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ABSTRACT9

The graphon (W-graph), including the stochastic block model as a special case, has been widely used
in modeling and analyzing network data. Estimation of the graphon function has gained a lot of recent
research interests. Most existing works focus on inference in the latent space of the model, while adopting
simple maximum likelihood or Bayesian estimates for the graphon or connectivity parameters given the
identified latent variables. In this work, we propose a hierarchical model and develop a novel empirical
Bayes estimate of the connectivity matrix of a stochastic block model to approximate the graphon function.
Based on our hierarchical model, we further introduce a new model selection criterion for choosing
the number of communities. Numerical results on extensive simulations and two well-annotated social
networks demonstrate the superiority of our approach in terms of parameter estimation and model
selection.

10

11

12

13

14

15

16

17

18

19

1 INTRODUCTION20

Network data, consisting of relations among a set of individuals, are usually modeled by a random graph.21

Each individual corresponds to a vertex or node in the graph, while their relations are modeled by edges22

between the vertices. Such data have become popular in many domains, including biology, sociology23

and communication [Albert and Barabási, 2002]. Statistical methods are often used to analyze network24

data so that the underlying properties of the network structure can be better understood via estimation25

of model parameters. Examples of such properties include degrees, clusters and diameter among others26

[Barabási and Albert, 1999, Newman et al., 2002].27

To better understand the heterogeneity among vertices in a network, community detection and28

graph clustering methods [Girvan and Newman, 2002, Newman, 2004] have been proposed to group29

vertices into clusters that share similar connection profiles. A large portion of the clustering methods are30

developed based on the stochastic block model (SBM) [Freeman, 1983], which constructs an interpretable31

probabilistic model for the heterogeneity among nodes and edges in an observed network.32

For an undirected simple random graph on n nodes or vertices, the relationships between the nodes33

are modeled by 1
2 n(n−1) binary random variables representing the presence or absence of an undirected34

edge. The edge variables can be equivalently represented by an n×n adjacency matrix X, where Xi j = 135

if node i and j are connected and Xi j = 0 otherwise. We do not consider self loops in this work, and thus36

Xii = 0 for i = 1, . . . ,n.37

Many popular graph models [Lloyd et al., 2012] make exchangeability assumption on the vertices:
The distribution of the random graph is invariant to permutation or relabeling of the vertices. A large class
of exchangeable graphs can be defined by the so-called graphon function [Lovasz and Szegedy, 2006]. A
graphon W (u,v) is a symmetric function: [0,1]2 → [0,1]. To generate an n-vertex random graph given a
graphon W (u,v), we first draw latent variables ui independently from the uniform distribution U(0,1) for
i = 1, . . . ,n. Then we connect each pair of vertices (i, j) with probability W (ui,u j), i.e.

P(Xi j = 1|ui,u j) =W (ui,u j), i, j = 1, . . . ,n. (1)



In particular, the stochastic block model mentioned above can be seen as a special case of the graphon
model, where W (u,v) is a piecewise constant function. Abbe [2018] has summarized recent developments
on the stochastic block model. Under an SBM, the vertices are randomly labeled with independent latent
variables Z = (z1, . . . ,zn), where zi ∈ {1, . . . ,K} for i = 1, . . . ,n and K is the number of communities or
clusters among all the nodes. The distribution of (Z,X) is specified as follows:

P(zi = m) = πm, m ∈ {1, . . . ,K}, i = 1, . . . ,n,
P(Xi j = 1|zi,z j) = θziz j , i, j = 1, . . . ,n,

(2)

where ∑m πm = 1 and each θkm ∈ [0,1]. Put π = (π1, . . . ,πm) and Θ = (θi j)K×K .38

Many efforts have been made on statistical inference of the SBM to detect block structures as well39

as to estimate the connectivity probabilities in the blocks. Some classical and popular methods include40

MCMC, degree-based algorithms and variational inference among other. Nowicki and Snijders [2001]41

developed a Gibbs sampler to estimate parameters for graphs of small sizes (up to a few hundred nodes). A42

degree-based algorithm [Channarond et al., 2012] achieves classification, estimation and model selection43

from empirical degree data. The variational EM algorithm [Daudin et al., 2008] and variational Bayes44

EM [Latouche et al., 2012] approximate the conditional distribution of group labels given the network45

data by a class of distributions with simpler forms. Suwan et al. [2016] recast the SBM to a random dot46

product graph [Young and Scheinerman, 2007] and developed a Bayesian inference method with a prior47

specified empirically by adjacency spectral embedding.48

Due to higher model complexity, estimating a graphon is challenging. Some works [Airoldi et al.,49

2013, Olhede and Wolfe, 2014, Latouche and Robin, 2016] have focused on the nonparametric perspective50

of this model and developed methods to estimate a graphon based on SBM approximation. These methods51

estimate a graphon function by partitioning vertices and computing the empirical frequency of edges52

across different blocks. Many algorithms put emphasis on model selection [Airoldi et al., 2013] or53

bandwidth determination [Olhede and Wolfe, 2014]. Latouche and Robin [2016] proposed a variational54

Bayes approach to graphon estimation and used model averaging to generate a smooth estimate.55

Meanwhile, model selection that compares different node clustering schemes and selects the most56

appropriate number of blocks for SBMs has been one of the major difficulties in this field. Methods that57

are generally applicable to all graph clustering results include a hypothesis testing based method for SBMs58

[Côme and Latouche, 2015] and a cross-validation scheme for graphons [Airoldi et al., 2013]. Côme and59

Latouche [2015] propose an exact integrated complete data likelihood criterion that is combined with a60

greedy inference algorithm to identify node clusters for SBMs. Yang et al. [2021] summarize different61

model selection methods for spectral graph clustering and propose a simultaneous model selection62

framework.63

After the block structure of a network is identified, most of the above methods simply use the empirical64

connection probability within and between blocks to estimate Θ. When the number of nodes in a block65

is too small, the estimate can be highly inaccurate with a large variance. Latouche and Robin [2016]66

developed an alternative method under a Bayesian framework, where they put conjugate priors on the67

parameters (π,Θ). In particular, they assume θab ∼ Beta(αab,βab) independently for a,b ∈ {1, . . . ,K},68

where the parameters (αab,βab) in the prior are chosen in priori. Similar to the MLE, the connection69

probability θab of each block is estimated separately and thus may suffer from the same high variance70

issue for blocks with a smaller number of nodes. To alleviate this difficulty, we propose a hierarchical71

model for network data to borrow information across different blocks. Under this model, we develop72

an empirical Bayes estimator for Θ = (θab) and a model selection criterion for choosing the number of73

blocks. Empirical Bayes method is usually seen to have better performance when estimating many similar74

and variable quantities [Efron, 2010]. This inspires our proposal as the connection probabilities can be75

similar across many different communities. By combining data from many blocks, estimates will be much76

more stable even if the number of nodes is small (as small as a few nodes) in each block.77

In summary, our method has two major novel components: 1) shrinkage estimation for connectivity78

parameters, and 2) a novel likelihood-based model selection criterion, both under our proposed hierarchical79

model. As demonstrated by extensive simulations and experiments on real-world data, these contributions80

give us substantial gain in estimation accuracy and model selection performance, especially for graphons.81

Moreover, our method is very easy to implement and does not cost much extra computational resources82

compared to existing approaches.83
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The paper is organized as follows. First, we will develop our empirical Bayes method for the SBM84

and the graphon, focusing on connection probability estimation and model selection on the number of85

blocks. Then we will compare the performance of our methods with other existing methods on simulated86

data and on two real-world networks. The paper is concluded with a brief discussion. Some technical87

details and additional numerical results are provided in the Supplementary Material.88

