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ABSTRACT

The future detection of gravitational waves (GWs) from a Galactic core-collapse supernova will provide information on the
physics inside protoneutron stars (PNS). In this work, we apply three different classification methods for the PNS non-radial
oscillation modes: Cowling classification, Generalized Cowling Nomenclature (GCN), and a classification based on modal
properties (CBMP). Using PNS models from 3D simulations of core-collapse supernovae, we find that in the early stages of the
PNS evolution, typically 0.4 s after the bounce, the Cowling classification is inconsistent, but the GCN and the CBMP provide
complementary information that helps to understand the evolution of the modes. In the GCN, we note several avoided crossings
as the mode frequencies evolve at early times, while the CBMP tracks the modes across the avoided crossings. We verify that
the strongest emission of GWs by the PNS corresponds to the f mode in the GCN, indicating that the mode trapping region
alternates between the core and the envelope at each avoided crossing. At later times, approximately 0.4 s after the bounce, the
three classification methods present a similar description of the mode spectrum. We use our results to test universal relations
for the PNS modes according to their classification and find that the behaviour of the universal relations for f and p modes is
remarkably simple in the CBMP.
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A complementary view of the physics of compact objects will

1 INTRODUCTION emerge upon the detection of GWs from a Galactic core-collapse

In recent years, the first detection of gravitational waves (GWs)
emitted by the merger of binary systems of black holes (BHs; Abbott
et al. 2016) and neutron stars (NSs; Abbott et al. 2017b) has given
rise to a new field of research that could offer information about
the physics of these compact objects. The double NS coalescence
GW170817 has also been detected through the entire electromagnetic
spectrum and thus added GWs to the landscape of multimessenger
astronomy. These events, together with the astronomical properties
of the ~100 mergers of compact binaries detected so far (Abbott
et al. 2021), help to constrain the properties of BHs and NSs. The
GWTC-2 and GWTC-3 catalogues contain the properties inferred
from the detection of GWs (Abbott et al. 2021a, b).

* E-mail: mcrodriguez @fcaglp.unlp.edu.ar (MCR);
iranea@fcaglp.unlp.edu.ar (IFRS); cecilia.chirenti @ufabc.edu.br (CC)
t Alfred P. Sloan fellow.

supernova. One of the possible remnants of a core-collapse supernova
is a protoneutron star (PNS; see e.g. Burrows & Vartanyan 2021,
and references therein). The resulting GW emission is associated
with PNS oscillations and dynamics (Marek, Janka & Miiller 2009;
Murphy, Ott & Burrows 2009; Miiller, Janka & Marek 2013). Unlike
NS binary coalescences, for which the stars are effectively cold,
inside a PNS temperatures are initially above 5 x 10'' K. Over a
time-scale of a few seconds, PNSs become more compact and cool
down until they reach an equilibrium in which they are considered
NSs (Pons et al. 1999). During this time, the microphysics inside
the star also changes due to processes such as electron capture and,
later, neutrino emission. As a PNS cools, its central densities rapidly
become higher than nuclear saturation density. At such densities, the
equation of state (EoS), which gives us information about the relation
between the pressure and the energy density inside the star, is still
largely unknown.

The study of the GW signal from simulations of core-collapse
supernovae has been performed in two dimensions with axial
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symmetry, e.g. Marek et al. (2009), Murphy et al. (2009), Cerda-
Duran et al. (2013), Miiller et al. (2013), Abdikamalov et al. (2014),
Yakunin et al. (2015), Morozova et al. (2018), and Pan et al.
(2018), among others, and, in the last years, in three dimensions
(see e.g. Hayama et al. 2016; Kuroda, Kotake & Takiwaki 2016;
Andresen et al. 2017; Kuroda et al. 2017; Hayama et al. 2018;
O’Connor & Couch 2018; Powell & Miiller 2019,2022; Mezzacappa
et al. 2020b,2023; Nakamura, Takiwaki & Kotake 2022; Vartanyan,
Coleman & Burrows 2022; Vartanyan et al. 2023), in which the
treatment is much more precise and thus computationally more
expensive than in two dimensions.

The complexity of the processes during core collapse renders it
impossible to predict with high precision the resulting gravitational
waveforms. None the less, the community has reached some agree-
ment on the key aspects of the signal morphology after several years
of numerical simulations (O’Connor et al. 2018; Mezzacappa et al.
2020a). Therefore, a future detection of GWs from Galactic core-
collapse supernovae will add more information about the physics
inside the PNS and will facilitate tests of the simulated models
(Abdikamalov, Pagliaroli & Radice 2022; Wolfe et al. 2023).

