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Abstract

Sharp corners or wedges are common in everyday structures. Depending on the internal angle 6,

of the wedge, severe stress concentration can occur. Linear elasticity predicts that when an
incompressible elastic wedge is bonded to a rigid substrate and subjected to plane strain
deformation, the stresses at the wedge tip has a power law singularity if &, > 45° . For some 0,
and for compressible wedges, the stresses are not only singular but oscillate infinitely rapidly.
Here we show that these results are no longer true if large deformation is taken into consideration.

Specifically, we determine the asymptotic fields near a tip of a Blatz-Ko wedge and found that the
stress field has no power singularity for 6, < 90° . Furthermore, the power law singularity of the

stress field differs from those predicted by linear elasticity and there are no oscillations. For
sufficiently low compressibility, it is possible to obtain higher order terms of the asymptotic series
— analogous to William’s expansion in linear theory. Our asymptotic results are validated by finite
element (FE) calculations. We also studied the wedge tip field for the borderline case of a 90°

wedge. For this case, the stress singularity is found to be at most logarithmic.

Keywords: Finite strain, Hyperelasticity, Compressible, Wedge, Asymptotic

analysis, Finite element analysis


mailto:bz347@cornell.edu

1. Introduction

Wedge shaped corners are ubiquitous in structures. For example, the use of patches
bonded with structural adhesives is increasingly widespread in applications such as
aircrafts, cars and other transport related applications. However, adhesively bonded
patches have problems of stress concentration at the corners where crack initiation is
prone to occur leading to the debonding of the patch. Such stress concentration can be
reduced by tapering the surfaces of the patch, but tapering the adhesive is also an option
(Marques and da Silva, 2008). In nature, small animals can achieve strong and robust
adhesion with small patches such as the suction cups of octopus (Tramacere et al., 2014),
the sticky fibrils of mussels (Ornes, 2013), vine tree and gecko feet (Arzt, Gorb and
Spolenak, 2003). This strategy employed by nature has motivated the development of
bioinspired structured adhesive surfaces (Gorb et al., 2006; Kim and Sitti, 2006; Jagota
and Hui, 2011) to control adhesion and friction. These surfaces are typically made of an
array of soft elastomeric fibers with shear modulus on the order of / MPa. Adhesion is
typically measured against a rigid smooth surface such as glass. Experimentally and
theoretically, it has been found that the shape of fiber tip can significantly affect contact
and adhesion (del Campo, Greiner and Arzt, 2007; Spuskanyuk et al., 2008). Using finite
element (FE) simulations based on linear elasticity and a cohesive zone model for
debonding, Aksak, Sahin and Sitti, (2014) have found that wedge shape fiber tips (see

Fig.1 insert) with an internal angle of 6,= 45° optimize the pull-off stress per unit

contact area of a single fiber!.

Motivated by these applications, we study the generic problem in Figure 1 where a wedge

in an elastic solid is bonded to a rigid substrate; depending on the internal angle 6, of

the wedge, severe stress concentration is known to occur. Williams, (1952) was the first
to study the stress singularity near a wedge tip in a linear isotropic elastic solid. He
studied various sets of boundary conditions (BC) on the radial edges of a wedge in thin
elastic plates under extension. William’s ideas were later extended to wedges between
dissimilar linear elastic materials, including anisotropic solid wedges (David B. Bogy,
1968; Hein and Erdogan, 1971; Dempsey and Sinclair, 1979). The main goal of these
papers is to characterize the singular deformation and stress fields near the tip of elastic
wedges. The use of these asymptotic fields to predict failure in applications can be found
in Dunn et al (Dunn et al., 1997; Dunn, Suwito and Cunningham, 1997, Leguillon, 2002).

The idea is that these wedge singular fields fully characterize the stress and strain state

! There are other geometrical factors such as the aspect ratio of the fiber which control the optimal
pull-off force.
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near the wedge tip, hence their amplitude can be used as a loading parameter to determine

crack initiation.

Here we note that all the above works are based on linearized theory of elasticity where
both the kinematics and material behavior are linear. As a result, they generally work for
hard and stiff solids. For soft materials such as adhesives and elastomers, the deformation
near the wedge tip can be sufficiently large to violate the small strain assumption.
Because of this, it is expected that there can be significant differences between the
prediction of small strain and large deformation theory. For crack problems, these
differences have been studied by Knowles and Steinberg (Knowles and Sternberg, 1973,
1974; J. K. Knowles and Sternberg, 1983), Stephenson (1982), Geubelle and Knauss
(Geubelle, 1994a, 1994b, 1994c) and Gao (Gao, 1990). The finite strain crack tip fields
exhibit characteristics that are drastically different from those of the linear elastic fracture
mechanics solution, see (Long and Hui, 2015) for a detailed review. On the other hand,
there are much fewer works on the behavior of the stress field near the tip of hyper-elastic
wedges. Most of these works focus on homogeneous hyper-elastic solids (Mansouri et al.,
2016). However, in many applications, such as those mentioned above, the wedge is
bonded to very stiff substrates. This motivates us to consider the stress and deformation
field near the tip of a hyper-elastic wedge (see Figure 1) that is bonded to a rigid

substrate.

We consider plane strain deformation. The wedge in this work is a compressible hyper-
elastic solid proposed by (Blatz and Ko, 1962). This material model was used by
(Lengyel, Long and Schiavone, 2014) to study the asymptotic behavior of an interface
crack between a compressible hyper-elastic solid and a rigid substrate which corresponds
to 6, = . Here we study the existence of singular fields near the wedge tip and, if they
exist, how they depend on the wedge angle. These asymptotic solutions are validated by

FE simulations.

The plan of this paper is as follows. In section 2 we review linear wedge asymptotic
theory that is relevant to this work. In section 3 we introduce the finite strain model for
the wedge problem. The asymptotic solution for 7 >6, >z /2 1is givenin section4. In
contrast to linear theory, where the transition between singular and non-singular tip
solution occurs at @, = 7 / 4 for solids with low compressibility, we found that there is no
power-law singular solution for 6, <z /2. In section 5, we check our asymptotic

solution against FE simulations. In section 6, we study the transition case where

6, = /2. Summary and discussion are given in section 7.