2 METHODS89

Let us first consider the SBM. After the vertices of an observed network have been partitioned into clusters90

by a graph clustering algorithm, we develop an empirical Bayes estimate of the connection probability91

matrix Θ based on a hierarchical binomial model. Under this framework, we further propose a model92

selection criterion to choose the number of blocks. Our method consists of three steps:93

• Graph clustering For a network with n vertices, cluster the vertices into K blocks by a clustering94

algorithm. Let Z : [n]→ [K] denote the cluster assignment, where [m] := {1, . . . ,m} for an integer95

m.96

• Parameter estimation Given Z, we find an empirical Bayes estimate Θ̂EB = (θ̂ EB
i j )K×K by esti-97

mating the hyperparameters of the hierarchical binomial model.98

• Model Selection Among multiple choices of K, we select the K̂ that maximizes a penalized99

marginal likelihood under our hierarchical model.100

We will also generalize our method to the graphon model, following the idea of SBM approximation to a101

graphon.102

Algorithms to detect blocks of a stochastic block model have been widely studied, including spectral103

clustering by Rohe et al. [2011], Monte Carlo sampling by Nowicki and Snijders [2001] and variational104

approximations by Daudin et al. [2008]. As an extension to the work of Daudin et al. [2008], Latouche105

et al. [2012] proposed a variational Bayes approximation to the posterior distribution of the parameters106

(π,Θ) and of the latent cluster labels Z (see Supplementary Material for a more detailed review). Given107

the Z estimated by their approach, we will develop our hierarchical model and empirical Bayes estimates.108

2.1 Estimating connection probabilities109

In this subsection, we consider the SBM and assume a partition Z : [n]→ [K] of the nodes is given, where
K is the number of blocks. Note that Z−1(a) for a ∈ [K] is the subset of nodes in the a-th cluster. Let

Bab = {(i, j) : (i, j) ∈ Z−1(a)×Z−1(b), i < j}

be the collection of node pairs in the (i, j)th block. According to the SBM, the connection probability
between any (i, j) ∈ Bab is θab. Recall that X = (Xi j) is the observed adjacency matrix. Let XB

ab =

∑(i, j)∈Bab
Xi j be the number of edges in block (a,b). Then, we have

XB
ab | θab ∼ Binomial(nab,θab), (3)

where nab = |Bab|= |Z−1(a)| · |Z−1(b)| for a ̸= b and naa = |Z−1(a)| · (|Z−1(a)|−1)/2 as self loops are
not allowed. Based on the empirical frequency of edges in the block (a,b), we have an MLE for the edge
connection probability

θ̂
MLE
ab =

XB
ab

nab
, a,b ∈ {1, . . . ,K}. (4)

When K is large, the number of nodes, and thus nab, in some blocks will be small, which leads to a
high variance of the MLE. To stabilize the estimates, we may borrow information across blocks to improve
estimation accuracy. To do this, we set up a hierarchical model by putting conjugate prior distributions on
θab. To accommodate the heterogeneity in θab, we use two sets of hyperparameters so that the within and
between-block connectivities are modeled separately:

θab | (αd ,βd)∼ Beta(αd ,βd), a,b ∈ {1, . . . ,K}, (5)
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A.1 Variational Bayes EM algorithm

As an extension to the work in Daudin et al. (2008), Latouche et al. (2012) proposed a varia-
tional Bayes approximation to provide a closed form approximate posterior distribution of the
parameters (⇡,⇥) and of the latent variables Z, where the observed-data log-likelihood can be
decomposed into two terms,

ln p(X) = L(q(·)) + KL(q(·)kp(·|X)), (26)

where

L(q(·)) =
X

Z

Z Z
q(Z,⇡,⇥) ln{p(X,Z,⇡,⇥)

q(Z,⇡,⇥)
}d⇡d⇥, (27)

and

KL(q(·)kp(·|X)) = �
X
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Z Z
q(Z,⇡,⇥) ln{p(Z,⇡,⇥|X)
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Figure 1 – A diagram of the hierarchical model. The connectivity parameters θab, a,b ∈ {1, . . . ,K},
follow beta distributions of two sets of hyperparameters, i.e. (α0,β0) for diagonal blocks (red) and
(α1,β1) for off-diagonal blocks, and the number of edges XB

ab in a block, depends on θab as in (3).

where d = 0 for a = b and d = 1 for a ̸= b, i.e. the diagonal and off-diagonal elements of the connectivity110

matrix Θ follow Beta(α0,β0) and Beta(α1,β1), respectively. The prior distribution (5) together with111

(3) defines the distribution [X,Θ | (αd ,βd)d=0,1]. Here (αd ,βd), d = 0,1, are hyperparameters to be112

estimated by our method. A diagram of our model is shown in Figure 1. Note that the use of two sets of113

hyperparameters is in line with common assumptions of the stochastic block model, such as assortativity114

[Danon et al., 2005] or disassortativity, i.e. within-group connectivities are different than between-group115

connectivities.116

The conditional posterior distribution of θab given (XB
ab,αd ,βd) is

θab|(XB
ab,αd ,βd)∼ Beta(αd +XB

ab,βd +nab −XB
ab),

and the conditional posterior mean of θab is

θ̂
EB
ab (αd ,βd)≡ E(θab|XB

ab,αd ,βd) (6)

=
αd +XB

ab
αd +βd +nab

= ηab
αd

αd +βd
+(1−ηab)

XB
ab

nab
,

for a,b ∈ {1, . . . ,K}, where

ηab =
αd +βd

αd +βd +nab
∈ [0,1] (7)

is the shrinkage factor that measures the amount of information borrowed across blocks. When the117

variance among θab across the blocks is high, αd and βd will be estimated to be small. Thus, ηab will118

be close to 0 so that the estimate θ̂ EB
ab will be close to θ̂ MLE

ab . When the variance among θab is low, our119

estimates of αd and βd will be large, the shrinkage factor approaches 1, and eventually θ̂ EB
ab will become120

identical across all blocks. In this case, we are essentially pooling data in all blocks to estimate θab.121

Generally speaking, the shrinkage factor ηab is determined by the data through the estimation of the122

hyperparameters (αd ,βd), and it leads to a good compromise between the above two extreme cases.123

Given the partition Z from a graph clustering algorithm, we maximize the marginal likelihood of
the observed adjacency matrix X to estimate the hyper-parameters (αd ,βd) for d = 0,1. Let Xab denote
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the adjacency submatrix for nodes in the block (a,b) defined by the partition Z. Integrating over Θ, the
marginal log-likelihood function for the diagonal blocks is

L (α0,β0|X,Z) =
K

∑
a=1

logP(Xaa|α0,β0)

=
K

∑
a=1

log
∫

θaa

P(Xaa|θaa)p(θaa|α0,β0)dθaa

=
K

∑
a=1

logBeta(α0 +XB
aa,β0 +naa −XB

aa)−K logBeta(α0,β0),

(8)

where Beta(x,y) =
∫ 1

0 tx−1(1−t)y−1dt is the beta function. Similarly, the marginal log-likelihood function
for the off-diagonal blocks is

L (α1,β1|X,Z)

= ∑
a<b

logBeta(α1 +XB
ab,β1 +nab −XB

ab)−
1
2

K(K −1) logBeta(α1,β1).
(9)

We find the maximum likelihood estimates of the hyper parameters, i.e.

