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Abstract

We define a suitably tame class of singular symplectic curves in 4-manifolds, namely
those whose singularities are modeled on complex curve singularities. We study the cor-
responding symplectic isotopy problem, with a focus on rational curves with irreducible
singularities (rational cuspidal curves) in the complex projective plane. We prove that
every such curve is isotopic to a complex curve in degrees up to five, and for curves
with one singularity whose link is a torus knot. Classification results of symplectic iso-
topy classes rely on pseudo-holomorphic curves together with a symplectic version of
birational geometry of log pairs and techniques from four-dimensional topology.

1. Introduction

In this article, we take up an extensive study of singular curves in the symplectic category. We
focus on rational (genus-zero) curves, taking advantage of the singularities to obtain low-genus
curves with high degree. We primarily study irreducible rational cuspidal curves, but also con-
sider reducible configurations with rational cuspidal components. Rational cuspidal curves are
a source of rich complexity in algebraic geometry [KP17, PP17, Pal19, PP20]. We use the term
cusp to refer to any locally irreducible singularity, but we focus on cusps locally modeled on
{xp = yq} where p and q are relatively prime (the link is a (p, q)-torus knot). To the best of
the authors’ knowledge, prior work on singular symplectic curves has been restricted to nodes,
simple cusps ((2, 3)-cusps), and tacnodes (simple tangencies between two branches). Rational
cuspidal curves provide an effective class to work with in the symplectic category because pseu-
doholomorphic curves are most powerful in the rational (genus-zero) case. We give obstruction
results determining which rational cuspidal curves are realizable symplectically in the complex
projective plane, as well as isotopy classification results proving uniqueness of realization up to
symplectic isotopy. Both of these problems (existence and uniqueness) are difficult even in the
complex algebraic category, and in the symplectic category, uniqueness has not even been proven
for smooth curves of degree greater than 17 (our results apply to singular curves of arbitrary
degree).

Complex plane curves have a distinguished history in algebraic geometry: from Zariski’s
examples of singular sextics with distinct fundamental groups in their complements [Zar29], to
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many more recent results continuing to the present from line arrangements to cuspidal curves
(see, for example, [Hir83, ZL83, Har86, ACC03, ACCM05, Ryb11, KP17]). Algebraic geometers
have built powerful tools to tackle these problems: braid monodromy [Moi81, Lib89], Alexander
invariants [Lib82], the log minimal model program [Miy01], and Miyaoka’s inequalities [Miy84].
For example, it was conjectured that every rational cuspidal curve has at most four cusps.
This has recently been proven by Koras and Palka [KP22] using the almost minimal model
program [Pal19] (see [ZO96, Ton05, Pio07] for previous progress on this problem and [PP17,
PP20] for more recent developments). However, a complete classification of singular plane curves
is still far out of reach in this rich subject. Beyond questions of which singular curves exist,
serious study has been devoted to asking how many planar realizations there are of a given
singular curve up to automorphisms of the plane, diffeomorphisms of their complements, or
isomorphisms of the fundamental groups of their complements. Distinct realizations (under one
of these equivalence relations) are often called ‘Zariski pairs’ and it is unknown in general which
curves have Zariski pairs.

Compared with algebraic geometry, the development of tools in symplectic geometry has
occurred relatively recently. The classification of any type of symplectic planar curve, at first
glance, is completely intractable because the space of symplectic curves is a relatively poorly
understood infinite-dimensional moduli space. By contrast, the space of complex algebraic curves
of a particular degree with particular singularities is cut out by finitely many discriminant
polynomials in finitely many complex variables. However, Gromov’s theory of pseudoholomorphic
curves brought some hope that some information about moduli spaces of symplectic curves
could be understood. In particular, Gromov classified smooth symplectic surfaces in the complex
projective plane in degrees one and two up to symplectic isotopy. Although further work extended
this to classify smooth symplectic surfaces up to degree 17 [She00, Sik03, ST05], in degrees greater
than or equal to 18 the question remains open.

Question 1.1 (Symplectic isotopy problem). Is every smooth symplectic surface in CP2 sym-
plectically isotopic to a complex curve?

This question is equivalent to asking, is there a unique symplectic isotopy class of symplectic
surfaces in each degree? The equivalence results from the fact that the moduli space of smooth
complex curves of fixed degree is connected. (The space of all degree-d curves is parameterized
by the coefficients of the defining polynomial, and singular curves have positive complex co-
dimension.) Because of the difficulty of the classification for smooth symplectic curves, there has
been somewhat limited work on singular symplectic curves [McD92a, Bar99, IS99, She04, Fra05].
Nevertheless, the study of singular symplectic curves in CP2 has significant ramifications for the
study of all symplectic 4-manifolds via branched covering constructions [Aur00, Aur06].

Our first result addresses curves with a single cusp singularity. Such curves exist in every
degree d ≥ 3, so we are not bound by the uniform degree constraints encountered in attempts to
answer Question 1.1. Note that the degrees and singularities for possible complex curves of this
type were classified in [FLMN07].

Theorem 1.2. In CP2, every symplectic rational unicuspidal curve whose unique singularity
is the cone on a torus knot is symplectically isotopic to a complex curve, and has a unique
symplectic isotopy class.

As a corollary to our results, we see there are no Zariski pairs of rational unicuspidal curves
with one Puiseux pair. To the best of the authors’ knowledge, the literature does not contain the
statement that there are no Zariski pairs for such complex algebraic curves. However, experts
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believe this might follow from the negativity conjecture of [PP17, PP20] (which would prove the
statement for arbitrary rational cuspidal curves of log general type), together with some analysis
of direct classifications in the cases of log Kodaira dimension at most one.