2. Linearized theory of wedge tip fields (LTW)

To gain perspective, we summarize results based on linearized theory of elasticity that are
relevant to this study. Williams, (1952) was the first to study the stress singularity near a
wedge tip in a linear isotropic elastic solid. His studied various set of boundary conditions
(BC) on the radial edges of a wedge in thin plates under extension. The BC that is
relevant to this work is a clamped/free boundary. The clamped edge represents the rigid
substrate in our problem (see Fig.1 for geometry). We note here that William’s solution is
for plane stress deformation. However, the solution of plane strain problems can be
readily obtained from the plane stress solution by a simple transformation of elastic
constants (Muskhelishvili, 1977). The results below are modified for plane strain

deformation.

//////' ’“1

Rigid substrate

Figure 1: Figure inside circle shows local geometry of wedge for asymptotic analysis in the un-

deformed reference configuration. The lower edge of the wedge € =0 is bonded to the rigid

substrate. Its edge at € =6, is traction free. We consider plane strain deformation where the out
of plane displacement is identically zero and the fields are independent of Xx,. The out of plane

coordinate x; is not shown. Geometry in the simulation of (Aksak, Sahin and Sitti, 2014) is

shown on the right.

Williams, (1952) showed that the in-plane asymptotic stress field z

aw

with respect to a

polar coordinate system (r,6) with origin at the wedge tip, has the form

r,,=1r""%, 2(0.6,,v,4,,4,), r—0 (1
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where 4, and 4, are loading parameters that controls the intensity of the stress field,
v is the Poisson’s ratio of the elastic wedge and 7, are linear homogeneous functions
of 4 and 4,. The parameters 4, and 4, cannot be determined from asymptotic
analysis; they depend on the geometry of the structure and the manner of loading. In (1),
m is the singularity index which can be complex. Typically, one requires that the real
part of m to be greater than 0 so that the displacement field is bounded. Here we note

the following:

e m is a function of the wedge angle 6, and the Poisson’s ratio v .
Specifically, the relation between m and 6, for plane strain deformation is given

by the transcendental equation:

m*sin” @, —4(1-v)’ +(3—4v)sin* (m6, ) =0. )

Note that the singularity index depends only on the Poisson’s ratio and the wedge
angle and is otherwise independent of material properties such as the shear
modulus.

e m can be a complex number for some wedge angles, i.e., m=m, +im, where

i =+/—1 . For this case, the stress can be obtained by taking the real or imaginary
part of (1). Since

" =" cos(m, Inr)+isin(m, Inr) |, (3)
the stresses oscillate infinitely rapidly as » approaches the wedge tip if m, #0.
Such oscillatory behavior is well documented for interface cracks in bi-material systems
(England, 1965; Rice and Sih, 1965). Knowles and Sternberg, (1983) showed that such
oscillatory behavior arises from the linearization of the field equations; by carrying out
asymptotic analysis of the nonlinear field equations governing an interface crack between
two compressible neo-Hookean sheets, they found that the crack faces open smoothly,

and the stress field has no oscillatory behavior.

Figure 2 plots the numerical solution of (2) against@, for v= 0.33, 0.45 and 0.5
(incompressible solid). For the case of v=0.5 , m is real for all angles. However, this is
not the case for v<0.5, where complex root can exist. Note that Re m versus 6, has a
cusp at some m, to the left of this cusp, m is real while m is complex to its right. The solid
black line in Fig. 2 is the result of the finite strain theory (details are given in section 3 —

4). In finite strain theory there are no complex roots and stresses has no power singularity

for <7 /2 (see below for details).
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Figure 2: The real part of the singularity index m in the linear theory for v= 0.3,0.45 and 0.5.
We highlight the following results of the linear theory for comparison purposes:

e The stress field has a power singularity and is unbounded if Rem<1. It is
bounded when Rem >1.

e For an incompressible solid loaded in plane strain, m is always real and m =1 at
6,=n/4 or 45 degrees. Thus, the stress and strain fields are bounded and
continuous when 6, <7 /4. Note that this is consistent with the result of Aksak

et al. (Aksak, Sahin and Sitti, 2014), suggesting that the optimal pull-off force
occurs when the singular fields near the wedge tip is eliminated.

e For compressible solids, m is complex for wedge angles, 6, >¢9€(v), where
0. (v) denotes the critical angle where the transition from real to complex root
occurs. A plot of 6, (v) versus v is given in the SI. For wedge angles greater

than 6, (v) , the stress field is singular and oscillates infinitely rapidly at the tip.

We shall see later that this oscillatory behavior is absent in large deformation.

e For 6, =n/2, m=m <1 forall v>0, hence the stress has a non-oscillatory
singularity 7”'. As shown in Figure 3, the singularity index is found to decrease
with increasing v; hence the stress is most singular when v =1/2. We shall see
later that the large deformation solution does not admit a power law singularity
when 0, =7 /2. Instead, a much weaker logarithmic singularity is found for this

case.

A brief discussion of transition between the linear and nonlinear asymptotic solutions are
given in the SI.
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Figure 3: The singularity index for 6, =7 /2 as a function of the Poisson’s ratio v. For this
angle m is always real and less than / except at v =0, indicating that the stress has power

singularity of the form 7*™" forv>0.

3. Finite strain model of wedge tip fields

3.1 Problem formulation and geometry

The geometry consists of a compressible hyper-elastic wedge of angle 6, bonded to the
surface of a rigid substrate (see Figure 1). A material point in the reference undeformed
configuration is denoted by its Cartesian coordinatesx, (i =1,2,3). We consider plane
strain deformation where all field quantities are independent of the out of plane

coordinate x; . In the following we will use Greek indices to denote in plane coordinates,

e.g., x,,a=12. Details on plane strain deformation were given by Stephenson
(Stephenson, 1982). Here we summarize the basic equations.