However, detecting the emitted GWs produced in core-collapse
supernovae will be challenging. Knowledge of the morphology of
the emitted waveform is of paramount importance for developing
effective algorithms capable of extracting GW data from the detected
signal. Different methods have been proposed: examples include
principal component analysis (Heng 2009; Rover et al. 2009; Powell,
Szczepanczyk & Heng 2017; Roma et al. 2019), inference using
Bayesian analysis (Summerscales et al. 2008; Rover et al. 2009;
Powell et al. 2017; Gill et al. 2018; Roma et al. 2019), denoising
techniques (Mukherjee et al. 2017), and machine learning (Astone
etal. 2018; Cavaglia et al. 2020; Chan, Heng & Messenger 2020; Iess
et al. 2020; Lépez et al. 2021). One of the most promising ways to
detect GWs from nearby core-collapse supernovae uses the excess-
power coherent waveburst search, which has already detected GWs
produced in mergers of compact objects (Abbott et al. 2019; Abbott
et al. 2021a, b), even in low-latency [e.g. for GW 150914 (Abbott
et al. 2017a)].

Here, however, we focus on a different approach, using a
theoretical framework which has been developed to study stellar
perturbations. We use this framework to describe the GW signal
of a supernova as the superposition of the oscillation modes of the
PNS (Marek et al. 2009; Murphy et al. 2009; Miiller et al. 2013).
Oscillation modes of stellar configurations can be classified by taking
into account their main restoring force. Generally speaking, the
dominant restoring force is pressure for p modes (and f modes) and
buoyancy for g modes (Cowling 1941; Kokkotas & Schmidt 1999).
In the standard picture, two local quantities determine the character
of a mode with given frequency o/(27): the Lamb frequency, £,
and the Briint—Viisila frequency, /. Sound waves can propagate
in regions of the star in which o2 is greater than both £2 and A2,
while gravity waves are possible in regions of the star in which o2
is smaller than both £2 and N? (see e.g. Unno et al. 1989, for a
review).

Usually, the classification of non-radial oscillation modes is based
on the classification scheme proposed by Cowling (1941), in which
the modes are defined by their restoring force and the number of
nodes in the radial eigenfunction. But, for stars in which the stellar
dynamics is different from main-sequence stars (or cold NSs), such as
evolved stars and newly born PNS, the classification is not so trivial
and the Cowling classification is not enough to correctly identify
the non-radial oscillation modes. For this reason, in Section 3 we
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explore alternative classification methods of PNS modes, which were
developed in the context of the study of non-radial pulsations of
evolved stars and give complementary information about the modes,
enabling a proper classification in this setting.

Following Unno et al. (1989), we use the Generalized Cowling
Nomenclature (GCN; Eckart 1960; Scuflaire 1974; Osaki 1975) and
the classification based on modal properties (CBMP) of Shibahashi &
Osaki (1976). The GCN was also applied to PNS simulations by
Torres-Forné et al. (2019b) and other subsequent works. The CBMP
provides qualitatively similar results to the matching classification
based on the shape of the radial eigenfunction proposed by Torres-
Forné et al. (2019b) and to the ramp-up mode description discussed
by Mori, Suwa & Takiwaki (2023), but the CBMP is based on a
more rigorous evaluation of the kinetic energy of the mode in its
trapped region. These complementary classification schemes help us
to understand and identify different features of the modes, especially
in the early stages of the PNS after the bounce.

The aim of our work is to be able to identify correctly the non-radial
oscillations modes of PNSs. By using complementary classification
schemes, we are able to capture information from GW signals that
can help to infer properties of the pulsating PNS. To obtain the
modes, we apply linear perturbation theory to the PNS and use a
Lagrangian description of the fluid perturbation, following Morozova
et al. (2018).

In Section 2, we present the set-up for calculating the non-radial
oscillation modes from PNS described by data from core-collapse
supernova simulations (Radice et al. 2019). In Section 3, we describe
the three different mode classification schemes. In Section 4, we
present the results obtained using the three different classification
methods and a brief analysis of the universal relations of PNSs.
Finally, in Section 5 we summarize our work and present our
conclusions.

2 PROTONEUTRON STAR NON-RADIAL
OSCILLATIONS

We use hydrostatic PNS configurations obtained from 3D core-
collapse supernovae simulations of Radice et al. (2019) following
the approach of Sotani & Takiwaki (2016). Namely, the results of the
3D simulations are averaged to construct an effective barotropic
EoS, which we use to solve the Tolman—Oppenheimer—Volkoff
equations to reconstruct the structure of the PNS and the space—time
geometry. See also Westernacher-Schneider (2020) for an alternative
approach that is fully consistent with the pseudo-Newtonian formal-
ism employed in the dynamical simulations. The line element that
describes a static spherically symmetric conformally flat space—time
in isotropic coordinates (¢, x;) is given by

ds? = gudx*dx" = —a?dr* + 1//4ﬁjdxidx-7, M

where « is the lapse function, ¥ is the conformal factor whose value
is set to 1, and fj; is the flat spatial 3-metric. The conformal flatness
approximation incorporates the space—time dynamics evolution, but
it ignores gravitational radiation (Wilson & Mathews 1989; Isenberg
2008).

