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A B S T R A C T 
The future detection of gravitational waves (GWs) from a Galactic core-collapse supernova will provide information on the 
physics inside protoneutron stars (PNS). In this work, we apply three different classification methods for the PNS non-radial 
oscillation modes: Cowling classification, Generalized Cowling Nomenclature (GCN), and a classification based on modal 
properties (CBMP). Using PNS models from 3D simulations of core-collapse supernovae, we find that in the early stages of the 
PNS evolution, typically 0.4 s after the bounce, the Cowling classification is inconsistent, but the GCN and the CBMP provide 
complementary information that helps to understand the evolution of the modes. In the GCN, we note several a v oided crossings 
as the mode frequencies evolve at early times, while the CBMP tracks the modes across the a v oided crossings. We verify that 
the strongest emission of GWs by the PNS corresponds to the f mode in the GCN, indicating that the mode trapping region 
alternates between the core and the envelope at each a v oided crossing. At later times, approximately 0.4 s after the bounce, the 
three classification methods present a similar description of the mode spectrum. We use our results to test universal relations 
for the PNS modes according to their classification and find that the behaviour of the universal relations for f and p modes is 
remarkably simple in the CBMP. 
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1  I N T RO D U C T I O N  
In recent years, the first detection of gravitational waves (GWs) 
emitted by the merger of binary systems of black holes (BHs; Abbott 
et al. 2016 ) and neutron stars (NSs; Abbott et al. 2017b ) has given 
rise to a new field of research that could offer information about 
the physics of these compact objects. The double NS coalescence 
GW170817 has also been detected through the entire electromagnetic 
spectrum and thus added GWs to the landscape of multimessenger 
astronomy. These events, together with the astronomical properties 
of the ∼100 mergers of compact binaries detected so far (Abbott 
et al. 2021 ), help to constrain the properties of BHs and NSs. The 
GWTC -2 and GWTC -3 catalogues contain the properties inferred 
from the detection of GWs (Abbott et al. 2021a , b ). 
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A complementary view of the physics of compact objects will 
emerge upon the detection of GWs from a Galactic core-collapse 
supernova. One of the possible remnants of a core-collapse supernova 
is a protoneutron star (PNS; see e.g. Burrows & Vartanyan 2021 , 
and references therein). The resulting GW emission is associated 
with PNS oscillations and dynamics (Marek, Janka & M ̈uller 2009 ; 
Murphy, Ott & Burrows 2009 ; M ̈uller, Janka & Marek 2013 ). Unlike 
NS binary coalescences, for which the stars are ef fecti vely cold, 
inside a PNS temperatures are initially abo v e 5 × 10 11 K. Over a 
time-scale of a few seconds, PNSs become more compact and cool 
down until they reach an equilibrium in which they are considered 
NSs (Pons et al. 1999 ). During this time, the microphysics inside 
the star also changes due to processes such as electron capture and, 
later, neutrino emission. As a PNS cools, its central densities rapidly 
become higher than nuclear saturation density. At such densities, the 
equation of state (EoS), which gives us information about the relation 
between the pressure and the energy density inside the star, is still 
largely unknown. 

The study of the GW signal from simulations of core-collapse 
supernovae has been performed in two dimensions with axial 
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symmetry, e.g. Marek et al. ( 2009 ), Murphy et al. ( 2009 ), Cerd ́a- 
Dur ́an et al. ( 2013 ), M ̈uller et al. ( 2013 ), Abdikamalov et al. ( 2014 ), 
Yakunin et al. ( 2015 ), Morozova et al. ( 2018 ), and Pan et al. 
( 2018 ), among others, and, in the last years, in three dimensions 
(see e.g. Hayama et al. 2016 ; Kuroda, Kotake & Takiwaki 2016 ; 
Andresen et al. 2017 ; Kuroda et al. 2017 ; Hayama et al. 2018 ; 
O’Connor & Couch 2018 ; Powell & M ̈uller 2019 , 2022 ; Mezzacappa 
et al. 2020b , 2023 ; Nakamura, Takiwaki & Kotake 2022 ; Vartanyan, 
Coleman & Burrows 2022 ; Vartanyan et al. 2023 ), in which the 
treatment is much more precise and thus computationally more 
e xpensiv e than in two dimensions. 

The complexity of the processes during core collapse renders it 
impossible to predict with high precision the resulting gravitational 
waveforms. None the less, the community has reached some agree- 
ment on the key aspects of the signal morphology after several years 
of numerical simulations (O’Connor et al. 2018 ; Mezzacappa et al. 
2020a ). Therefore, a future detection of GWs from Galactic core- 
collapse supernovae will add more information about the physics 
inside the PNS and will facilitate tests of the simulated models 
(Abdikamalo v, P agliaroli & Radice 2022 ; Wolfe et al. 2023 ). 

Ho we ver, detecting the emitted GWs produced in core-collapse 
supernovae will be challenging. Knowledge of the morphology of 
the emitted waveform is of paramount importance for developing 
ef fecti ve algorithms capable of extracting GW data from the detected 
signal. Different methods have been proposed: examples include 
principal component analysis (Heng 2009 ; R ̈over et al. 2009 ; Powell, 
Szczepanczyk & Heng 2017 ; Roma et al. 2019 ), inference using 
Bayesian analysis (Summerscales et al. 2008 ; R ̈over et al. 2009 ; 
Powell et al. 2017 ; Gill et al. 2018 ; Roma et al. 2019 ), denoising 
techniques (Mukherjee et al. 2017 ), and machine learning (Astone 
et al. 2018 ; Cavagli ̀a et al. 2020 ; Chan, Heng & Messenger 2020 ; Iess 
et al. 2020 ; L ́opez et al. 2021 ). One of the most promising ways to 
detect GWs from nearby core-collapse supernovae uses the excess- 
power coherent wa veb urst search, which has already detected GWs 
produced in mergers of compact objects (Abbott et al. 2019 ; Abbott 
et al. 2021a , b ), e ven in lo w-latency [e.g. for GW150914 (Abbott 
et al. 2017a )]. 