In plane strain, the out of plane deformation is exactly zero, so deformation can be
represented by a 2D deformation gradient tensor F with Cartesian components

F,, =0y, /ox,, wherey, =x, +u,(x,x,) is the deformed coordinates of the material
point and u, is its displacement in the o direction. The strain energy density function
W for an isotropic hyper-elastic solid undergoing plane strain deformation is a function of

two invariants / =tr(FF T) and J =det F . The 1* Piola or nominal stress tensor P is

related to W(I,J) by

P=28—WF+J6—WF‘T. 4)
oI oJ



The true or Cauchy stress tensor 7 is related to the 1% Piola stress tensor by

r=J"'PF". (5)

3.2 Material Model

We consider a compressible hyper-elastic solid proposed by Blatz and Ko, (1962). As
noted in the introduction, this material model was used by Lengyel et al., (Lengyel, Long
and Schiavone, 2014) to study the asymptotic behavior of an interface crack between a

compressible hyper-elastic solid and a rigid substrate (6, =7x). The 2D plane strain

energy density function is given by
_H H (2p
w=E(1-2)+ (777 -1) 6
2( ) 2ﬂ( ) ©

where u is the small strain shear modulus. The dimensionless constant [ is the
compressibility factor, it is related to the small strain Poisson’s ratio v
by f=v/(1-2v)=0 . This relation indicates that large /B corresponds to low

compressibility. For many soft materials, such as elastomers and gels, the resistance to

shear is much smaller than the resistance to compression, resulting in f>>1. For

example, an elastomer used in many applications is Polydimethylsiloxane (PDMS). The
Poisson’s ratio of PDMS (Sylgard 184) was reported by Muller et al., (2019) to be 0.495,

which corresponds to #=49.5. The in-plane nominal stress tensor components F,, are

obtained using (4) and (6), they are

1 /Ll 2 [ ;a—d
PZ = U F21 J 1 12 |2 122 /'l F22 J - E

The in-plane true stress components 7, are evaluated using (7a-d) and (5), they are:

Tn =J71:U{|:F1? +F1§:|_J72ﬁ}
=7y = Jﬁl:u[ﬁthl + Fizez] (8a-d)

Ty ZJ_I/U{[Fzzl +F222]_J_2ﬁ}



3.3 Equilibrium

In the absence of body forces?, the equilibrium equations in the reference configuration

are
V.eP=0 )
Substituting (7a-d) into (9), the equilibrium equations are:

Vi +(28+1)J (VI XV y, }E, =0

. (10a,b)
Viy, - (28+1)J (V. IXV 3 )E;=0

Where E, is the unit vector in the out of plane direction and V? is the 2D Laplacian in
reference coordinates. As in section 2, we use the polar coordinates (r,@) in the

reference configuration as independent variables:
x, =rcos@, x, =rsin@ (11)

Using r,6 as independent variables, the equilibrium equations (10a,b) become:

1 a( 8u1j+i82u1 +(2/3+1)J“’“ I:@Jayz , 6J}_

ror\ or r* 06* r 55_E£

2 p+1)g 70
10 r@yz +L26yzz_( ) —rs1n9+a— - cos9+% 2 =
rorar ) 7 06 r ar 00 or )06

(12a,b)

where J is

J = 1[(cos9+ Jayz %(—rsin9+%ﬂ (12¢)
r or )o6d or 00

These equations are the same as in Lengyel et al. (Lengyel, Long and Schiavone, 2014).
However, it must be noted that Lengyel et al., (Lengyel, Long and Schiavone, 2014) used

the symbol x, to denote deformed coordinates. Also, instead of usingy,,y, as the
dependent variables, which is typically adopted in nonlinear field analysis, we use u,,y,
as the dependent variables. Since y, =u, +rcosé, the usage of u, as independent

variable made the BC y, = on the interface homogeneous (see (13a) below).

2 As long as the body forces are bounded, they have no effect on the leading singular behavior of
the fields.

9



3.4 Boundary conditions (BC) for Asymptotic Analysis

We consider perfect bonding, hence the displacements on the interface =0, >0 are

identically zero, i.e.,

u1(6’=0,r>0)=0, y2(9=0,r>0)=0 (13a,b)
The edge of the wedge at @ =6,,r > 01is traction free, i.e.,

PN =0 (14)

where /V is the unit normal vector to the free edge. Using (7a-d), the BC (14) can be

written in terms of u,y, as:

T TS P
7 /a
(15a,b)
l%—J‘z'B‘l cos¢90+% =0 atfd=¢,
r o0 or

4. Asymptotic analysis of wedge tip fields

4.1 Asymptotic Analysis

In this work we assume 6, <z since the crack case where 6, =z was solved by
Lengyel et al., (Lengyel, Long and Schiavone, 2014). We consider the expansion near » =
0,

u, =r"v (9) + o(r’"1 )

O0<m, <1 (16a,b)
V, =r"v, (9) Jro(r'"2 )

The condition 0<m, <1 enforces continuity of displacements but allows for singular

stresses and displacement gradients. Substituting (16a,b) into (12¢), we found

1 _ - .
J~ —[(cos@ +mr™ 7y, )r'”z v —mr™ My, (—r sin@+ r™ vl')]

r (17)
my+my—2 ’ !

~r [mvvy —myv]

Eq.(16a) implies that the Laplacian term in (12a) is

Vi, ~r" (vl"+ m’v, ) , (18a)

while the 2" term in (12a) (we will call this the nonlinear term) is

10



r

=2(p+1
J ( ) a_J%_%a_J _ rfz(ﬁﬂ)(ml+m272)r2n1272rml*2 . (18b)
or 068 or 06

Using (18a,b), the ratio of the nonlinear to the Laplace term is seen to vanish as r goes to

zero, 1.€.,
r—Z(,{j’+l)(m| +m, 72)r2m2 -2 — r*Z(ﬂH)(ml —l)r—Zﬁ()nz—l)

-0, (19)

where we have used 0<m, <1. Hence the nonlinear term (18b) can be neglected and the

leading order behavior of (12a) is determined by (18a), i.e.,

vi+m'v, =0. (20)
The solution of (20) that satisfies the BC (13a) is

v, =a,sin(m,0), 21

where a, is an arbitrary constant. To satisfy the traction free boundary condition (15a),

we note that the third term in (15a) is of order

als % _ r7(2ﬁ+1)(ml+mz—2)rmz—l _ r—(2ﬁ+l)(ml—l)r—zﬁ'(mz—l)‘ (22)
r

Comparing the order of each term in (15a), we have

sing + 104 g @ =0 . (23)
0
2" o0 or

o) O(rml -1 ) 0(’,-(2ﬂ+1)(m1 —l)r—Zﬂ(m2—1))

The dominant term in (23) is clearly l% , hence, to leading order, the BC (15a)
r

becomes:
Ouy =0=v/(6,)=0=cos(mb,)=0=m - (24)
80 0 1 0 170 1 200

Equation (24) determines the singularity index for the horizontal displacement u;, .

