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Abstract 

Sharp corners or wedges are common in everyday structures. Depending on the internal angle 0  

of the wedge, severe stress concentration can occur. Linear elasticity predicts that when an 

incompressible elastic wedge is bonded to a rigid substrate and subjected to plane strain 

deformation, the stresses at the wedge tip has a power law singularity if 0
0 45  . For some 0  

and for compressible wedges, the stresses are not only singular but oscillate infinitely rapidly.   

Here we show that these results are no longer true if large deformation is taken into consideration.   

Specifically, we determine the asymptotic fields near a tip of a Blatz-Ko wedge and found that the 

stress field has no power singularity for 0
0 90  . Furthermore, the power law singularity of the 

stress field differs from those predicted by linear elasticity and there are no oscillations. For 

sufficiently low compressibility, it is possible to obtain higher order terms of the asymptotic series 

– analogous to William’s expansion in linear theory. Our asymptotic results are validated by finite 

element (FE) calculations. We also studied the wedge tip field for the borderline case of a 900 

wedge. For this case, the stress singularity is found to be at most logarithmic. 
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1. Introduction 

Wedge shaped corners are ubiquitous in structures. For example, the use of patches 

bonded with structural adhesives is increasingly widespread in applications such as 

aircrafts, cars and other transport related applications. However, adhesively bonded 

patches have problems of stress concentration at the corners where crack initiation is 

prone to occur leading to the debonding of the patch. Such stress concentration can be 

reduced by tapering the surfaces of the patch, but tapering the adhesive is also an option 

(Marques and da Silva, 2008). In nature, small animals can achieve strong and robust 

adhesion with small patches such as the suction cups of octopus (Tramacere et al., 2014), 

the sticky fibrils of mussels (Ornes, 2013), vine tree and gecko feet (Arzt, Gorb and 

Spolenak, 2003). This strategy employed by nature has motivated the development of 

bioinspired structured adhesive surfaces (Gorb et al., 2006; Kim and Sitti, 2006; Jagota 

and Hui, 2011) to control adhesion and friction. These surfaces are typically made of an 

array of soft elastomeric fibers with shear modulus on the order of 1 MPa. Adhesion is 

typically measured against a rigid smooth surface such as glass. Experimentally and 

theoretically, it has been found that the shape of fiber tip can significantly affect contact 

and adhesion (del Campo, Greiner and Arzt, 2007; Spuskanyuk et al., 2008). Using finite 

element (FE) simulations based on linear elasticity and a cohesive zone model for 

debonding, Aksak, Sahin and Sitti, (2014) have found that wedge shape fiber tips (see 

Fig.1 insert) with an internal angle of 0 = 450 optimize the pull-off stress per unit 

contact area of a single fiber1.    

Motivated by these applications, we study the generic problem in Figure 1 where a wedge 

in an elastic solid is bonded to a rigid substrate; depending on the internal angle 0  of 

the wedge, severe stress concentration is known to occur. Williams, (1952) was the first 

to study the stress singularity near a wedge tip in a linear isotropic elastic solid. He 

studied various sets of boundary conditions (BC) on the radial edges of a wedge in thin 

elastic plates under extension. William’s ideas were later extended to wedges between 

dissimilar linear elastic materials, including anisotropic solid wedges (David B. Bogy, 

1968; Hein and Erdogan, 1971; Dempsey and Sinclair, 1979). The main goal of these 

papers is to characterize the singular deformation and stress fields near the tip of elastic 

wedges. The use of these asymptotic fields to predict failure in applications can be found 

in Dunn et al (Dunn et al., 1997; Dunn, Suwito and Cunningham, 1997, Leguillon, 2002). 

The idea is that these wedge singular fields fully characterize the stress and strain state 

 
1 There are other geometrical factors such as the aspect ratio of the fiber which control the optimal 
pull-off force.    
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near the wedge tip, hence their amplitude can be used as a loading parameter to determine 

crack initiation. 

Here we note that all the above works are based on linearized theory of elasticity where 

both the kinematics and material behavior are linear. As a result, they generally work for 

hard and stiff solids. For soft materials such as adhesives and elastomers, the deformation 

near the wedge tip can be sufficiently large to violate the small strain assumption.  

Because of this, it is expected that there can be significant differences between the 

prediction of small strain and large deformation theory. For crack problems, these 

differences have been studied by Knowles and Steinberg (Knowles and Sternberg, 1973, 

1974; J. K. Knowles and Sternberg, 1983), Stephenson (1982), Geubelle and Knauss 

(Geubelle, 1994a, 1994b, 1994c) and Gao (Gao, 1990). The finite strain crack tip fields 

exhibit characteristics that are drastically different from those of the linear elastic fracture 

mechanics solution, see (Long and Hui, 2015) for a detailed review. On the other hand, 

there are much fewer works on the behavior of the stress field near the tip of hyper-elastic 

wedges. Most of these works focus on homogeneous hyper-elastic solids (Mansouri et al., 

2016). However, in many applications, such as those mentioned above, the wedge is 

bonded to very stiff substrates. This motivates us to consider the stress and deformation 

field near the tip of a hyper-elastic wedge (see Figure 1) that is bonded to a rigid 

substrate.   

We consider plane strain deformation. The wedge in this work is a compressible hyper-

elastic solid proposed by (Blatz and Ko, 1962). This material model was used by 

(Lengyel, Long and Schiavone, 2014) to study the asymptotic behavior of an interface 

crack between a compressible hyper-elastic solid and a rigid substrate which corresponds 

to 0 = . Here we study the existence of singular fields near the wedge tip and, if they 

exist, how they depend on the wedge angle. These asymptotic solutions are validated by 

FE simulations.   

The plan of this paper is as follows. In section 2 we review linear wedge asymptotic 

theory that is relevant to this work. In section 3 we introduce the finite strain model for 

the wedge problem. The asymptotic solution for 0 / 2     is given in section 4.  In 

contrast to linear theory, where the transition between singular and non-singular tip 

solution occurs at 0 / 4  for solids with low compressibility, we found that there is no 

power-law singular solution for 0 / 2  . In section 5, we check our asymptotic 

solution against FE simulations. In section 6, we study the transition case where 

0 / 2 = . Summary and discussion are given in section 7.    
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2. Linearized theory of wedge tip fields (LTW) 

To gain perspective, we summarize results based on linearized theory of elasticity that are 

relevant to this study. Williams, (1952) was the first to study the stress singularity near a 

wedge tip in a linear isotropic elastic solid. His studied various set of boundary conditions 

(BC) on the radial edges of a wedge in thin plates under extension. The BC that is 

relevant to this work is a clamped/free boundary. The clamped edge represents the rigid 

substrate in our problem (see Fig.1 for geometry). We note here that William’s solution is 

for plane stress deformation. However, the solution of plane strain problems can be 

readily obtained from the plane stress solution by a simple transformation of elastic 

constants (Muskhelishvili, 1977). The results below are modified for plane strain 

deformation.      

