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ABSTRACT

The graphon (W-graph), including the stochastic block model as a special case, has been widely used
in modeling and analyzing network data. Estimation of the graphon function has gained a lot of recent
research interests. Most existing works focus on inference in the latent space of the model, while adopting
simple maximum likelihood or Bayesian estimates for the graphon or connectivity parameters given the
identified latent variables. In this work, we propose a hierarchical model and develop a novel empirical
Bayes estimate of the connectivity matrix of a stochastic block model to approximate the graphon function.
Based on our hierarchical model, we further introduce a new model selection criterion for choosing
the number of communities. Numerical results on extensive simulations and two well-annotated social
networks demonstrate the superiority of our approach in terms of parameter estimation and model
selection.

1 INTRODUCTION

Network data, consisting of relations among a set of individuals, are usually modeled by a random graph.
Each individual corresponds to a vertex or node in the graph, while their relations are modeled by edges
between the vertices. Such data have become popular in many domains, including biology, sociology
and communication [Albert and Barabdsi, 2002]. Statistical methods are often used to analyze network
data so that the underlying properties of the network structure can be better understood via estimation
of model parameters. Examples of such properties include degrees, clusters and diameter among others
[Barabasi and Albert, 1999, Newman et al., 2002].

To better understand the heterogeneity among vertices in a network, community detection and
graph clustering methods [Girvan and Newman, 2002, Newman, 2004] have been proposed to group
vertices into clusters that share similar connection profiles. A large portion of the clustering methods are
developed based on the stochastic block model (SBM) [Freeman, 1983], which constructs an interpretable
probabilistic model for the heterogeneity among nodes and edges in an observed network.

For an undirected simple random graph on n nodes or vertices, the relationships between the nodes
are modeled by %n(n — 1) binary random variables representing the presence or absence of an undirected
edge. The edge variables can be equivalently represented by an n x n adjacency matrix X, where X;; = 1
if node i and j are connected and X;; = 0 otherwise. We do not consider self loops in this work, and thus
Xl‘,‘ =0fori= 1,...,71.

Many popular graph models [Lloyd et al., 2012] make exchangeability assumption on the vertices:
The distribution of the random graph is invariant to permutation or relabeling of the vertices. A large class
of exchangeable graphs can be defined by the so-called graphon function [Lovasz and Szegedy, 2006]. A
graphon W (u,v) is a symmetric function: [0,1]?> — [0, 1]. To generate an n-vertex random graph given a
graphon W (u,v), we first draw latent variables u; independently from the uniform distribution U(0, 1) for
i=1,...,n. Then we connect each pair of vertices (i, j) with probability W (u;,u;), i.e.

P(Xij=1|u,-,uj)=W(u,~,uj), iLj=1,...,n. (1)
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In particular, the stochastic block model mentioned above can be seen as a special case of the graphon
model, where W (u,v) is a piecewise constant function. Abbe [2018] has summarized recent developments
on the stochastic block model. Under an SBM, the vertices are randomly labeled with independent latent
variables Z = (zi,...,2,), where z; € {1,...,K} fori=1,...,n and K is the number of communities or
clusters among all the nodes. The distribution of (Z,X) is specified as follows:

P(zi=m)=m,, me{l,....K},i=1,...,n, 5
P(X[jzlthZj):ez[zj, i,j=1,...,n, ( )
where ¥, m,, = 1 and each 6y, € [0,1]. Put # = (7y,...,7,) and ® = (6;;)k xk-
Many efforts have been made on statistical inference of the SBM to detect block structures as well
as to estimate the connectivity probabilities in the blocks. Some classical and popular methods include
MCMC, degree-based algorithms and variational inference among other. Nowicki and Snijders [2001]
developed a Gibbs sampler to estimate parameters for graphs of small sizes (up to a few hundred nodes). A
degree-based algorithm [Channarond et al., 2012] achieves classification, estimation and model selection
from empirical degree data. The variational EM algorithm [Daudin et al., 2008] and variational Bayes
EM [Latouche et al., 2012] approximate the conditional distribution of group labels given the network
data by a class of distributions with simpler forms. Suwan et al. [2016] recast the SBM to a random dot
product graph [Young and Scheinerman, 2007] and developed a Bayesian inference method with a prior
specified empirically by adjacency spectral embedding.

Due to higher model complexity, estimating a graphon is challenging. Some works [Airoldi et al.,
2013, Olhede and Wolfe, 2014, Latouche and Robin, 2016] have focused on the nonparametric perspective
of this model and developed methods to estimate a graphon based on SBM approximation. These methods
estimate a graphon function by partitioning vertices and computing the empirical frequency of edges
across different blocks. Many algorithms put emphasis on model selection [Airoldi et al., 2013] or
bandwidth determination [Olhede and Wolfe, 2014]. Latouche and Robin [2016] proposed a variational
Bayes approach to graphon estimation and used model averaging to generate a smooth estimate.

Meanwhile, model selection that compares different node clustering schemes and selects the most
appropriate number of blocks for SBMs has been one of the major difficulties in this field. Methods that
are generally applicable to all graph clustering results include a hypothesis testing based method for SBMs
[COme and Latouche, 2015] and a cross-validation scheme for graphons [Airoldi et al., 2013]. Céme and
Latouche [2015] propose an exact integrated complete data likelihood criterion that is combined with a
greedy inference algorithm to identify node clusters for SBMs. Yang et al. [2021] summarize different
model selection methods for spectral graph clustering and propose a simultaneous model selection
framework.

After the block structure of a network is identified, most of the above methods simply use the empirical
connection probability within and between blocks to estimate ®@. When the number of nodes in a block
is too small, the estimate can be highly inaccurate with a large variance. Latouche and Robin [2016]
developed an alternative method under a Bayesian framework, where they put conjugate priors on the
parameters (7,®). In particular, they assume 6,;, ~ Beta(a,, B.») independently for a,b € {1,...,K},
where the parameters (0, Bp) in the prior are chosen in priori. Similar to the MLE, the connection
probability 6, of each block is estimated separately and thus may suffer from the same high variance
issue for blocks with a smaller number of nodes. To alleviate this difficulty, we propose a hierarchical
model for network data to borrow information across different blocks. Under this model, we develop
an empirical Bayes estimator for ® = (6,;,) and a model selection criterion for choosing the number of
blocks. Empirical Bayes method is usually seen to have better performance when estimating many similar
and variable quantities [Efron, 2010]. This inspires our proposal as the connection probabilities can be
similar across many different communities. By combining data from many blocks, estimates will be much
more stable even if the number of nodes is small (as small as a few nodes) in each block.