Here, ho we ver, we focus on a different approach, using a 
theoretical framework which has been developed to study stellar 
perturbations. We use this framework to describe the GW signal 
of a supernova as the superposition of the oscillation modes of the 
PNS (Marek et al. 2009 ; Murphy et al. 2009 ; M ̈uller et al. 2013 ). 
Oscillation modes of stellar configurations can be classified by taking 
into account their main restoring force. Generally speaking, the 
dominant restoring force is pressure for p modes (and f modes) and 
buoyancy for g modes (Cowling 1941 ; Kokkotas & Schmidt 1999 ). 
In the standard picture, two local quantities determine the character 
of a mode with given frequency σ /(2 π ): the Lamb frequency, L , 
and the Br ̈unt–V ̈ais ̈ala frequency, N . Sound waves can propagate 
in regions of the star in which σ 2 is greater than both L 2 and N 2 , 
while gra vity wa ves are possible in regions of the star in which σ 2 
is smaller than both L 2 and N 2 (see e.g. Unno et al. 1989 , for a 
re vie w). 

Usually, the classification of non-radial oscillation modes is based 
on the classification scheme proposed by Cowling ( 1941 ), in which 
the modes are defined by their restoring force and the number of 
nodes in the radial eigenfunction. But, for stars in which the stellar 
dynamics is different from main-sequence stars (or cold NSs), such as 
evolved stars and newly born PNS, the classification is not so trivial 
and the Cowling classification is not enough to correctly identify 
the non-radial oscillation modes. For this reason, in Section 3 we 

e xplore alternativ e classification methods of PNS modes, which were 
developed in the context of the study of non-radial pulsations of 
evolved stars and give complementary information about the modes, 
enabling a proper classification in this setting. 

Following Unno et al. ( 1989 ), we use the Generalized Cowling 
Nomenclature (GCN; Eckart 1960 ; Scuflaire 1974 ; Osaki 1975 ) and 
the classification based on modal properties (CBMP) of Shibahashi & 
Osaki ( 1976 ). The GCN was also applied to PNS simulations by 
Torres-Forn ́e et al. ( 2019b ) and other subsequent works. The CBMP 
pro vides qualitativ ely similar results to the matching classification 
based on the shape of the radial eigenfunction proposed by Torres- 
Forn ́e et al. ( 2019b ) and to the ramp-up mode description discussed 
by Mori, Suwa & Takiwaki ( 2023 ), but the CBMP is based on a 
more rigorous e v aluation of the kinetic energy of the mode in its 
trapped region. These complementary classification schemes help us 
to understand and identify different features of the modes, especially 
in the early stages of the PNS after the bounce. 

The aim of our work is to be able to identify correctly the non-radial 
oscillations modes of PNSs. By using complementary classification 
schemes, we are able to capture information from GW signals that 
can help to infer properties of the pulsating PNS. To obtain the 
modes, we apply linear perturbation theory to the PNS and use a 
Lagrangian description of the fluid perturbation, following Morozova 
et al. ( 2018 ). 

In Section 2 , we present the set-up for calculating the non-radial 
oscillation modes from PNS described by data from core-collapse 
supernova simulations (Radice et al. 2019 ). In Section 3 , we describe 
the three different mode classification schemes. In Section 4 , we 
present the results obtained using the three different classification 
methods and a brief analysis of the universal relations of PNSs. 
Finally, in Section 5 we summarize our work and present our 
conclusions. 

2  PR  OTO N E U T R  O N  STAR  N O N - R A D I A L  
OSCI LLATI ONS  
We use hydrostatic PNS configurations obtained from 3D core- 
collapse supernovae simulations of Radice et al. ( 2019 ) following 
the approach of Sotani & Takiwaki ( 2016 ). Namely, the results of the 
3D simulations are averaged to construct an ef fecti ve barotropic 
EoS, which we use to solve the Tolman–Oppenheimer–Volkoff 
equations to reconstruct the structure of the PNS and the space–time 
geometry. See also Westernacher-Schneider ( 2020 ) for an alternative 
approach that is fully consistent with the pseudo-Newtonian formal- 
ism employed in the dynamical simulations. The line element that 
describes a static spherically symmetric conformally flat space–time 
in isotropic coordinates ( t , x i ) is given by 
d s 2 = g µνd x µd x ν = −α2 d t 2 + ψ 4 f ij d x i d x j , (1) 
where α is the lapse function, ψ is the conformal factor whose value 
is set to 1, and f ij is the flat spatial 3-metric. The conformal flatness 
approximation incorporates the space–time dynamics ev olution, b ut 
it ignores gravitational radiation (Wilson & Mathews 1989 ; Isenberg 
2008 ). 