To describe the fluid perturbations we used the Lagrangian
displacement vector

g =&, &%, )
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where Y, are the spherical harmonics and the functions n, and 1
depend only on the radial coordinate r. For each of the perturbing
functions, a time dependence e’ is assumed.

In order to find the quasi-normal modes, we need to solve a set
of four first-order coupled differential equations for 7,, n, and two
additional functions f, and 6&, with appropriate values at the centre
and a boundary condition, as done in Morozova et al. (2018). The
scalar function §& is the amplitude of the lapse function perturbation
that depends only on the radial coordinate, i.e. Sa = 86(r)Y;,,e~""
and f, is defined as f, = 0,(8&/«). The equations for the four
unknown functions n,, 1, fy, and & are
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where I'; is the adiabatic index, P is the pressure, p is the mass
density, A is the specific enthalpy, ¢ is the speed of sound and ¢ =
pha21*; all of these quantities refer to the interior of the PNS. The
Brunt—Viisila and Lamb frequencies are

A2 = o0, iﬁ,P B 0,e @®)
v+ \I'y P ph )’
2 Il +1
L= %cz ( s ), )
r
where e is the energy density. The radial component of the gravita-
tional acceleration G is defined as G = Lha LP.!

To solve equations (4)—(7), the boundary condition AP = 0 on
the Lagrangian perturbation of the pressure has to be satisfied at
the stellar radius, R. Following Morozova et al. (2018), we define
the stellar radius where p = 10'°gem™3. Different values of the
mass density for the stellar radius do not have a large impact on the
mode frequencies; g modes are essentially unchanged. The boundary
condition is given by

h

gotn, — 226 +0,Py, =0. (10)
o

From equations (4)—(7), regularity of the solutions at » = 0 requires

nr|r:0 = fotlr:() ~ rl*l’ (11)

L An alternative definition is given by G = —9, Ina. Both definitions of G
were tested in our code giving very similar results as expected.

MNRAS 523, 2236-2246 (2023)

Table 1. 3D simulations of core-collapse supernovae from Radice et al.
(2019) corresponding to the PNS evolution models used in this work. Models
3 and 7 ignore the virial correction to the neutrino—nucleon scattering from
Horowitz et al. (2017), which is used in all other models.

Model ZAMS mass (Mg) Explode Symbol
1 9 Yes A

2 10 Yes .

3 11 Yes °

4 11 Yes |

5 12 Yes O

6 13 No *

7 19 Yes X

8 19 Yes +

9 25 Yes v

10 60 Yes A
swﬂ=wmmﬂ~ﬂ?ﬂ (12)

We note that Morozova et al. (2018) set the boundary conditions
for §& and f,, to zero. However, the difference in the resulting mode
frequencies is negligible.

We computed the oscillation frequencies and their respective
eigenfunctions in FORTRAN90. Our code uses a shooting method with
Ridders’ root-finding algorithm to look for eigenfrequencies in the
range from 100 to 2000 Hz until the boundary condition is satisfied,
solving equations (4)—(7) (or equations 13 and 14 below, in the
Cowling approximation) with a Runge—Kutta—Fehlberg integrator.
This is done at every time-step of the evolution of the PNS, as
described in Section 2.1.

2.1 Data

The profiles of evolving PNS were calculated from the 3D sim-
ulations of core-collapse supernovae performed by Radice et al.
(2019). The simulations were performed using the FORNAX code
(Skinner et al. 2019), which solves the equations of neutrino radiation
hydrodynamics using a sophisticated, multidimensional transport
scheme. Gravity was handled using an effective general relativistic
potential following Marek et al. (2009). The neutrino treatment
accounted for gravitational redshift, Doppler effects, and inelastic
scattering (Burrows et al. 2018). NS matter was treated using the
SFHo EoS of Steiner, Hempel & Fischer (2013). In this work, we use
models with 9Mg, 10Mg, 11 Mg, 12Mg, 13 Mg, 19Mg, 25 Mg,
and 60 Mg, zero-age main sequence (ZAMS) mass. In Table 1, we list
the details of each model. For more details, see Radice et al. (2019)
and Burrows et al. (2020).

2.2 The relativistic Cowling approximation

As the classification methods described in Section 3 below are strictly
valid only when the metric perturbations are neglected, we need to
use the relativistic Cowling approximation (McDermott, van Horn &
Scholl 1983), in which only fluid perturbations are considered. Under
this approximation, the set of differential equations (4)—(7) becomes

2 19,P 1
0=¢m+{;+—* ]m+——%#—£3m, (13)

2.2
a’c?
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Figure 1. Propagation diagram for a PNS at 0.4 s after the bounce, produced
by the model with 9 Mg progenitor mass (model 1 in Table 1), for [ =
2. The region above logm(/\ﬂ) and loglo(ﬁz) is the p-propagation zone
and the region below log]O(./\/'z) and log;o(N 2) is the g-propagation zone.
Both N\ and £ are normalized by /GM/R3. The horizontal lines show
the frequencies of three different modes; diamonds indicate the position of
the nodes in the radial eigenfunction. Filled (empty) diamonds correspond to
p-(g-)nodes, see Section 3.2.