In summary, our method has two major novel components: 1) shrinkage estimation for connectivity
parameters, and 2) a novel likelihood-based model selection criterion, both under our proposed hierarchical
model. As demonstrated by extensive simulations and experiments on real-world data, these contributions
give us substantial gain in estimation accuracy and model selection performance, especially for graphons.
Moreover, our method is very easy to implement and does not cost much extra computational resources
compared to existing approaches.
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The paper is organized as follows. First, we will develop our empirical Bayes method for the SBM
and the graphon, focusing on connection probability estimation and model selection on the number of
blocks. Then we will compare the performance of our methods with other existing methods on simulated
data and on two real-world networks. The paper is concluded with a brief discussion. Some technical
details and additional numerical results are provided in the Supplementary Material.

2 METHODS

Let us first consider the SBM. After the vertices of an observed network have been partitioned into clusters
by a graph clustering algorithm, we develop an empirical Bayes estimate of the connection probability
matrix ® based on a hierarchical binomial model. Under this framework, we further propose a model
selection criterion to choose the number of blocks. Our method consists of three steps:

* Graph clustering For a network with n vertices, cluster the vertices into K blocks by a clustering
algorithm. Let Z : [n] — [K] denote the cluster assignment, where [m] := {1,...,m} for an integer
m.

* Parameter estimation Given Z, we find an empirical Bayes estimate @EB = (é,-]jfB)ka by esti-
mating the hyperparameters of the hierarchical binomial model.

* Model Selection Among multiple choices of K, we select the K that maximizes a penalized
marginal likelihood under our hierarchical model.

We will also generalize our method to the graphon model, following the idea of SBM approximation to a
graphon.

Algorithms to detect blocks of a stochastic block model have been widely studied, including spectral
clustering by Rohe et al. [2011], Monte Carlo sampling by Nowicki and Snijders [2001] and variational
approximations by Daudin et al. [2008]. As an extension to the work of Daudin et al. [2008], Latouche
et al. [2012] proposed a variational Bayes approximation to the posterior distribution of the parameters
(7,0) and of the latent cluster labels Z (see Supplementary Material for a more detailed review). Given
the Z estimated by their approach, we will develop our hierarchical model and empirical Bayes estimates.

2.1 Estimating connection probabilities
In this subsection, we consider the SBM and assume a partition Z : [n] — [K] of the nodes is given, where
K is the number of blocks. Note that Z~!(a) for a € [K] is the subset of nodes in the a-th cluster. Let

By ={(1,)): (i) € 27\ (a) x 27 (b), i < j}

be the collection of node pairs in the (i, j)th block. According to the SBM, the connection probability
between any (i, j) € By is 64p. Recall that X = (X;;) is the observed adjacency matrix. Let Xﬁ, =
Y.(i.j)eB,, Xij be the number of edges in block (a,b). Then, we have

X5 | 6,4, ~ Binomial (1,5, 6,), 3)

where 1, = |Bgp| = |27 (a)|-|Z7' ()| for a # b and nyy = |Z7(a)|- (|Z~"(a)| — 1)/2 as self loops are
not allowed. Based on the empirical frequency of edges in the block (a,b), we have an MLE for the edge
connection probability

R x5
O " ==%,  abe{l,. K} )

Nap
When KX is large, the number of nodes, and thus 7,4, in some blocks will be small, which leads to a
high variance of the MLE. To stabilize the estimates, we may borrow information across blocks to improve
estimation accuracy. To do this, we set up a hierarchical model by putting conjugate prior distributions on
6,5- To accommodate the heterogeneity in 6,;,, we use two sets of hyperparameters so that the within and

between-block connectivities are modeled separately:

6¢,b| (ad,ﬁd)NBeta(Ocd,ﬁd), a,bE{l,...,K}, 5)

3/23
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Figure 1 — A diagram of the hierarchical model. The connectivity parameters 8,5, a,b € {1,...,K},
follow beta distributions of two sets of hyperparameters, i.e. (g, 8y) for diagonal blocks (red) and
(au, Br) for off-diagonal blocks, and the number of edges X 57 in a block, depends on 6, as in (3).

where d =0 for a = b and d = 1 for a # b, i.e. the diagonal and off-diagonal elements of the connectivity
matrix @ follow Beta(y, fp) and Beta(o, B;), respectively. The prior distribution (5) together with
(3) defines the distribution [X,® | (04, Bs)d=0.1]- Here (az,Bq), d = 0,1, are hyperparameters to be
estimated by our method. A diagram of our model is shown in Figure 1. Note that the use of two sets of
hyperparameters is in line with common assumptions of the stochastic block model, such as assortativity
[Danon et al., 2005] or disassortativity, i.e. within-group connectivities are different than between-group
connectivities.
The conditional posterior distribution of 6, given (X ﬁj, 0y, Bq) is

0| (X2, 0ta, Ba) ~ Beta(aty + X2, Ba +nap — X5,

and the conditional posterior mean of 6, is

Oury (0, Ba) = B0 |X 25, 0ta, Ba) ©®)
o +X5 ay x5
= — + 1— 7“’
oy + ﬁd + nap e oy + ﬁd ( nab) Nap

fora,b € {l1,...,K}, where

oy + Ba

- 0y + B+ nab <o “

Nab
is the shrinkage factor that measures the amount of information borrowed across blocks. When the
variance among 6,,, across the blocks is high, o; and B; will be estimated to be small. Thus, 7, will
be close to 0 so that the estimate 8-° will be close to OF. When the variance among 6, is low, our
estimates of o; and B, will be large, the shrinkage factor approaches 1, and eventually ébe will become
identical across all blocks. In this case, we are essentially pooling data in all blocks to estimate 6.
Generally speaking, the shrinkage factor 7, is determined by the data through the estimation of the
hyperparameters (0, B;), and it leads to a good compromise between the above two extreme cases.

Given the partition Z from a graph clustering algorithm, we maximize the marginal likelihood of
the observed adjacency matrix X to estimate the hyper-parameters (¢, B;) for d =0, 1. Let X, denote
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the adjacency submatrix for nodes in the block (a,b) defined by the partition Z. Integrating over ®, the
marginal log-likelihood function for the diagonal blocks is

K
g(aﬂaﬁdxaz) = Z IOg]P’(XaanﬁO)
a=1

Il
I agke

IOg/e P(Xaa|eaa)p(eaa|a0aﬁ0)deaa (8)
1 aa

a

logBeta(oy —i—Xfa,ﬁo 4 Nya —Xﬁl) — KlogBeta(oy, fo),

I
M=

2
Il
MR

where Beta(x,y) = [y £~ (1 —)*~!dt is the beta function. Similarly, the marginal log-likelihood function
for the off-diagonal blocks is

g(abﬁl |XaZ>
B By 1 )
= Z logBeta(a + X, B1 +nap — Xop,) — EK(Kf 1)logBeta(ay, B1).
a<b
We find the maximum likelihood estimates of the hyper parameters, i.e.
(G, Ba) = argmax.2 (0, BaX, Z), (10)

aq,Ba

for d =0, 1. Then we can estimate ® by plugging the MLE of the hyper-parameters in (10) into (6), i.e.