 

Figure 1: Figure inside circle shows local geometry of wedge for asymptotic analysis in the un-

deformed reference configuration. The lower edge of the wedge 0 =  is bonded to the rigid 

substrate. Its edge at 0 =  is traction free. We consider plane strain deformation where the out 

of plane displacement is identically zero and the fields are independent of 3x . The out of plane 

coordinate 3x  is not shown. Geometry in the simulation of (Aksak, Sahin and Sitti, 2014) is 

shown on the right.     

 

Williams, (1952) showed that the in-plane asymptotic stress field  , with respect to a 

polar coordinate system ( , )r   with origin at the wedge tip, has the form  

( )1
0 1 2ˆ , , , ,mr A A     −= ,   0r →      (1) 



5 

where 1A  and 2A  are loading parameters that controls the intensity of the stress field, 

  is the Poisson’s ratio of the elastic wedge and ̂  are linear homogeneous functions 

of 1A  and 2A . The parameters 1A  and 2A  cannot be determined from asymptotic 

analysis; they depend on the geometry of the structure and the manner of loading. In (1), 

m  is the singularity index which can be complex. Typically, one requires that the real 

part of m  to be greater than 0 so that the displacement field is bounded. Here we note 

the following:  

• m  is a function of the wedge angle 0  and the Poisson’s ratio  .  
Specifically, the relation between m and 0  for plane strain deformation is given 
by the transcendental equation: 
 

 ( ) ( ) ( )
22 2 2

0 0sin 4 1 3 4 sin 0.m m   − − + − =    (2) 

 

Note that the singularity index depends only on the Poisson’s ratio and the wedge 

angle and is otherwise independent of material properties such as the shear 

modulus.     

• m can be a complex number for some wedge angles, i.e., 1 2m m im= +  where 

1i = − . For this case, the stress can be obtained by taking the real or imaginary 
part of (1). Since 
 

 ( ) ( )1 11
2 2cos ln sin lnmmr r m r i m r−− =  +   ,    (3) 

 the stresses oscillate infinitely rapidly as r approaches the wedge tip if 2 0m  .   

Such oscillatory behavior is well documented for interface cracks in bi-material systems 

(England, 1965; Rice and Sih, 1965). Knowles and Sternberg, (1983) showed that such 

oscillatory behavior arises from the linearization of the field equations; by carrying out 

asymptotic analysis of the nonlinear field equations governing an interface crack between 

two compressible neo-Hookean sheets, they found that the crack faces open smoothly, 

and the stress field has no oscillatory behavior.    

Figure 2 plots the numerical solution of (2) against 0 for v =  0.33, 0.45 and 0.5 

(incompressible solid). For the case of 0.5v =  , m is real for all angles. However, this is 

not the case for 0.5v  , where complex root can exist. Note that Re m versus 0  has a 

cusp at some m, to the left of this cusp, m is real while m is complex to its right. The solid 

black line in Fig. 2 is the result of the finite strain theory (details are given in section 3 – 

4). In finite strain theory there are no complex roots and stresses has no power singularity 

for / 2  (see below for details).      
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Figure 2: The real part of the singularity index m in the linear theory for v =  0.3, 0.45 and 0.5. 

 

We highlight the following results of the linear theory for comparison purposes: 

 

• The stress field has a power singularity and is unbounded if Re 1m  . It is 
bounded when Re 1m  .         

• For an incompressible solid loaded in plane strain, m is always real and 1m =  at 
0 / 4 =  or 45 degrees. Thus, the stress and strain fields are bounded and 

continuous when 0 / 4  . Note that this is consistent with the result of Aksak 
et al. (Aksak, Sahin and Sitti, 2014), suggesting that the optimal pull-off force 
occurs when the singular fields near the wedge tip is eliminated.   

• For compressible solids, m  is complex for wedge angles, ( )0 c   , where 

( )c  denotes the critical angle where the transition from real to complex root 

occurs. A plot of ( )c   versus   is given in the SI. For wedge angles greater 

than ( )c  , the stress field is singular and oscillates infinitely rapidly at the tip. 
We shall see later that this oscillatory behavior is absent in large deformation.  

• For 0 / 2 = , 1 1m m=   for all 0  , hence the stress has a non-oscillatory 
singularity 1mr − . As shown in Figure 3, the singularity index is found to decrease 
with increasing v; hence the stress is most singular when 1/ 2 = . We shall see 
later that the large deformation solution does not admit a power law singularity 
when 0 / 2 = . Instead, a much weaker logarithmic singularity is found for this 
case. 

 
A brief discussion of transition between the linear and nonlinear asymptotic solutions are 
given in the SI. 
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Figure 3: The singularity index for 0 / 2 =  as a function of the Poisson’s ratio v. For this 

angle m is always real and less than 1 except at 0v = , indicating that the stress has power 

singularity of the form 1r  −  for 0v  . 

3.  Finite strain model of wedge tip fields 

3.1 Problem formulation and geometry 

The geometry consists of a compressible hyper-elastic wedge of angle 0  bonded to the 

surface of a rigid substrate (see Figure 1). A material point in the reference undeformed 

configuration is denoted by its Cartesian coordinates ix  (i =1,2,3). We consider plane 

strain deformation where all field quantities are independent of the out of plane 

coordinate 3x . In the following we will use Greek indices to denote in plane coordinates, 

e.g., x , 1,2 = . Details on plane strain deformation were given by Stephenson 

(Stephenson, 1982). Here we summarize the basic equations.    