To describe the fluid perturbations we used the Lagrangian 
displacement vector 
ξ i = ( ξ r , ξ θ , ξφ) , (2) 
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with 
ξ r = ηr Y lm e −iσ t , 
ξ θ = η⊥ 1 

r 2 ∂ θY lm e −iσ t , 
ξφ = η⊥ 1 

r 2 sin 2 θ ∂ φY lm e −iσ t , (3) 
where Y lm are the spherical harmonics and the functions ηr and η⊥ 
depend only on the radial coordinate r . For each of the perturbing 
functions, a time dependence e i σ t is assumed. 

In order to find the quasi-normal modes, we need to solve a set 
of four first-order coupled differential equations for ηr , η⊥ and two 
additional functions f α and δ ˆ α, with appropriate values at the centre 
and a boundary condition, as done in Morozova et al. ( 2018 ). The 
scalar function δ ˆ α is the amplitude of the lapse function perturbation 
that depends only on the radial coordinate, i.e. δα = δ ˆ α( r) Y lm e −iσ t 
and f α is defined as f α = ∂ r ( δ ˆ α/α). The equations for the four 
unknown functions ηr , η⊥ , f α , and δ ˆ α are 
0 = ∂ r ηr + [2 

r + 1 
, 1 ∂ r P 

P + 6 ∂ r ψ 
ψ 

]
ηr 

+ ψ 4 
α2 c 2 s (σ 2 − L 2 ) η⊥ − 1 

αc 2 s δ ˆ α, (4) 
0 = ∂ r η⊥ − (

1 − N 2 
σ 2 

)
ηr + [∂ r ln q − ˜ G (1 + 1 

c 2 s 
)]

η⊥ 
− 1 

α ˜ G N 2 
σ 2 δ ˆ α, (5) 

0 = ∂ r f α + 2 
r f α + 4 π [

∂ r ρ − ρ

P , 1 ∂ r P ] ηr 
− 4 πρ

P , 1 qσ 2 η⊥ + [4 πρ2 h 
P , 1 α − 1 

α

l( l + 1) 
r 2 

]
δ ˆ α, (6) 

0 = ∂ r δ ˆ α − f αα + ˜ G δ ˆ α, (7) 
where , 1 is the adiabatic index, P is the pressure, ρ is the mass 
density, h is the specific enthalpy, c s is the speed of sound and q = 
ρh α−2 ψ 4 ; all of these quantities refer to the interior of the PNS. The 
Brunt–V ̈ais ̈ala and Lamb frequencies are 
N 2 = α∂ r α

ψ 4 
(

1 
, 1 ∂ r P 

P − ∂ r e 
ρh 

)
, (8) 

L 2 = α2 
ψ 4 c 2 s l( l + 1) 

r 2 . (9) 
where e is the energy density. The radial component of the gravita- 
tional acceleration ˜ G is defined as ˜ G = 1 

ρh ∂ r P . 1 
To solve equations ( 4 )–( 7 ), the boundary condition . P = 0 on 

the Lagrangian perturbation of the pressure has to be satisfied at 
the stellar radius, R . F ollowing Morozo va et al. ( 2018 ), we define 
the stellar radius where ρ = 10 10 gcm −3 . Different values of the 
mass density for the stellar radius do not have a large impact on the 
mode frequencies; g modes are essentially unchanged. The boundary 
condition is given by 
qσ 2 η⊥ − ρh 

α
δ ˆ α + ∂ r P ηr = 0 . (10) 

From equations ( 4 )–( 7 ), regularity of the solutions at r = 0 requires 
ηr | r= 0 = f α| r= 0 ∼ r l−1 , (11) 
1 An alternative definition is given by ˜ G = −∂ r ln α. Both definitions of ˜ G 
were tested in our code giving very similar results as expected. 

Table 1. 3D simulations of core-collapse supernovae from Radice et al. 
( 2019 ) corresponding to the PNS evolution models used in this work. Models 
3 and 7 ignore the virial correction to the neutrino–nucleon scattering from 
Horowitz et al. ( 2017 ), which is used in all other models. 
Model ZAMS mass (M %) Explode Symbol 
1 9 Yes ! 
2 10 Yes •
3 11 Yes ◦

4 11 Yes "
5 12 Yes #
6 13 No ∗
7 19 Yes ×
8 19 Yes + 
9 25 Yes ( 
10 60 Yes ) 

δ ˆ α| r= 0 = α(0) η⊥ | r= 0 ∼ α(0) 
l r l . (12) 

We note that Morozova et al. ( 2018 ) set the boundary conditions 
for δ ˆ α and f α to zero. Ho we ver, the dif ference in the resulting mode 
frequencies is negligible. 

We computed the oscillation frequencies and their respective 
eigenfunctions in FORTRAN90 . Our code uses a shooting method with 
Ridders’ root-finding algorithm to look for eigenfrequencies in the 
range from 100 to 2000 Hz until the boundary condition is satisfied, 
solving equations ( 4 )–( 7 ) (or equations 13 and 14 below, in the 
Cowling approximation) with a Runge–Kutta–Fehlberg integrator. 
This is done at every time-step of the evolution of the PNS, as 
described in Section 2.1 . 
2.1 Data 
The profiles of evolving PNS were calculated from the 3D sim- 
ulations of core-collapse supernovae performed by Radice et al. 
( 2019 ). The simulations were performed using the FORNAX code 
(Skinner et al. 2019 ), which solves the equations of neutrino radiation 
hydrodynamics using a sophisticated, multidimensional transport 
scheme. Gravity was handled using an ef fecti ve general relati vistic 
potential following Marek et al. ( 2009 ). The neutrino treatment 
accounted for gravitational redshift, Doppler effects, and inelastic 
scattering (Burrows et al. 2018 ). NS matter was treated using the 
SFHo EoS of Steiner, Hempel & Fischer ( 2013 ). In this work, we use 
models with 9 M %, 10 M %, 11 M %, 12 M %, 13 M %, 19 M %, 25 M %, 
and 60 M % zero-age main sequence (ZAMS) mass. In Table 1 , we list 
the details of each model. For more details, see Radice et al. ( 2019 ) 
and Burrows et al. ( 2020 ). 
2.2 The relativistic Cowling approximation 
As the classification methods described in Section 3 below are strictly 
valid only when the metric perturbations are neglected, we need to 
use the relativistic Cowling approximation (McDermott, van Horn & 
Scholl 1983 ), in which only fluid perturbations are considered. Under 
this approximation, the set of differential equations ( 4 )–( 7 ) becomes 
0 = ∂ r ηr + [2 