(11)

Since the hyper-parameters are estimated using all blocks, our empirical Bayes estimates of 6, also
make use of information from all data to improve the accuracy. Though (10) does not have a closed form
solution, we can use an optimization algorithm such as bounded limited-memory BFGS (L-BFGS-B)
[Byrd et al., 1995] to find the maximizer. The optimization algorithm starts at a random initial point,
and we re-run the algorithm if it fails to converge. The log-likelihood functions in (8) and (9) are not
necessarily concave, and thus finding the global maximizers cannot be guaranteed in theory. However, as
shown in Figure S2 in Supplementary Material, for a typical dataset the maximizers over a reasonable
range of (0, B4)4=0,1 can be easily found.

Suwan et al. [2016] developed a different empirical Bayesian method for SBMs under a random dot
product graph formulation. They introduce K latent positions, vy, ..., vx € R?, and define the connection
probabilities by inner products between the latent positions, 8,;, = (V,,V;,) for 1 < a,b < K. The prior
distribution for v is a multivariate Gaussian distribution v, ~ Jﬁ{](ﬁk,fk). In particular, the parameters
U, fk in the prior are chosen by Gaussian mixture modeling of pre-estimated latent positions obtained
via adjacency spectral embedding. Thus, these prior distributions are called empirical priors and they
are used to model the uncertainty in the latent positions vy, ..., Vg. In our method, the hyperparameters
(a, B) in the beta prior distributions are not pre-estimated by a separate method, but instead are estimated
under a coherent hierarchical model. In addition to modeling uncertainty in the connectivity probabilities
6.5, the hyperparameters also lead to information sharing via shrinkage.

2.2 Selecting partitions
So far we have regarded the number of blocks K as given in our empirical Bayes method. The choice of K
will certainly impact the performance of our method. If K is too small, for SBM many blocks will not be
identified, and for graphon the approximated function will only have a small number of constant pieces,
both leading to highly biased estimates. On the other hand, if K is too big, the number of vertices in each
block will be very small, resulting in high variances. Thus, it is important to select a proper number of
blocks to achieve the best estimation accuracy.

Our empirical Bayes approach under the hierarchical model also provides a useful criterion for
this model selection problem. Note that (8) and (9) define the conditional likelihood of X given the
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hyperparameters (0, 3;) and the partition Z input from a graph clustering algorithm. We can compare
this likelihood for different input partitions and select the best one.

Suppose we have m candidate partition schemes Z,...,Z,. Denote the corresponding number of
communities by K1, ..., K,,. Our goal is to choose the optimal partition that maximizes the joint likelihood
of the observed adjacency matrix X and the partition Z with a penalty on the model complexity. To do
this, we include Z in our model as in (2) and put a Jeffreys prior [Jeffreys, 1946] on 7, i.e.

7t ~ Dirichlet(1,...,17x), T1=...=1t =1/2.

The Jeffrey’s prior is a standard non-informative prior that is invariant to re-parameterization. In general,
T, = 7 for any 7 € (0, 1] is a common choice for a non-informative prior, with negligible effect on the
posterior inference or model selection when the network size n is large. Nonetheless, we could also use
informative prior if strong prior knowledge is provided, for example, on 7 or the expected community
sizes.

For a partition Z with K communities, the joint likelihood of X and Z given the hyper-parameters

(o, a1, Bo, Br) is
P(X,Z|ow, o1, Bo, Br)
— P(X|Z, a0, 1, o, B1) / P(Z|7)p(n)dn

LXK ) TE, T(ni+ 1)
C(n+ X8 oI D(w)

12)

= ]P)(X|Z,(X07alaﬁ0;ﬁl>

after marginalizing out the parameter 7, where n; is the number of nodes in cluster i defined by the
partition Z. Maximizing over the hyperparameters leads to the MLE (&g, &1, Bo, B1) defined in (10).
Evaluating the likelihood (12) at the estimated hyperparameters, we define the goodness-of-fit part for our
model selection criterion as

Jz = logP(X, Z| 6, &1, Bo, B1)

A B F( K:l T,') HK:1 F(l’l,’—‘y-f,’) (13)
= L(0y,B41X,Z)+1og : L ,
de%l} (8, BalX.2) Cn+ Y&, o) [T, T(n)

where 2 (0, ﬁd\X,Z) is as in (8) and (9) for d = 0,1. Following the ICL-like (integrated complete
likelihood) criterion in Mariadassou et al. [2010], we add two penalty terms to control model complexity:
The first term corresponds to a penalty on the number of parameters in 7 and the second the number of
parameters in ®. Therefore, our model selection criterion is to choose the partition

7 = argmax {Jz - 1 {(K 1)logn+ KK+1) log n(n— 1)] }, (14)
ZE{Z 1 Zm)} 2 2 2

where K is the number of clusters defined by the partition Z. As we have mentioned in the introduction,
there are quite a few graph clustering algorithms, and the performance of many of them is highly dependent
on the input number of partitions. Our criterion for selecting the number of clusters applies to any method
used for the node clustering step, and thus it protects our method from inferior input node clustering results.
The ICL model selection criterion (14) is an approximation to the marginal log-likelihood log P(X|K)
[Mariadassou et al., 2010]. The joint likelihood (13) depends on the EB estimates of the hyperparameters,
which is unique to our hierarchical model, while the VBEM criterion [Latouche et al., 2012] uses a
standard SBM likelihood without a hierarchical structure or estimation of priors. We can easily apply
other penalty terms in various model selection criteria to our likelihood, and fully expect similar behavior
in terms of selecting the number of clusters, since most of them approximate in the same way as the
marginal likelihood or the Bayes factor.

2.3 Graphon estimate

Now we assume that the true model is a graphon as in (1). We use an SBM with K blocks as an
approximation to the graphon, i.e., we approximate W (u,v) by a piecewise constant function: We divide
the unit interval [0, 1] into K pieces based on 7 so that the length of the k-th piece is 7. Let the endpoints
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of these pieces be ¢, = fo: 1 i for k=1,--- ,K and put ¢y = 0. Then the graphon function defined on
[0,1] x [0,1] is approximated by a K x K blockwise constant function,

W(u,v) =6y if (u,v) € [ca—1,¢a) X [Cbp—1,Cp)-

To estimate a graphon W, we first run a clustering algorithm to estimate a partition Z and then apply
the empirical Bayes method to obtain ébe. Let ny denote the size of the the k-th cluster of vertices. We
calculate its proportion to estimate 7, by 7 = n;/n and compute the cumulative proportion & = Zﬁ;l 7
fork=1,--- K. Define a binning function,

K

bin(x) =1+ Y I(cx <x), (15)
k=1

and the graphon W is then estimated by
W(x,y) = Gﬁf(x),bm@), x,y €[0,1). (16)

As shown by Bickel and Chen [2009], the graphon is not identifiable in the sense that any measure-
preserving transformation on [0, 1] will define an equivalent random graph. Following their method,
imposing the constraint that

1
0= [ Wiy

is nondecreasing leads to identifiability. For SBM approximation, the corresponding constraint is that

K
l) = anegk (17)
k=1

is nondecreasing in /. This constraint can be satisfied by relabeling the K clusters of nodes.