Here we note the assumption that m, <1 holds if and only if 6, > /2.
We next consider the leading order solution of (12b), the Laplacian term is

Viy, ~r"7? (v;' + mzzvz) . (25a)

The nonlinear term 1is:

11



2(8+1)
Y sing+ 2| —[ coso+ 2 |L B e e B (101)
r|or 00 or )oo

which goes to zero in comparison with the Laplacian term. Therefore,
Vi +miv, =0=v, =a,sinm,0 (26)

where we have used the BC (13b). The same argument shows that the leading order

behavior of (15b) is

%~ at =0, :>cos(m2¢90)=0. (27)

Equation (27) implies that

m,=——=m =m. (28)

Thus, the singularity index for u, and 'y, isequal.

We need to recalculate J since the leading order term in @ (17),
[myvvy —myv v |=m[vyv, —v,v| vanishes identically (see (21) and (26)). A simple
calculation using ((17), upper equation) shows that

1 . o .
J ~—[(cos9+almr”’ ls1nm6’)c12r’"77100s1119—azmr"’ lsme(—rsmé’Jralmr'" cosm@)]
r

=a,mr"" cos [(1 - m)ﬁ]

(29)

Comparing (29) with (17) shows that the leading order behavior of J has changed because

=2 However, since m < 1, J is

[mvvy —myv,v[| vanishes, it is now 1" instead of r
still unbounded as » goes to zero. Note .J is non-zero inside and on the wedge boundaries
since cos[(l - m)&] >0 in0<0<6,. However, because [mv,v,—m,v,y/] vanishes
identically, J is now of order 7", so we need to check that the Laplacian terms in (12a,b)

still dominate the nonlinear term. This is indeed the case since

> (30a)
r | orof or 06

=2(p+1) [
J aJ ayz ayz aJ:| _ r—Z(ﬂ+])(Wl*1)rm—lrm—2 >> rm—2

2p) [
J Z—J(—rsin9+%j—(cos9 6614 jg‘;} 2B el 2 m2 (30b)
r r r

Thus, (21), (26), (28) are still valid provide that the leading behavior of J is given by (29).
12



4.2 Higher order terms

Our result in previous section shows that, in contrast to the linear theory where m is a
function of the Poisson’s ratio (see (2)), the singularity index m in the leading order
solution of the finite strain theory does not depend on the compressibility factor f (see
(28)). We show here that the effect of compressibility is manifested in higher order terms
in the asymptotic expansion (see (43) below). To see this, consider

w, = a,r" sinm@+r"w, (0)+ o(r”‘ )

where n, >1 (31a,b)
v, =a,r" sinmb+r"w,(0)+ o(r”2 )

Since the first terms in (31a,b) satisfy the Laplace equation exactly, we have

-2
Viu, ~r" (wl”+ nlzwl)

(32a,b)
Viy, ~r"7? (w;' + nzzwz)
The leading order of J is still given by (29), more precisely,
J =r""a,mcos| (1-m)0]+o(r"™") (33)

Using (33) and (31a,b), the leading order behavior of the nonlinear term in (12a) is

Ny 2,0
or 00 or 00

=(m-1)a;m*r""'r"* cos 6

(34)

} ~m*(1=m)ayr™'r" (cosm&cos[(l —m)0 | +sinm@sin[ (1- m)@])

r

Combining (34) and (33), the leading order behavior of the nonlinear term in (12a) is

J—Z(ﬂ+1) 1{oJ 6}’2 8)/2 oJ :O(rz(ﬁ+1)(1—m)rm—1rm_z)zo(rz/j(1—m)—1) (35)
r| or 068 or 06

Let us first assume that n, > 1. If the nonlinear term is small in comparison with the

Laplacian term as r goes to zero, then
n=2<2p(l-m—-l<n <1+26(01-m). (36)

Sincel/2<m<1, for any fixed 6,>7z/2 (36) is true for sufficiently large 5. Let us

assume this is the case since we are mostly interested in solids with low compressibility,

then the Laplacian term dominates which results in

w'+nw, =0=w, =b sin(n0). 37)

13



1

Let us consider the boundary condition (15a). By (24), the term l% in (15a) is of
r

order 7""'w/ . However, it is impossible for this term to dominant (unless
sin@, =sinz =0, recall we exclude the crack case) since n, >1 and this term vanishes

as » goes to zero. The last term in the BC (15a) is

als % 2B m) et (2)(1-m) (38)
r

2

which also goes to zero as r goes to zero since m < /. By (36) this term is small compared

with l%~ r
r 00

wi as r goes to zero. Thus, the 1* term in the BC (15a) dominates and

the BC (15a) cannot be satisfied. This means that it is not possible for », > 1. The only
choice isn, =1. For this case (36) is always satisfied since m is less than 1, so the

Laplacian term dominates and (32a) and (13b) implies that
w, =b;sinf . (39)

What about the BC (15a)? Using (38), the order of each term in (15a) is:

—sint90+b1cos00+Jzﬂ1%=0:>b1=tan00. (40)
2P0 0

Hence the 2™ order solution for u, is rtan,sin@, that is
u, =a,r" sinmf +rtan,sin@+o(r) . (41)

Having determine the next order term for u,, we turn to y, . Using (29), the first order

behavior of the nonlinear term in (12b) is:
—2(ﬁ+1)
J a—J(—rsin6+%J—(cos6+%ja—J
r or o6 or )06

2B (m) 2me3 {azmcos[(l _ m)H]}_Z(Hﬂ) aa, (m _ 1)m2 cosd

(42)

Again, the Laplace term in (12b) is of order ">, assuming it dominates (this requires
£ to be sufficiently large, exactly how large we shall see below), we must have

P2 s 2P0 2 o 2p(1-m)+1 (43)

Equation (43) implies that the linear term of the boundary condition (15b) is the dominant
term, so:

1% o ao=0, and y,(6=0)=0 (44)
r 00

14



Since n, 21, the solution of the Laplacian (32b) is

by sinnd, n, :;7”0 43)
Thus,

y, =a,r" sinmé + b,r"™ sin n2<9+o(r”2) (46)
To summarize, the asymptotic expansion of the deformed coordinates are:

y, =a,r" sinmb + r(tan 6, sin 6+ cos H) +o(r)

y, =a,r" sinmé +b,r" sinn,0+o (r”2 ) (47a-c)

m=—, nl2<,<m
0

Equation (47a) shows that the 2" order term of y, is given by r(tan@,sin@+cos®)

instead of rcos@. Since J depends on the combination of leading and 2™ order terms
of y,, we need to reevaluate J using (47a,b). A straightforward calculation using (47a,b)

shows that the leading order behavior of J is

 cos(6, —(1-m)0) L N
cos(@o) =ma,r" j(@) m= 2—00 (48)