r + 1 
, 1 ∂ r P 

P 
]

ηr + 1 
α2 c 2 s (σ 2 − L 2 ) η⊥ , (13) 
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Figure 1. Propagation diagram for a PNS at 0.4 s after the bounce, produced 
by the model with 9 M % progenitor mass (model 1 in Table 1 ), for l = 
2. The re gion abo v e log 10 ( N 2 ) and log 10 ( L 2 ) is the p-propagation zone 
and the region below log 10 ( N 2 ) and log 10 ( N 2 ) is the g-propagation zone. 
Both N and L are normalized by √ 

GM/R 3 . The horizontal lines show 
the frequencies of three different modes; diamonds indicate the position of 
the nodes in the radial eigenfunction. Filled (empty) diamonds correspond to 
p -( g -)nodes, see Section 3.2 . 

0 = ∂ r η⊥ − (
1 − N 2 

σ 2 
)

ηr + [∂ r ln q − ˜ G (1 + 1 
c 2 s 
)]

η⊥ . (14) 
In the relativistic Cowling approximation, these are the only equa- 
tions needed to find the mode frequency, σ , whose associated 
eigenfunctions are ηr and η⊥ . 

Boundary conditions need to be imposed to solve equations ( 13 ) 
and ( 14 ). Under this approximation, the values of σ 2 we are looking 
for will be the ones that satisfy 
qσ 2 η⊥ + ∂ r P ηr = 0 . (15) 
3  CLA SSIFIC ATION  O F  M O D E S  
The analysis of the stellar oscillations gives information about the 
properties of the modes, which can be inferred in a propagation 
diagram like the one shown in Fig. 1 . This propagation diagram 
shows, for a PNS model, the normalized Brunt–V ̈ais ̈ala and the 
Lamb frequencies as functions of the normalized radius of the star, 
and corresponds to perturbation modes with l = 2. In this diagram, 
the p -propagation zone is defined as the region above both log 10 ( N 2 ) 
and log 10 ( L 2 ) (represented with khaki colour pattern) and the g - 
propagation zone is defined as the region below both log 10 ( N 2 ) and 
log 10 ( L 2 ) (represented with orange colour pattern). Frequencies of 
different modes are shown with horizontal lines and the position of 
the nodes of the corresponding eigenfunctions are represented with 
diamonds. 

In the hot and dynamically evolving environment of a PNS, mode 
classification becomes more challenging than in the case of cold 
NSs. To classify the non-radial modes of oscillation, we apply 
different classification schemes that provide complementary physical 
information about the mode characteristics and insights into their 
evolution. The three different approaches we use are described in the 
following subsections. 

3.1 Cowling classification 
This classification scheme introduced by Cowling ( 1941 ) is based on 
the restoring force (pressure or buoyancy), acting on a fluid element 
when it is displaced from its equilibrium position inside the star. The 
number of nodes, n , in the radial eigenfunction ηr , i.e. the number of 
times ηr changes sign inside the star, is used to classify the modes. In 
this classification, the fundamental f mode has 0 nodes, and each p n 
mode and g n mode have n nodes, with n ≥ 1. The way to distinguish 
a p mode from a g mode with the same number of nodes is by 
comparing their frequencies: p modes have higher frequencies than 
g modes, and f modes are in the middle. 

In the top panel of Fig. 2 ,we show as an example the radial 
eigenfunction profiles of the modes depicted in Fig. 1 . According 
to this classification, the green curve corresponds to a p 1 mode, with 
1 node in the p -propagation zone represented with a filled diamond. 
The yellow curve corresponds to a g 2 mode with 2 nodes, one in the 
p -propagation zone and the other in the e v anescent zone represented 
with filled and empty diamonds, respectively . Finally , a g 1 mode is 
represented with the purple curve, having 1 node in the g -propagation 
zone, represented with an empty diamond. In this example, there is 
no f mode between p modes and g modes. This classification is 
also used in Ferrari, Miniutti & Pons ( 2003 ), Sotani & Takiwaki 
( 2016 ), Morozova et al. ( 2018 ), Torres-Forn ́e et al. ( 2018 ), Sotani 
et al. ( 2019 ), and Sotani & Takiwaki ( 2020a , b , c ) for the modes 
of PNS, among others. Other works adopting this classification 
scheme for cold NS are, for example, Lindblom & Detweiler ( 1983 ), 
McDermott, van Horn & Hansen ( 1988 ), Benhar, Ferrari & Gualtieri 
( 2004 ), Lasky ( 2015 ), V ́asquez Flores, Hall & Jaikumar ( 2017 ), 
Ranea-Sandoval et al. ( 2018 ), and Kumar, Mishra & Malik ( 2023 ). 