As for the SBM, selecting a proper number of clusters K is important for the estimation of a graphon.
We will apply the same model selection criterion (14) to choose the optimal partition Z and the associated
K among a collection of partitions.

3 RESULTS

3.1 Simulated data

In this section we present numerical results on graphs simulated from stochastic block models and
graphon functions. We compare our method with other existing methods in terms of estimating connection
probabilities and model selection for choosing the number of clusters.

For stochastic block models, we compare our estimated connectivity matrix @EB (11) to the maximum
likelihood estimate @MLE as in (4) and the variational Bayes inference @VBEM from Latouche et al.
[2012]. Variational Bayes inference provides a closed-form approximate posterior distribution for (77, ®)
by minimizing the KL divergence between an approximated and the underlying distributions of [Z | X].
It constructs point estimates for the parameters based on EM iterations (Supplemetary Material). We
compute the mean squared error (MSE)

MSE = —— ZZ (18)

n_l i=1j#i

of an estimated n X n connection probability matrix 0. Here, @' = (@i ]-),,X,, is the true connection
probability matrix among the n nodes, i.e. ®;; = 0y if Z*(i) = a and Z*(j) = b for i, j = 1,...,n, where

Z* is the true partition, and @:J = 6, if Z(i) = a and Z(j) = b. For graphons, W (x, y) is estimated by
SBM approximation, and correspondingly the mean integrated squared error is calculated as

MSE = / / x,y))2dxdy. (19)
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Due to the nonidentifiability of graphons, the MSE is calculated after relabeling node clusters based on
the constraint (17) to make w comparable to W.

We compare our model selection criterion (14) to the variational Bayes method developed by Latouche
et al. [2012] (VBEM) and the cross validation risk of precision parameter (CVRP) in Airoldi et al. [2013].
The CVRP is defined as

K .
Jevre(K) = %fMZ(@)Z, (20)

n—1
where n; is the number of vertices in group i. Then, the number of clusters K is selected by minimizing
the risk /CVRP, i.e.

Keyrp = argmin_Zcyrp (K). (21)
K

We use /EB, /VBEM and /CVRP to denote, respectively, the three criteria mentioned above.

3.1.1 Results on SBM: homogeneous block connectivity

We designed a constrained SBM that generates affiliation networks, i.e. two vertices within the same
community connect with probability A, and from different communities with probability € < A. We also
added a parameter p € (0, 1] to control the sparsity of the graph. The corresponding true connectivity
matrix is

A e €
@*:p g A . : ,

: o€

e & A

K*xK*
where K* is the number of communities.

To generate dense graphs (model 1), we set A = 0.9, € = 0.1, and p = 1. We generated graphs
with n = 200 vertices and the number of communities K* € {10,11,...,18}. For each choice of K*, we
generated 100 networks independently. For each network, all the nodes were randomly divided into K*
clusters with equal probability 1/K*, and then connected according to the connectivity matrix ®* and
their cluster labels. Note that the simulated node clusters had very different sizes, ranging between 7 and
35, due to the high variance in block size.

We also used L = 0.9, € = 0.1 and p = 0.2 to generate sparse graphs (model 2), while keeping
K* = 10 but changing the network size n € {200,250,300,350,400,450}. For each network size n, we
followed the same procedure as in model 1 and generated 100 networks independently. Here “sparse”
refers to a lower edge density around 0.035, which is 20% of the graphs generated in model 1.

For a simulated graph, we applied the variational Bayes algorithm [Latouche et al., 2012] with an
input number of clusters K = 1,...,20, from which we obtained K communities and a Bayesian estimate
Ovpem(K) of the connecting probabilities among the K x K blocks. Given the estimated communities by
the variational Bayes algorithm, we found C:)MLE(K ) as in (4) and our empirical Bayes estimate O (K)
as in (11) and compared them to the VBEM estimate. As the estimates are functions of K, so  are their
MSEs as defined in (18). Let MSEp; g (K) be the mean squared error of the MLE by plugging Oy g (K)
into (18), where each element (:); j is given by @MLE (K) and the partition Z. Then we define K as the
number of clusters that minimizes the MSE of the MLE, i.e.

K = argminMSEyg(K) (22)
K

over the input range of K. For the 100 graphs generated under the same matrix ®*, they share the same
K* while each one of them defines a corresponding K. Both K* and K were used in our comparisons on
model selection criteria for the number of blocks. In particular, for a general graphon, K* may not be
clearly defined and in such a case, K serves as the reference for comparison.

For dense graphs (model 1), as shown in Figure 2, we compared the MSEs (18) of the three estimates
of O to the true connectivity matrix and presented the ratio of the MSE of our EB estimate to the MSEs
of the MLE and VBEM estimate. For dense stochastic block models, the accuracy of MLE and that
of VBEM were close, whereas EB gave better estimates for almost all K values, i.e. MSE ratios were
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Figure 2 — MSE ratios in model 1 simulation. The true number of blocks K* (marked in red) ranges
from 10 to 18 and the results for graphs with each K* are shown in a panel. For the 100 graphs generated
under each K*, the MSE ratios of the estimates @y g and ®ypgym over Opp are plotted against the input
number of blocks K chosen in the clustering step.

smaller than 100%. We see a significantly smaller MSE ratio when K is close to K*, especially when
K* is relatively small. For example, the MSE ratios EB/MLE and EB/VBEM were lower than 10% at
K = K* when K* = 10,...,15. When K* went bigger, such as K* = 17,18 in the simulation, the K for
most of the graphs was less than K*, and the MSE ratios reached a minimum level at some K < K*, which
was slightly above 50%.

Table 1 presents the model selection results on the simulated dense graphs from model 1, where we
define Ex+ and Eg as the average deviation of the selected number of blocks K from K* and from K
respectively, i.e.

1o | A
EK*:M;‘Kt—K |7 E~:Mz:21| t_Kt|7 (23)
where t € {1,...,M} is the index of the graphs generated under the same @*, K, is the estimated number

of clusters by a model selection criterion, and K; is the K defined by (22) for the ¢-th graph. When
K* was small, such as 10 < K* <13, Zvpem and _Zgp gave the same results, and both accurately
selected K = K* as the optimal number of blocks. As K* increased, #gp outperformed _#vggwm, and
was comparable to _Zcvyrp in terms of Eg+. In fact, for a limited graph size n = 200 here, the average
number of vertices in each block will be smaller as K* increases, making it hard for small communities to
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Table 1 — Model selection comparison for model 1 among the K chosen by (a) CVRP, (b) VEBM, and (c)
EB. (Each row in a table reports the frequency of K across 100 graphs. The last two columns report two

mean absolute deviations, the minimum of which among the three methods is in red for each K*.