N? ~ 1
0=a,r;l—(1—?>T}r+{Brlnq—G<l+Cf2)}nl. (14)

In the relativistic Cowling approximation, these are the only equa-
tions needed to find the mode frequency, o, whose associated
eigenfunctions are 7, and 7, .

Boundary conditions need to be imposed to solve equations (13)
and (14). Under this approximation, the values of o> we are looking
for will be the ones that satisfy

qo’nL +0,Pn, =0. (15)

3 CLASSIFICATION OF MODES

The analysis of the stellar oscillations gives information about the
properties of the modes, which can be inferred in a propagation
diagram like the one shown in Fig. 1. This propagation diagram
shows, for a PNS model, the normalized Brunt—Viisila and the
Lamb frequencies as functions of the normalized radius of the star,
and corresponds to perturbation modes with / = 2. In this diagram,
the p-propagation zone is defined as the region above both log;(N?)
and log;,(L?) (represented with khaki colour pattern) and the g-
propagation zone is defined as the region below both log;,(N?) and
log,(L£?) (represented with orange colour pattern). Frequencies of
different modes are shown with horizontal lines and the position of
the nodes of the corresponding eigenfunctions are represented with
diamonds.

In the hot and dynamically evolving environment of a PNS, mode
classification becomes more challenging than in the case of cold
NSs. To classify the non-radial modes of oscillation, we apply
different classification schemes that provide complementary physical
information about the mode characteristics and insights into their
evolution. The three different approaches we use are described in the
following subsections.
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3.1 Cowling classification

This classification scheme introduced by Cowling (1941) is based on
the restoring force (pressure or buoyancy), acting on a fluid element
when it is displaced from its equilibrium position inside the star. The
number of nodes, n, in the radial eigenfunction 7,, i.e. the number of
times 17, changes sign inside the star, is used to classify the modes. In
this classification, the fundamental f mode has 0 nodes, and each p,,
mode and g, mode have n nodes, with n > 1. The way to distinguish
a p mode from a g mode with the same number of nodes is by
comparing their frequencies: p modes have higher frequencies than
g modes, and f modes are in the middle.

In the top panel of Fig. 2,we show as an example the radial
eigenfunction profiles of the modes depicted in Fig. 1. According
to this classification, the green curve corresponds to a p; mode, with
1 node in the p-propagation zone represented with a filled diamond.
The yellow curve corresponds to a g, mode with 2 nodes, one in the
p-propagation zone and the other in the evanescent zone represented
with filled and empty diamonds, respectively. Finally, a g; mode is
represented with the purple curve, having 1 node in the g-propagation
zone, represented with an empty diamond. In this example, there is
no f mode between p modes and g modes. This classification is
also used in Ferrari, Miniutti & Pons (2003), Sotani & Takiwaki
(2016), Morozova et al. (2018), Torres-Forné et al. (2018), Sotani
et al. (2019), and Sotani & Takiwaki (2020a, b, ¢) for the modes
of PNS, among others. Other works adopting this classification
scheme for cold NS are, for example, Lindblom & Detweiler (1983),
McDermott, van Horn & Hansen (1988), Benhar, Ferrari & Gualtieri
(2004), Lasky (2015), Vésquez Flores, Hall & Jaikumar (2017),
Ranea-Sandoval et al. (2018), and Kumar, Mishra & Malik (2023).

3.2 Generalized Cowling nomenclature

The GCN classification (Eckart 1960; Scuflaire 1974; Osaki 1975),
takes into account the fact that, for evolved stars, the relation between
the number of nodes in the eigenfunction and the mode number is
not direct, in other words, modes do not necessarily have the same
number of nodes along the stellar evolution, instead they can lose or
gain nodes. The central panel of Fig. 2 illustrates the phase diagram
(n,, n1) for the modes depicted in the top panel with the same colours.
The solid black circle indicates the stellar centre, and the nodes of
the eigenfunctions are classified into g nodes and p nodes, depending
on whether the curve in the phase diagram is travelling clockwise
(g nodes) or counterclockwise (p nodes) at the crossing of the axis
n, = 0, as the radial coordinate, r, increases (Unno et al. 1989).
Accordingly, the empty diamonds represent g nodes, and the filled
diamonds represent p nodes. The number of p nodes and g nodes are
N, and N, respectively. Their difference

i=N,—N,, (16)

increases monotonically with the mode frequency, and it is conserved
for each mode as the star evolves. The modes are classified depending
on the sign of 7i, which defines whether the mode is a gmode (77 < 0)
orapmode (7 > 0).For the fundamental mode, 7i = 0. Hence, using
this classification in the middle panel of Fig. 2, the green curve shows
a p; mode as it has N, = 1 and Ny, = 0 (7i = 1). The yellow curve
belongs to the fundamental mode as ithas N, =1 and N, = 1 (i = 0).
Finally, the purple curve shows a g; mode asithas N, =0and N, =1
(i = —1). Therefore, unlike in the Cowling Classification, there is a
fundamental mode with two nodes between the g modes and p modes.