3.2 Generalized Cowling nomenclature 
The GCN classification (Eckart 1960 ; Scuflaire 1974 ; Osaki 1975 ), 
takes into account the fact that, for evolved stars, the relation between 
the number of nodes in the eigenfunction and the mode number is 
not direct, in other words, modes do not necessarily have the same 
number of nodes along the stellar evolution, instead they can lose or 
gain nodes. The central panel of Fig. 2 illustrates the phase diagram 
( ηr , η⊥ ) for the modes depicted in the top panel with the same colours. 
The solid black circle indicates the stellar centre, and the nodes of 
the eigenfunctions are classified into g nodes and p nodes, depending 
on whether the curve in the phase diagram is travelling clockwise 
( g nodes) or counterclockwise ( p nodes) at the crossing of the axis 
ηr = 0, as the radial coordinate, r , increases (Unno et al. 1989 ). 
Accordingly, the empty diamonds represent g nodes, and the filled 
diamonds represent p nodes. The number of p nodes and g nodes are 
N p and N g , respectively. Their difference 
˜ n ≡ N p − N g , (16) 
increases monotonically with the mode frequency, and it is conserved 
for each mode as the star evolves. The modes are classified depending 
on the sign of ̃  n , which defines whether the mode is a g mode ( ̃  n < 0) 
or a p mode ( ̃  n > 0). For the fundamental mode, ̃  n = 0. Hence, using 
this classification in the middle panel of Fig. 2 , the green curve shows 
a p 1 mode as it has N p = 1 and N g = 0 ( ̃  n = 1). The yellow curve 
belongs to the fundamental mode as it has N p = 1 and N g = 1 ( ̃  n = 0). 
Finally, the purple curve shows a g 1 mode as it has N p = 0 and N g = 1 
( ̃  n = −1). Therefore, unlike in the Cowling Classification, there is a 
fundamental mode with two nodes between the g modes and p modes. 
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Figure 2. Representativ e e xample of the classification of PNS oscillation 
modes (see also the propagation diagram in Fig. 1 ). From top to bottom, 
the mode identifications are obtained with the Cowling classification, the 
GCN, and the CBMP, as described in the main text. The same three modes 
are represented in every panel with the same colours, but they are classified 
differently according to each method. On the top and middle panels, filled 
(empty) diamonds correspond to p -( g -)nodes; on the bottom panel, the shaded 
range corresponds to the PNS core. 
3.3 Classification based on modal property 
Even though the GCN is more appropriate to classify modes of 
evolved stars than the Cowling classification, it does not necessarily 
represent the character of the mode. Thereby, a second comple- 
mentary classification, the CBMP, was introduced by Shibahashi & 
Osaki ( 1976 ). This classification is based on the characteristics of 
the main trapping zone of the oscillation mode. In the propagation 
diagram, if the two propagation zones are widely separated by an 
intermediate e v anescent zone, oscillation modes can be classified 
into two types by identifying their main trapping zones. In general, 
evolved main-sequence stars can consist of four layers starting at 
the centre: a homogeneous conv ectiv e core, a µ-gradient zone with 

Figure 3. Time evolution of mode frequencies after the bounce for the PNS 
models shown in Table 1 . The same modes are shown in every panel, but 
from top to bottom the classifications used are the Cowling Classification, 
GCN, and CBMP, respectiv ely. F or times greater than approximately 0.4 s 
after the bounce, all classifications agree on the identification of f and p 
modes. For earlier times, the Cowling classification is not well defined to the 
disappearance of the f mode; the GCN shows several a v oided crossings and the 
CBMP identifies an additional mode, G 0 . See the main text for more details. 
varying chemical potential µ, a thin conv ectiv e shell that acts like 
an e v anescent zone and the radiati v e env elope, see e.g. fig. 1 of 
Shibahashi & Osaki ( 1976 ). In analogy to the case of an evolved 
main-sequence star, we use the CBMP to classify modes according 
to whether they are trapped in the core or the envelope of the PNS 
(see Fig. 1 , where the corresponding boundary between core and 
envelope is r ∼ 0.3 R ). In order to describe this classification, some 
terminology needs to be defined 

(i) G n : indicates a mode trapped mainly in the core zone that has 
n g nodes. 

(ii) p n : denotes a mode trapped mainly in the p -propagation zone 
of the envelope and having n p nodes. 

(iii) g n : a mode trapped mainly in the g -propagation zone of the 
envelope with n g nodes. 

A key quantity for this classification scheme is the ratio of the 
kinetic energy of the oscillation mode within the core to that of the 
whole star, defined as: 
. = ∫ r s 0 ρ| ξ | 2 4 πr 2 d r 

∫ R 
0 ρ| ξ | 2 4 πr 2 d r , (17) 
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Figure 4. Top: time evolution of mode frequencies classified with the GCN 
for PNS model 1 in Table 1 . Middle: time evolution of the ratio between the 
kinetic energy of the oscillations within the core and their total kinetic energy 
inside the star, for the p 1 , f, and g 1 modes in the top panel. The horizontal 
line shows the threshold in . used for the CBMP, and the shaded region 
represents possible thresholds of . that gi ve qualitati vely the same result 
(see also Appendix A ). Bottom: time evolution of the mode frequencies for 
the same model shown in the top panel, now classified using the CBMP. 
where r s is the outer radius of the core and the square of the 
displacement vector, ξ 2 , is given by 
ξ 2 = η2 

r + l( l + 1) η2 
⊥ /r 2 . (18) 

According to this classification, if . is close to 0 then the mode is 
trapped in the envelope. Otherwise, the mode is trapped in the core. 
The threshold, . critic , used to define whether a mode is trapped in the 
core or in the envelope is an arbitrary parameter that we will discuss 
in Section 4 . The number of nodes of each mode is determined by 
the number of nodes in the region where the mode is trapped. 