(a) CVRP
K*\K 8 9 10 11 12 13 14 15 16 17 18 | Eg- Eg
10 99 1 0.99 0.99
11 100 1.00 1.00
12 3 96 1 1.02  1.02
13 67 33 0.67 0.67
14 6 93 1 1.06 1.06
15 23 77 1.23  1.26
16 2 13 85 1.17  1.31
17 1 29 70 1.31 1.33
18 3 87 10 1.93 1.27
(b) VBEM
K*\K 8 9 10 11 12 13 14 15 16 17 18 | Ek- Ep
10 100 0.00 0.00
11 100 0.00 0.00
12 100 0.00 0.00
13 100 0.00 0.00
14 4 96 0.04 045
15 1 2 35 62 0.39 0.85
16 1 28 53 18 1.12 1.26
17 6 53 35 6 2.59 261
18 1 7 32 44 16 3.33  2.67
(c) EB
K\K |8 9 10 11 12 13 14 15 16 17 18| Ex- Eg
10 100 0.00 0.00
11 100 0.00 0.00
12 100 0.00 0.00
13 100 0.00  0.00
14 100 0.00 0.00
15 1 99 0.01 0.04
16 30 70 0.30 0.44
17 33 67 1.33  1.35
18 1 95 4 1.97 131
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Figure 3 — MSE ratios in model 2 simulation. The results for graphs with each network size n are shown
in a panel, plotted in the same format as Figure 2.

be detected. Therefore, K may better reflect the number of clusters that fit well the observed network.
Considering this, we see _#gg had both smaller Ex+ and Eg than #yggwm in general, which indicates
the superiority of our model selection method. _Zcvrp showed relatively stable performance in terms of
Ex+ and E, but the results were not satisfactory for small K*. In summary, from the simulation results
on dense graphs (model 1), EB has demonstrated the highest estimation accuracy, especially when the
clustering algorithm finds the true number of communities, and the EB model selection criterion generally
selects the best model.

Detecting the true number of blocks for a sparse graph (model 2) is harder because of fewer edge
connections in a block. Thus, we fixed K* = 10 and varied the network size n from 200 to 450. In terms
of estimation accuracy, Figure 3 shows that our EB estimate had better performance than MLE in almost
all the cases (except when K = 1 under which the two estimates were identical), and the MSE ratio kept
decreasing as K increased. In particular, for K = K* = 10, the MSE ratio of EB over MLE was about
95%. 1If the number of blocks is overestimated (say K > 15), the MSE ratio can drop to < 90%. When
compared to VBEM, for a small network size n and a small number of blocks K, EB estimates can be
slightly less accurate (< 5% increase in MSE), but as K increases and becomes close to K*, the MSE
ratio decreases to the same level as that of EB over MLE. As reported in Table 2, for all the cases _#gp
achieved the best model selection performance with the smallest Eg+ and Ez among the three methods.
This highlights the usefulness of our model selection criterion for the more challenging sparse graph
settings.

More detailed results for both models 1 and 2 in this simulation study can be found in the Supplemen-
tary Material.

3.1.2 Results on SBM: heterogeneous block connectivity
In this section, we show how the performance changes when heterogeneous block connectivity probabili-
ties are used. We consider the following connectivity matrix

2,1 €12 E1K*
1 /12
' =p| " )
. 8(K*71)K*
8[(*1 8[@«(,(*71) A/K* K*xK*
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Table 2 — Model selection comparison for model 2 (K* = 10) among the K chosen by (a) CVRP, (b)
VEBM, and (c) EB, in similar format as Table 1.

(a) CVRP
n\K 1 2 3 4 5 6 7 8 9 10 11 12| Exr E
200 | 100 9 284
250 | 100 9 6.86
300 | 95 I 4 8.56 8.84
350 | 71 1 14 14 6.55 8.17
400 | 37 28 35 3.61 521
450 | 17 11 71 1 1.65 2.50
(b) VBEM
K| 1 2 3 4 5 6 7 8 9 10 11 12| Exr Eg
200 [28 51 19 2 8.05 2.18
250 8 30 42 13 6 1 6.16  4.04
300 111 31 37 20 436 459
350 14 43 36 7 264 422
400 3 34 47 14 1 1]127 283
450 1 3 37 52 6 1]054 125
(c) EB
K[l 2 3 4 5 6 7 8 9 10 11 12| Ex~ Eg
200 6 12 24 29 24 4 1 531 2.09
250 6 21 38 21 12 2 382 220
300 113 32 35 18 1 241 274
350 2 31 47 20 115 2.81
400 10 38 48 3 1]063 213
450 2 13 78 7 024 097

where the values are sampled from uniform distributions.

Similar to model 1, to generate dense graphs (model 1s), we set p = 1, and drew A; ~ U(0.5,0.9)
forie{l1,...,K*} and &; ~ U(0.3,0.5) for i, j € {1,...,K*}, i # j. We generated graphs with n =200
vertices and the number of communities K* € {10,11,...,18}. For each choice of K*, we generated 100
networks independently with parameters sampled from the above uniform distributions. For each network,
the nodes were randomly divided into K* clusters with equal probability 1/K*, and then connected
according to the connectivity matrix ®* and their cluster labels. Overall, EB outperformed MLE and
VBEM with respect to MSE. Different from model 1 where the smallest ratios of EB/MLE and EB/VBEM
were observed at K = K* for most of the simulations, the MSE ratio of EB over MLE and VBEM
decreases smoothly with the increase in K (Figure 4). In terms of model selection, EB was better than
VBEM when K* > 14 and comparable to VBEM with smaller K, although the improvement was slightly
less substantial. The detailed results are reported in Table 3.

We also used p = 0.2 and the same setting for A and € as above to generate sparse graphs (model
2s), while keeping K* = 10 but changing the network size n € {200,250, 300, 350,400,450}. For each
network size n, we followed the same procedure as in model 1s and generated 100 networks independently.
The results are similar to the homogeneous case (model 2). The detailed results are provided in the
Supplementary Material.

3.1.3 Results on graphon model
Following the same design as in Latouche and Robin [2016], we choose a graphon function

W (x,y) = pAZ(xy)* !

with two parameters A < 1/,/p. Here, p controls the sparsity of the graph, as the expected number
of edges is proportional to p, and A controls the concentration of the degrees, so that more edges will
concentrate on fewer nodes if A is large. We chose p € {1071,107!°,1072} and A € {2,3,5}, and
simulated graphs of size n = 100 (model 3) and of size n = 316 (~ 10*3) (model 4). For each network,
we used SBM approximation with the number of clusters K = 1,2,...,10. Using (22), we also defined K
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Figure 4 — MSE ratios in model 1s simulation, plotted in the same format as Figure 2.
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Table 3 — Model selection comparison for model 1s among the K chosen by (a) CVRP, (b) VEBM, and

(c) EB, in the same format as Table 1.

