-3 5.21e-2 5.99e-1 3.40e-3 6.85e-2 7.29e-1 5.36e-2 2.61e-1 2.03e+0

1 − 10−6 2.52e-3 4.65e-2 5.43e-1 3.43e-3 6.70e-2 6.73e-1 5.37e-2 2.70e-1 2.45e+0

1 − 10−7 2.32e-3 3.59e-2 4.30e-1 2.41e-3 5.86e-2 6.16e-1 3.78e-2 3.55e-1 5.02e+0

1 − 10−8 1.67e-3 2.48e-2 2.75e-1 1.77e-3 4.75e-2 4.64e-1 2.95e-2 2.91e-1 2.89e+0

1 − 10−9 1.42e-3 2.20e-2 2.24e-1 1.66e-3 4.09e-2 3.96e-1 2.88e-2 2.99e-1 2.70e+0

Table 21: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.15 and xc = 0.8 of

Test 3.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 3.45e-3 4.98e-2 3.28e-1 4.67e-3 7.07e-2 4.39e-1 1.51e-2 1.87e-1 1.07e+0

1 − 10−6 2.99e-3 4.20e-2 2.78e-1 4.23e-3 6.23e-2 3.74e-1 1.27e-2 1.50e-1 8.85e-1

1 − 10−7 2.20e-3 2.45e-2 1.78e-1 2.89e-3 4.47e-2 2.60e-1 1.20e-2 1.28e-1 9.38e-1

1 − 10−8 1.15e-3 1.21e-2 9.76e-2 1.63e-3 2.73e-2 2.00e-1 9.24e-3 9.44e-2 7.28e-1

1 − 10−9 9.35e-4 9.40e-3 7.69e-2 1.26e-3 2.20e-2 1.55e-1 9.06e-3 8.98e-2 7.16e-1

Table 22: The relative space-time Frobenius errors of the projected FOM solutions and ROM computations in the case R = 0.22 and xc = 0.8 of

Test 3.

FOM projection SBM-iROM SBM-ROM

Epod h hv1 hv2 h hv1 hv2 h hv1 hv2

1 − 10−5 4.52e-3 4.84e-2 2.77e-1 6.92e-3 8.07e-2 4.10e-1 2.27e-2 2.36e-1 7.13e-1

1 − 10−6 3.69e-3 3.96e-2 2.24e-1 5.78e-3 6.34e-2 3.22e-1 2.18e-2 2.13e-1 8.23e-1

1 − 10−7 2.71e-3 2.56e-2 1.64e-1 3.92e-3 4.67e-2 2.56e-1 2.15e-2 2.06e-1 8.63e-1

1 − 10−8 1.32e-3 1.30e-2 8.69e-2 1.93e-3 2.61e-2 1.63e-1 1.91e-2 1.69e-1 7.66e-1

1 − 10−9 9.58e-4 9.72e-3 6.48e-2 1.56e-3 2.21e-2 1.27e-1 1.87e-2 1.70e-1 7.52e-1
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(a) xc = −0.65 with R = 0.08 (left), R = 0.15 (middle), and R = 0.22 (right).
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(b) xc = −0.15 with R = 0.08 (left), R = 0.15 (middle), and R = 0.22 (right).
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(c) xc = 0.3 with R = 0.08 (left), R = 0.15 (middle), and R = 0.22 (right).
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(d) xc = 0.8 with R = 0.08 (left), R = 0.15 (middle), and R = 0.22 (right).

Figure 5.20: The relative Frobenius errors of Test 3 by SBM-iROM (marked by ∗), SBM-ROM (marked by x), and FOM projection error (FOM

proj., marked by o) in logarithmic scale plotted against the number of POD modes. The errors in h, hv1, hv2 are plotted in black, blue, and cyan

colors, respectively.
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