A great deal of complexity arises when we consider rational curves with more than one
cusp. Although there are basic restrictions relating the degree to the genus of the torus knots
appearing as the links of the singularities, there are many combinations of cusp singularity
types which cannot be realized by complex algebraic curves even though they satisfy these basic
adjunctive requirements. We initiate exploration of multi-cuspidal curves in the symplectic set-
ting with low-degree rational cuspidal curves. The corresponding problem in algebraic geometry
has a long history. Complex algebraic rational cuspidal curves in degrees at most five were com-
pletely classified [Nam84] (see [Moe08] for a more modern exposition). The classification of which
rational cuspidal curves of degree six can be realized complex algebraically was completed by
Fenske [Fen99].

Here we look at symplectic curves up to degree five. Although we do show in § 7.3 that
our methods can say something for curves of degree six, even those with significantly different
properties than those appearing in degree five, we do not venture into the combinatorics to
give a complete classification. In fact, already in degree five there is a great deal of complexity
which could indicate how the symplectic category relates to the complex one. The techniques we
develop to classify the variety of curves in degree five provide a model for how one could approach
many other cases in higher degrees. In degree 5, there are 19 different possible combinations of
different cusp types which satisfy the basic degree-genus restrictions. Of these 19, we show 9
cannot embed symplectically into any symplectic manifold, 8 embed into CP2 with a unique
symplectic isotopy class, and the remaining 2 more only embed symplectically and relatively
minimally into CP2#4CP2. Comparing with known results on such algebraic curves we obtain
the following theorem.

Theorem 1.3. In CP2, every symplectic rational cuspidal curve of degree at most five is sym-
plectically isotopic to a complex curve and has a unique symplectic isotopy class. In particular,
there are no Zariski pairs for rational cuspidal curves of degree up to five.

As the first version of this paper appeared, the result has been extended to degrees six and
seven by the first author and Kütle [GK22].

As mentioned above, our techniques in fact obtain much stronger results than classifications
in CP2. For each of the rational cuspidal curves we consider, we in fact classify the existence
and uniqueness of minimal symplectic embeddings into any closed symplectic 4-manifold (up to
symplectomorphism and symplectic isotopy of the pair). Classifications up to symplectomorphism
of the pair reduce to ambient symplectic isotopy statements in the case that the ambient manifold
is CP2 by Gromov’s result that the space of symplectomorphisms of (CP2, ωFS) is homotopy
equivalent to PU(3) [Gro85, MS12], so in particular is path-connected.

To each singular symplectic curve C, we associate a contact 3-manifold (YC , ξC) which
appears on the boundary of a concave neighborhood of the curve. Our classifications of sym-
plectic embeddings of the curves provide classifications of all symplectic fillings of the contact
manifolds associated with our curves. Thus, we obtain new examples of contact manifolds which
have no (strong) symplectic fillings, unique symplectic fillings, and non-unique but finitely many
symplectic fillings that are classified. Previous complete classifications of symplectic fillings have
primarily been restricted to lens spaces [Lis08, PV10], Seifert fibered spaces [OO05, Sta15], and
torus bundles [GL16]. Our contact 3-manifolds are more general graph manifolds which do not
fall in any of these previous classes.

1597

https://doi.org/10.1112/S0010437X2200762X Published online by Cambridge University Press



M. Golla and L. Starkston

One question we had early on in our investigations, was whether symplectic embeddability
of a certain type of rational cuspidal curve could distinguish the complex projective plane from
a potential exotic or fake copy of CP2. We found that this cannot be the case.

Theorem 1.4. If X is a rational homology CP2 that contains a rational cuspidal curve, then X
is symplectomorphic to CP2.

A similar question was raised by Chen [Che18], who asked which symplectic 4-manifolds with
the same rational homology as CP2 could be split along a contact-type hypersurface into two
pieces, one of which was a rational homology ball.

We also prove a number of existence and uniqueness results for reducible configurations
whose components are rational. These results play a role in proving the results for irreducible
rational cuspidal curves. We summarize here some examples of these results.

Theorem 1.5. Any configuration of symplectic conics and lines of total degree at most five
either has a unique symplectic isotopy class or is obstructed in § 5.2. There is a unique symplectic
isotopy class for each of the infinitely many configurations composed of one rational degree-d
curve C with a singular point with multiplicity sequence [d − 1] together with a line which is
tangent to C of order d.

Two more complicated configurations of two conics with additional lines appear in Figures 11
and 12 and with further techniques we prove they also have unique symplectic isotopy classes.

To prove these results and relate them to each other, we develop a symplectic theory of
birational geometry for pairs (X4, C) where X is a symplectic 4-manifold and C is a (potentially
singular) symplectic curve. We apply this, along with pseudoholomorphic curve techniques, to
give symplectic classifications of many reducible configurations of curves in CP2. We define sym-
plectic proper transforms of curves, and see that the outcome is only well-defined up to symplectic
isotopy (meaning a related through a smoothly varying equisingular family of symplectic curves,
not necessarily related by an ambient isotopy). Because we use symplectic blow-ups and blow-
downs throughout the paper, most of our statements are true only up to symplectic isotopy. The
theory of symplectic birational geometry is based in fundamental work of McDuff on symplectic
blow-up and blow-down. We develop this theory for ‘log’ pairs (X4, C2) to study singular sym-
plectic curves and their isotopy classifications. Although symplectic geometry does not have the
full strength of algebraic geometry’s log minimal model program, by combining this symplectic
birational geometry with pseudoholomorphic techniques and topological tools, we are able to
prove many new results that have not been addressed with pseudoholomorphic curves alone.