(a) CVRP
K\K | 1 7 8 9 10 11 12 13 14 15 16 17 18 19 20| Ex  Eg
0] 2 1 7 4 46 2 079 088
1| 3 110 44 42 097 115
2] 1 2 3 15 48 29 1 L1 155
13 | 14 12 3 15 22 29 12 1 317 351
14 | 23 1 16 18 22 15 5 481 501
15 | 41 1 3 7 18 11 14 4 1 714 694
16 | 45 1 310 15 13 6 5 1 8.82 7.6l
17 | 53 1 1 5 9 12 7 4 3 2 2 1034 853
18 | 80 11 4 2 7 1 2 1471 1037

(b) VBEM
K\K | 1 7 8 9 10 11 12 13 14 15 16 17 18 19 20| Ex- Eg
10 T 5 8 6 0.13 0.1
11 1 15 81 3 02 032
12 1 8 27 56 8 0.54 085
13 2 6 15 30 25 18 3 1 17 2.02
14 1 8 27 13 33 16 2 275 293
15 1 1 9 17 34 19 13 5 1 379 343
16 10 13 18 27 18 9 4 1 521 3.94
17 2 6 19 17 28 9 10 5 1 63 427
18 12 24 16 15 11 8 4 |1 89 438

(c) EB
K\R | 1 7 8 9 10 11 12 13 14 15 16 17 18 19 20| Ex  Eg
10 2 81 13 1 0.17 0.16
11 8 76 15 1 025 0.36
12 15 5 8 66 13 4 0.58 0.89
13 1 6 8 10 16 19 15 23 1 1 176 227
14 1 23 1 2 11 18 17 17 23 3 1 1 163 2.19
15 233 5 8 8 12 19 25 14 1 196 248
16 22 410 9 10 18 24 15 3 2 248 252
17 1 3 2 1 10 11 12 19 22 16 1 1 356 24
18 13 510 9 5 17 14 17 18 1 488 273
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Table 4 — Model selection comparison for graphons. (Reported is the mean absolute deviation Eg for
graphs generated under each combination of (p,4). The minimal Ez among the three methods is
highlighted in red.)

n =100 n=316
CVRP VBEM EB | CVRP VBEM EB

p=10T [A=2]116 0.96 1.11 | 492 2.55 2.38
A=3|542 1.54 2.03 | 5.8 1.92 1.91

A=513.88 1.28 1.63 | 7.43 1.66 1.50

p=10"15 | 1 =21 201 1.86 1.83 | 4.76 3.72 3.70
A=311.81 1.02 0.95 | 3.93 2.02 1.96

A=51|205 1.03 0.98 | 4.58 1.60 1.79

p=102 [A1=2]0386 0.85 0.86 | 2.56 2.24 2.25
A=3| 141 1.45 1.48 | 1.48 1.35 1.31
A=5|152 1.61 1.7 | 277 1.72 1.67

as the number of blocks that minimizes the mean squared error (19) of the MLE, i.e. K is the number of
communities that best fits the observed network. Figure 5 shows the graphon function for some values
of (p,A). The parameter p controls the scale of the function, and thus the grophon functions reach the
maximum height when p = 10~!. While not shown in the figure, for p = 10~ or 10~ the functions
are scaled down and have lower heights. Meanwhile, A controls the concentration of the function, such
that a graphon defined by a higher value of A shows a highly concentrated peak as for A = 5 in the figure.

The MSE ratios between our EB estimate and the other two competing methods, MLE and VBEM,
are shown in Figure 6 for graphs of size n = 316. The results for n = 100 are similar and relegated to the
Supplementary Material. In general, our EB method achieved higher accuracy with smaller MSEs than
the other two methods. For most cases, our EB estimate was more accurate than the MLE, with the MSE
ratios between 60% and 100%. Compared to VBEM, our EB estimate achieved substantially smaller
MSEs with ratios below 20%. For both graph sizes, the improvement of the EB method over the other
two competitors was especially significant when the graph was sparse (p small). In such a case, fewer
connections between nodes are observed in a network, and there is a high probability to have zero edge
within the cluster. For blocks with lower connectivity, MLE tends to underestimate their connectivity,
while shrinkage helps the situation by borrowing information from other blocks.

The model selection results are reported in Table 4. Since the true number of communities under
the graphon model is not clearly defined, we used K as the ground-truth to evaluate model selection
performance. For both n = 100 and n = 316, the mean absolute deviation Ez (23) of the K selected
by our criterion Zgp was either the smallest or was very close to the smallest value among the three
methods. While EB and VBEM were generally comparable, CVRP showed unstable performance as its
Eg could be much larger than the other two methods in some cases (such as p = 107! and p = 10~!).
See Supplementary Material for more detailed results.

To expand the scope of this study, we further compared the performance of our EB method on graphons
with a non-Bayesian approach. A commonly used algorithm is network histogram approximation (NHA)
developed by Olhede and Wolfe [2014]. The authors showed the universality of graphon approximation
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Table 5 — Comparison of MSE of the graphon estimates by network histogram approximation (NHA)

and empirical Bayes (EB).

n =100 n=316
NHA EB improve % NHA EB improve %
p=10"T,A=210.00459 0.00351 235 0.00284  0.00230 19.1
p=10"1,1=3 000223 0.00214 3.88 0.000671  0.000654 2.58
p=10"1,A=5| 00116 0.0116 0 0.00760  0.00756 0.55
1101 1101
100 100
90| 90|
80 80
7\\\I\\\\I\\\\I\\\\I 707\\\I\\\\|\\\\I\\\\I
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(a) (b)

Figure 7 — MSE ratios of EB/MLE in spectral clustering simulation. (a) model 1 with parameters
K* =10, n =200. (b) model 2 with parameters K* = 10, n = 450.

through regular stochastic block model and introduced an automatic bandwidth selection rule to select
the best block model to represent graphon functions. The method fist divides degree-sorted vertices into
equal-sized groups and selects the histogram bandwidth that maximizes the likelihood under an SBM.
Given the automatically selected histogram bandwidth, the model parameters are estimated by the MLE
in (4). In the comparison, we substitute the MLE estimate with our EB estimate to see if it can improve
the accuracy.

In our simulation we used NHA to estimation the graphon functions in model 3 and 4 with p = 107!,
using the suggested parameter (¢ = 4 in Olhede and Wolfe [2014]) to select the NHA bandwidth. NHA
did not work on the sparser cases since too many nodes have a degree of zero. Table 5 shows that EB
indeed improved the graphon estimation by NHA as well. The MSE for each set of parameters shown
in the table is the average results from 100 networks. For A = 2 in which case the graphon function has
lower variability, EB outperformed MLE substantially. For larger A’s, the two methods had comparable
accuracy.