In plane strain, the out of plane deformation is exactly zero, so deformation can be 

represented by a 2D deformation gradient tensor F with Cartesian components 

/F y x  =   , where ( )1 2,y x u x x  = +  is the deformed coordinates of the material 

point and u  is its displacement in the   direction. The strain energy density function 

W for an isotropic hyper-elastic solid undergoing plane strain deformation is a function of 

two invariants ( )TI tr= FF  and detJ = F . The 1st Piola or nominal stress tensor P is 

related to ( , )W I J  by 

 2 TW WJ
I J

− 
= +

 
P F F .      (4) 
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The true or Cauchy stress tensor   is related to the 1st Piola stress tensor by 

 1 TJ −= FP .        (5) 

3.2 Material Model 

We consider a compressible hyper-elastic solid proposed by Blatz and Ko, (1962). As 

noted in the introduction, this material model was used by Lengyel et al., (Lengyel, Long 

and Schiavone, 2014) to study the asymptotic behavior of an interface crack between a 

compressible hyper-elastic solid and a rigid substrate 0( ) = . The 2D plane strain 

energy density function is given by        

 ( ) ( )22 1
2 2

W I J  



−= − + −  ,     (6) 

where   is the small strain shear modulus. The dimensionless constant   is the 

compressibility factor, it is related to the small strain Poisson’s ratio   

by ( )/ 1 2 0  = −  . This relation indicates that large   corresponds to low 

compressibility. For many soft materials, such as elastomers and gels, the resistance to 

shear is much smaller than the resistance to compression, resulting in 1  . For 

example, an elastomer used in many applications is Polydimethylsiloxane (PDMS). The 

Poisson’s ratio of PDMS (Sylgard 184) was reported by Muller et al., (2019) to be 0.495, 

which corresponds to 49.5 = . The in-plane nominal stress tensor components P   are 

obtained using (4) and (6), they are 

2 1 2 1
11 11 22 12 12 21

2 1 2 1
21 21 12 22 22 11

          

          

P F J F P F J F

P F J F P F J F

 

 

 

 

− − − −

− − − −

   = − = +   

   = + = −   




   (7a-d) 

 The in-plane true stress components   are evaluated using (7a-d) and (5), they are: 

 
 

 

1 2 2 2
11 11 12

1
12 21 11 21 12 22

1 2 2 2
22 21 22

J F F J

J F F F F

J F F J





 

  

 

− −

−

− −

 = + − 

= = +

 = + − 

      (8a-d) 



9 

3.3 Equilibrium 

In the absence of body forces2, the equilibrium equations in the reference configuration 

are 

 x =P 0         (9) 

Substituting (7a-d) into (9), the equilibrium equations are: 

( ) ( ) ( )

( ) ( ) ( )

2 12
1 2 3

2 12
2 1 3

2 1 0

2 1 0
x x x

x x x

y J J y

y J J y









− +

− +

 + +   =

 − +   =

E

E
      (10a,b) 

Where 3E  is the unit vector in the out of plane direction and 2
x  is the 2D Laplacian in 

reference coordinates. As in section 2, we use the polar coordinates ( ),r   in the 

reference configuration as independent variables: 

 1 2cos ,  sinx r x r = =        (11) 

Using ,r   as independent variables, the equilibrium equations (10a,b) become: 

( ) ( )

( ) ( )

2 12
1 1 2 2

2 2

2 12
2 2 1 1

2 2

2 11 1 0

2 11 1 sin cos 0

Ju u y yJ Jr
r r r r r r r

Jy y u uJ Jr r
r r r r r r r







  


 

  

− +

− +

+        
+ + − =            

+            
+ − − + − + =      

            

 

(12a,b) 

where J is 

 1 2 2 11 cos sinu y y uJ r
r r r

 
 

       
= + − − +    

       
    (12c) 

These equations are the same as in Lengyel et al. (Lengyel, Long and Schiavone, 2014).   

However, it must be noted that Lengyel et al., (Lengyel, Long and Schiavone, 2014) used 

the symbol x  to denote deformed coordinates. Also, instead of using 1 2,y y  as the 

dependent variables, which is typically adopted in nonlinear field analysis, we use 1 2,u y  

as the dependent variables. Since 1 1 cosy u r = + , the usage of 1u  as independent 

variable made the BC 1y r= on the interface homogeneous (see (13a) below).    

 
2 As long as the body forces are bounded, they have no effect on the leading singular behavior of 
the fields.   
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3.4 Boundary conditions (BC) for Asymptotic Analysis 

We consider perfect bonding, hence the displacements on the interface 0, 0r =   are 

identically zero, i.e.,  

( ) ( )1 20, 0 0,      0, 0 0u r y r =  = =  =            (13a,b) 

The edge of the wedge at 0 , 0r =  is traction free, i.e.,  

0=P N          (14) 

where N is the unit normal vector to the free edge. Using (7a-d), the BC (14) can be 

written in terms of 1 2,u y  as: 

2 11 2
0 0

2 12 1
0 0

1sin 0       at 

1 cos 0     at 

u yJ
r r

y uJ
r r





  


  


− −

− −

 
− + + = =

 

  
− + = = 

  

      (15a,b)   

4. Asymptotic analysis of wedge tip fields 

4.1 Asymptotic Analysis 

In this work we assume 0   since the crack case where 0 =  was solved by 

Lengyel et al., (Lengyel, Long and Schiavone, 2014). We consider the expansion near r = 

0, 

( ) ( )

( ) ( )

1 1

2 2

1 1

2 2

m m

m m

u r v o r

y r v o r





= +

= +
    0 1m      (16a,b) 

The condition 0 1m   enforces continuity of displacements but allows for singular 

stresses and displacement gradients. Substituting (16a,b) into (12c), we found 

( ) ( )

 

1 2 2 1

1 2

1 1
1 1 2 2 2 1

2
1 1 2 2 2 1

1 cos sinm m m m

m m

J m r v r v m r v r r v
r

r m v v m v v

 − −

+ −

  + − − +
 

 −

    (17) 

Eq.(16a) implies that the Laplacian term in (12a) is 

( )1 22 2
1 1 1 1

m
xu r v m v−  + ,       (18a) 

while the 2nd term in (12a) (we will call this the nonlinear term) is 
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( )
( )( )1 2 2 1

2 1
2 1 2 2 2 22 2 m m m my yJ J J r r r

r r r




 

− +
− + + − − −   

−     
.    (18b) 

Using (18a,b), the ratio of the nonlinear to the Laplace term is seen to vanish as r goes to 

zero, i.e.,  

( )( ) ( )( ) ( )1 2 1 222 1 2 2 1 1 2 12 2 0m m m mmr r r r  − + + − − + − − −−
= → ,     (19) 

where we have used 0 1m  . Hence the nonlinear term (18b) can be neglected and the 

leading order behavior of (12a) is determined by (18a), i.e., 

2
1 1 1 0v m v+ = .         (20) 