Organization. The paper is organized as follows. Section 2 defines singular symplectic curves
and their equivalences, provides background on complex curve singularities and their resolutions,
defines the contact manifold associated to a singular curve, and reviews previous topological
obstructions to rational cuspidal curves. Section 3 develops the tools utilizing pseudoholomorphic
curves and birational geometry that we constantly use throughout the paper. In particular, §§ 3.1
and 3.4 contain the crucial definitions of symplectic proper transform, and of birational derivation
and birational equivalence of configurations of curves, respectively. Section 4 proves Theorem 1.4.
Section 5 studies symplectic isotopy problems for reducible configurations, which will be used
to study the isotopy problem for rational cuspidal curves. Sections 6 and 7 give the proofs of
Theorems 1.2 and 1.3, respectively. In § 8 we give an example, communicated to us by Stepan
Orevkov, of a symplectic rational (non-cuspidal) curve that is not isotopic to any complex curve.
The appendix contains a result about rational homology ball symplectic fillings of lens spaces
that we use in the proof of Theorem 1.2.
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2. Symplectic singular curves

In this section, we start by reviewing some basic facts about singular complex curves. A good
reference for the material we cover here is [Wal04]. Then we give our definitions of the symplectic
analogues.

Let C in C2 be the zero set of an analytic function F (x, y), such that F (0, 0) = 0; we say that
C is singular at the origin if (∂F/∂x)(0, 0) = (∂F/∂y)(0, 0) = 0. We suppose that F is locally
irreducible, i.e. irreducible in the ring C[[x, y]] of power series in two variables; in this case, we
say that the singularity is a cusp. (Note that certain authors call cusps only the singularities of
type (2, 3); we refer to the latter as simple cusps.)

Up to diffeomorphism, C can be parametrized (in a neighborhood of the origin) as the
image of φ : C → C2 defined by φ(t) = (tm, a1t

b1 + · · · + akt
bk) for some positive integers m <

b1 < · · · < bk and some a1, . . . , ak ∈ C∗. Moreover, if we require that the sequence ei defined
by e1 = gcd(m, b1), ei = gcd(ei−1, bi) is strictly decreasing, the exponents m, bi are uniquely
determined. In this case, φ is the Puiseux parametrization of C, and (m; b1, . . . , bk) are the
Puiseux exponents of C; m is called the multiplicity of the singularity.

Remark 2.1. Note that with the above coordinates from the Puiseux parametrization, the cusp
curve C has a unique tangent line {y = 0}. This is the limit of the tangent lines of the nearby
smooth points as dx/dt = mtm−1, dy/dt = b1a1t

b1−1 + · · · , so dy/dx → 0 as t →0 because b1 >m.
For a general complex curve singularity, there are a finitely many locally irreducible branches,
each with a unique complex tangent line. The multiplicity of intersection of the tangent line at
a cusp point is b1 (the solutions to setting y = 0), whereas a line which is not tangent to the
cusp will intersect the cusp with multiplicity m (the solution to setting y = ax = atm for a �= 0).
See [Wal04, Section 2.3] for more details.

Recall that the link of the singularity is the diffeomorphism type of (Sε ∩ C, Sε), where
Sε = ∂Bε is the boundary of a ball of radius ε � 1. The fact that the singularity of C at
the origin is irreducible translates into the condition that the link is a knot (i.e. has one
component).

The Puiseux exponents determine the topology of the singularity: two singularities have the
same Puiseux exponents if and only if their links are diffeomorphic [Wal04, Proposition 5.3.1].

In this paper, we are almost exclusively concerned with singularities whose Puiseux expansion
has k = 1, i.e. it is of the form (m; b1); we say that the singularity is of type (m, b1). Note that
m < b1; however, the link of a singularity of type (m, b1), which is the torus knot T (m, b1), is
isotopic to the torus knot T (b1, m).

2.1 Resolution of singularities

Recall from [Wal04] that every curve singularity can be resolved by blowing up (sufficiently many
times), and the diffeomorphism type of the link determines the topology of the resolution. If
π : X̃ → X is a (multiple) blow-up at a point x ∈ X, and C ⊂ X is a curve, we call π−1(C \ {x})
the proper transform of C under π, and we denote it by C̃; we also call π−1(C) the total transform
of C under π, and we denote it by C.

For every singular curve C ⊂ X, there exists a composition of blow-ups π : X̃ → X such that
C̃ is smooth; we call any such π a resolution of C.

Given a resolution π of C, consider the restriction n := π|
C̃

of π to the proper transform C̃

of C. We call n : C̃ → C (and, by abuse of notation, C̃) the normalization of C. Note that this
is essentially independent of the choice of the resolution: if π′ is another resolution of C and we
construct n′ accordingly, then there is an isomorphism φ between the sources of n and n′ such
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Figure 1. A handle diagram interpretation of the blow-up of a singularity of type (p, q). (Recall
that p < q in a singularity of type (p, q).) There are p strands on each side, and the rectangular
box with the +1 denotes a full twist.

that n = n′ ◦ φ. We also observe that C is cuspidal if and only if the normalization is one-to-one;
in particular, in this case it is a homeomorphism onto its image.

There are two natural stopping points when resolving a singularity: the minimal resolution
is the smallest resolution such that the proper transform C̃ of C is smooth; the normal crossing
resolution is the smallest resolution such that the total transform C of C is a normal crossing
divisor, i.e. all singularities are double points.1

Recall that the multiplicity mp of a singularity p of C ⊂ X is the minimal intersection of a
germ of a divisor D at p with C; that is, mp = minD(C · D)p; the multiplicity of a singularity

has the following interpretation: blow up X at p, obtaining X̃, which contains the corresponding
exceptional divisor E; then mp is the intersection number of E and C̃, i.e. mp = C̃ · E. In terms

of homology, there is an orthogonal decomposition H2(X̃) = H2(X) ⊕ Z[E], and we have [C̃] =
[C] − mp[E]. In particular, [C̃]2 = [C]2 − m2

p. See Figure 1 for a Kirby calculus interpretation of
the blow-up at a cusp with multiplicity p.