We briefly summarize a few key observations from the simulation studies. It is seen that EB estimates
had smaller MSEs than the other two methods in most of the cases above. For the dense SBM (model 1),
the accuracy of EB estimate was much higher. The relative low variance in connectivity across different
blocks led to higher degree of shrinkage and information sharing among the EB estimates. For the sparse
SBM (model 2), heterogenous SBM (model 1s and 2s) and graphon models (model 3 and 4), EB showed
moderate improvements over the two competing methods in general. When the graph is sparse, EB can be
much more accurate than VBEM, as shown in Figures 6. As for model selection, EB generally selected
the number of clusters K that was closer to K* and K in all the models above, which demonstrates the
usefulness of our hierarchical model for deriving likelihood-based model selection criterion.

3.1.4 Alternative clustering and running time comparison
Our results and numerical comparisons were conducted to demonstrate the uniform accuracy improvement:
By varying the input number of clusters so some cluster results could be very inaccurate, our EB estimates
reached smaller MSEs for almost all the clustering results. To further demonstrate this point, we also
applied our EB estimates after spectral clustering. As shown in Figure 7, our method improved the
parameter estimation accuracy as well: Under the same simulation setting as in Figure 2 and Figure 3, the
EB/MLE MSE ratio shows a similar pattern to the results of the previous simulation in SBMs.

The computation of our EB method is only the maximization of the likelihood (8, 9). The objective is
the sum of two separate functions. Thus, we just need to maximize two bi-variate functions, regardless of
the problem size (n,K). In general, the computation time is negligible compared to the graph clustering
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step. Table 6 reports the average running times (in seconds) of spectral clustering (7¢) and our EB
estimation (7g) by BFGS for various network size n and number of communities K, on a single 2.6 GHz
Intel i7 core. It is seen from the table that for large problems (n = 10000, K = 500), the running time of
EB estimation step was less than 1% of the runtime of spectral clustering.

Table 6 — Simulation running time.

(n,K) | (100,10) (1000, 10) (1000, 100) (5000, 10) (5000, 100) (10000, 500)
Tc 0.06 0.7 4.4 6.7 149 2696
T 0.08 0.1 0.2 0.6 1.9 11.6

3.2 Real data examples

In this section, we apply our empirical Bayes method on two real-world networks. For these networks, we
do not have the underlying connectivity matrix as the ground truth, which makes it difficult to evaluate
estimation accuracy. However, for a network with known node labels that indicate their community
memberships (the “ground truth”), the true partition Ze of the vertices is given. Thus, we will develop
accuracy metrics based on Ze to compare different methods.

For real data, the assumption of the regular stochastic block model (2) may be restrictive. A commonly
used model is the degree-corrected stochastic block model (DCSBM) [Karrer and Newman, 2011] that
uses a Poisson distribution to model the number of edges across blocks and takes within-community
degree heterogeneity into consideration. Some methods have been developed to compare the goodness
of fit of different types of SBMs to real world networks. Yan et al. [2012] has proposed a method to
select models for DCSBM, which is essentially a hypothesis test against the null model of a regular SBM.
The method calculates a test statistic from node degrees and their labels, and compares the value of the
statistic to a Gaussian distribution to obtain a p-value under the null SBM. We used this method to test
whether the regular SBM is a good model for the two real-world networks.

3.2.1 Political blogs
First we consider the French political blogosphere network from Latouche et al. [2011]. The network is
made of 196 vertices connected by 2864 edges. It was built from a single day snapshot of political blogs
automatically extracted on October 14th, 2006 and manually classified by the “Observatoire Presidentiel”
project [Zanghi et al., 2008]. In this network, nodes correspond to hostnames and there is an edge between
two nodes if there is a known hyperlink from one hostname to the other. The four main political parties
that are present in the data set are the UMP (french republican), liberal party (supporters of economic-
liberalism), UDF (moderate party), and PS (french democrat). However, in the dataset annotated by
Latouche et al. [2011] there are K* = 11 different node labels in total, since they considered analysts as
well as subgroups of the parties. The test statistic by the method in Yan et al. [2012] yielded a p-value
of 0.08 according to the bootstrap distribution suggested by the authors, which indicates that the regular
SBM is a fair representation of this network compared to DCSBM.

Given the known community memberships, we constructed a connectivity matrix ®* = (Btjb) K* x K*
with entries

0, = X5 /na, a,be{l,....K*}, (24)

where X2 is the number of edges observed in block (a,b), nuy = |Zi(a)| - | Zie(b)| for a # b and
Naa = |Zh(@)] - (|Z)(a)] — 1) /2, and K* is the true number of communities. Then the MSE (18)
between an estimate @(K ) and ®* (24) were used as an accuracy metric to compare estimated connectivity
matrices, where K is the input number of clusters.

We also used test data likelihood as another comparison metric. We randomly sampled 70% of the
nodes, denoted by V, as observed training data, and estimated a connectivity matrix ® = (é,- j) K*x K+ from
their edge connections and true memberships. Denote by V; the test data nodes not used in the estimation.
Recall that X;; is the (i, j)th element in the adjacency matrix of the network. Then test data likelihood
Zest Was calculated according to (2) given the © estimated by a method,

Lest = H éz},([zj,(l - éz,-z_,-)l_xu X H éz)jjzi(l - éijk)l_Xjkv (25)
i€V, j€V; k<jeVe
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where z;, 7,2, are the known ground truth labels (ground truth) of the nodes. Note that X;; € {0, 1} is
the edge connection between a vertex i in the training data and a vertex j in the test data, while X is
the edge connection between two vertices j and k in the test data. We repeated this procedure 100 times
independently to find the distribution of test data likelihood A across random sample splitting of the n
nodes into V,, and V;.
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Figure 8 — Results for French blogsphere network analysis. (a) The ratio of MSE of EB estimate over
that of MLE and VBEM for different values of K. (b) Box-plot of 100 test data log-likelihood values for
each method. (c) Model selection criteria against input values of K, with dashed line indicating the best
number of clusters K by EB. (d)(e) Histograms of (d) diagonal and (e) off-diagonal shrinkage values 1,
of EB estimate at K = K* = 11.