In the bottom panel of Fig. 2 , we show the integrand in equation 
( 17 ) as a function of the radius of the PNS for the modes shown in 
the top and middle panels. In this example, the p 1 mode in the GCN 
(green curve) has . = 0.66, which means the mode is oscillating 
mostly in the core, without nodes in the core, so it is classified as a 
G 0 mode in this classification. On the other hand, the f mode in the 
GCN (orange curve) has . = 0.04 and 1 node in the p -propagation 
zone, so it is classified as a p 1 mode in this classification. Something 
similar occurs with the g 1 mode in the GCN (purple curve), which 
is classified as an f mode because . = 0.15, and it has no nodes 
in the envelope. Unlike the other methods, the advantage of this 

classification is that it gives us information about the region of the 
star which contributes the most to the GW emission. 
4  RESULTS  
4.1 PNS modes 
We consider only the quadrupolar ( l = 2) modes as they should be 
the most energetic in the gra vitational-wa ve radiation from PNSs. 

To classify non-radial modes in PNSs, we consider 10 models 
of PNS e volution, sho wn in T able 1 . W e calculate the frequencies 
of the modes in the Cowling approximation at every 10 ms in 
each of the models and we classify the modes using the three 
different classification methods described in Section 3 , focusing on 
the frequency range 100–2000 Hz. 

In the Cowling classification, the modes are classified by counting 
the number of nodes of the amplitude of the radial Lagrangian 
displacement, ηr , and by comparing their frequency with the f 
mode (with zero nodes) as discussed in Section 3.1 . The results are 
presented in the top panel of Fig. 3 . The different symbols represent 
the PNS models introduced in Table 1 and the colours represent each 
mode classification, also indicated with labels in the figure (There are 
modes with 4 and 5 nodes in other regions of the figure but we only 
represent those necessary to complete the mode evolution). Strictly 
speaking, the Cowling approximation is only valid after t $ 0.35 s, 
when the f mode is present. 2 Going backwards in time from t ∼
0.35 s, we can see that modes gain nodes along the PNS evolution 
towards the bounce, when their frequencies get very close to each 
other, changing their Cowling classification. This feature is also seen 
in Morozova et al. ( 2018 ), Sotani et al. ( 2019 ), and Torres-Forn ́e 
et al. ( 2019b ). Additionally, Sotani & Sumiyoshi ( 2019 ) and Sotani & 
Takiwaki ( 2020c ) found that the amplitude of the modes involved in 
each ‘close approach’ (see the a v oided crossing discussion below) 
changes while the amplitude of the rest of the modes remains almost 
unchanged. 

The mode classification obtained with the GCN is presented in 
the middle panel of Fig. 3 . The different colours now represent the 
classification through fixed values of ˜ n = N p − N g , which increases 
monotonically with the frequency at every time-step. Progressing 
upward from the lowest frequency, the modes are uniquely classified 
as g 3 , g 2 , g 1 , f , p 1 , p 2 and p 3 (only modes with | ̃  n | ≤ 3 are 
represented). Compared with the Cowling classification, in the GCN 
case we find that the description of the mode evolution is much 
simpler. The ‘close approaches’ noted in the top panel now appear 
as a v oided crossings. For instance, as the f mode e volves, it sho ws 
a v oided crossings as it bounces between the p 1 and g 1 modes: at t - 
0.05 s with p 1 , at t - 0.15 with g 1 , at t - 0.3 s with p 1 and finally at 
t - 0.5 s with g 1 . 

The results obtained in the CBMP are presented in the bottom panel 
of Fig. 3 . The colours represent different mode classifications. Modes 
with upper case (G i modes) and lower case (p i , f, and g i modes) 
letters correspond to modes trapped in the core and in the envelope, 
respectiv ely. The sub-inde x in each label represents the number of 
nodes in the region where the mode is trapped. For instance, the G 2 
mode is trapped in the core and has 2 nodes in the core, the f mode is 
trapped in the envelope and has no nodes in the envelope (but it could 
2 We choose to follow Morozova et al. ( 2018 ) and classify the mode with 2 
nodes at 0 . 1 s % t % 0 . 4 s as a g 2 mode, but the classification is not unique 
(it could also be classified as a p 2 mode) due to the absence of the f mode at 
early times. 
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Figure 5. Evolution of the parameters used in each mode classification method, corresponding to the f mode (as classified by the GCN). Times are specified on 
the left-hand side and mode classifications are shown as labels in each panel. Left: evolution of the radial eigenfunction ηr , used in the Cowling classification 
method. Centre: mode trajectories in the ( ηr , η⊥ ) phase space, used in the GCN. Right: evolution of . as a function of the radius of the PNS. 
have nodes in the core), and the p 2 mode is trapped in the envelope 
and has 2 nodes in the p -propagation zone in the envelope. We note 
that the G i modes decrease in frequency over time, and there are no 
more a v oided crossings. In particular, the G 0 mode appears, crossing 
all p modes and the f mode. 