J ~ ma,r"”

Note that J has the same power law singularity as in (33). However, although it is positive

everywhere for 0<6 <@, , it vanishes at 6, since m =——. The vanishing of J on the
0

free edge implies that there is a boundary layer at @ = 6,. The vanishing of J is important,
because the traction free BC (24) and (27) relies on the assumption that the boundary
terms associated with J were subdominant. This assumption is questionable if the
asymptotic behavior of Jat =6, were unknown. The same issue was faced by Lenyel
et al., (Lengyel, Long and Schiavone, 2014), who derived the near-tip fields for the
special case of an interface crack where 6, = 7 . In their work, they also found J vanishes
at the crack face. They showed that J does not vanish at 8= but has a different
asymptotic behavior as » — 0. Following the same line of reasoning (see Supporting

information (SI)), we found a similar result where

.](V N 0,0 — 90 ) — O(F‘(l—m)/(l+ﬂ)) ] (49)

15



Substituting (49) into the traction free BC confirms that (24) and (27) is still valid, hence

our leading order solution given by (47a,b) is still valid for all g > 0 . However, the

higher order terms in (47a,b) are only valid away from the boundary layer near the free

edge. This claim is verified by the FE solution below.

4.3 Stresses
Using (47a,b), the components of the deformation gradient tensor, to leading order are

F,=amr"" sin[(m - 1)9}, F,=amr"" cos[(m - 1)9}

50a-d
Fy = aymr"'sin[ (m=1)0]  F, = a,mr" cos[ (m—1)0] ( )

The leading asymptotic behavior of the /** Piola stresses can be evaluated using (7a-d) by

ignoring the high order J "' term and using (50a-d), this results in

P, = pa,mr"" sin [(m - 1)9], P, = pamr™! cos[(m + 1)0]

(51a-d)
P, = pua,mr" " sin [(m + 1)6’], Py, = pa,mr"™” Cos[(m - 1)9]
The leading behavior of the true stresses are found using (8a-d), these are:
— a’mr"”!
b 4,)0)
Ty, =7y = pamr™™ [ j(6), (52a-c)

7y, = pa,mr"" [ j(6)

where («9) is defined by (48). Note angular variation of true stress is identical for

different stress components. In particular, all stress components have the same power law
singularity at the wedge tip, reflecting the mixed mode nature of the local fields.

Analogous to stress intensity factors in fracture mechanics, the parameters a,a,

uniquely characterize the strength of the singularity near the wedge tip. Equations (52a-c)
imply that the ratio of different true stress components are constants independent of r

and @ . Specifically,
T,/ T, =1,/ 1,=a,/a,. (53)

The ratio a, /a, measures the ratio of interfacial shear stress to the transverse stress
(7,,) or the ratio of the normal stress to the shear stress respectively. In analogy to

interfacial fracture mechanics, we define a phase angle ¢,
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9, = tan”' (a, /a,)=tan"' (7, / 7, ) =tan"' (7, / 7,) . (54a)
Equations (47a,b) provide another interpretation of phase angle, that is,

rléfg@)(yz /yl):az /a,

(54b)

Equation (54b) shows that the free edge of the wedge near the tip deforms into a straight

line with slope given by the phase angle ¢,. It is important to note that the intensity

factors a, cannot be determined by asymptotic analysis since they depend on the

manner of loading and specimen geometry. Therefore, the local slope of the deformed

wedge depends on the applied load and the specimen geometry.

4.4 Deformed shape of the free edge

The asymptotic behavior (47a,b) states that at the free edge

»n~ar" —c(6,)r c(6,)=—(tan 6, sin 6, +cos 6, ) = —secf, >0 (55a)
y, ~ a,r” (55b)

Thus, the deformed free surface is locally described by the equation

a m
N :a_l)’2 —c(@o)(y2 /az)l/ (55¢)
2
The location of the maximum of y, is found by solving dy, /dy, =0, i.e.,
6, m o
4 _ <( O)(y2 / a, )1/ v, =y, =[aymcos 6, ] a, (55d)
a m

2

4.5 More higher order terms: William’s expansion for nonlinear fields

(726,>7/2)

Depending on £, we can generate additional higher order terms and obtain a William’s

type of expansion for nonlinear fields for wedge angle greater than 90 degrees. Let

u, = a,r" sinm6 +rtan@, sin +r"v,, (0)+ o(r'”12 )
(56a,b)
¥, =a,r" sinm + a,,r"” sinmy, 0+ r"v,, (0)+o0 (rmB )
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where we have modified notations in (39a,b) so b,=a,, and m, =n, =37/26, .

Also, m, >1 and m,, >m,, =37 /26, . Substituting (56a,b) and (53) into the BC (15a)

shows that

. (6)=0 o™
provide that

m, <2/3(1—m)+1. (57b)

Then it is easy to verify that the Laplacian term in (12a) is, to leading order
Viu, ~ " (vl”2 + mlzzvlz) (58)

and is asymptotic dominant compared with the nonlinear term provided that (57b) is

satisfied.
Equations (58) and (57a) and (13a) imply that
Vi, =ay, sin(m,0) m, =37/(26,) (59)

Thus, the higher order terms depend on the value of . Since we are interested in almost

incompressible solids, # 1is typically very large so the condition (57b)
2B(1—m)+1>m, =37/(26,) (60)

is easily satisfied. Following the same line of reasoning we can determine m,, and

Vi (9) in (56b),
Indeed, we can continue this process to any positive integer N >2 provided that
m,y <2(1-m)pB+1 a=12 (61)

The result is:

N
u, =a,r" sinmé + rtan 6, sin 6 + Zrm‘k sin(m,,0)+o (r'"""’ )

v ” (62a,b)
v, =ar" sinm@+ ) a, " ay, sin(m,,0)+ o(r’"“’ )
k=2
where
2k-1)x
My =My = % . (62¢)
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Note the number of terms in the asymptotic series (57a,b) depend on £ ; specifically, this
dependence is given by the inequality:

(ZN - 1)7r
20

0

<2B(1-m)+1. (62d)

It should be noted that, unlike the William’s expansion, which is an infinite series that
converges within some radius of convergence at the crack tip; (62a,b) are asymptotic
series, hence convergence is not guarantee, so including more terms of the series do not

always lead to better accuracy.