(α̂d , β̂d) = argmax
αd ,βd

L (αd ,βd |X,Z), (10)

for d = 0,1. Then we can estimate Θ by plugging the MLE of the hyper-parameters in (10) into (6), i.e.

θ̂
EB
ab =

{
θ̂ EB

aa (α̂0, β̂0), a = b
θ̂ EB

ab (α̂1, β̂1), a ̸= b
. (11)

Since the hyper-parameters are estimated using all blocks, our empirical Bayes estimates of θab also124

make use of information from all data to improve the accuracy. Though (10) does not have a closed form125

solution, we can use an optimization algorithm such as bounded limited-memory BFGS (L-BFGS-B)126

[Byrd et al., 1995] to find the maximizer. The optimization algorithm starts at a random initial point,127

and we re-run the algorithm if it fails to converge. The log-likelihood functions in (8) and (9) are not128

necessarily concave, and thus finding the global maximizers cannot be guaranteed in theory. However, as129

shown in Figure S2 in Supplementary Material, for a typical dataset the maximizers over a reasonable130

range of (αd ,βd)d=0,1 can be easily found.131

Suwan et al. [2016] developed a different empirical Bayesian method for SBMs under a random dot132

product graph formulation. They introduce K latent positions, ν1, . . . ,νK ∈ Rd , and define the connection133

probabilities by inner products between the latent positions, θab = ⟨νa,νb⟩ for 1 ≤ a,b ≤ K. The prior134

distribution for νk is a multivariate Gaussian distribution νk ∼ Nd(µ̂k, Σ̂k). In particular, the parameters135

µ̂k, Σ̂k in the prior are chosen by Gaussian mixture modeling of pre-estimated latent positions obtained136

via adjacency spectral embedding. Thus, these prior distributions are called empirical priors and they137

are used to model the uncertainty in the latent positions ν1, . . . ,νK . In our method, the hyperparameters138

(α,β ) in the beta prior distributions are not pre-estimated by a separate method, but instead are estimated139

under a coherent hierarchical model. In addition to modeling uncertainty in the connectivity probabilities140

θab, the hyperparameters also lead to information sharing via shrinkage.141

2.2 Selecting partitions142

So far we have regarded the number of blocks K as given in our empirical Bayes method. The choice of K143

will certainly impact the performance of our method. If K is too small, for SBM many blocks will not be144

identified, and for graphon the approximated function will only have a small number of constant pieces,145

both leading to highly biased estimates. On the other hand, if K is too big, the number of vertices in each146

block will be very small, resulting in high variances. Thus, it is important to select a proper number of147

blocks to achieve the best estimation accuracy.148

Our empirical Bayes approach under the hierarchical model also provides a useful criterion for149

this model selection problem. Note that (8) and (9) define the conditional likelihood of X given the150
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hyperparameters (αd ,βd) and the partition Z input from a graph clustering algorithm. We can compare151

this likelihood for different input partitions and select the best one.152

Suppose we have m candidate partition schemes Z1, . . . ,Zm. Denote the corresponding number of
communities by K1, . . . ,Km. Our goal is to choose the optimal partition that maximizes the joint likelihood
of the observed adjacency matrix X and the partition Z with a penalty on the model complexity. To do
this, we include Z in our model as in (2) and put a Jeffreys prior [Jeffreys, 1946] on π , i.e.

π ∼ Dirichlet(τ1, . . . ,τK), τ1 = . . .= τK = 1/2.

The Jeffrey’s prior is a standard non-informative prior that is invariant to re-parameterization. In general,153

τk = τ for any τ ∈ (0,1] is a common choice for a non-informative prior, with negligible effect on the154

posterior inference or model selection when the network size n is large. Nonetheless, we could also use155

informative prior if strong prior knowledge is provided, for example, on π or the expected community156

sizes.157

For a partition Z with K communities, the joint likelihood of X and Z given the hyper-parameters
(α0,α1,β0,β1) is

P(X,Z|α0,α1,β0,β1)

= P(X|Z,α0,α1,β0,β1)
∫

P(Z|π)p(π)dπ

= P(X|Z,α0,α1,β0,β1)
Γ(∑K

i=1 τi)∏
K
i=1 Γ(ni + τi)

Γ(n+∑
K
i=1 τi)∏

K
i=1 Γ(τi)

,

(12)

after marginalizing out the parameter π , where ni is the number of nodes in cluster i defined by the
partition Z. Maximizing over the hyperparameters leads to the MLE (α̂0, α̂1, β̂0, β̂1) defined in (10).
Evaluating the likelihood (12) at the estimated hyperparameters, we define the goodness-of-fit part for our
model selection criterion as

JZ = logP(X,Z|α̂0, α̂1, β̂0, β̂1)

= ∑
d∈{0,1}

L (α̂d , β̂d |X,Z)+ log
Γ(∑K

i=1 τi)∏
K
i=1 Γ(ni + τi)

Γ(n+∑
K
i=1 τi)∏

K
i=1 Γ(τi)

,
(13)

where L (α̂d , β̂d |X,Z) is as in (8) and (9) for d = 0,1. Following the ICL-like (integrated complete
likelihood) criterion in Mariadassou et al. [2010], we add two penalty terms to control model complexity:
The first term corresponds to a penalty on the number of parameters in π and the second the number of
parameters in Θ. Therefore, our model selection criterion is to choose the partition

Ẑ = argmax
Z∈{Z1,...,Zm}

{
JZ −

1
2

[
(K −1) logn+

K(K +1)
2

log
n(n−1)

2

]}
, (14)

where K is the number of clusters defined by the partition Z. As we have mentioned in the introduction,158

there are quite a few graph clustering algorithms, and the performance of many of them is highly dependent159

on the input number of partitions. Our criterion for selecting the number of clusters applies to any method160

used for the node clustering step, and thus it protects our method from inferior input node clustering results.161

The ICL model selection criterion (14) is an approximation to the marginal log-likelihood logP(X|K)162

[Mariadassou et al., 2010]. The joint likelihood (13) depends on the EB estimates of the hyperparameters,163

which is unique to our hierarchical model, while the VBEM criterion [Latouche et al., 2012] uses a164

standard SBM likelihood without a hierarchical structure or estimation of priors. We can easily apply165

other penalty terms in various model selection criteria to our likelihood, and fully expect similar behavior166

in terms of selecting the number of clusters, since most of them approximate in the same way as the167

marginal likelihood or the Bayes factor.168

2.3 Graphon estimate169

Now we assume that the true model is a graphon as in (1). We use an SBM with K blocks as an
approximation to the graphon, i.e., we approximate W (u,v) by a piecewise constant function: We divide
the unit interval [0,1] into K pieces based on π so that the length of the k-th piece is πk. Let the endpoints
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of these pieces be ck = ∑
k
i=1 πi for k = 1, · · · ,K and put c0 ≡ 0. Then the graphon function defined on

[0,1]× [0,1] is approximated by a K ×K blockwise constant function,

W̃ (u,v) = θab if (u,v) ∈ [ca−1,ca)× [cb−1,cb).