We record the singularity types at each step in the minimal resolution into a sequence of
integers, called the multiplicity sequence, as follows. Suppose that the minimal resolution of a
singularity of C is a sequence of k blow-ups, and call Cj the proper transform of C after the
first j − 1 blow-ups, so that C1 = C, and Ck+1 is the proper transform of C in the minimal
resolution. Then Cj has a singularity of multiplicity mj , and we write [m1, . . . , mk] for the
multiplicity sequence of the singularity of C. Note that mj+1 ≤ mj for each j, but that not every
sequence of integers correspond to the multiplicity sequence of a singularity; for instance, [3, 2, 2]
is not the multiplicity sequence of any singularity. The multiplicity sequence of an irreducible
singularity determines the singularity [Wal04, Theorem 3.5.6]; however, the multiplicity sequence
is defined both for irreducible and reducible singularities.

Remark 2.2. Algebraic geometers often consider the multiplicity sequence associated with the
normal crossing divisors resolution of the singularity, rather than that associated with the mini-
mal resolution. In fact, one determines the other: if the latter ends in mk > 1, the former coincides
with it until the kth entry, and then ends with a sequence of 1s of length mk. These last entries

1 The terminology in the log algebraic geometry community (e.g. in [KP17, PP17, PP20, KP22]) seems to by
slightly different: they call minimal weak resolution (or, in earlier papers, minimal embedded resolution) what we
call minimal resolution, and minimal log resolution what we call normal crossing resolution.
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corresponds to the blow-ups needed to make the last exceptional divisor in the minimal smooth
resolution disjoint from the proper transform of the curve.

Given a cuspidal curve C, we say that the multiplicity multi-sequence of C is the union
of all multiplicity sequences of singularities of C. This is only well-defined up to choosing an
order of the cusps. Instead of making the choice, we just sort all the entries decreasingly. We use
double-bracket notation to denote the multiplicity multi-sequence: [[m1, . . . , mn]].

Example 2.3. The multiplicity of a singularity whose link is the torus knot T (p, q) is min{p, q}.
For a singularity of type (p, p + 1), one blow-up already yields a smooth curve, and so the
multiplicity sequence is [p]. In general, after blowing up once at a singularity of type (p, q), the
resulting curve has a singularity whose link is T (p, q − p) (and, therefore, is of type (p, q − p)
or (q − p, p), depending on whether q is larger or smaller than 2p). Iterating this process, one
eventually reaches a smooth curve.

The following are the singularities that will appear in our examples.

(i) For a singularity of type (p, kp + 1), the multiplicity is p, and singularity of the proper
transform in the first blow-up is of type (p, (k − 1)p + 1). It follows inductively that the
multiplicity sequence is the string of length k, [p, . . . , p]. In particular, a curve with a singu-
larity of type (p, 2p + 1) and a curve with two singularities of type (p, p + 1) have the same
multiplicity multi-sequence, [[p, p]].

(ii) A singularity of type (p + 1, 2p + 1) has multiplicity sequence [p + 1, p]. In particular the
singularity of type (3, 5) has multiplicity sequence [3, 2].

(iii) A singularity of type (p, 4p − 1) has multiplicity sequence [p, p, p, p − 1] (p ≥ 3).

Here we describe the normal crossing resolution of singularities of type (p, q). This is best
described in terms of continued fraction expansions; given a rational number r, we write

r = [a1, . . . , ak]
− = a1 −

1

a2 −
1

· · · −
1

ak

for its (negative or Hirzebruch–Jung) continued fraction expansion, where ai ≥ 2 for each i ≥ 2.
In what follows, we adopt the notation a[�] to denote a string of � entries, all equal to a; for

instance, [2[�]] will be the multiplicity sequence of the singularity of type (2, 2� + 1).
It consists of a plumbing of spheres along a three-legged star-shaped graph decorated by

Euler classes. The Euler class on the central vertex is −1; that is, the central vertex is the
exceptional divisor corresponding to the last blow-up in the resolution. Two of the legs are linear
chains whose decorations give the continued fraction expansions of

p

p − q∗
and

q

q − p∗
,

where qq∗ ≡ 1 mod p and 0 < q∗ < p, and pp∗ ≡ 1 mod q and 0 < p∗ < q.
More precisely, the resolution graph of the singularity of type (p, q) looks like the following:

•
• •

◦
• •

. . .

. . .

−1

−a1 −am

−b1 −bn

�����

��
��

�
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where p/(p − q∗) = [a1, . . . , am]− and q/(q − p∗) = [b1, . . . , bn]−, and the hollow dot represents
the proper transform of C. (It might be helpful to recall that p/(p − q) = [am, . . . , a1]

− and
q/(q − r(p, q)) = [bn, . . . , b1]

−, where r(p, q) is the remainder of the division of p by q.)
The following lemma is well-known among algebraic geometers; we include a proof

both for completeness and to give an example of the techniques for low-dimensional
topologists.

Lemma 2.4. Suppose C is a singular curve in X4 with a singularity of type (p, q) at x0. Consider
the normal crossing divisor resolution of the singularity of C at x0 in X̃. Then the proper
transform C̃ of C in X̃ satisfies C̃ · C̃ = C · C − pq.

Proof. We prove the result by induction on the length � of the multiplicity sequence of the
singularity.

If � = 1, the singularity is of type (p, p + 1) for some p, and the first blow-up already gives
the minimal smooth resolution. The total transform of C in the minimal resolution consists of
the proper transform of C and the exceptional divisor, and the two have a tangency of order p; as
observed previously, the proper transform has self-intersection C · C − p2. To get to the normal
crossing divisor resolution, we blow up p times at the tangency; because the proper transform
of C was already smooth, each of these blow-ups decrease the self-intersection by one, hence
C̃ · C̃ = C · C − p2 − p · 1 = C · C − p(p + 1), thus proving the base case.