5. Finite Element Results

5.1  Finite Element (FE) Calculations

We use FE to check our asympototic analyses. The geometry of the wedge structure and
the FE model is shown in Fig. 4(a,b). Calculations are performed using ABAQUS 2019.
The bulk is modeled as a compressible Blatz-Ko material with energy density function
given by (6). Calculations are performed using f=4.5 which corresponds to v=0.45.
Let L be any arbitrary length scale, the specimen has a rectangular cross-section with
sides 10Lx11L. On the top edge (BC), a uniform vertical displacement A is imposed

while the horizontal shear traction is set to zero. The loading is controlled by the nominal
stretch ratio A=1 +% . On the line directly ahead of the wedge tip (OD), the vertical

and horizontal displacements are set to zero to simulate perfect bonding with the rigid
substrate. The wedge face AO is traction free. The sides AB and CD are free of shear
traction and remain straight during deformation. Our choice of boundary conditions is
similar to those used by Lenyel et al. (Lengyel, Long and Schiavone, 2014). This choice
allows us to check our FE result against theirs for the special case of 6, = 7 (interface
crack). Following Lenyel et al. (Lengyel, Long and Schiavone, 2014), we use triangular
elements for the entire mesh to prevent over-distortion of elements. Plane strain CPE6H
elements are used. To balance the accuracy and efficiency of computation, we use a fine
mesh near the wedge tip (the smallest element size is ~1x107° L), while away from the tip
the element size increases and is ~ L /2 near the top edge. Our convergence test shows

that further refinement of the mesh does not affect the FE results.
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10L

S 11L

Figure 4 (a, left) Wedge geometry in undeformed reference configuration, (b, right) Mesh used in
FE calculation. A uniform vertical displacement A is applied on the edge BC while the edge OD
is fixed to the rigid substrate. On 4B the shear traction is zero. The wedge face 4O is traction free.
The sides 4B and CD are free of shear traction and remain straight during deformation (this

removes the stress concentration at the corners at 4 and D). In this geometry, the only loading

A

parameter is the nominal stretch ratio A =1+ E .

5.2 Comparison of FE results with Asymptotic Theory

We carried out simulations for various obtuse wedges 6, >z /2 and for f=4.5. Here

we present results for @, =37 /4=135". FE results for other values of 6, also validate
our asymptotic results and are given in the S3. Figure 5 shows that true stresses on the
interface (6’:0) versus distance from the wedge tip. The asymptotic results (52a-c)
(solid lines with slope —1/3 in a log-log plot) are also plotted for comparison. The FE

and asymptotic results are in good agreement for /L <107,

To check the angular dependence of the true stresses we plot normalized FE true stress

components 7, =7, (r /L=10" ,0) / Top (r /L=107,0= 0) in Fig.6. If our asymptotic

results (52a-c) are correct, then different components of 7, should coincide

with1/ j(@). Figure 6 shows that this is indeed the case except for a boundary layer at

6, where j (90) =0. As noted earlier, the existence of this boundary layer is expected

(see discussion right after (48)). The deformed shape of the free edge obtained from FE is
shown in Figure 7. Plotted in the same figure is the asymptotic result (55c). Again, there

is good agreement between theory and FE results.
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0, = 3n/4, M=2/3, 1=2

1029

L

1]
\;10

10° . .
107 103 102

/L

Figure 5 Normalized true stresses on the interface (9 = 0) for a 135 degrees wedge. Symbols are

FE result, and the solid lines are the asymptotic results predicted by (52a-c).

8,=3n/4, m=2/3, A=2, r=103L

12 - & Ty

cos0,/cos((1-m)0-0,)

T T T T T

00 05 10 15 20 25
B(rad)

Figure 6 Different components of the normalized true stress versus @ . Prediction of the asymptotic

results given by (52a-c) are the solid lines.
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0,=3n/4, A=2 —FEm

Asymptotic

10

Yo/l

0 T T T 1 T 1
-2.0 -1.5 -1.0 -0.5 0.0 05 1.0

y4/L

Figure 7 Deformed shape of the free edge. Black solid line is the FE result and red solid line is the

asymptotic result (50c). The undeformed wedge surface (with angle 8o = 37/4) is the dotted line.

Only part of the solid material (to the right of the deformed shape) is shown in figure.

12
10
0,=3n/4, A=2

8
2, — FEM ‘
2 01 —— Asymptotic

Undeformed
4 -
shape
2 -
0 =

4 -3 -2 -1 0 1
v/l

6. Special Case: 90 Degrees Wedge

6.1 Shallow wedges: 0<§,<z/2

We call wedges with angles less than or equal to 90 degrees shallow wedges. For these
wedges, our analysis indicates that the stresses cannot have a power singularity. Of
course, this result does not prevent the stresses having a weaker singularity (e.g., a

logarithmic singularity in 7). Here we focus on the border-line case wheref, =7/2.
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This case appears often in applications, since many structures have 90° corners.
Another reason to study this case is that we expect wedges with angles smaller than 90°

will have weaker singularities, if they exist at all.

6.2 Results for 90 degrees wedge

The structure of the asymptotic fields near the corner turns out to be very difficult to
analyze and we have not been able to obtain exact results. For this reason, we first present
FE results. These FE results provide valuable insight on the near wedge tip fields.
Based on these results, we obtain approximate close form expressions for the true stresses
near the wedge tip. The FE geometry is a square with sides 10L. The boundary conditions

are the same as 6, >7/2.

The normalized true stresses 7,/ 4 along the interface (6=0) versus distance r from

the wedge tip for two different applied stretch ratios 4 =1.5,5.0 are plotted in Fig. 8a, b.

As shown in Fig. 8a, b, these FE results (symbols) of near tip stress components can be

well approximated by

T,/ u=5h (lnr)2 +C/Inr+D,

7,/ u=C,Inr+D, (63a-c)
7,/ =D,

The dimensionless parameters B;,C, and D, in (63a-c) are functions of & and the
applied stretch ratio 4 .

0,-7/2, 6=0, 2=1.5 0,=m/2, 8=0, =5

X 1)) —— 0.136In(7L)2-0.44SInGLy+1.17
----- -0.592In(/L1+0.386

X 1] —— 0.076In(/)2-0.383lne/Er+0.620
----- -0.627In¢rAly+1.48

Too/ M

Fig. 8 True stress components directly ahead of wedge tip (9 = 0) for a 90 degrees wedge. Fig.