To estimate a graphon W , we first run a clustering algorithm to estimate a partition Z and then apply
the empirical Bayes method to obtain θ̂ EB

ab . Let nk denote the size of the the k-th cluster of vertices. We
calculate its proportion to estimate πk by π̂k = nk/n and compute the cumulative proportion ĉk = ∑

k
i=1 π̂i

for k = 1, · · · ,K. Define a binning function,

bin(x) = 1+
K

∑
k=1

I(ck ≤ x), (15)

and the graphon W is then estimated by

Ŵ (x,y) = θ̂
EB
bin(x),bin(y), x,y ∈ [0,1). (16)

As shown by Bickel and Chen [2009], the graphon is not identifiable in the sense that any measure-
preserving transformation on [0,1] will define an equivalent random graph. Following their method,
imposing the constraint that

g(x) =
∫ 1

0
W (x,y)dy

is nondecreasing leads to identifiability. For SBM approximation, the corresponding constraint is that

g(l) =
K

∑
k=1

πkθlk (17)

is nondecreasing in l. This constraint can be satisfied by relabeling the K clusters of nodes.170

As for the SBM, selecting a proper number of clusters K is important for the estimation of a graphon.171

We will apply the same model selection criterion (14) to choose the optimal partition Z and the associated172

K among a collection of partitions.173

3 RESULTS174

3.1 Simulated data175

In this section we present numerical results on graphs simulated from stochastic block models and176

graphon functions. We compare our method with other existing methods in terms of estimating connection177

probabilities and model selection for choosing the number of clusters.178

For stochastic block models, we compare our estimated connectivity matrix Θ̂EB (11) to the maximum
likelihood estimate Θ̂MLE as in (4) and the variational Bayes inference Θ̂VBEM from Latouche et al.
[2012]. Variational Bayes inference provides a closed-form approximate posterior distribution for (π,Θ)
by minimizing the KL divergence between an approximated and the underlying distributions of [Z | X].
It constructs point estimates for the parameters based on EM iterations (Supplemetary Material). We
compute the mean squared error (MSE)

MSE =
1

n(n−1)

n

∑
i=1

∑
j ̸=i

(Θ̂′
i j −Θ

′
i j)

2 (18)

of an estimated n× n connection probability matrix Θ̂′. Here, Θ′ = (Θ′
i j)n×n is the true connection

probability matrix among the n nodes, i.e. Θ′
i j = θab if Z∗(i) = a and Z∗( j) = b for i, j = 1, . . . ,n, where

Z∗ is the true partition, and Θ̂′
i j = θ̂ab if Z(i) = a and Z( j) = b. For graphons, Ŵ (x,y) is estimated by

SBM approximation, and correspondingly the mean integrated squared error is calculated as

MSE =
∫ 1

0

∫ 1

0
(W (x,y)−Ŵ (x,y))2dxdy. (19)
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Due to the nonidentifiability of graphons, the MSE is calculated after relabeling node clusters based on179

the constraint (17) to make Ŵ comparable to W .180

We compare our model selection criterion (14) to the variational Bayes method developed by Latouche
et al. [2012] (VBEM) and the cross validation risk of precision parameter (CVRP) in Airoldi et al. [2013].
The CVRP is defined as

JCVRP(K) =
2K

n−1
− (n+1)K

n−1

K

∑
i=1

(
ni

n
)2, (20)

where ni is the number of vertices in group i. Then, the number of clusters K is selected by minimizing
the risk JCVRP, i.e.

K̂CVRP = argmin
K

JCVRP(K). (21)

We use JEB, JVBEM and JCVRP to denote, respectively, the three criteria mentioned above.181

3.1.1 Results on SBM: homogeneous block connectivity182

We designed a constrained SBM that generates affiliation networks, i.e. two vertices within the same
community connect with probability λ , and from different communities with probability ε < λ . We also
added a parameter ρ ∈ (0,1] to control the sparsity of the graph. The corresponding true connectivity
matrix is

Θ
∗ = ρ




λ ε · · · ε

ε λ · · ·
...

...
. . . ε

ε · · · ε λ




K∗×K∗

,

where K∗ is the number of communities.183

To generate dense graphs (model 1), we set λ = 0.9, ε = 0.1, and ρ = 1. We generated graphs184

with n = 200 vertices and the number of communities K∗ ∈ {10,11, . . . ,18}. For each choice of K∗, we185

generated 100 networks independently. For each network, all the nodes were randomly divided into K∗
186

clusters with equal probability 1/K∗, and then connected according to the connectivity matrix Θ∗ and187

their cluster labels. Note that the simulated node clusters had very different sizes, ranging between 7 and188

35, due to the high variance in block size.189

We also used λ = 0.9, ε = 0.1 and ρ = 0.2 to generate sparse graphs (model 2), while keeping190

K∗ = 10 but changing the network size n ∈ {200,250,300,350,400,450}. For each network size n, we191

followed the same procedure as in model 1 and generated 100 networks independently. Here “sparse”192

refers to a lower edge density around 0.035, which is 20% of the graphs generated in model 1.193

For a simulated graph, we applied the variational Bayes algorithm [Latouche et al., 2012] with an
input number of clusters K = 1, . . . ,20, from which we obtained K communities and a Bayesian estimate
Θ̂VBEM(K) of the connecting probabilities among the K ×K blocks. Given the estimated communities by
the variational Bayes algorithm, we found Θ̂MLE(K) as in (4) and our empirical Bayes estimate Θ̂EB(K)
as in (11) and compared them to the VBEM estimate. As the estimates are functions of K, so are their
MSEs as defined in (18). Let MSEMLE(K) be the mean squared error of the MLE by plugging Θ̂MLE(K)

into (18), where each element Θ̂′
i j is given by Θ̂MLE(K) and the partition Z. Then we define K̃ as the

number of clusters that minimizes the MSE of the MLE, i.e.

K̃ = argmin
K

MSEMLE(K) (22)

over the input range of K. For the 100 graphs generated under the same matrix Θ∗, they share the same194

K∗ while each one of them defines a corresponding K̃. Both K∗ and K̃ were used in our comparisons on195

model selection criteria for the number of blocks. In particular, for a general graphon, K∗ may not be196

clearly defined and in such a case, K̃ serves as the reference for comparison.197

For dense graphs (model 1), as shown in Figure 2, we compared the MSEs (18) of the three estimates198

of Θ to the true connectivity matrix and presented the ratio of the MSE of our EB estimate to the MSEs199

of the MLE and VBEM estimate. For dense stochastic block models, the accuracy of MLE and that200

of VBEM were close, whereas EB gave better estimates for almost all K values, i.e. MSE ratios were201
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Figure 2 – MSE ratios in model 1 simulation. The true number of blocks K∗ (marked in red) ranges
from 10 to 18 and the results for graphs with each K∗ are shown in a panel. For the 100 graphs generated
under each K∗, the MSE ratios of the estimates Θ̂MLE and Θ̂VBEM over Θ̂EB are plotted against the input
number of blocks K chosen in the clustering step.

smaller than 100%. We see a significantly smaller MSE ratio when K is close to K∗, especially when202

K∗ is relatively small. For example, the MSE ratios EB/MLE and EB/VBEM were lower than 10% at203

K = K∗ when K∗ = 10, . . . ,15. When K∗ went bigger, such as K∗ = 17,18 in the simulation, the K̃ for204

most of the graphs was less than K∗, and the MSE ratios reached a minimum level at some K < K∗, which205

was slightly above 50%.206

Table 1 presents the model selection results on the simulated dense graphs from model 1, where we
define EK∗ and EK̃ as the average deviation of the selected number of blocks K̂ from K∗ and from K̃
respectively, i.e.