If � > 1, blow up once at x0; the singularity of the proper transform of C will be of type
(p, q − p) (or, possibly, (q − p, p)), and the length of its multiplicity sequence decreases by 1 by
definition; therefore C̃ · C̃ = C · C − p2 − p(q − p) = C · C − pq, as desired. �

If C is a curve of self-intersection s with a unique singularity of type (p, q), then the total
transform of C is the full plumbing graph, where the hollow dot is replaced by a vertex with
Euler class s − pq. In our applications, in the case of a unique singularity, if s − pq > 1, we will
blow up further times along the edge between the central vertex and this short leg to change the
coefficient on the central vertex to −2 and add a chain of s − pq − 2 more (−2)-vertices, a single
(−1)-vertex, and a single +1-vertex.

In general, we can resolve each singularity of C independently of the others; furthermore,
if all singularities are of type (pi, qi), the total transform of C will look like a plumbing tree,
obtained by fusing the resolution graphs of the individual singularities along the hollow vertex,
whose weight is s − ∑

i piqi.
For instance, when C is a rational curve with self-intersection 16, with a singularity of type

(2, 3) and one of type (2, 5), the total transform C of C in the normal crossing resolution of C
is described by the following plumbing diagram:

• •

•

• •

•

•

•

0 −1

−2

−3 −2

−1

−2

−3 �������

��������������

�������

Here the vertex labeled with 0 = 16 − 2 · 3 − 2 · 5 is the proper transform C̃ of C, and is obtained
by fusing the corresponding hollow vertices in the resolution diagrams for the two singularities
of C.
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2.2 Singular symplectic curves

We are now ready to define the main objects of interest in the paper.

Definition 2.5. A singular symplectic curve C in a symplectic 4-manifold (X, ω) is a subset
C ⊂ X such that:

(i) there exists a finite subset Sing(C) ∈ C such that C \ Sing(C) is a smooth symplectic
submanifold of X;

(ii) every q ∈ Sing(C) has an open neighborhood U ⊂ X, such that there exists a sym-
plectomorphism (U, C ∩ U) → (V, D ∩ V ), where V ⊂ C2, and D is a complex algebraic
curve.

We call Sing(C) the set of singularities of C, C \ Sing(C) the smooth part of C. We say that C
is cuspidal if all its singularities are cusps (i.e. locally irreducible).

As the singularities are locally modeled on complex curves, we have the resolutions of § 2.1.
In particular, C can be parameterized as a locally injective smooth image of a parameterization
f : Σ → X which is an embedding away from the singular points (Σ is the normalization). When
this normalization Σ is connected, the curve C is irreducible. When Σ is disconnected, C is
reducible and we consider it as a curve with labeled components.

When we want to refer to the abstract topological type of the singular curve, namely the
labeled components and their homology classes, and the topological types of the singularities
(encoded by the links of the singularities up to isotopy), we call it a configuration and denote
it with script font. A specific symplectic realization C of a configuration C will be a singular
symplectic curve with the homology and singularity data specified by C.

We restrict to singularities modeled by complex curves because these are the singularity
types that can occur in pseudoholomorphic curves by two results of McDuff, that we summarize
in the following theorem.

Theorem 2.6 (McDuff [McD92b]; see also Micallef and White [MW95]). Let C be a
J-holomorphic curve in an almost complex 4-manifold (X, J).

(1) If C is not multiply covered, there is a neighborhood U of each of its singular points such
that the pair (U, U ∩ C) is homeomorphic to the cone over (S3, Kx) where Kx is an algebraic
link in S3 that depends only on the germ of C at x.

(2) There are an almost complex structure J0 and a J0-holomorphic curve C0, such that J0 is
integrable near each of the singular points of C0 and (X, C) is homeomorphic to (X, C0);
moreover, J0 can be chosen to be arbitrarily close to J in the C0-topology and C0 can be
chosen to be arbitrarily close to C in the C1-topology.

As the symplectic condition is C1-open, it is preserved by C1-small isotopies. It follows
that any J-holomorphic singular curve for any ω-compatible J is C1-close to a curve C0 whose
singular points have complex models. Since C1-small isotopies do not affect questions of existence
or uniqueness, we model singular symplectic curves with complex Darboux charts as given in
Definition 2.5.

There are two different notions of genus for a singular curve C. Recall that every singularity
can be perturbed; that is, it can be replaced with a Milnor fiber, locally defined by a perturbation
of the equation for the singularity. The genus of the Milnor fiber is also the 3-genus of its link,
and it is a topological invariant of the singularity. If q is a singular point of C, with r branches,
we define µ(q), the Milnor number of q, as the first Betti number of the Milnor fiber of the
singularity of C at q; we define δ(q) by 2δ(q) = µ(q) + r − 1. If q is a cusp point of C, then δ(q)
is just the genus of the Milnor fiber of the singularity.
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For the following definition, we borrow the terminology from algebraic geometry.

Definition 2.7. Let C be a singular symplectic curve. We call pg(C) := g(Σ) where Σ is the
normalization of C, the geometric genus of C, and we will say that C is rational if its geometric
genus is zero.

We call

pa(C) := pg(C) +
∑

p∈Sing(C)

δ(p) (2.1)

the arithmetic genus of C.

As pa(C) is the genus of a symplectic smoothing of C, C satisfies the adjunction formula

KX · C + C · C + 2 − 2pa(C) = 0. (2.2)

It follows from the adjunction formula that for a singularity with multiplicity sequence
[m1, . . . , mn]

δ(p) =
1

2

∑
mj(mj − 1). (2.3)

Our focus will be on singular symplectic curves in CP2. In this case, because H2(CP2; Z) ∼=
Z, the homology class of a curve is determined by an integer. We use the convention that
[CP1] with the complex orientation is the positive generator which we often denote by h. Note
that 〈[ω], [CP1]〉 =

∫
CP1 ω > 0. As all symplectic surfaces have positive symplectic area, their

integral homology classes will correspond to positive integers. Extending the terminology from
the algebraic case, we have the following definition.