The solution of (20) that satisfies the BC (13a) is 

( )1 1 1sinv a m = ,        (21) 

where 1a  is an arbitrary constant. To satisfy the traction free boundary condition (15a), 

we note that the third term in (15a) is of order 

( )( ) ( )( ) ( )1 2 1 222 1 2 2 1 1 2 112 1 2 m m m mmyJ r r r r
r

   − + + − − + − − −−− − 
=


.    (22) 

Comparing the order of each term in (15a), we have 

( )( ) ( )1 1 2

2 11 2
0

1 2 1 1 2 1

1sin 0 
(1) ( ) ( )m m m

u yJ
r r

O O r O r r



 




− −

− − + − − −

 
− + + =

 
.    (23) 

The dominant term in (23) is clearly 11 u
r 




, hence, to leading order, the BC (15a) 

becomes: 

( ) ( )
0

1
1 0 1 0 1

0

0 0 cos 0
2

u v m m



 

 


=  =  =  =


.    (24) 

Equation (24) determines the singularity index for the horizontal displacement 1u .   

Here we note the assumption that 1 1m   holds if and only if 0 / 2  .  

We next consider the leading order solution of (12b), the Laplacian term is 

( )2 22 2
2 2 2 2

my r v m v−  + .       (25a) 

The nonlinear term is: 
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( )
( )( )1 2 1 2

2 1
2 1 2 2 2 21 1sin cos m m m mu uJ J Jr r r r

r r r




 
 

− +
− + + − − −      

− + − +    
       

, (25b) 

which goes to zero in comparison with the Laplacian term. Therefore,  

2
2 2 2 2 2 20 sinv m v v a m  + =  =        (26) 

where we have used the BC (13b). The same argument shows that the leading order 

behavior of (15b) is 

( )2
0 2 00     at cos 0y m  




=  =


.      (27) 

Equation (27) implies that 

2 1
02

m m m


= =  .        (28) 

Thus, the singularity index for 1u  and 2y  is equal.   

We need to recalculate J since the leading order term in (17), 

   1 1 2 2 2 1 1 2 2 1m v v m v v m v v v v   − = −  vanishes identically (see (21) and (26)). A simple 

calculation using ((17), upper equation) shows that 

( ) ( )

( )

1 1
1 2 2 1

1
2

1 cos sin cos sin sin cos

cos 1

m m m m

m

J a mr m a r m m a mr m r a mr m
r

a mr m

     



− −

−

 + − − +
 

=  −  

 

(29) 

Comparing (29) with (17) shows that the leading order behavior of J has changed because 

 1 1 2 2 2 1m v v m v v −  vanishes, it is now 1mr −  instead of 2 2mr −  . However, since m < 1, J is 

still unbounded as r goes to zero. Note J is non-zero inside and on the wedge boundaries 

since ( )cos 1 0m  −     in 00    . However, because  1 1 2 2 2 1m v v m v v −  vanishes 

identically, J is now of order 1mr − , so we need to check that the Laplacian terms in (12a,b) 

still dominate the nonlinear term. This is indeed the case since 

( )
( )( )

2 1
2 1 1 1 2 22 2 m m m my yJ J J r r r r

r r r




 

− +
− + − − − −   

−      
,   (30a) 

( )
( )( )

2 1
2 1 1 1 2 21 1sin cos m m m mu uJ J Jr r r r r

r r r




 
 

− +
− + − − − −      

− + − +     
       

. (30b) 

Thus, (21), (26), (28) are still valid provide that the leading behavior of J is given by (29).   
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4.2 Higher order terms  

Our result in previous section shows that, in contrast to the linear theory where m is a 

function of the Poisson’s ratio (see (2)), the singularity index m in the leading order 

solution of the finite strain theory does not depend on the compressibility factor   (see 

(28)). We show here that the effect of compressibility is manifested in higher order terms 

in the asymptotic expansion (see (43) below). To see this, consider 

( ) ( )

( ) ( )

1 1

2 2

1 1 1

2 2 2

sin

sin

n nm

n nm

u a r m r w o r

y a r m r w o r

 

 

= + +

= + +
  where 1n      (31a,b) 

Since the first terms in (31a,b) satisfy the Laplace equation exactly, we have 

( )

( )

1

2

22 2
1 1 1 1

22 2
2 2 2 2

n

n

u r w n w

y r w n w

−

−

 +

 +
       (32a,b) 

The leading order of J is still given by (29), more precisely, 

( )1 1
2 cos 1 ( )m mJ r a m m o r− −=  −  +        (33) 

Using (33) and (31a,b), the leading order behavior of the nonlinear term in (12a) is 

( ) ( ) ( )( )

( )

2 2 1 22 2
2

2 2 1 2
2

1 1 cos cos 1 sin sin 1

1 cos

m m

m m

y yJ J m m a r r m m m m
r r r

m a m r r

   
 



− −

− −

   
− −  −  +  −         

= −

(34) 

Combining (34) and (33), the leading order behavior of the nonlinear term in (12a) is 

( ) ( ) ( )2 1 2 1 (1 ) 1 2 2 (1 ) 12 21 ( )m m m my yJ JJ O r r r O r
r r r

  

 

− + + − − − − −   
− = =     

  (35) 

Let us first assume that 1n  > 1. If the nonlinear term is small in comparison with the 

Laplacian term as r goes to zero, then  

1 12 2 (1 ) 1 1 2 (1 )n m n m −  − −   + − .      (36) 

Since1/ 2 1m  , for any fixed 0 / 2   (36) is true for sufficiently large  . Let us 

assume this is the case since we are mostly interested in solids with low compressibility, 

then the Laplacian term dominates which results in  

( )2
1 1 1 1 1 10 sinw n w w b n + =  = .      (37) 
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Let us consider the boundary condition (15a). By (24), the term 11 u
r 




 in (15a) is of 

order 1 1
1

nr w−  . However, it is impossible for this term to dominant (unless 

0sin sin 0 = = , recall we exclude the crack case) since 1 1n   and this term vanishes 

as r goes to zero. The last term in the BC (15a) is 

 ( )( ) ( )( )2 1 1 2 12 1 12 m mmyJ r r r
r

  + − −− − −
=


,      (38) 

which also goes to zero as r goes to zero since m < 1. By (36) this term is small compared 

with 
1

1
1

1 nu r w
r r





 as r goes to zero. Thus, the 1st term in the BC (15a) dominates and 

the BC (15a) cannot be satisfied. This means that it is not possible for 1n  > 1. The only 

choice is 1 1n = . For this case (36) is always satisfied since m is less than 1, so the 