EK∗ =
1
M

M

∑
t=1

|K̂t −K∗|, EK̃ =
1
M

M

∑
t=1

|K̂t − K̃t |, (23)

where t ∈ {1, . . . ,M} is the index of the graphs generated under the same Θ∗, K̂t is the estimated number207

of clusters by a model selection criterion, and K̃t is the K̃ defined by (22) for the t-th graph. When208

K∗ was small, such as 10 ≤ K∗ ≤ 13, JVBEM and JEB gave the same results, and both accurately209

selected K̂ = K∗ as the optimal number of blocks. As K∗ increased, JEB outperformed JVBEM, and210

was comparable to JCVRP in terms of EK∗ . In fact, for a limited graph size n = 200 here, the average211

number of vertices in each block will be smaller as K∗ increases, making it hard for small communities to212
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Table 1 – Model selection comparison for model 1 among the K̂ chosen by (a) CVRP, (b) VEBM, and (c)
EB. (Each row in a table reports the frequency of K̂ across 100 graphs. The last two columns report two
mean absolute deviations, the minimum of which among the three methods is in red for each K∗.

(a) CVRP

K∗\K̂ 8 9 10 11 12 13 14 15 16 17 18 EK∗ EK̃
10 99 1 0.99 0.99
11 100 1.00 1.00
12 3 96 1 1.02 1.02
13 67 33 0.67 0.67
14 6 93 1 1.06 1.06
15 23 77 1.23 1.26
16 2 13 85 1.17 1.31
17 1 29 70 1.31 1.33
18 3 87 10 1.93 1.27

(b) VBEM

K∗\K̂ 8 9 10 11 12 13 14 15 16 17 18 EK∗ EK̃
10 100 0.00 0.00
11 100 0.00 0.00
12 100 0.00 0.00
13 100 0.00 0.00
14 4 96 0.04 0.45
15 1 2 35 62 0.39 0.85
16 1 28 53 18 1.12 1.26
17 6 53 35 6 2.59 2.61
18 1 7 32 44 16 3.33 2.67

(c) EB

K∗\K̂ 8 9 10 11 12 13 14 15 16 17 18 EK∗ EK̃
10 100 0.00 0.00
11 100 0.00 0.00
12 100 0.00 0.00
13 100 0.00 0.00
14 100 0.00 0.00
15 1 99 0.01 0.04
16 30 70 0.30 0.44
17 33 67 1.33 1.35
18 1 95 4 1.97 1.31
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Figure 3 – MSE ratios in model 2 simulation. The results for graphs with each network size n are shown
in a panel, plotted in the same format as Figure 2.

be detected. Therefore, K̃ may better reflect the number of clusters that fit well the observed network.213

Considering this, we see JEB had both smaller EK∗ and EK̃ than JVBEM in general, which indicates214

the superiority of our model selection method. JCVRP showed relatively stable performance in terms of215

EK∗ and EK̃ , but the results were not satisfactory for small K∗. In summary, from the simulation results216

on dense graphs (model 1), EB has demonstrated the highest estimation accuracy, especially when the217

clustering algorithm finds the true number of communities, and the EB model selection criterion generally218

selects the best model.219

Detecting the true number of blocks for a sparse graph (model 2) is harder because of fewer edge220

connections in a block. Thus, we fixed K∗ = 10 and varied the network size n from 200 to 450. In terms221

of estimation accuracy, Figure 3 shows that our EB estimate had better performance than MLE in almost222

all the cases (except when K = 1 under which the two estimates were identical), and the MSE ratio kept223

decreasing as K increased. In particular, for K = K∗ = 10, the MSE ratio of EB over MLE was about224

95%. If the number of blocks is overestimated (say K > 15), the MSE ratio can drop to < 90%. When225

compared to VBEM, for a small network size n and a small number of blocks K, EB estimates can be226

slightly less accurate (< 5% increase in MSE), but as K increases and becomes close to K∗, the MSE227

ratio decreases to the same level as that of EB over MLE. As reported in Table 2, for all the cases JEB228

achieved the best model selection performance with the smallest EK∗ and EK̃ among the three methods.229

This highlights the usefulness of our model selection criterion for the more challenging sparse graph230

settings.231

More detailed results for both models 1 and 2 in this simulation study can be found in the Supplemen-232

tary Material.233

3.1.2 Results on SBM: heterogeneous block connectivity234

In this section, we show how the performance changes when heterogeneous block connectivity probabili-
ties are used. We consider the following connectivity matrix

Θ
∗ = ρ




λ1 ε12 . . . ε1K∗

ε21 λ2 . . .
...

...
. . . ε(K∗−1)K∗

εK∗1 . . . εK∗(K∗−1) λK∗




K∗×K∗

,
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Table 2 – Model selection comparison for model 2 (K∗ = 10) among the K̂ chosen by (a) CVRP, (b)
VEBM, and (c) EB, in similar format as Table 1.

(a) CVRP

n\K̂ 1 2 3 4 5 6 7 8 9 10 11 12 EK∗ EK̃
200 100 9 2.84
250 100 9 6.86
300 95 1 4 8.56 8.84
350 71 1 14 14 6.55 8.17
400 37 28 35 3.61 5.21
450 17 11 71 1 1.65 2.50

(b) VBEM

n\K̂ 1 2 3 4 5 6 7 8 9 10 11 12 EK∗ EK̃
200 28 51 19 2 8.05 2.18
250 8 30 42 13 6 1 6.16 4.04
300 1 11 31 37 20 4.36 4.59
350 14 43 36 7 2.64 4.22
400 3 34 47 14 1 1 1.27 2.83
450 1 3 37 52 6 1 0.54 1.25

(c) EB

n\K̂ 1 2 3 4 5 6 7 8 9 10 11 12 EK∗ EK̃
200 6 12 24 29 24 4 1 5.31 2.09
250 6 21 38 21 12 2 3.82 2.20
300 1 13 32 35 18 1 2.41 2.74
350 2 31 47 20 1.15 2.81
400 10 38 48 3 1 0.63 2.13
450 2 13 78 7 0.24 0.97

where the values are sampled from uniform distributions.235

Similar to model 1, to generate dense graphs (model 1s), we set ρ = 1, and drew λi ∼ U(0.5,0.9)236

for i ∈ {1, . . . ,K∗} and εi j ∼ U(0.3,0.5) for i, j ∈ {1, . . . ,K∗}, i ̸= j. We generated graphs with n = 200237

vertices and the number of communities K∗ ∈ {10,11, . . . ,18}. For each choice of K∗, we generated 100238

networks independently with parameters sampled from the above uniform distributions. For each network,239

the nodes were randomly divided into K∗ clusters with equal probability 1/K∗, and then connected240

according to the connectivity matrix Θ∗ and their cluster labels. Overall, EB outperformed MLE and241

VBEM with respect to MSE. Different from model 1 where the smallest ratios of EB/MLE and EB/VBEM242

were observed at K = K∗ for most of the simulations, the MSE ratio of EB over MLE and VBEM243

decreases smoothly with the increase in K (Figure 4). In terms of model selection, EB was better than244

VBEM when K∗ ≥ 14 and comparable to VBEM with smaller K, although the improvement was slightly245

less substantial. The detailed results are reported in Table 3.246

We also used ρ = 0.2 and the same setting for λ and ε as above to generate sparse graphs (model247

2s), while keeping K∗ = 10 but changing the network size n ∈ {200,250,300,350,400,450}. For each248

network size n, we followed the same procedure as in model 1s and generated 100 networks independently.249

The results are similar to the homogeneous case (model 2). The detailed results are provided in the250

Supplementary Material.251

3.1.3 Results on graphon model252

Following the same design as in Latouche and Robin [2016], we choose a graphon function

W (x,y) = ρλ
2(xy)λ−1

with two parameters λ ≤ 1/
√

ρ . Here, ρ controls the sparsity of the graph, as the expected number253

of edges is proportional to ρ , and λ controls the concentration of the degrees, so that more edges will254

concentrate on fewer nodes if λ is large. We chose ρ ∈ {10−1,10−1.5,10−2} and λ ∈ {2,3,5}, and255

simulated graphs of size n = 100 (model 3) and of size n = 316 (≈ 102.5) (model 4). For each network,256

we used SBM approximation with the number of clusters K = 1,2, . . . ,10. Using (22), we also defined K̃257
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Figure 4 – MSE ratios in model 1s simulation, plotted in the same format as Figure 2.
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Table 3 – Model selection comparison for model 1s among the K̂ chosen by (a) CVRP, (b) VEBM, and
(c) EB, in the same format as Table 1.