We applied VBEM to detect communities with an input number of clusters K = 1,2, ...,20. The MSE
ratios of EB over the other two competing methods were calculated and plotted against K in Figure 8(a).
It is clear that EB achieved smaller MSE than the other two methods for all values of K. When K was
close to or greater than K* = 11, EB provided more accurate estimates than both MLE and VBEM with
smaller MSEs. Figure 8(b) shows the box-plot of test data log-likelihood values across 100 random
sample splitting. From the box-plots, we see that the test data likelihood of EB was significantly higher
than the other two estimates. These comparisons confirm that EB estimates were more accurate than the
other two competing methods in terms of both metrics. In terms of model selection, Figure 8(c) plots
the three model selection criteria, _Zcvrp, _#vBEM, _ZEB, over the input range of K. All three model
selection criteria have been standardized to [0, 1] with a higher value indicating a better model, such
that the best model is selected by the maximizer of each criterion. Accordingly, CVRP, VBEM and EB
estimated K = 1, 12 and 10, respectively, while the true K* = 11. The K by VBEM and EB were both
reasonably close to the ground-truth, while CVRP did not work well in this case. Figure 8(d) and (e)
show the distributions of the shrinkage values 1, at K = K*. We see that the diagonal blocks had higher
shrinkage. Around 70% of the 7,,’s were around 0, which means that most blocks had a similar estimate
to the MLE, while a few blocks with large 7n,;, borrowed information from shrinkage and increased the
estimation accuracy.

3.2.2 Email network

The Email-Eu-core network (Eucore) is a directed network generated using email data from a large
European institute, consisting of incoming and outgoing communications between members of the institute
from 42 departments. Leskovec and Krevl [2014] organized the data and labeled which department each
individual node belongs to, i.e. the “ground-truth” community memberships. The network has n = 1005
nodes and 25,571 directed edges, which we converted to undirected ones by removing their orientations.
Although the test of Yan et al. [2012] suggested rejection of the hypothesis that a regular SBM is the
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Figure 9 — Results for Email-Eu-core network analysis. (a) The ratio of MSE of EB estimate over that of
MLE and VBEM for different values of K. (b) Box-plot of 100 test data log-likelihood values for each
method. (c) Model selection criteria against input values of K, with dashed line indicating the estimated

K by EB. (d)(e) Histograms of (d) diagonal and (e) off-diagonal shrinkage values 1,, of EB estimate at
K=K"=42.

true underlying model, our results on this network still show the improvement brought by EB assuming a
regular SBM. We leave the generalization of our EB estimate to DCSBM as a future direction.

We applied VBEM to detect communities with an input number of clusters K = 1,2, ...,50. The MSE
ratios of EB over the other two competing methods were calculated and plotted against K in Figure 9(a).
Similarly, EB achieved smaller MSE than the other two methods for all values of K. The MSE ratios
ranged from 60% to 90%. When the input number of communities K was close to or greater than K* = 42,
the improvement of EB over the competing methods became more substantial. Figure 9(b) shows higher
test data likelihood of EB than the other two estimates. Figure 9(c) shows the values of three model
selection criteria for k € {1,...,50}. The three methods, CVRP, VBEM and EB, gave estimates K=1,39
and 39, respectively. The K by VBEM and EB were both reasonably close to the ground-truth of K* = 42,
while the performance of CVRP was much worse on this dataset. Moreover, _#vggwm is relatively flat
around the estimated K, while the curve of #vBEM shows a higher sensitivity. From the distributions of
the shrinkage values 1, in (d) and (e), we see 7 > 0.3 for a good number of diagonal and off-diagonal
blocks, which led to substantial shrinkage and better performance than the MLE.

4 DISCUSSION

We first briefly summarize this paper and then discuss some limitations of this work and potential
generalizations in future work.

4.1 Summary

In this paper, we developed an empirical Bayes estimate for the probabilities of edge connections between
communities in a network. While empirical Bayes (EB) under a hierarchical model is a well-established
method, its application to SBMs is very limited before our work. Our method is a natural fit to the
SBM and the idea is generally applicable to different community detection methods. It does not require
complicated algorithms or heavy computation, yet can effectively improve the estimation accuracy
of model parameters. For the large volume of published community detection or network clustering
algorithms, our parameter estimation method can be adopted as a superior alternative after the node
clustering step. SBM approximation to graphons could result in a large number of blocks, for which
case the EB often shows substantial advantage over the MLE, and this was a key motivation for our
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generalization to graphon estimation. This also helps the development of a good model selection criterion
based on the marginal likelihood.

Though shrinkage in empirical Bayes approach leads to more accurate estimate of the connectivity
probabilities, the improvement depends on the variability of the underlying connectivity matrix or graphon
function. Typically, a higher variance reduces its improvement relative to the MLE. Therefore, for some
graphon functions with high volatility, EB cannot guarantee a better estimate, but from our simulation
results, EB estimate and MLE are usually comparable for such cases. A main reason for this observation
is that EB estimate uses a very small number of hyperparameters, which effectively reduces the model
complexity via shrinkage and greatly minimizes the risk of overfitting the data.

In our experiments, we compared the model estimation accuracy by the mean squared error, which is
a gold standard criterion to evaluate parameter estimation. However, several other metrics, such as the
KL-divergence of the estimated graphon function to the truth, deviation of the estimated number of motifs
in the graph to the true value, and divergence of degree distributions, can also be considered. For the
application on real data, the goodness of fit of SBM or graphon model to the datasets may be compared to
more existing network modeling methods in addition to DCSBM. A decent fit of the SBM and/or graphon
to these datasets will further demonstrate the usefulness of our method in a more convincing way.

4.2 Future work
We put a beta conjugate prior on connection probability ®, and the estimates of the hyperparameters
(0, Ba)a—qo,1y are always positive. Thus, when a true connectivity 6, = 0 for some block (a,b), which
is likely to happen in sparse networks, our hierarchical model introduces bias to the estimate of 6, by
Eq (6). However, since the empirical Bayes estimator is pooling data in all the blocks, the overall accuracy
measured by MSE is still expected to be higher. To alleviate this bias, we may consider a proportion Yy of
zero connectivity blocks and only apply shrinkage across blocks with a nonzeor connectivity parameter.
We have focused on parameter estimation for binary and assortative stochastic block models and
graphons. For some real-world applications, a regular SBM may not be the most appropriate model, and
degree corrected SBM mentioned above is usually a better choice, in which the edge variable A;; between
two nodes i, j is modeled as

Aij | ZiyZj ™~ POiSSOH(@ZiZj wiwj)a 0

where z; and z; are the node community labels. The node-specific parameter @; scales the number of
connections to allow different expected degrees. The idea of empirical Bayes can be generalized for this
model: After community labels are determined by a graph clustering algorithm, the MLE of @;, which
only involves degree distributions and community labels, can be calculated. After we plug in these MLEs,
we can construct a hierarchical model for the parameters 6y, with a conjugate Gamma prior, which leads
to a similar empirical Bayes estimator for 6y, via shrinkage across multiple blocks.

Further more, the idea can be generalized to more sophisticated random graph models, such as SBM
with mixed memberships [Airoldi et al., 2008], SBM with weighted edges [Aicher et al., 2015], and
bipartite SBM [Larremore et al., 2014] etc. While most of the related works focus on graph clustering,
our empirical Bayes method can be applied after clustering to improve the estimation accuracy and to
identify a proper number of blocks for these models.
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