Laplacian term dominates and (32a) and (13b) implies that  

1 1 sinw b = .           (39) 

What about the BC (15a)? Using (38), the order of each term in (15a) is: 

( )2 1

2 1 2
0 1 0 1 0

0

sin cos 0 tan

mr

yb J b
r



  

−

− −

→


− + + =  =


.     (40) 

Hence the 2nd order solution for 1u  is 0tan sinr   , that is 

1 1 0sin tan sin ( )mu a r m r o r  = + + .      (41) 

Having determine the next order term for 1u , we turn to 2y . Using (29), the first order 
behavior of the nonlinear term in (12b) is: 

( )

( )( ) ( ) 
( )

( )

2 1
1 1

2 12 1 1 2 3 2
2 1 2

sin cos

cos 1 1 cosm m

u uJ J Jr
r r r

r r a m m a a m m





 
 

 

− +

− +
+ − −

      
− + − +    

       

 −  − 

   (42) 

Again, the Laplace term in (12b) is of order 2 2nr − , assuming it dominates (this requires 
  to be sufficiently large, exactly how large we shall see below), we must have 

( )( ) ( )2 2 1 12 2 3
2 2 1 1mn mr r r n m


+ −− −   − +      (43) 

Equation (43) implies that the linear term of the boundary condition (15b) is the dominant 
term, so: 

2
0

1 0     at y
r

 



=


 and ( )2 0 0y  = =       (44) 
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Since 2 1n  , the solution of the Laplacian (32b) is  

2
2 2sinnb r n  ,  2

0

3
2

n 


=        (45) 

Thus, 

( )2 2
2 2 2 2sin sinn nmy a r m b r n o r = + +       (46) 

To summarize, the asymptotic expansion of the deformed coordinates are: 

( )1 1 0sin tan sin cos ( )my a r m r o r   = + + +  

( )2 2
2 2 2 2sin sinn nmy a r m b r n o r = + +       (47a-c) 

02
m 


= ,    0/ 2     

Equation (47a) shows that the 2nd order term of 1y  is given by ( )0tan sin cosr   +  

instead of cosr  . Since J depends on the combination of leading and 2nd order terms 

of 1y , we need to reevaluate J using (47a,b). A straightforward calculation using (47a,b) 

shows that the leading order behavior of J is 

( )( )
( )

01 1
2 2

0

cos 1
( )

cos
m mm

J ma r ma r j
 




− −
− −

  
02

m 


=     (48) 

Note that J has the same power law singularity as in (33). However, although it is positive 

everywhere for 00     , it vanishes at 0  since 
02

m 


= . The vanishing of J on the 

free edge implies that there is a boundary layer at 0 = . The vanishing of J is important, 

because the traction free BC (24) and (27) relies on the assumption that the boundary 

terms associated with J were subdominant. This assumption is questionable if the 

asymptotic behavior of J at 0 =  were unknown. The same issue was faced by Lenyel 

et al., (Lengyel, Long and Schiavone, 2014), who derived the near-tip fields for the 

special case of an interface crack where 0 = . In their work, they also found J vanishes 

at the crack face. They showed that J does not vanish at  =  but has a different 

asymptotic behavior as 0r → . Following the same line of reasoning (see Supporting 

information (SI)), we found a similar result where 

 

( ) ( ) ( )1 / 1
00, ( )mJ r O r 

 
− − +

→ = = .      (49) 
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Substituting (49) into the traction free BC confirms that (24) and (27) is still valid, hence 

our leading order solution given by (47a,b) is still valid for all   > 0 . However, the 

higher order terms in (47a,b) are only valid away from the boundary layer near the free 

edge. This claim is verified by the FE solution below.   

 

4.3 Stresses  

Using (47a,b), the components of the deformation gradient tensor, to leading order are  

( ) ( )

( ) ( )

1 1
11 1 12 1

1 1
21 2 22 2

sin 1 ,       cos 1

sin 1        cos 1

m m

m m

F a mr m F a mr m

F a mr m F a mr m

 

 

− −

− −

=  −  =  −    

=  −  =  −    

   (50a-d) 

The leading asymptotic behavior of the 1st Piola stresses can be evaluated using (7a-d) by 

ignoring the high order 2 1J − −  term and using (50a-d), this results in 

( ) ( )

( ) ( )

1 1
11 1 12 1

1 1
21 2 22 2

sin 1           cos 1

sin 1          cos 1

m m

m m

P a mr m P a mr m

P a mr m P a mr m

   

   

− −

− −

=  −  =  +    

=  +  =  −    




  (51a-d) 

The leading behavior of the true stresses are found using (8a-d), these are: 

( )

( )

2 1
1

11
2

1
12 21 1

1
22 2

( )

/

/

m

m

m

a mr
a j

a mr j

a mr j

 


   

  

−

−

−

=

= =

=

,       (52a-c) 

where ( )j   is defined by (48). Note angular variation of true stress is identical for 

different stress components. In particular, all stress components have the same power law 

singularity at the wedge tip, reflecting the mixed mode nature of the local fields.   

Analogous to stress intensity factors in fracture mechanics, the parameters 1 2,a a  

uniquely characterize the strength of the singularity near the wedge tip. Equations (52a-c) 

imply that the ratio of different true stress components are constants independent of r 

and . Specifically, 

12 11 22 12 2 1/ / /a a   = = .       (53) 

The ratio 2 1/a a  measures the ratio of interfacial shear stress to the transverse stress 

( 11 ) or the ratio of the normal stress to the shear stress respectively. In analogy to 

interfacial fracture mechanics, we define a phase angle p  
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( ) ( ) ( )1 1 1
2 1 12 11 22 12tan / tan / tan /p a a    − − − = = .    (54a) 

Equations (47a,b) provide another interpretation of phase angle, that is, 

( )
0

2 1 2 10,
lim / /

r
y y a a

 → =
=        

 (54b) 

Equation (54b) shows that the free edge of the wedge near the tip deforms into a straight 

line with slope given by the phase angle p . It is important to note that the intensity 

factors a  cannot be determined by asymptotic analysis since they depend on the 

manner of loading and specimen geometry. Therefore, the local slope of the deformed 

wedge depends on the applied load and the specimen geometry.    