(a) CVRP

K∗\K̂ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 EK∗ EK̃
10 2 1 7 42 46 2 0.79 0.88
11 3 1 10 44 42 0.97 1.15
12 1 2 3 15 48 29 1 1 1.1 1.55
13 14 1 2 3 15 22 29 12 1 1 3.17 3.51
14 23 1 16 18 22 15 5 4.81 5.01
15 41 1 3 7 18 11 14 4 1 7.14 6.94
16 45 1 1 3 10 15 13 6 5 1 8.82 7.61
17 53 1 1 1 5 9 12 7 4 3 2 2 10.34 8.53
18 80 1 1 1 1 4 2 7 1 2 14.71 10.37

(b) VBEM

K∗\K̂ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 EK∗ EK̃
10 1 5 88 6 0.13 0.1
11 1 15 81 3 0.2 0.32
12 1 8 27 56 8 0.54 0.85
13 2 6 15 30 25 18 3 1 1.7 2.02
14 1 8 27 13 33 16 2 2.75 2.93
15 1 1 9 17 34 19 13 5 1 3.79 3.43
16 10 13 18 27 18 9 4 1 5.21 3.94
17 1 2 6 19 17 28 9 10 5 2 1 6.3 4.27
18 1 3 4 12 24 16 15 11 8 4 1 1 8.9 4.38

(c) EB

K∗\K̂ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 EK∗ EK̃
10 2 81 13 1 0.17 0.16
11 8 76 15 1 0.25 0.36
12 1 5 5 8 66 13 4 0.58 0.89
13 1 6 8 10 16 19 15 23 1 1 1.76 2.27
14 1 2 3 1 2 11 18 17 17 23 3 1 1 1.63 2.19
15 2 3 3 5 8 8 12 19 25 14 1 1.96 2.48
16 1 2 2 4 10 9 10 18 24 15 3 2 2.48 2.52
17 1 1 3 2 1 10 11 12 19 22 16 1 1 3.56 2.4
18 1 3 5 10 9 5 17 14 17 18 1 4.88 2.73
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Figure 5 – Visualization of the graphon function W (x,y) = ρλ 2(xy)λ−1 in model 3 and 4.

Table 4 – Model selection comparison for graphons. (Reported is the mean absolute deviation EK̃ for
graphs generated under each combination of (ρ,λ ). The minimal EK̃ among the three methods is
highlighted in red.)

n = 100 n = 316
CVRP VBEM EB CVRP VBEM EB

ρ = 10−1 λ = 2 1.16 0.96 1.11 4.92 2.55 2.38
λ = 3 5.42 1.54 2.03 5.8 1.92 1.91
λ = 5 3.88 1.28 1.63 7.43 1.66 1.50

ρ = 10−1.5 λ = 2 2.01 1.86 1.83 4.76 3.72 3.70
λ = 3 1.81 1.02 0.95 3.93 2.02 1.96
λ = 5 2.05 1.03 0.98 4.58 1.60 1.79

ρ = 10−2 λ = 2 0.86 0.85 0.86 2.56 2.24 2.25
λ = 3 1.41 1.45 1.48 1.48 1.35 1.31
λ = 5 1.52 1.61 1.7 2.77 1.72 1.67

as the number of blocks that minimizes the mean squared error (19) of the MLE, i.e. K̃ is the number of258

communities that best fits the observed network. Figure 5 shows the graphon function for some values259

of (ρ,λ ). The parameter ρ controls the scale of the function, and thus the grophon functions reach the260

maximum height when ρ = 10−1. While not shown in the figure, for ρ = 10−1.5 or 10−2 the functions261

are scaled down and have lower heights. Meanwhile, λ controls the concentration of the function, such262

that a graphon defined by a higher value of λ shows a highly concentrated peak as for λ = 5 in the figure.263

The MSE ratios between our EB estimate and the other two competing methods, MLE and VBEM,264

are shown in Figure 6 for graphs of size n = 316. The results for n = 100 are similar and relegated to the265

Supplementary Material. In general, our EB method achieved higher accuracy with smaller MSEs than266

the other two methods. For most cases, our EB estimate was more accurate than the MLE, with the MSE267

ratios between 60% and 100%. Compared to VBEM, our EB estimate achieved substantially smaller268

MSEs with ratios below 20%. For both graph sizes, the improvement of the EB method over the other269

two competitors was especially significant when the graph was sparse (ρ small). In such a case, fewer270

connections between nodes are observed in a network, and there is a high probability to have zero edge271

within the cluster. For blocks with lower connectivity, MLE tends to underestimate their connectivity,272

while shrinkage helps the situation by borrowing information from other blocks.273

The model selection results are reported in Table 4. Since the true number of communities under274

the graphon model is not clearly defined, we used K̃ as the ground-truth to evaluate model selection275

performance. For both n = 100 and n = 316, the mean absolute deviation EK̃ (23) of the K̂ selected276

by our criterion JEB was either the smallest or was very close to the smallest value among the three277

methods. While EB and VBEM were generally comparable, CVRP showed unstable performance as its278

EK̃ could be much larger than the other two methods in some cases (such as ρ = 10−1 and ρ = 10−1.5).279

See Supplementary Material for more detailed results.280

To expand the scope of this study, we further compared the performance of our EB method on graphons281

with a non-Bayesian approach. A commonly used algorithm is network histogram approximation (NHA)282

developed by Olhede and Wolfe [2014]. The authors showed the universality of graphon approximation283
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Figure 6 – MSE ratios in model 4 simulation with graph size n = 316. The results for graphs with each
combination of ρ and λ are shown in a panel.