MNRAS 523, 2236-2246 (2023)

€20z AInr €0 uo Jasn saueiqi] 9assauua| 10 Ausianiun Aq §Zz€91 2/9€22/2/S2S/e1onie/seiuwl/woo dnooiwapese//:sdiy woll pspeojumod


art/stad1459_f1.eps

2240

M. C. Rodriguez et al.

10

Nr
o

-10

2r]_|_/r2
o
T
|

f-mode

4np|g|ar2

/IR

Figure 2. Representative example of the classification of PNS oscillation
modes (see also the propagation diagram in Fig. 1). From top to bottom,
the mode identifications are obtained with the Cowling classification, the
GCN, and the CBMP, as described in the main text. The same three modes
are represented in every panel with the same colours, but they are classified
differently according to each method. On the top and middle panels, filled
(empty) diamonds correspond to p-(g-)nodes; on the bottom panel, the shaded
range corresponds to the PNS core.

3.3 Classification based on modal property

Even though the GCN is more appropriate to classify modes of
evolved stars than the Cowling classification, it does not necessarily
represent the character of the mode. Thereby, a second comple-
mentary classification, the CBMP, was introduced by Shibahashi &
Osaki (1976). This classification is based on the characteristics of
the main trapping zone of the oscillation mode. In the propagation
diagram, if the two propagation zones are widely separated by an
intermediate evanescent zone, oscillation modes can be classified
into two types by identifying their main trapping zones. In general,
evolved main-sequence stars can consist of four layers starting at
the centre: a homogeneous convective core, a p-gradient zone with

MNRAS 523, 2236-2246 (2023)
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Figure 3. Time evolution of mode frequencies after the bounce for the PNS
models shown in Table 1. The same modes are shown in every panel, but
from top to bottom the classifications used are the Cowling Classification,
GCN, and CBMP, respectively. For times greater than approximately 0.4 s
after the bounce, all classifications agree on the identification of f and p
modes. For earlier times, the Cowling classification is not well defined to the
disappearance of the f mode; the GCN shows several avoided crossings and the
CBMP identifies an additional mode, Gg. See the main text for more details.

varying chemical potential p, a thin convective shell that acts like
an evanescent zone and the radiative envelope, see e.g. fig. 1 of
Shibahashi & Osaki (1976). In analogy to the case of an evolved
main-sequence star, we use the CBMP to classify modes according
to whether they are trapped in the core or the envelope of the PNS
(see Fig. 1, where the corresponding boundary between core and
envelope is » ~ 0.3R). In order to describe this classification, some
terminology needs to be defined

(1) G,: indicates a mode trapped mainly in the core zone that has
n g nodes.

(i1) p,: denotes a mode trapped mainly in the p-propagation zone
of the envelope and having n p nodes.

(iii) g,: a mode trapped mainly in the g-propagation zone of the
envelope with n g nodes.

A key quantity for this classification scheme is the ratio of the
kinetic energy of the oscillation mode within the core to that of the
whole star, defined as:

Or“ plEP4mridr

=, (17)
[ plePamr2dr
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Figure 4. Top: time evolution of mode frequencies classified with the GCN
for PNS model 1 in Table 1. Middle: time evolution of the ratio between the
kinetic energy of the oscillations within the core and their total kinetic energy
inside the star, for the py, f, and g modes in the top panel. The horizontal
line shows the threshold in A used for the CBMP, and the shaded region
represents possible thresholds of A that give qualitatively the same result
(see also Appendix A). Bottom: time evolution of the mode frequencies for
the same model shown in the top panel, now classified using the CBMP.

where r; is the outer radius of the core and the square of the
displacement vector, £2, is given by

g2 =n! +1(L+ Dn? /r’. (18)

According to this classification, if A is close to O then the mode is
trapped in the envelope. Otherwise, the mode is trapped in the core.
The threshold, A, used to define whether a mode is trapped in the
core or in the envelope is an arbitrary parameter that we will discuss
in Section 4. The number of nodes of each mode is determined by
the number of nodes in the region where the mode is trapped.