4.4 Deformed shape of the free edge 

The asymptotic behavior (47a,b) states that at the free edge 

( ) ( ) ( )1 1 0 0 0 0 0 0         tan sin cos sec 0my a r c r c     −  − + = −    (55a) 

2 2
my a r          (55b) 

Thus, the deformed free surface is locally described by the equation 

( )( )
1/1

1 2 0 2 2
2

/ may y c y a
a

= −        (55c) 

The location of the maximum of 1y  is found by solving 1 2/ 0dy dy = , i.e., 

( )
( )  

1/0 11 1
2 2 2 2 1 0 2

2

/ cos
mm
m

ca y a y y a m a
a m


−

−=  =     (55d) 

4.5 More higher order terms: William’s expansion for nonlinear fields 

( )0 / 2      

Depending on  , we can generate additional higher order terms and obtain a William’s 

type of expansion for nonlinear fields for wedge angle greater than 90 degrees. Let 

( ) ( )

( ) ( )

12 12

23 2322

1 1 0 12

2 2 22 22 23

sin tan sin

sin sin

m mm

m mmm

u a r m r r v o r

y a r m a r m r v o r

   

  

= + + +

= + + +
    (56a,b) 
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where we have modified notations in (39a,b) so 2 22b a=  and 22 2 03 / 2m n  = = .   

Also, 12 1m   and 23 22 03 / 2m m   = . Substituting (56a,b) and (53) into the BC (15a) 

shows that  

( )12 0 0   v  =          (57a) 

provide that 

( )12 2 1 1m m − + .        (57b) 

Then it is easy to verify that the Laplacian term in (12a) is, to leading order  

( )12 22 2
1 12 12 12

mu r v m v−  +         (58) 

and is asymptotic dominant compared with the nonlinear term provided that (57b) is 

satisfied.    

Equations (58) and (57a) and (13a) imply that 

( ) ( )12 12 12 12 0sin   3 / 2    v a m m  = =        (59) 

Thus, the higher order terms depend on the value of  . Since we are interested in almost 

incompressible solids,   is typically very large so the condition (57b)  

( ) ( )12 02 1 1 3 / 2  m m  − +  =       (60) 

is easily satisfied. Following the same line of reasoning we can determine 23m  and 

( )23v   in (56b),  

Indeed, we can continue this process to any positive integer 2N   provided that 

( )2 1 1Nm m  − +    1,2 =      (61) 

The result is: 

( ) ( )

( ) ( )

1,1

2,2

1 1 0 1
2

2 2 2 2 2
2

sin tan sin sin

sin sin

Nk

Nk

N
mmm

k
k

N
mmm

k k k
k

u a r m r r m o r

y a r m a r a m o r

   

 

=

=

= + + +

= + +




   (62a,b) 

where 

( )
2 1

0

2 1
2k k

k
m m





−
= = .        (62c) 
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Note the number of terms in the asymptotic series (57a,b) depend on  ; specifically, this 

dependence is given by the inequality: 

( )
( )

0

2 1
2 1 1

2
N

m





−
 − + .       (62d) 

It should be noted that, unlike the William’s expansion, which is an infinite series that 

converges within some radius of convergence at the crack tip; (62a,b) are asymptotic 

series, hence convergence is not guarantee, so including more terms of the series do not 

always lead to better accuracy.    

5. Finite Element Results 

5.1 Finite Element (FE) Calculations 

We use FE to check our asympototic analyses. The geometry of the wedge structure and 

the FE model is shown in Fig. 4(a,b). Calculations are performed using ABAQUS 2019. 

The bulk is modeled as a compressible Blatz-Ko material with energy density function 

given by (6). Calculations are performed using 4.5 =  which corresponds to 0.45 = .   

Let L be any arbitrary length scale, the specimen has a rectangular cross-section with 

sides 10 11L L . On the top edge (BC), a uniform vertical displacement   is imposed 

while the horizontal shear traction is set to zero. The loading is controlled by the nominal 

stretch ratio 1
11L




 + . On the line directly ahead of the wedge tip (OD), the vertical 

and horizontal displacements are set to zero to simulate perfect bonding with the rigid 

substrate. The wedge face AO is traction free. The sides AB and CD are free of shear 

traction and remain straight during deformation. Our choice of boundary conditions is 

similar to those used by Lenyel et al. (Lengyel, Long and Schiavone, 2014). This choice 

allows us to check our FE result against theirs for the special case of 0 = (interface 

crack). Following Lenyel et al. (Lengyel, Long and Schiavone, 2014), we use triangular 

elements for the entire mesh to prevent over-distortion of elements. Plane strain CPE6H 

elements are used. To balance the accuracy and efficiency of computation, we use a fine 

mesh near the wedge tip (the smallest element size is ~ 51 10 L− ), while away from the tip 

the element size increases and is / 2L  near the top edge. Our convergence test shows 

that further refinement of the mesh does not affect the FE results.  
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Figure 4 (a, left) Wedge geometry in undeformed reference configuration, (b, right) Mesh used in 

FE calculation. A uniform vertical displacement   is applied on the edge BC while the edge OD 

is fixed to the rigid substrate. On AB the shear traction is zero. The wedge face AO is traction free.  

The sides AB and CD are free of shear traction and remain straight during deformation (this 

removes the stress concentration at the corners at A and D). In this geometry, the only loading 

parameter is the nominal stretch ratio 1
11L




 + .    

5.2 Comparison of FE results with Asymptotic Theory 

We carried out simulations for various obtuse wedges 0 / 2   and for 4.5 = . Here 

we present results for 0
0 3 / 4 135 = = . FE results for other values of 0  also validate 

our asymptotic results and are given in the S3. Figure 5 shows that true stresses on the 

interface ( )0 =  versus distance from the wedge tip. The asymptotic results (52a-c) 

(solid lines with slope 1/ 3−  in a log-log plot) are also plotted for comparison. The FE 

and asymptotic results are in good agreement for 3/ 10r L − . 

To check the angular dependence of the true stresses we plot normalized FE true stress 

components ( ) ( )3 3/ 10 , / / 10 , 0r L r L      − − = = =  in Fig.6. If our asymptotic 

results (52a-c) are correct, then different components of   should coincide 

with ( )1 / j  . Figure 6 shows that this is indeed the case except for a boundary layer at 

0  where ( )0 0j  = . As noted earlier, the existence of this boundary layer is expected 

(see discussion right after (48)). The deformed shape of the free edge obtained from FE is 

shown in Figure 7. Plotted in the same figure is the asymptotic result (55c). Again, there 

is good agreement between theory and FE results.   
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Figure 5 Normalized true stresses on the interface ( )0 =  for a 135 degrees wedge. Symbols are 

FE result, and the solid lines are the asymptotic results predicted by (52a-c).    