Definition 2.8. The degree of a (singular) symplectic curve C in CP2 is the positive integer d
such that [C] = d[CP1] ∈ H2(CP2; Z).

We focus on classifying pairs (X, C) which are relatively minimal, meaning there are no
exceptional spheres in X that are disjoint from C. The following definition will be convenient.

Definition 2.9. A singular symplectic curve C is said to be minimally embedded in a symplectic
4-manifold (X, ω) if X \ C contains no exceptional symplectic (−1)-spheres.

There is a natural equivalence relation between different singular curves.

Definition 2.10. A symplectic equisingular isotopy of singular symplectic curves is a one-
parameter family of singular symplectic curves Ct ⊂ (X, ω) such that for each t, t′ ∈ [0, 1] the
curves Ct and Ct′ have topologically equivalent singularities. If Ct is reducible, we label the
components of Ct and require the discrete labeling to vary continuously in t (i.e. the labeling is
preserved by the family).

We may sometimes drop the term equisingular for brevity and simply say that C0 and C1

are symplectically isotopic, with the understanding that all of the isotopies we consider in this
article are equisingular.

Note that each singularity is locally uniquely determined up to equisingular isotopy by the
smooth isotopy class of its link. Our definition of a symplectic singular curve required the exis-
tence of a local symplectomorphism to a complex curve singularity. Here we verify that complex
curve singularities with the same topological type have the same symplectomorphism type. Thus,
we can take one representative complex model for each topological type of curve singularity.

Lemma 2.11. Suppose C0 and C1 are two complex curves in (C2, ωstd) where (0, 0) is a singular
point for Ci such that the links of the singularities at (0, 0) in Ci for i = 0, 1 are smoothly isotopic.
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Then there exist an equisingular family of curves (C ′
t)t∈[0,1] such that C ′

t has a singularity at the
origin for each t, and there are neighborhoods U0 and U1 of (0, 0) such that Ci ∩ Ui = C ′

i ∩ Ui

for i = 0, 1.

Proof. We can choose two complex charts around (0, 0) such that, for i = 0, 1, Ci has a Puiseux
expansions

y = ci
b1x

b1/m + ci
b1+1x

(b1+1)/m + · · · .

Two singularities are topologically equivalent if and only if they have the same Puiseux exponents
(m; b1, . . . , bk). In terms of the Puiseux expansion, this means that ci

bj
�= 0 and that c� = 0 for

every bj < � < bj+1 such that ej � �. (Recall from the beginning of the section that the sequence
{ei} is defined recursively as e1 = gcd(m, b1) and ei = gcd(ei−1, bi) for i > 1.) As the space of
sequences {c�} satisfying these constraints and the space of local charts are both connected, we
can always isotope one singularity into the other without changing the singularity type. �

Remark 2.12. For smooth symplectic curves in any symplectic 4-manifold (X, ω), any
1-parameter family of curves Ct is induced by an ambient symplectic isotopy. Namely there
exist symplectomorphisms Ψt : (X, ω) → (X, ω) with Ψ0 = IdX and Ψt(C0) = Ct.

On the other hand, singular curves carry local symplectomorphism invariants beyond their
topological type. Therefore, there can be a 1-parameter equisingular family of symplectic (or
even complex) curves which may not be related by an ambient symplectic isotopy.

The differences stem from the preservation by symplectomorphisms of ‘angles’ between col-
lections of symplectic planes intersecting at the origin. For a cusp singularity, the angles are not
as easily visible, but after blowing up to a normal crossing resolution, the position of the inter-
section points of the exceptional divisors can vary. After blowing down one exceptional divisor,
different relative intersection positions of other curves with that exceptional divisor will change
the symplectic angles between the resulting transversally intersecting curves. These angles will
have an effect on the geometry of the cusp when you blow down completely to undo the resolution.

This is the analogue of the situation in the complex category, where, for instance, there
are families of ordinary quadruple points in (C2, 0) such that different elements are related by
deformations but are not isomorphic. These are distinguished by the cross-ratio of the four points
the four branches determine in P(T(0,0)C

2) ∼= CP1.
In order to see the symplectic analogue of the complex statement, we reduce to the linear

case, and argue by dimension-counting. Consider two ordinary n-tuple points in (C2, (0, 0)) for
some n > 1. If there is a global symplectomorphism ψ : (U, (0, 0)) → (V, (0, 0)) between open
sets containing them that sends one singularity to the other, then the differential dψ(0,0) is
a linear symplectomorphism of (T(0,0)C

2, ω) that identifies the n-tuple of tangent spaces to the
branches of the two singularities. The space Sp(4) of linear symplectomorphisms of (R4, ω = ωstd)
has finite dimension dls; the Grassmannian Grω(4, 2) of symplectic planes in (R4, ω) also has
finite dimension dGr. As the diagonal action of Sp(4) on Grω(4, 2)×n is smooth for each n,
the dimension of the orbits is at most dls. The space of ω-planes intersecting positively and
transversely is open and non-empty in Grω(4, 2)×n. This proves that, as soon as dls < ndGr,
the action cannot be transitive on any connected component and, in particular, that there are
isotopic ordinary n-tuple points that are isotopic but not ambient-symplectomorphic. In fact, one
can compute dls = 10 and dGr = 4, because the symplectic condition is open and, therefore, dGr is
the same as the dimension of the Grassmannian of 2-planes in R4. This shows that n = 3 already
suffices.
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2.3 The cuspidal contact structure and its caps

Theorem 2.13. Given a singular symplectic curve C, with specified singularity types and nor-
mal Euler number s. Suppose s = C · C > 0. Then there exists a symplectic manifold (N, ω)
with concave boundary such that N is a regular neighborhood of C, such that [C]2 = s in N .
Moreover, every symplectic embedding of C into a symplectic manifold (X, ω) has a concave
neighborhood inducing the same contact boundary.