8a, (left), A =1.5, B =4.5. Fig. 8b (right), A =5, p = 4.5. Symbols are FE results and solid lines
are eq. (63a-c).
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(@): 0,=n/2, 6=0, A=1.5 (b): 0,=n1/2, 0=0, A=5

20 . 134
o X 1]] —— B In(+/LY+C,In(/L)+D, , X 11] —— ByIn(/LY>+C, In(rLy+D,
- 1 -
16 oz Coln(rLyeD; ° T2 T GylIn(r/Ly+D,
144 = Dy
= 124
‘-“Q
3104
e
8,
o]
6 - ©-e
o] 9-00-30@9‘@00
el e B i e e oo B e e B
2 DAL A B DDA DLDDADDADNANANNANNIN 4
10+ 103 102 104 10° 102
r/L r/L
By Cy Dy Gy D, Dy
Fig. 8(a) 0.136 —0.445 1.17 —0.592 0.386 1.92
Fig. 8(b) 0.0764 —0.383 0.620 —-0.627 1.48 5.02

To study the angular variation of B,,C,,D, we evaluate the true stresses on 6 =7/2

On this edge, the traction free condition implies that (see SI)
T, Ty =11 O=m/2 (64)

We also confirmed (64) using our FE calculation. Equation (64) implies that B,,C,,D,

are not independent. Another way to see this is that stresses must satisfy equilibrium.
Figures 9a,b plot the true stress along &=7/2 for two different applied stretches.
The asymptotic results given by (63a-c) are plotted in the same figure as a comparison.
Again, the agreement between FE and (63a-c) is excellent. These results strongly support
the validity of (63a-c) for all angles. Results for true stress along@ =7z /6,7 /3 are given

in SI.

0y=n/2, O=n/2, h=1.5 8,=n/2, B=1/2, k=5

24 X T] — 02300072052 7lnuLy+0.030 361
0 T2 <--- -0.998InG/L-0.065

X 1] — 0.226In(/L)2-1,65Ine/ErH0.848
----- 2.02In¢/11+6,20

10% 10% 102 10 1073 102
¥/L v/

Fig.9 True stress distribution along the free edge for p=4.5. 21 =1.5(a, left). 1 =5 (b, right).

Symbols are FE results and solid lines are eq. (63a-c).
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(a): 0y=m/2, O=n/2, A=1.5 (b): 0y=n/2, 0=n/2, A=5

26 ] X 1] — BInG/y+CIn(LyD, 407 X 11| —— ByInG/Ly*+C In(/Ly+D,
O T2 Gln(r/L)+D, 36 0 Typ - CyIn(/L)+D,
241
20+
2
S 16
IS P 6..q,
121 Coeg, 0
L 099@9 2%
84 A A A A A A D A AAD AN A4
4 -4
. . 12 . .
104 10° 102 104 10° 102
¥/L ¥/L
B, G Dy G Dy Dy
Fig.9(a) | 0.230 -0.527 | 00304 | —0998 | —0.0653 3.12
Fig.9(b) | 0.226 —1.65 0.848 -2.02 6.20 17.7

The deformed shapes of the free edge are shown in Figure 10 forA=1.5, 2 and 5. It is
interesting to note that the local wedge shape is not a monotonic function of the applied
stretch. Up till A =2, the lateral surface contraction increases. This trend is reversed at

large stretch ratio, e.g., A =35. This behavior is due to finite compressibility.

yy/L

Fig. 10 Finite element results for the deformed shape of the free edge near the tip of a 90 degrees
wedge for [ =4.5. The applied stretch ratios are A =1.5, 2.0 and 5.0. Local deformed shapes

with origin at the wedge tip (left). Right figure shows the reference configuration (/7, = 1) and the

deformed shapes.
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Figure.11 plots the asymptotic behavior of y, and y, on@=x/2, that is, the local

deformed coordinates of the wedge surface. This figure shows that the expressions
(65a,b)

B

Y~ Alr[(ln )Z}Zﬂﬂ

s ol o
provide a good fit to the FE result. In (65a,b), 4, and 4, are dimensionless parameters

that dependon A4 and 6.
A=2, p=4.5

0.1 5
Ay
— A]r\ln(r)\zﬁ“zﬁ*”

v
— Azr\ln(r')\ZMZBH)2

0.01 4

= 0.001 -
=

1E-4
T
0.01

ey
0.001

1E-5 ~—rrmrr ey
1E-5 1E-4
¥/L

Figure.11 Deformed coordinates y, (i = 1,2) versus normalized distance along the free edge

(@ =m/2). The symbols are FE results, and the solid lines are the asymptotic expressions

(65a,b).

Here we note that (65a,b) imply that
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2p
Dy i[(ln r)? }(Zﬂﬂ)z (66)
yoo 4

Thus, the local slope vanishes at the wedge tip (recall that this local slope is always

positive for an obtuse wedge).

7. Summary and Discussion

A finite strain model based on a compressible Blatz-Ko model is used to study the plane
strain deformation field near the tip of wedges with internal angles between 6, € (0,7[).

For reentrant corners where 6, > /2, the true stresses (as well as the 1% Piola stress) as

1

the wedge tip is approached have a power law singularity of the form »™ where

m :%. Our asymptotic analysis is confirmed by FE calculations. The magnitude of
0

these wedge tip fields are controlled by two loading parameters, g, and a,, analogous
to mixed mode stress intensity factors in linear elastic fracture mechanics.

Specifically, the ratio a,/a, measures the ratio of interfacial shear stress to the
transverse stress (7,,) or the ratio of the normal stress to the shear stress respectively.
An interesting result is that the local deformed shape of the wedge is a straight line with
slope determined by a, / a,. Hence, the wedge in the reference configuration is mapped
to another wedge in the deformed configuration. A surprising result is that the leading
asymptotic behavior is independent of the small strain Poisson’s ratio or [, in contrast
to small strain theory (see Fig. 2). Furthermore, for a given wedge angle 6, € (71' / 2,72') ,

the singularity index is larger than the singularity index predicted by the linear theory. 4s
a result, the stress singularity predicted by the nonlinear theory is less severe. Note this is
not always true, for example, for a Mode / crack in a homogenous neo-Hookean
incompressible solid, the opening component of the true stress directly ahead of the crack
tip has a higher singularity than that predicted by linear theory (Long and Hui, 2015). In
addition, the singular stress fields in the nonlinear theory have no oscillation. This result
is consistent with Knowles and Sternberg, (1983), who show that the stress field of an
interface crack between two different neo-Hookean sheets does not have infinite

oscillations. For sufficiently low compressibility or large £, we obtain higher order terms

of the asymptotic series — analogous to William’s expansion in linear theory.