 

Figure 6 Different components of the normalized true stress versus . Prediction of the asymptotic 

results given by (52a-c) are the solid lines.    
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Figure 7 Deformed shape of the free edge. Black solid line is the FE result and red solid line is the 

asymptotic result (50c).  The undeformed wedge surface (with angle  = ) is the dotted line.  

Only part of the solid material (to the right of the deformed shape) is shown in figure.   

 

6. Special Case: 90 Degrees Wedge 

6.1 Shallow wedges: 00 / 2     

We call wedges with angles less than or equal to 90 degrees shallow wedges. For these 

wedges, our analysis indicates that the stresses cannot have a power singularity. Of 

course, this result does not prevent the stresses having a weaker singularity (e.g., a 

logarithmic singularity in r). Here we focus on the border-line case where 0 / 2 = .   
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This case appears often in applications, since many structures have 900 corners.   

Another reason to study this case is that we expect wedges with angles smaller than 900 

will have weaker singularities, if they exist at all.    

6.2 Results for 90 degrees wedge 

The structure of the asymptotic fields near the corner turns out to be very difficult to 

analyze and we have not been able to obtain exact results. For this reason, we first present 

FE results. These FE results provide valuable insight on the near wedge tip fields.   

Based on these results, we obtain approximate close form expressions for the true stresses 

near the wedge tip. The FE geometry is a square with sides 10L. The boundary conditions 

are the same as 0 / 2  .      

The normalized true stresses /   along the interface ( )0 =  versus distance r from 

the wedge tip for two different applied stretch ratios 1.5,5.0 =  are plotted in Fig. 8a, b.   

As shown in Fig. 8a, b, these FE results (symbols) of near tip stress components can be 

well approximated by  

( )
2

11 1 1 1/ ln lnB r C r D  = + +  

12 2 2/ lnC r D  = +         (63a-c) 

22 3/ D  =  

The dimensionless parameters ,i iB C  and iD  in (63a-c) are functions of   and the 

applied stretch ratio  .     

 

Fig. 8 True stress components directly ahead of wedge tip ( )0 =  for a 90 degrees wedge. Fig. 

8a, (left), 1.5 = ,  = 4.5. Fig. 8b (right), 5 = ,  = 4.5. Symbols are FE results and solid lines 

are eq. (63a-c). 
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To study the angular variation of , ,i i iB C D  we evaluate the true stresses on / 2 =  .   

On this edge, the traction free condition implies that (see SI) 

2
11 22 12  =    / 2 =       (64) 

We also confirmed (64) using our FE calculation. Equation (64) implies that , ,i i iB C D  

are not independent. Another way to see this is that stresses must satisfy equilibrium.  

Figures 9a,b plot the true stress along / 2 =  for two different applied stretches.   

The asymptotic results given by (63a-c) are plotted in the same figure as a comparison.   

Again, the agreement between FE and (63a-c) is excellent. These results strongly support 

the validity of (63a-c) for all angles. Results for true stress along / 6, / 3  = are given 

in SI. 

 

Fig.9 True stress distribution along the free edge for  = 4.5. 1.5 = (a, left). 5 =  (b, right). 

Symbols are FE results and solid lines are eq. (63a-c). 
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The deformed shapes of the free edge are shown in Figure 10 for 1.5 = , 2 and 5. It is 

interesting to note that the local wedge shape is not a monotonic function of the applied 

stretch. Up till 2  , the lateral surface contraction increases. This trend is reversed at 

large stretch ratio, e.g., 5 = . This behavior is due to finite compressibility.    

 

Fig. 10 Finite element results for the deformed shape of the free edge near the tip of a 90 degrees 

wedge for 4.5 = . The applied stretch ratios are 1.5 = , 2.0 and 5.0. Local deformed shapes 

with origin at the wedge tip (left). Right figure shows the reference configuration ( )1 =  and the 

deformed shapes.  
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Figure.11 plots the asymptotic behavior of 1y  and 2y  on / 2 = , that is, the local 

deformed coordinates of the wedge surface. This figure shows that the expressions   

( )

( ) ( )
2

2 2 1
1 1

2 2 1
2 2

ln

ln

y A r r

y A r r









+

+

 
 

 
 

,       (65a,b) 

provide a good fit to the FE result. In (65a,b), 1A  and 2A  are dimensionless parameters 

that depend on   and  .    

 

Figure.11 Deformed coordinates ( )1,2iy i =  versus normalized distance along the free edge 

( / 2 = ). The symbols are FE results, and the solid lines are the asymptotic expressions 

(65a,b). 

 
Here we note that (65a,b) imply that 
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( ) ( )
2

2
22 2 2 1

1 1

lny A r
y A




−

+ 
 

      (66) 

Thus, the local slope vanishes at the wedge tip (recall that this local slope is always 

positive for an obtuse wedge).   

7.  Summary and Discussion  

A finite strain model based on a compressible Blatz-Ko model is used to study the plane 

strain deformation field near the tip of wedges with internal angles between ( )0 0,  .  

For reentrant corners where 0 / 2  , the true stresses (as well as the 1st Piola stress) as 

the wedge tip is approached have a power law singularity of the form 1mr −  where 

02
m 


= . Our asymptotic analysis is confirmed by FE calculations. The magnitude of 

these wedge tip fields are controlled by two loading parameters, 1a  and 2a , analogous 

to mixed mode stress intensity factors in linear elastic fracture mechanics.   

Specifically, the ratio 2 1/a a  measures the ratio of interfacial shear stress to the 

transverse stress ( 11 ) or the ratio of the normal stress to the shear stress respectively.   

An interesting result is that the local deformed shape of the wedge is a straight line with 

slope determined by 2 1/a a . Hence, the wedge in the reference configuration is mapped 

to another wedge in the deformed configuration. A surprising result is that the leading 

asymptotic behavior is independent of the small strain Poisson’s ratio or  , in contrast 

to small strain theory (see Fig. 2). Furthermore, for a given wedge angle ( )0 / 2,   , 

the singularity index is larger than the singularity index predicted by the linear theory. As 

a result, the stress singularity predicted by the nonlinear theory is less severe. Note this is 

not always true, for example, for a Mode I crack in a homogenous neo-Hookean 

incompressible solid, the opening component of the true stress directly ahead of the crack 

tip has a higher singularity than that predicted by linear theory (Long and Hui, 2015). In 

addition, the singular stress fields in the nonlinear theory have no oscillation. This result 

is consistent with Knowles and Sternberg, (1983), who show that the stress field of an 

interface crack between two different neo-Hookean sheets does not have infinite 

oscillations. For sufficiently low compressibility or large  , we obtain higher order terms 

of the asymptotic series – analogous to William’s expansion in linear theory.  