In the bottom panel of Fig. 2, we show the integrand in equation
(17) as a function of the radius of the PNS for the modes shown in
the top and middle panels. In this example, the p; mode in the GCN
(green curve) has A = 0.66, which means the mode is oscillating
mostly in the core, without nodes in the core, so it is classified as a
Gy mode in this classification. On the other hand, the f mode in the
GCN (orange curve) has A = 0.04 and 1 node in the p-propagation
zone, so it is classified as a p; mode in this classification. Something
similar occurs with the g; mode in the GCN (purple curve), which
is classified as an f mode because A = 0.15, and it has no nodes
in the envelope. Unlike the other methods, the advantage of this
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classification is that it gives us information about the region of the
star which contributes the most to the GW emission.

4 RESULTS

4.1 PNS modes

We consider only the quadrupolar (/ = 2) modes as they should be
the most energetic in the gravitational-wave radiation from PNSs.

To classify non-radial modes in PNSs, we consider 10 models
of PNS evolution, shown in Table 1. We calculate the frequencies
of the modes in the Cowling approximation at every 10ms in
each of the models and we classify the modes using the three
different classification methods described in Section 3, focusing on
the frequency range 100-2000 Hz.

In the Cowling classification, the modes are classified by counting
the number of nodes of the amplitude of the radial Lagrangian
displacement, 7,, and by comparing their frequency with the f
mode (with zero nodes) as discussed in Section 3.1. The results are
presented in the top panel of Fig. 3. The different symbols represent
the PNS models introduced in Table 1 and the colours represent each
mode classification, also indicated with labels in the figure (There are
modes with 4 and 5 nodes in other regions of the figure but we only
represent those necessary to complete the mode evolution). Strictly
speaking, the Cowling approximation is only valid after 7 2 0.35 s,
when the f mode is present.> Going backwards in time from ¢ ~
0.35 s, we can see that modes gain nodes along the PNS evolution
towards the bounce, when their frequencies get very close to each
other, changing their Cowling classification. This feature is also seen
in Morozova et al. (2018), Sotani et al. (2019), and Torres-Forné
etal. (2019b). Additionally, Sotani & Sumiyoshi (2019) and Sotani &
Takiwaki (2020c) found that the amplitude of the modes involved in
each ‘close approach’ (see the avoided crossing discussion below)
changes while the amplitude of the rest of the modes remains almost
unchanged.

The mode classification obtained with the GCN is presented in
the middle panel of Fig. 3. The different colours now represent the
classification through fixed values of i = N, — N,, which increases
monotonically with the frequency at every time-step. Progressing
upward from the lowest frequency, the modes are uniquely classified
as g3, &, g1, f, p1, p2 and p3 (only modes with || <3 are
represented). Compared with the Cowling classification, in the GCN
case we find that the description of the mode evolution is much
simpler. The ‘close approaches’ noted in the top panel now appear
as avoided crossings. For instance, as the f mode evolves, it shows
avoided crossings as it bounces between the p; and g; modes: at r ~~
0.05 s with py, at r >~ 0.15 with gy, at >~ 0.3 s with p; and finally at
t >~ 0.5 s with g;.

The results obtained in the CBMP are presented in the bottom panel
of Fig. 3. The colours represent different mode classifications. Modes
with upper case (G; modes) and lower case (p;, f, and g; modes)
letters correspond to modes trapped in the core and in the envelope,
respectively. The sub-index in each label represents the number of
nodes in the region where the mode is trapped. For instance, the G,
mode is trapped in the core and has 2 nodes in the core, the f mode is
trapped in the envelope and has no nodes in the envelope (but it could

2We choose to follow Morozova et al. (2018) and classify the mode with 2
nodes at 0.1s <7 < 0.45s as a g mode, but the classification is not unique
(it could also be classified as a po mode) due to the absence of the f mode at
early times.
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Figure 5. Evolution of the parameters used in each mode classification method, corresponding to the f mode (as classified by the GCN). Times are specified on
the left-hand side and mode classifications are shown as labels in each panel. Left: evolution of the radial eigenfunction 7, used in the Cowling classification
method. Centre: mode trajectories in the (1,, 7 ) phase space, used in the GCN. Right: evolution of A as a function of the radius of the PNS.

have nodes in the core), and the p, mode is trapped in the envelope
and has 2 nodes in the p-propagation zone in the envelope. We note
that the G; modes decrease in frequency over time, and there are no
more avoided crossings. In particular, the Gy mode appears, crossing
all p modes and the f mode.