In contrast to the linear theory, we find no power law singularity when 6, € (7[ /4,7 / 2] .

Instead, we found a transition in asymptotic behavior at 6, =7/2. For a 90-degree
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wedge, numerical result shows that the power law singularity of the true stresses is
replaced by a much weaker logarithmic singularity. Although we cannot provide a

rigorous proof that no singularity exists for @, <z /2; such a singularity, if it exists, will

be extremely weak for these angles. An interesting result is that the local deformed shape
of the 90° wedge has zero slope (see (66)). These departures from LEFM offer important
insights into the limitations of small strain theory; they lead to better understanding of
soft material failure and can serve as a useful tool aiding the interpretation of
experiments. For example, our theory indicates that design of fibril tip architecture based
on linear elastic wedge theory is conservative which increases the safety factor and can

lead to more reliable reusable adhesives.

There are obvious limitations to our theory. Our asymptotic result is for the Blatz-Ko
model. A difficulty with large deformation theory is that asymptotic results are
constitutive model dependent. This means that if we use a different compressible
model, the asymptotic result will be different. Furthermore, there is no proof that the

limit where S — oo in our solution corresponds to a neo-Hookean incompressible solid.
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Supporting Information:

S1. Plot of 60.(v) versus v
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Figure S1: 6, (V) versus v . Plot is generated by solving (2) and looking for first appearance of

complex roots with real part between 0 and 1.

S2. Relation between asymptotic field of linear and nonlinear theory

Assume the applied load is so small so that there is a region where the linear
corner field given by (1) dominates, i.e.,

T = Ar" T, (0,6,,v)+ 4" 2, (6,6,,v) (S1)

Since the singularity index m for the linear and nonlinear problem is different; to
avoid confusion, we replace m in the linear theory by M. Following the concept of
small scale yielding in elastic-plastic fracture mechanics (Rice, 1966), we assume
the region governed by nonlinear elasticity is so small in comparison with the size
of the wedge, so the wedge can be replaced by a semi-infinite wedge in an infinite
body and the actual boundary condition as » — o is given by (1). We call this the
Small-Scale Nonlinear Elasticity (SSNE) problem. According to (52a-c), the near
tip nonlinear stress fields are governed by two wedge intensity

factors aa,(a =1, 2) . Here we present a scaling analysis to show how these

stress intensities are related. In the following we assume that 6, >7z/2 so

power singularity occurs for both linear and nonlinear theory, we also consider

wedge angles that has no complex singularity index.
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First, note that the stress intensity factors 4,4, has the same dimension. Thus,

the only length scale in the SSNE problem is:
(4 /)™ (S2)
This length scale is analogous to plastic zone size in elastic-plastic fracture. On
the other hand, the nonlinear wedge intensities a, have units of (length)lfm
where m is given by (28). Dimensional analysis tells us that
a,=(4/0)""""M o (v.6,,4,/ 4,) (S3)
where ¢, is a dimensionless function which must be determined by solving the

full SSNE problem.

S3. Derivation of (49)

The following identity is useful for the study of asymptotic behavior of J: Equation 4
implies that

FTP:28—WFTF+J8—WI (S4)
ol oJ

Taking determinant of both sides, we have

det| F"P]=det F" detP=.J det P = det[za—WFTF Ny 1} (S5)
ol aJ

Next, use the fact that for 2D tensor, det[ 4+ AT]|= A’ + Atrd+det A. Applying this to

(S5) with A= J8—W , we have
oJ

2
JdetP = de{za—WFTF +J8—WI} :(Ja—Wj +J6—Wtr[2a—WFTF} +det{2a—WFTF}
ol oJ ol ol

oJ oJ
2 2
(an awaW[T}(aWj [T}
=|J—| +2—J—tr|F' ' F|+|2—| det| F' F
oJ o aJ oI
— —
I 52
2 2
=(J6—Wj +26—W8—WU+[28—WJ J?
oJ ar aJ oI
(S6)

W, W

For our constitutive model, 25 =us — —uJ " hence (S6) is
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detP =R,P,-HF,P, = J (87)
Thus
{Pllpzz —21’121"21} JH g2 g s (S8a)
)7
where
I=F*+F'+F.+F-. S8b
11 21 22 12

For obtuse wedges, the leading order behavior of / can be obtained using (50a-d), it is
I~ (a +a2 ) (89)

Next, we note that the BC on the free edge implies that det P =0 on the free edge,
((14) implies that the columns of P are linear dependent). Hence (S7) implies that

TR+ 1=0 =T (1-077) 0=, (S10)
For obtuse wedges, / is unbounded as  goes to zero, this means that
[~ J¥2 — g = VA2 0=0, (S11)

Substituting (S9) into (S11) give (49) in main text.

S4. FE results for 9,=8x/9 and 27 /3: Comparison with Asymptotic

result (52a-c)

0, = 8n/9, m=9/16, r=2 8 = 2n/3, m=3/4, 1=2

X Ty

10744

8 Ty
A Ty

Tocp 710

Fig. S2. Comparison of the asymptotic true stress component directly ahead of the wedge tip

(0 = 0) (Eqn. (47a-c)) (solid lines) with FE results (symbols) for wedge angles:
6,=87/9,2x/3
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S5. Derivation of eq. 64

The traction free boundary on the free edge 6, =7x/2 implies that
Using JrF ™" =P and enforcing this condition, with
JFT :{ Fy _F21:|:> Ty =1, F, =0
-k, F T, by =1, =0
The last two equations imply eq. 64.
S6. True stress along 9=r/6and z/3for 90 degrees wedge
(a): 0,=n/2, O=n/6, A=1.5 (b): 0=n/2, O=n1/6, 1=5
24 x 11] — ByIn(/L2+C (/LD 8] x 1] — ByIn(/Ly2+C,l
22 1 o Tp ------ GyIn(r/Ly+D, 16 4 o g e CyIn(/L)+D,

R =P

21

=0.

(S12)

n(r/L)+D,

By Cy Dy Gz D, Dy
Fig. S3(a) 0.185 —0.485 0.880 —0.792 0.166 2.44
Fig. S3(b) 0.110 —0.594 0.683 —0.921 2.22 7.43

Fig.S3 True stress distribution along @ =7/6 forf=4.5. A=1.5(a,left). A =5

Symbols are FE results and solid lines are eq. (63a-c).
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