It is remarkable that all of the PNS models we analyse show very 
similar results. As a representative example, we choose model 1 (with 
a 9 M % progenitor star) to explore the complementary descriptions 
provided by the GCN and CBMP. In Fig. 4 , we present the mode 
evolution only for model 1, using the GCN and the CBMP in the 
top and bottom panels, respectively. In the central panel, we show 
the evolution of . for the g 1 , f, and p 1 modes, as classified by the 
GCN. The horizontal black line corresponds to the . threshold we 
use in this work. The grey band represents a . range for which the 
classification would be qualitatively the same (see more details in 
Appendix A ). Values of . abo v e the horizontal black line indicate 
the mode is trapped in the core. Otherwise, the mode is trapped in 
the envelope of the PNS. Near each a v oided crossing in the GCN, . 
changes abruptly and the character of the mode changes (trapped in 
the core or trapped in the envelope). 

We take a closer look at the evolution of the f mode (as classified 
by the GCN) in Fig. 5 . For 8 time slices, we present the radial 
eigenfunction in the left-hand columns, the ( ηr , η⊥ ) phase space 
in the centre and the integrand used in the definition of . in 
the right-hand column (note that the PNS becomes more compact 
with time, as it cools and approaches the cold NS stage). The f 
mode gains and loses pairs of p and g nodes, changing its Cowling 
classification but keeping ˜ n constant in the GCN. The CBMP shows 
the changes in the mode character, alternating between oscillations 
trapped in the core ( G i classifications) and in the envelope ( p i and f 
classifications). 
4.2 Emission of gravitational waves 
It is rele v ant to ask how most of the GW emission by the PNS is 
generated. A comparison between the time-evolving spectrum of 
modes and the spectrogram of the GWs for model 9 is presented in 
Fig. 6 . 
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Figure 6. Spectrogram of the GW emission for model 9 (see Table 1 ), shown 
together with the f-mode sequences identified with the GCN and the CBMP. 
For earlier times, the GCN shows better agreement with the simulated GWs. 
For later times, both methods agree on the f-mode classification. 

Figure 7. Relation between macroscopic quantities (mass, M and radius, R ) 
and the frequencies of modes classified using the GCN (top panel) and the 
CBMP (bottom panel). The CBMP sequences show simpler trends than the 
GCN sequences, due to the absence of the a v oided crossings. The black lines 
represent the fits to each mode in the CBMP (see Table 2 ) and the shaded areas 
represent the ±1 σ bands of each fit. Note that the frequencies corresponding 
to the G 0 modes below the f modes in the bottom panel are not included in 
the top panel because they are classified as g 1 modes in the GCN. 

We show with lines the evolution of the f mode obtained following 
the GCN classification and the CBMP. In this analysis, we use the 
modes calculated with the full equations ( 4 )–( 7 ) in order to obtain a 
better agreement with the simulated GWs. As the GCN and CBMP 
are strictly valid only in the Cowling approximation of equations ( 13 ) 

Table 2. Best-fitting parameters for quasi-universal relations of the form 
f ( x ) = a + bx + cx 2 , describing the CBMP mode frequency f in Hz as a 
function of x ≡ √ 

M/R 3 in units of M 1 / 2 % / km 3 / 2 , shown in Fig. 7 . 
Mode a (Hz) b ( Hz km 3 / 2 / M 1 / 2 % ) c ( Hz km 3 / M %) 
f −0.050 ± 0.004 174.3 ± 1.9 −2590 ± 195 
p 1 0.067 ± 0.003 184.6 ± 1.6 2194 ± 176 
p 2 0.062 ± 0.004 313.2 ± 2.5 −6213 ± 326 
p 3 0.057 ± 0.006 452.6 ± 4.9 −16780 ± 807 
G 0 0.94 ± 0.01 −4.8 ± 5.7 −4715 ± 596 
and ( 14 ), the classifications shown here were obtained in comparison 
with the results for the Cowling approximation in the same model. 
The GCN f mode shows very good agreement with the strongest GW 
emission and not very prominent a v oided crossings at least at t - 0.15 
and 0.4 s. This result, together with the detailed analysis of the GCN 
f mode presented in Fig. 5 ,indicates that the PNS spectrum evolves 
with a v oided crossings. Consequently, it emits GWs mainly through 
an f mode that rapidly alternates between being trapped in the core 
and in the envelope of the PNS. We note that, despite the discrepancy 
between the CBMP f mode and the GW emission at early times, the 
CBMP classification is still applicable and can provide interesting 
information, for example helping in the characterization of the modal 
properties of the GCN f mode and in the identification of a v oided 
crossings. 
4.3 Quasi-uni v ersal relations 
Universal relations between mode frequencies and macroscopic 
parameters, such as mass and radius, have been proposed as a possible 
tool to infer properties of NSs using the detection of GWs, see e.g. 
Andersson & Kokkotas ( 1998 ), Benhar et al. ( 2004 ), Tsui & Leung 
( 2005 ), Lau, Leung & Lin ( 2010 ), Chirenti, de Souza & Kastaun 
( 2015 ), Sotani & Kumar ( 2021 ), and Ranea-Sandoval et al. ( 2023 ). 

Here, we analyse some quasi-universal relations proposed in the 
literature for cold NSs in the context of the dynamic PNS. As all of 
our PNS models have been produced with the SFHo EoS for dense 
matter derived by Steiner et al. ( 2013 ), we are only able to probe the 
influence of the progenitor mass. 

It has been shown that the frequency of the fundamental mode 
of cold NSs scales with √ 

M/R 3 with minor dependence on the 
EoS (see e.g. Andersson & Kokkotas 1998 ; Benhar et al. 2004 ; 
Chirenti et al. 2015 ). Torres-Forn ́e et al. ( 2019a ) proposed a similar 
dependence for the frequencies of f and p modes of a PNS, see also 
Sotani & Sumiyoshi ( 2021 ) and Mori et al. ( 2023 ). 