Proof. Let C denote the normal crossing resolution of C which is a collection of transver-
sally intersecting curves with specified genus, intersections, and normal Euler numbers. The
intersections are generic double points.

A regular neighborhood U of C can be constructed as a plumbing of surfaces. Moreover, by
undoing the normal crossing resolution, we see that U is the blow-up of a regular neighborhood
N of C. In particular, the intersection form of U is 〈s〉 ⊕ 〈−1〉⊕n for some n ≥ 0.

Because s = C · C > 0, the intersection form of the plumbing is not negative definite. We
claim that the inclusion ∂U → U induces the trivial map on the second cohomology group:
H2

dR(U) → H2
dR(∂U). This follows from the long exact sequence of the pair (U, ∂U): in fact, the

map H2(U, ∂U ; Z) → H2(U ; Z) is presented by the intersection form of U ; because the latter is
non-degenerate, the map H2

dR(U, ∂U) → H2
dR(U) is an isomorphism. It follows that ωU is exact

on ∂U . (The exactness assumption is automatically satisfied if C is rational and cuspidal, because
in that case ∂U is a rational homology sphere and, therefore, H2

dR(∂U) = 0.)
Construct a concave symplectic structure on U , such that C is a symplectic submanifold

using the construction of [GS09] adapted to the concave case [LM19, Theorem 1.3]. Blow down
to obtain the symplectic structure on N .

The existence of an equivalent concave neighborhood in any symplectic embedding follows
similarly from blowing up to the normal crossing resolution and using the analogous result of
[GS09, LM19]. �

Definition 2.14. Given a singular symplectic curve C, defined by the collection of its singular-
ities and its self-intersection, we define (YC , ξC) by YC = −∂N , and ξC as the contact structure
induced by the concave symplectic structure.

Note that the contact structure depends only on the topological types of the singularities
of C, its geometric genus, and its self-intersection. In addition, observe that, in order to define
(YC , ξC), we are using that there exists a normal crossing resolution.

This is a generalization of the contact structures introduced by Chen (see [Che18, Section 4])
for rational curves. The focus in [Che18] was on curves in CP2 (or in symplectic manifolds with
the same algebraic topology). Chen described the contact structure using transverse symplectic
handle attachment, instead of using the normal crossing resolution. The two contact structures
are actually the same because they are both the canonical contact structure on the boundary of
a small concave neighborhood of the curve, though we do not use this fact here.

Remark 2.15. We recall that, if C is an algebraic curve in CP2 of degree d, then the contact
structure ξC is defined algebraically. It is a hyperplane section of the Veronese embedding of
degree d and, hence, its complement inherits a Stein structure from CM = PM \ H.

Remark 2.16. Note that in our setup, C need not be realized as a symplectic curve embedded in a
closed Kähler surface. Instead its regular neighborhood can be defined using its self-intersection
number, genus, and singularities. We exhibit examples of such curves which do not embed in a
closed symplectic manifold (see § 7).
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2.4 Topological obstructions

We mention here two techniques used previously to obstruct rational cuspidal curves in CP2

which have topological interpretations and can thus obstruct symplectic curves (not just complex
algebraic curves).

The semigroup condition was first discovered by Borodzik and Livingston [BL14]. Recall
that to each curve singularity x there is an associated semigroup Γx, that records the local
multiplicities of intersections of germs of curves with the singularity; for instance, for a singularity
of type (p, q), the semigroup is generated by p and q. By convention, we declare that 0 belongs
to Γx, so 0 is the first element of the semigroup, and the multiplicity is the second. We define
the counting function Rx of Γx as Rx(n) = #(Γx ∩ (−∞, n − 1)), and the minimum convolution
F � G of two functions as (F � G)(n) = mink∈Z F (k) + G(n − k); given a rational cuspidal curve
C of degree d, with cusps x1, . . . , xk, and associated R-functions R1, . . . , Rk, let R = R1 � · · · � Rk.
Then, [BL14, Theorem 6.5] asserts that, for each j = −1, 0, . . . , d − 2,

R(jd + 1) =
(j + 1)(j + 2)

2
. (2.4)

Note that this is a smooth obstruction: it obstructs the existence of a rational homology 4-ball
which glues by a diffeomorphism of the boundaries to a regular neighborhood of C.

Remark 2.17. In fact, the function R only depends on the multiplicity multi-sequence, not the
way it is split into multiplicity sequences for individual cusps [BN16, Theorem 1.3.12]. More-
over, one can see that the semigroup condition is a generalization of Bézout’s theorem: see, for
instance, [FLMN06, Proposition 3.2.1].

Example 2.18. In the case of quintics, the only multiplicity multi-sequence that is excluded by
the semigroup criterion is [3, 3], which corresponds to two rational cuspidal curves, one with a
singularity of type (3, 7) and one with two singularities of type (3, 4).

Remark 2.19. There is a strengthening of [BL14] to curves of odd degree, using involutive
Heegaard Floer homology, due to Borodzik, Hom, and Schinzel [BHS18]; in particular, by
[BHS18, Section 5.1], the curves with cusps of types {[2, 2, 2], [2, 2, 2]} and {[2, 2, 2, 2, 2], [2]}
are also obstructed.