16/23



Table 5 – Comparison of MSE of the graphon estimates by network histogram approximation (NHA)
and empirical Bayes (EB).

n = 100 n = 316
NHA EB improve % NHA EB improve %

ρ = 10−1, λ = 2 0.00459 0.00351 23.5 0.00284 0.00230 19.1
ρ = 10−1, λ = 3 0.00223 0.00214 3.88 0.000671 0.000654 2.58
ρ = 10−1, λ = 5 0.0116 0.0116 0 0.00760 0.00756 0.55
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Figure 7 – MSE ratios of EB/MLE in spectral clustering simulation. (a) model 1 with parameters
K∗ = 10, n = 200. (b) model 2 with parameters K∗ = 10, n = 450.

through regular stochastic block model and introduced an automatic bandwidth selection rule to select284

the best block model to represent graphon functions. The method fist divides degree-sorted vertices into285

equal-sized groups and selects the histogram bandwidth that maximizes the likelihood under an SBM.286

Given the automatically selected histogram bandwidth, the model parameters are estimated by the MLE287

in (4). In the comparison, we substitute the MLE estimate with our EB estimate to see if it can improve288

the accuracy.289

In our simulation we used NHA to estimation the graphon functions in model 3 and 4 with ρ = 10−1,290

using the suggested parameter (c = 4 in Olhede and Wolfe [2014]) to select the NHA bandwidth. NHA291

did not work on the sparser cases since too many nodes have a degree of zero. Table 5 shows that EB292

indeed improved the graphon estimation by NHA as well. The MSE for each set of parameters shown293

in the table is the average results from 100 networks. For λ = 2 in which case the graphon function has294

lower variability, EB outperformed MLE substantially. For larger λ ’s, the two methods had comparable295

accuracy.296

We briefly summarize a few key observations from the simulation studies. It is seen that EB estimates297

had smaller MSEs than the other two methods in most of the cases above. For the dense SBM (model 1),298

the accuracy of EB estimate was much higher. The relative low variance in connectivity across different299

blocks led to higher degree of shrinkage and information sharing among the EB estimates. For the sparse300

SBM (model 2), heterogenous SBM (model 1s and 2s) and graphon models (model 3 and 4), EB showed301

moderate improvements over the two competing methods in general. When the graph is sparse, EB can be302

much more accurate than VBEM, as shown in Figures 6. As for model selection, EB generally selected303

the number of clusters K̂ that was closer to K∗ and K̃ in all the models above, which demonstrates the304

usefulness of our hierarchical model for deriving likelihood-based model selection criterion.305

3.1.4 Alternative clustering and running time comparison306

Our results and numerical comparisons were conducted to demonstrate the uniform accuracy improvement:307

By varying the input number of clusters so some cluster results could be very inaccurate, our EB estimates308

reached smaller MSEs for almost all the clustering results. To further demonstrate this point, we also309

applied our EB estimates after spectral clustering. As shown in Figure 7, our method improved the310

parameter estimation accuracy as well: Under the same simulation setting as in Figure 2 and Figure 3, the311

EB/MLE MSE ratio shows a similar pattern to the results of the previous simulation in SBMs.312

The computation of our EB method is only the maximization of the likelihood (8, 9). The objective is313

the sum of two separate functions. Thus, we just need to maximize two bi-variate functions, regardless of314

the problem size (n,K). In general, the computation time is negligible compared to the graph clustering315
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step. Table 6 reports the average running times (in seconds) of spectral clustering (TC) and our EB316

estimation (TE ) by BFGS for various network size n and number of communities K, on a single 2.6 GHz317

Intel i7 core. It is seen from the table that for large problems (n = 10000,K = 500), the running time of318

EB estimation step was less than 1% of the runtime of spectral clustering.319

Table 6 – Simulation running time.

(n,K) (100, 10) (1000, 10) (1000, 100) (5000, 10) (5000, 100) (10000, 500)
TC 0.06 0.7 4.4 6.7 149 2696
TE 0.08 0.1 0.2 0.6 1.9 11.6

3.2 Real data examples320

In this section, we apply our empirical Bayes method on two real-world networks. For these networks, we321

do not have the underlying connectivity matrix as the ground truth, which makes it difficult to evaluate322

estimation accuracy. However, for a network with known node labels that indicate their community323

memberships (the “ground truth”), the true partition Ztrue of the vertices is given. Thus, we will develop324

accuracy metrics based on Ztrue to compare different methods.325

For real data, the assumption of the regular stochastic block model (2) may be restrictive. A commonly326

used model is the degree-corrected stochastic block model (DCSBM) [Karrer and Newman, 2011] that327

uses a Poisson distribution to model the number of edges across blocks and takes within-community328

degree heterogeneity into consideration. Some methods have been developed to compare the goodness329

of fit of different types of SBMs to real world networks. Yan et al. [2012] has proposed a method to330

select models for DCSBM, which is essentially a hypothesis test against the null model of a regular SBM.331

The method calculates a test statistic from node degrees and their labels, and compares the value of the332

statistic to a Gaussian distribution to obtain a p-value under the null SBM. We used this method to test333

whether the regular SBM is a good model for the two real-world networks.334

3.2.1 Political blogs335

First we consider the French political blogosphere network from Latouche et al. [2011]. The network is336

made of 196 vertices connected by 2864 edges. It was built from a single day snapshot of political blogs337

automatically extracted on October 14th, 2006 and manually classified by the “Observatoire Presidentiel”338

project [Zanghi et al., 2008]. In this network, nodes correspond to hostnames and there is an edge between339

two nodes if there is a known hyperlink from one hostname to the other. The four main political parties340

that are present in the data set are the UMP (french republican), liberal party (supporters of economic-341

liberalism), UDF (moderate party), and PS (french democrat). However, in the dataset annotated by342

Latouche et al. [2011] there are K∗ = 11 different node labels in total, since they considered analysts as343

well as subgroups of the parties. The test statistic by the method in Yan et al. [2012] yielded a p-value344

of 0.08 according to the bootstrap distribution suggested by the authors, which indicates that the regular345

SBM is a fair representation of this network compared to DCSBM.346

Given the known community memberships, we constructed a connectivity matrix Θ∗ = (θ ∗
ab)K∗×K∗

with entries

θ
∗
ab = XB

ab/nab, a,b ∈ {1, . . . ,K∗}, (24)

where XB
ab is the number of edges observed in block (a,b), nab = |Z−1

true(a)| · |Z−1
true(b)| for a ̸= b and347

naa = |Z−1
true(a)| · (|Z−1

true(a)| − 1)/2, and K∗ is the true number of communities. Then the MSE (18)348

between an estimate Θ̂(K) and Θ∗ (24) were used as an accuracy metric to compare estimated connectivity349

matrices, where K is the input number of clusters.350

We also used test data likelihood as another comparison metric. We randomly sampled 70% of the
nodes, denoted by Vo, as observed training data, and estimated a connectivity matrix Θ̂ = (θ̂i j)K∗×K∗ from
their edge connections and true memberships. Denote by Vt the test data nodes not used in the estimation.
Recall that Xi j is the (i, j)th element in the adjacency matrix of the network. Then test data likelihood
Ltest was calculated according to (2) given the Θ̂ estimated by a method,

Ltest = ∏
i∈Vo, j∈Vt

θ̂
Xi j
ziz j(1− θ̂ziz j)

1−Xi j × ∏
k< j∈Vt

θ̂
X jk
z jzk(1− θ̂z jzk)

1−X jk , (25)
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where zi,z j,zk are the known ground truth labels (ground truth) of the nodes. Note that Xi j ∈ {0,1} is351

the edge connection between a vertex i in the training data and a vertex j in the test data, while X jk is352

the edge connection between two vertices j and k in the test data. We repeated this procedure 100 times353

independently to find the distribution of test data likelihood Ltest across random sample splitting of the n354

nodes into Vo and Vt.355
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Figure 8 – Results for French blogsphere network analysis. (a) The ratio of MSE of EB estimate over
that of MLE and VBEM for different values of K. (b) Box-plot of 100 test data log-likelihood values for
each method. (c) Model selection criteria against input values of K, with dashed line indicating the best
number of clusters K̂ by EB. (d)(e) Histograms of (d) diagonal and (e) off-diagonal shrinkage values ηab
of EB estimate at K = K∗ = 11.