It is remarkable that all of the PNS models we analyse show very
similar results. As a representative example, we choose model 1 (with
a 9 Mg, progenitor star) to explore the complementary descriptions
provided by the GCN and CBMP. In Fig. 4, we present the mode
evolution only for model 1, using the GCN and the CBMP in the
top and bottom panels, respectively. In the central panel, we show
the evolution of A for the gj, f, and p; modes, as classified by the
GCN. The horizontal black line corresponds to the A threshold we
use in this work. The grey band represents a A range for which the
classification would be qualitatively the same (see more details in
Appendix A). Values of A above the horizontal black line indicate
the mode is trapped in the core. Otherwise, the mode is trapped in
the envelope of the PNS. Near each avoided crossing in the GCN, A
changes abruptly and the character of the mode changes (trapped in
the core or trapped in the envelope).
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We take a closer look at the evolution of the f mode (as classified
by the GCN) in Fig. 5. For 8 time slices, we present the radial
eigenfunction in the left-hand columns, the (n,, ,) phase space
in the centre and the integrand used in the definition of A in
the right-hand column (note that the PNS becomes more compact
with time, as it cools and approaches the cold NS stage). The f
mode gains and loses pairs of p and g nodes, changing its Cowling
classification but keeping 71 constant in the GCN. The CBMP shows
the changes in the mode character, alternating between oscillations
trapped in the core (G; classifications) and in the envelope (p; and f
classifications).

4.2 Emission of gravitational waves

It is relevant to ask how most of the GW emission by the PNS is
generated. A comparison between the time-evolving spectrum of
modes and the spectrogram of the GWs for model 9 is presented in
Fig. 6.
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Figure 6. Spectrogram of the GW emission for model 9 (see Table 1), shown
together with the f-mode sequences identified with the GCN and the CBMP.
For earlier times, the GCN shows better agreement with the simulated GWs.
For later times, both methods agree on the f-mode classification.
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Figure 7. Relation between macroscopic quantities (mass, M and radius, R)
and the frequencies of modes classified using the GCN (top panel) and the
CBMP (bottom panel). The CBMP sequences show simpler trends than the
GCN sequences, due to the absence of the avoided crossings. The black lines
represent the fits to each mode in the CBMP (see Table 2) and the shaded areas
represent the 10 bands of each fit. Note that the frequencies corresponding
to the Gp modes below the f modes in the bottom panel are not included in
the top panel because they are classified as g; modes in the GCN.

We show with lines the evolution of the f mode obtained following
the GCN classification and the CBMP. In this analysis, we use the
modes calculated with the full equations (4)—(7) in order to obtain a
better agreement with the simulated GWs. As the GCN and CBMP
are strictly valid only in the Cowling approximation of equations (13)
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Table 2. Best-fitting parameters for quasi-universal relations of the form
f(x) = a + bx + cx?, describing the CBMP mode frequency f in Hz as a
function of x = 4/ M /R3 in units of Mle/z/km3/2, shown in Fig. 7.

Mode a (Hz) b (Hzkm*?/M{/?) ¢ (Hzkm? /M)
f —0.050 % 0.004 1743 £19 —2590 + 195
p1 0.067 & 0.003 184.6 = 1.6 2194 + 176
P2 0.062 = 0.004 3132425 —6213 £ 326
P 0.057 =+ 0.006 452.6 £ 4.9 —16780 + 807
Go 0.94 £ 0.01 —48+57 —4715 + 596

and (14), the classifications shown here were obtained in comparison
with the results for the Cowling approximation in the same model.
The GCN f mode shows very good agreement with the strongest GW
emission and not very prominent avoided crossings at leastat >~ 0.15
and 0.4 s. This result, together with the detailed analysis of the GCN
f mode presented in Fig. 5.indicates that the PNS spectrum evolves
with avoided crossings. Consequently, it emits GWs mainly through
an f mode that rapidly alternates between being trapped in the core
and in the envelope of the PNS. We note that, despite the discrepancy
between the CBMP f mode and the GW emission at early times, the
CBMP classification is still applicable and can provide interesting
information, for example helping in the characterization of the modal
properties of the GCN f mode and in the identification of avoided
crossings.

4.3 Quasi-universal relations

Universal relations between mode frequencies and macroscopic
parameters, such as mass and radius, have been proposed as a possible
tool to infer properties of NSs using the detection of GWs, see e.g.
Andersson & Kokkotas (1998), Benhar et al. (2004), Tsui & Leung
(2005), Lau, Leung & Lin (2010), Chirenti, de Souza & Kastaun
(2015), Sotani & Kumar (2021), and Ranea-Sandoval et al. (2023).

Here, we analyse some quasi-universal relations proposed in the
literature for cold NSs in the context of the dynamic PNS. As all of
our PNS models have been produced with the SFHo EoS for dense
matter derived by Steiner et al. (2013), we are only able to probe the
influence of the progenitor mass.

It has been shown that the frequency of the fundamental mode
of cold NSs scales with /M /R? with minor dependence on the
EoS (see e.g. Andersson & Kokkotas 1998; Benhar et al. 2004;
Chirenti et al. 2015). Torres-Forné et al. (2019a) proposed a similar
dependence for the frequencies of f and p modes of a PNS, see also
Sotani & Sumiyoshi (2021) and Mori et al. (2023).