In contrast to the linear theory, we find no power law singularity when ( 0 / 4, / 2   .   

Instead, we found a transition in asymptotic behavior at 0 / 2 = . For a 90-degree 
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wedge, numerical result shows that the power law singularity of the true stresses is 

replaced by a much weaker logarithmic singularity. Although we cannot provide a 

rigorous proof that no singularity exists for 0 / 2  ; such a singularity, if it exists, will 

be extremely weak for these angles. An interesting result is that the local deformed shape 

of the 90o wedge has zero slope (see (66)). These departures from LEFM offer important 

insights into the limitations of small strain theory; they lead to better understanding of 

soft material failure and can serve as a useful tool aiding the interpretation of 

experiments. For example, our theory indicates that design of fibril tip architecture based 

on linear elastic wedge theory is conservative which increases the safety factor and can 

lead to more reliable reusable adhesives.    

There are obvious limitations to our theory. Our asymptotic result is for the Blatz-Ko 

model. A difficulty with large deformation theory is that asymptotic results are 

constitutive model dependent.  This means that if we use a different compressible 

model, the asymptotic result will be different.  Furthermore, there is no proof that the 

limit where  →   in our solution corresponds to a neo-Hookean incompressible solid.      
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Supporting Information: 

S1. Plot of ( )c   versus    

 

Figure S1: ( )c   versus . Plot is generated by solving (2) and looking for first appearance of 

complex roots with real part between 0 and 1.   

 

S2. Relation between asymptotic field of linear and nonlinear theory 

Assume the applied load is so small so that there is a region where the linear 

corner field given by (1) dominates, i.e., 

( ) ( )1 1
1 1 0 2 2 0ˆ ˆ, , , ,M MA r A r          − −= +    (S1) 

Since the singularity index m for the linear and nonlinear problem is different; to 

avoid confusion, we replace m in the linear theory by M. Following the concept of 

small scale yielding in elastic-plastic fracture mechanics (Rice, 1966), we assume 

the region governed by nonlinear elasticity is so small in comparison with the size 

of the wedge, so the wedge can be replaced by a semi-infinite wedge in an infinite 

body and the actual boundary condition as r →  is given by (1). We call this the 

Small-Scale Nonlinear Elasticity (SSNE) problem. According to (52a-c), the near 

tip nonlinear stress fields are governed by two wedge intensity 

factors ( )1 2a , ,  = .  Here we present a scaling analysis to show how these 

stress intensities are related.  In the following we assume that 0 / 2   so 

power singularity occurs for both linear and nonlinear theory, we also consider 

wedge angles that has no complex singularity index.     
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First, note that the stress intensity factors 1 2,A A  has the same dimension.  Thus, 

the only length scale in the SSNE problem is: 

 ( )
( )1 1

1
/ MA / 

−        (S2) 

This length scale is analogous to plastic zone size in elastic-plastic fracture.  On 

the other hand, the nonlinear wedge intensities a  have units of ( )
1 mlength −  

where m is given by (28).  Dimensional analysis tells us that 

 ( )
( ) ( )1 1

1
m / Ma A / 

− −
= ( )0 1 2, ,A / A       (S3) 

where  is a dimensionless function which must be determined by solving the 

full SSNE problem.   

 

S3. Derivation of (49) 

The following identity is useful for the study of asymptotic behavior of J: Equation 4 

implies that 

2T TW WJ
I J

 
= +

 
F P F F I        (S4) 

Taking determinant of both sides, we have 

det det det det det 2T T TW WJ J
I J

  
  = = +     
F P F P P = F F I   (S5) 

Next, use the fact that for 2D tensor,   2det dettr  + = + +A I A A . Applying this to 

(S5) with WJ
J




=


, we have 

2
det  det 2 2 det 2

2 2
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2

2 2
22 2

W W W W W WT T TJ J J J tr
I J J J I I

W W W WT TJ J tr
J I J I

I J

W W W W
J IJ J

J I J I
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= + = + +

     
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= + +

   
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= + +
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       
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      
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P F F I F F F F

F F F F  

(S6)  

For our constitutive model, 2
W
I




=


, 2 1W
J

J



− −

= −


, hence (S6) is 
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( )
22 2 2 2 2

11 22 12 21det  
J J I J

P P P P
J

   − −− +
= − =P     (S7) 

Thus 

( )2 12 1 211 22 12 21
2

P P P P J J I J  



++ − −
= − + 

 
      (S8a) 

where  

2 2 2 2
11 21 22 12I F F F F= + + + .        (S8b) 

For obtuse wedges, the leading order behavior of I can be obtained using (50a-d), it is 

( )2 2 2 2(1 )
1 2

mI m a a r− −+         (S9) 

Next, we note that the BC on the free edge implies that det  0=P  on the free edge, 

((14) implies that the columns of P are linear dependent).  Hence (S7) implies that 

( )4 2 2 2 2 2 4 21 0 1J J I I J J   − − − − + − −− + =  = −  0 =      (S10) 

For obtuse wedges, I is unbounded as r goes to zero, this means that 

( )1/ 2 22 2I J J I  ++  =   0 =      (S11) 

Substituting (S9) into (S11) give (49) in main text.     

S4. FE results for 0 8 / 9 and 2 / 3  = : Comparison with Asymptotic 

result (52a-c) 

 

Fig. S2.  Comparison of the asymptotic true stress component directly ahead of the wedge tip 

( )0 =  (Eqn. (47a-c)) (solid lines) with FE results (symbols) for wedge angles: 

0 8 / 9, 2 / 3  =  
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S5. Derivation of eq. 64 

The traction free boundary on the free edge 0 / 2 =  implies that 11 21 0P P= = .   

Using TJ − =F P  and enforcing this condition, with 

22 21 11 22 12 12

12 11 12 22 22 12

0
0

T F F F F
J

F F F F
 

 

−
− − = 

=  
− − = 

F      (S12) 

The last two equations imply eq. 64.   

S6. True stress along / 6 and / 3  = for 90 degrees wedge 

 

Fig.S3 True stress distribution along / 6  = for  = 4.5. 1.5 = (a, left). 5 =  (b, right). 

Symbols are FE results and solid lines are eq. (63a-c). 
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