We applied VBEM to detect communities with an input number of clusters K = 1,2, . . . ,20. The MSE356

ratios of EB over the other two competing methods were calculated and plotted against K in Figure 8(a).357

It is clear that EB achieved smaller MSE than the other two methods for all values of K. When K was358

close to or greater than K∗ = 11, EB provided more accurate estimates than both MLE and VBEM with359

smaller MSEs. Figure 8(b) shows the box-plot of test data log-likelihood values across 100 random360

sample splitting. From the box-plots, we see that the test data likelihood of EB was significantly higher361

than the other two estimates. These comparisons confirm that EB estimates were more accurate than the362

other two competing methods in terms of both metrics. In terms of model selection, Figure 8(c) plots363

the three model selection criteria, JCVRP, JVBEM, JEB, over the input range of K. All three model364

selection criteria have been standardized to [0,1] with a higher value indicating a better model, such365

that the best model is selected by the maximizer of each criterion. Accordingly, CVRP, VBEM and EB366

estimated K̂ = 1, 12 and 10, respectively, while the true K∗ = 11. The K̂ by VBEM and EB were both367

reasonably close to the ground-truth, while CVRP did not work well in this case. Figure 8(d) and (e)368

show the distributions of the shrinkage values ηab at K = K∗. We see that the diagonal blocks had higher369

shrinkage. Around 70% of the ηab’s were around 0, which means that most blocks had a similar estimate370

to the MLE, while a few blocks with large ηab borrowed information from shrinkage and increased the371

estimation accuracy.372

3.2.2 Email network373

The Email-Eu-core network (Eucore) is a directed network generated using email data from a large374

European institute, consisting of incoming and outgoing communications between members of the institute375

from 42 departments. Leskovec and Krevl [2014] organized the data and labeled which department each376

individual node belongs to, i.e. the “ground-truth” community memberships. The network has n = 1005377

nodes and 25,571 directed edges, which we converted to undirected ones by removing their orientations.378

Although the test of Yan et al. [2012] suggested rejection of the hypothesis that a regular SBM is the379
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Figure 9 – Results for Email-Eu-core network analysis. (a) The ratio of MSE of EB estimate over that of
MLE and VBEM for different values of K. (b) Box-plot of 100 test data log-likelihood values for each
method. (c) Model selection criteria against input values of K, with dashed line indicating the estimated
K̂ by EB. (d)(e) Histograms of (d) diagonal and (e) off-diagonal shrinkage values ηab of EB estimate at
K = K∗ = 42.

true underlying model, our results on this network still show the improvement brought by EB assuming a380

regular SBM. We leave the generalization of our EB estimate to DCSBM as a future direction.381

We applied VBEM to detect communities with an input number of clusters K = 1,2, . . . ,50. The MSE382

ratios of EB over the other two competing methods were calculated and plotted against K in Figure 9(a).383

Similarly, EB achieved smaller MSE than the other two methods for all values of K. The MSE ratios384

ranged from 60% to 90%. When the input number of communities K was close to or greater than K∗ = 42,385

the improvement of EB over the competing methods became more substantial. Figure 9(b) shows higher386

test data likelihood of EB than the other two estimates. Figure 9(c) shows the values of three model387

selection criteria for k ∈ {1, . . . ,50}. The three methods, CVRP, VBEM and EB, gave estimates K̂ = 1, 39388

and 39, respectively. The K̂ by VBEM and EB were both reasonably close to the ground-truth of K∗ = 42,389

while the performance of CVRP was much worse on this dataset. Moreover, JVBEM is relatively flat390

around the estimated K̂, while the curve of JVBEM shows a higher sensitivity. From the distributions of391

the shrinkage values ηab in (d) and (e), we see η ≥ 0.3 for a good number of diagonal and off-diagonal392

blocks, which led to substantial shrinkage and better performance than the MLE.393

4 DISCUSSION394

We first briefly summarize this paper and then discuss some limitations of this work and potential395

generalizations in future work.396

4.1 Summary397

In this paper, we developed an empirical Bayes estimate for the probabilities of edge connections between398

communities in a network. While empirical Bayes (EB) under a hierarchical model is a well-established399

method, its application to SBMs is very limited before our work. Our method is a natural fit to the400

SBM and the idea is generally applicable to different community detection methods. It does not require401

complicated algorithms or heavy computation, yet can effectively improve the estimation accuracy402

of model parameters. For the large volume of published community detection or network clustering403

algorithms, our parameter estimation method can be adopted as a superior alternative after the node404

clustering step. SBM approximation to graphons could result in a large number of blocks, for which405

case the EB often shows substantial advantage over the MLE, and this was a key motivation for our406
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generalization to graphon estimation. This also helps the development of a good model selection criterion407

based on the marginal likelihood.408

Though shrinkage in empirical Bayes approach leads to more accurate estimate of the connectivity409

probabilities, the improvement depends on the variability of the underlying connectivity matrix or graphon410

function. Typically, a higher variance reduces its improvement relative to the MLE. Therefore, for some411

graphon functions with high volatility, EB cannot guarantee a better estimate, but from our simulation412

results, EB estimate and MLE are usually comparable for such cases. A main reason for this observation413

is that EB estimate uses a very small number of hyperparameters, which effectively reduces the model414

complexity via shrinkage and greatly minimizes the risk of overfitting the data.415

In our experiments, we compared the model estimation accuracy by the mean squared error, which is416

a gold standard criterion to evaluate parameter estimation. However, several other metrics, such as the417

KL-divergence of the estimated graphon function to the truth, deviation of the estimated number of motifs418

in the graph to the true value, and divergence of degree distributions, can also be considered. For the419

application on real data, the goodness of fit of SBM or graphon model to the datasets may be compared to420

more existing network modeling methods in addition to DCSBM. A decent fit of the SBM and/or graphon421

to these datasets will further demonstrate the usefulness of our method in a more convincing way.422

4.2 Future work423

We put a beta conjugate prior on connection probability Θ, and the estimates of the hyperparameters424

(αd ,βd)d={0,1} are always positive. Thus, when a true connectivity θab = 0 for some block (a,b), which425

is likely to happen in sparse networks, our hierarchical model introduces bias to the estimate of θab by426

Eq (6). However, since the empirical Bayes estimator is pooling data in all the blocks, the overall accuracy427

measured by MSE is still expected to be higher. To alleviate this bias, we may consider a proportion γ of428

zero connectivity blocks and only apply shrinkage across blocks with a nonzeor connectivity parameter.429

We have focused on parameter estimation for binary and assortative stochastic block models and
graphons. For some real-world applications, a regular SBM may not be the most appropriate model, and
degree corrected SBM mentioned above is usually a better choice, in which the edge variable Ai j between
two nodes i, j is modeled as

Ai j | zi,z j ∼ Poisson(θziz j ωiω j), (26)

where zi and z j are the node community labels. The node-specific parameter ωi scales the number of430

connections to allow different expected degrees. The idea of empirical Bayes can be generalized for this431

model: After community labels are determined by a graph clustering algorithm, the MLE of ωi, which432

only involves degree distributions and community labels, can be calculated. After we plug in these MLEs,433

we can construct a hierarchical model for the parameters θkm with a conjugate Gamma prior, which leads434

to a similar empirical Bayes estimator for θkm via shrinkage across multiple blocks.435

Further more, the idea can be generalized to more sophisticated random graph models, such as SBM436

with mixed memberships [Airoldi et al., 2008], SBM with weighted edges [Aicher et al., 2015], and437

bipartite SBM [Larremore et al., 2014] etc. While most of the related works focus on graph clustering,438

our empirical Bayes method can be applied after clustering to improve the estimation accuracy and to439

identify a proper number of blocks for these models.440
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