Ho we ver, note that there is no unique definition for the radius of 
PNS. Torres-Forn ́e et al. ( 2019a ) consider that the PNS extends up 
to the radial position of the shock wave, while we follow Morozova 
et al. ( 2018 ) and use ρ = 10 10 g cm −3 as a condition to define the 
radius, which gi ves some what larger v alues (but both choices produce 
similar values for √ 

M/R 3 ). 
In the top panel of Fig. 7, we show sequences of modes classified 

with the GCN method. As previously, the symbols represent the 
different models, and each colour corresponds to a mode. The a v oided 
crossings spread the curves, which are mostly independent of the 
progenitor mass (time increases to the right). In the bottom panel of 
Fig. 7 , we present the sequences of modes classified with the CBMP. 
Now f and p modes present a very simple monotonic behaviour 
which is independent of the progenitor mass. The G 0 mode also 
shows a simple trend but with a larger spread. The fits to this no v el 
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quasi-universal relation for the modes classified with the CBMP is 
presented in Table 2 . 
5  C O N C L U S I O N S  A N D  DISCUSSION  
The asteroseismology of PNSs is complicated by their dynamic 
and temperature-dependent nature. In this paper, we consider three 
different methods to classify their non-radial modes of oscillation: 
the Cowling classification, the GCN, and the CBMP. 

The standard Cowling classification is not well defined for a PNS 
at early times after the bounce. It relies on the identification of a 
fundamental f mode without nodes to distinguish between p modes 
(with higher frequencies) and g modes (with lower frequencies). This 
mode is not present at early times, causing the mode identifications 
to be underdetermined. 

The GCN relies on the identification of p and g nodes and allows 
us to follow the mode evolution. It shows marked a v oided crossing 
at early times, at which two modes exchange character. The f mode 
identified with the GCN has very good agreement with the simulated 
GW emission of a PNS. Interestingly, this implies that the region 
responsible for most of the GWs (where the mode is trapped), quickly 
alternates between the core and envelope of the star at early times. 

The CBMP follows the time evolution of sequences of modes 
with the same properties (trapped in the core or trapped in the 
envelope) and it is applied here for the first time to the study of PNS 
oscillation modes. The behaviour of these sequences is remarkably 
simple and monotonic, as the a v oided crossings are absent, and we 
present fits for quasi-universal relations (independent of progenitor 
mass) describing the most rele v ant mode frequencies as functions of 
the PNS average density. We note that the matching classification 
scheme of Torres-Forn ́e et al. ( 2019b ), in which modes are classified 
according to the similarities between their eigenfunctions, produces 
results qualitatively similar to the CBMP, showing no a v oided 
crossings at early times and a mode compatible with the G 0 mode, 
classified there as a g 2 mode. Additionally, the ramp-up mode 
discussed by Mori et al. ( 2023 ) is similar to the f mode described by 
the CBMP. One of the main advantages of the CBMP is that it gives 
physical information relative to the part of the PNS where GWs are 
most likely being produced. 

There are a few different promising directions for extensions of 
our work. First, formal work should be done to extend the GCN and 
CBMP criteria beyond the Cowling approximation ( δα .= 0) 3 and 
to calculate the modes using time-dependent perturbation theory. 
Secondly, the quasi-universal behaviour of the mode frequencies 
should be checked against simulations with different progenitor 
masses and additional EoSs. 

Finally, an assessment of the detectability (and reliable identifi- 
cation) of these modes in a galactic core-collapse supernova would 
be of great interest. Recently, Bruel et al. ( 2023 ) have estimated 
that current GW detectors could infer properties of such events up 
to the Large Magellanic Cloud. The mode evolution provides the 
rate of contraction of the PNS, which depends not only on the 
EOS but also on transport properties in dense matter, related to 
the rate of deleptonization of the star. Abundant neutrinos detected 
from a galactic core-collapse supernova will provide complementary 
information (Nagakura & Vartanyan 2022 ), potentially allowing for 
the independent determination of the time-evolving mass and radius 
of the PNS. 
3 See also an alternative approach by Takata ( 2012 ) for taking the perturbation 
of the gravitational potential into account by using a continuous integral index. 
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APPENDI X  A :  RESULTS  F O R  DI FFERENT  " 
T H R E S H O L D S  
In the CBMP, modes are classified by the region in the star where they 
are trapped. With this method, the modes change character when the 
ratio of the kinetic energy of the oscillations within the core to that 
of the whole star, . , significantly changes from ∼0 to ∼1, and vice 
versa. In this appendix, we test different values of . critic from which 
we determine if the mode is trapped in the core or in the envelope of 
the PNS. 

In Fig. A1 , we show the time evolution of the mode frequencies 
classified with the CBMP. In each panel, we used a dif ferent v alue of 
. critic from 0.2 to 0.5. The modes change character at different times 
for each case: for larger . critic , modes trapped in the core (envelope) 
become trapped in the envelope (core) earlier (later) compared with 
smaller . critic . Therefore, for 0.2 ≤ . critic ≤ 0.5, the results are 
qualitatively the same. 
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Figure A1. Time evolution of mode frequencies after the bounce using the CMBP for values of . critic between 0.2 and 0.5 (see middle panel of Fig. 4 ). The 
results are quantitatively the same in all cases; the core-trapped G 0 mode becomes slightly more prominent with decreasing . critic . 
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