However, note that there is no unique definition for the radius of
PNS. Torres-Forné et al. (2019a) consider that the PNS extends up
to the radial position of the shock wave, while we follow Morozova
et al. (2018) and use p = 10'°gecm™3 as a condition to define the
radius, which gives somewhat larger values (but both choices produce
similar values for /M /R3).

In the top panel of Fig. 7, we show sequences of modes classified
with the GCN method. As previously, the symbols represent the
different models, and each colour corresponds to a mode. The avoided
crossings spread the curves, which are mostly independent of the
progenitor mass (time increases to the right). In the bottom panel of
Fig. 7, we present the sequences of modes classified with the CBMP.
Now f and p modes present a very simple monotonic behaviour
which is independent of the progenitor mass. The Gy mode also
shows a simple trend but with a larger spread. The fits to this novel
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quasi-universal relation for the modes classified with the CBMP is
presented in Table 2.

5 CONCLUSIONS AND DISCUSSION

The asteroseismology of PNSs is complicated by their dynamic
and temperature-dependent nature. In this paper, we consider three
different methods to classify their non-radial modes of oscillation:
the Cowling classification, the GCN, and the CBMP.

The standard Cowling classification is not well defined for a PNS
at early times after the bounce. It relies on the identification of a
fundamental f mode without nodes to distinguish between p modes
(with higher frequencies) and g modes (with lower frequencies). This
mode is not present at early times, causing the mode identifications
to be underdetermined.

The GCN relies on the identification of p and g nodes and allows
us to follow the mode evolution. It shows marked avoided crossing
at early times, at which two modes exchange character. The f mode
identified with the GCN has very good agreement with the simulated
GW emission of a PNS. Interestingly, this implies that the region
responsible for most of the GW's (where the mode is trapped), quickly
alternates between the core and envelope of the star at early times.

The CBMP follows the time evolution of sequences of modes
with the same properties (trapped in the core or trapped in the
envelope) and it is applied here for the first time to the study of PNS
oscillation modes. The behaviour of these sequences is remarkably
simple and monotonic, as the avoided crossings are absent, and we
present fits for quasi-universal relations (independent of progenitor
mass) describing the most relevant mode frequencies as functions of
the PNS average density. We note that the matching classification
scheme of Torres-Forné et al. (2019b), in which modes are classified
according to the similarities between their eigenfunctions, produces
results qualitatively similar to the CBMP, showing no avoided
crossings at early times and a mode compatible with the Gy mode,
classified there as a g, mode. Additionally, the ramp-up mode
discussed by Mori et al. (2023) is similar to the f mode described by
the CBMP. One of the main advantages of the CBMP is that it gives
physical information relative to the part of the PNS where GWs are
most likely being produced.

There are a few different promising directions for extensions of
our work. First, formal work should be done to extend the GCN and
CBMP criteria beyond the Cowling approximation (Sa # 0)° and
to calculate the modes using time-dependent perturbation theory.
Secondly, the quasi-universal behaviour of the mode frequencies
should be checked against simulations with different progenitor
masses and additional EoSs.

Finally, an assessment of the detectability (and reliable identifi-
cation) of these modes in a galactic core-collapse supernova would
be of great interest. Recently, Bruel et al. (2023) have estimated
that current GW detectors could infer properties of such events up
to the Large Magellanic Cloud. The mode evolution provides the
rate of contraction of the PNS, which depends not only on the
EOS but also on transport properties in dense matter, related to
the rate of deleptonization of the star. Abundant neutrinos detected
from a galactic core-collapse supernova will provide complementary
information (Nagakura & Vartanyan 2022), potentially allowing for
the independent determination of the time-evolving mass and radius
of the PNS.

3See also an alternative approach by Takata (2012) for taking the perturbation
of the gravitational potential into account by using a continuous integral index.
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APPENDIX A: RESULTS FOR DIFFERENT A
THRESHOLDS

In the CBMP, modes are classified by the region in the star where they
are trapped. With this method, the modes change character when the
ratio of the kinetic energy of the oscillations within the core to that
of the whole star, A, significantly changes from ~0 to ~1, and vice
versa. In this appendix, we test different values of A from which
we determine if the mode is trapped in the core or in the envelope of
the PNS.

In Fig. A1, we show the time evolution of the mode frequencies
classified with the CBMP. In each panel, we used a different value of
Aitic from 0.2 to 0.5. The modes change character at different times
for each case: for larger A, modes trapped in the core (envelope)
become trapped in the envelope (core) earlier (later) compared with
smaller A .. Therefore, for 0.2 < Agiie < 0.5, the results are
qualitatively the same.
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Figure Al. Time evolution of mode frequencies after the bounce using the CMBP for values of Aitic between 0.2 and 0.5 (see middle panel of Fig. 4). The
results are quantitatively the same in all cases; the core-trapped Gp mode becomes slightly more prominent with decreasing Aritic-
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