We call spectrum semicontinuity an inequality on the Levine–Tristram signature and nullity
functions of the links, σ•, η• : S1 → Z. It is related to the algebro-geometric spectrum semicon-
tinuity, formulated in terms of Hodge-theoretic data, and then recast in more topological terms
by Borodzik and Némethi [BN12, Corollary 2.5.4]. From a curve C, by choosing a generic line
�, we obtain a genus-pg(C) cobordism in S3 × [0, 1] from the connected sum K of links of all
singularities of C, to the torus link T (d, d); this cobordism is obtained from removing a neigh-
borhood of a path connecting all singularities of C, and a neighborhood of the line �. Suppose
that C is rational and its singularities are k cusps. Then K is a knot, and for every ζ ∈ S1

! ⊂ S1

we have

|σT (d,d)(ζ) − σK(ζ)| + |ηT (d,d)(ζ) − ηK(ζ)| ≤ d − 1. (2.5)

Here S1
! is the unit circle with all Knotennullstellen (roots of integer polynomials such that

p(1) = 1) removed; that is,

S1
! = S1 \ {α | ∃p(t) ∈ Z[t], p(1) = 1, p(α) = 0}.

This inequality was essentially proved by Nagel and Powell [NP17], who also introduced the
notation and terminology for S1

! (see also [Con21, Theorem 2.12]).
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To be concrete: all transcendental complex numbers of norm 1 belong to S1
! , so the set of

Knotennullstellen has measure 0. A root of unity belongs to S1
! if and only if its order is a prime

power; for this it suffices to evaluate cyclotomic polynomials at 1: Φpr(1) = p for every prime p
and positive integer r, whereas Φn(1) = 1 whenever n has at least two distinct prime factors.

The obstruction (2.5) is topological, once we assume that there exists a locally flatly embed-
ded sphere � in the homology class h that intersects C transversely and positively in d points. This
assumption is satisfied when C is a symplectic curve, because we can choose an almost complex
structure such that C is J-holomorphic (by Lemma 3.4) and then choose a generic J-holomorphic
line. Then each J-holomorphic line intersects C positively, and the space of J-holomorphic lines
has (real) dimension 4. The J-holomorphic lines which intersect C at a singular point or tan-
gentially has positive codimension (real codimension 2) in the space of all J-holomorphic lines.
Therefore there is a J-holomorphic line which intersects C positively and transversally in d
points.

Example 2.20. The spectrum semicontinuity obstructs the existence of a quintic with two cusps
of type (2, 7). As mentioned in Remark 2.19, this was also obstructed by using Floer-theoretic
techniques. The spectrum semicontinuity is a stronger obstruction, because it holds in the
topologically locally flat category, rather just the smooth category.

3. Pseudoholomorphic techniques

3.1 Proper transforms in symplectic blow-ups

In the symplectic category, blowing up and blowing down take on a slightly different character
than they do in algebraic geometry [McD91]. To perform a symplectic blow-up at a point p in
a symplectic manifold (X, ω), we first choose a Darboux chart centered at p. Remove a ball
inside this chart of radius λ, and collapse the boundary by the Hopf fibration to obtain the
exceptional divisor. Alternatively, remove a ball of radius λ + ε centered at p and replace it
with an ε-neighborhood of a copy of CP1 of symplectic area λ in O(−1). The symplectic form
on the ring of the ball between radius λ and λ + ε agrees with the symplectic form on O(−1)
when the zero section is a symplectic submanifold of area λ. A symplectic blow-down reverses
the operation, replacing an ε-neighborhood of an exceptional divisor of symplectic area λ with
a ball of radius λ + ε (or, equivalently, deleting the exceptional divisor of symplectic area λ and
replacing it by a closed ball of radius λ).

Remark 3.1. In the algebraic geometric (or smooth) category, the blow-up has a well-defined
effect on both the variety and its subvarieties. The effect on the subvarieties gives rise to the
notions of the total and proper transforms discussed in § 2.1. The proper transform turns first-
order data of the subvariety at the point p into zeroth-order information (and second-order
information into first-order information, etc.). Because the symplectic blow-up deletes an entire
ball instead of just a point, we need to define the total and proper transforms of (singular)
symplectic curves in symplectic 4-manifolds with a bit more care.

When we perform a symplectic blow-up at a point, we always choose the radius λ + ε of
the symplectic ball to be sufficiently small such that every sphere Sr(p) of radius 0 < r ≤ λ + ε
intersects the symplectic curves transversally. Note that using the radial vector field in the
Darboux chart as a Liouville vector field, the spheres Sr(p) are contact-type hypersurfaces.

Suppose now that we have a symplectic curve C in X, and that we blow X up at a (possibly
singular) point p on C. The transverse intersections of C with the contact spheres are transverse
links Tr in the spheres Sr(p). Note that if we identify spheres of different radii by a rescaling

1608

https://doi.org/10.1112/S0010437X2200762X Published online by Cambridge University Press



The symplectic isotopy problem for rational cuspidal curves

contactomorphism, the transverse links Tr in the spheres of different radii 0 < r < λ + ε are all
transversally isotopic to each other. If p is a smooth point, the transverse link Tr will be the
standard unknot of maximal self-linking number. If p is a singularity, Tr will be transversally
isotopic to an algebraic link.

For the algebraic proper transform in the blow-up, the exceptional divisor E replaces the
point p, and the proper transform C̃ intersects E according to its tangent derivative information
at that point. Thus, the proper transform is a finite-point compactification in the algebraic blow-
up of the family of transverse links Tr ⊂ Sr(p). We would like to have a similar proper transform
in the symplectic blow-up, but in this case we delete a ball of radius λ instead of only a point.
Therefore, the links Tr for 0 < r ≤ λ would be cut out. We cannot guarantee that the transverse
links Tr for λ < r < λ + ε will finite-point compactify as r → λ with the same diffeomorphism
type as the family Tr for 0 < r < λ + ε as r → 0.

To overcome this issue, we squeeze the entire transverse isotopy Tr for 0 < r < λ + ε into
the collar where λ < r < λ + ε by reparametrizing the radial coordinate by a smooth, strictly
increasing function ρ such that ρ(r̃) = r̃ − λ near r̃ = λ and ρ(r̃) = r̃ near λ + ε. In other words,
in the symplectic blow-up, for λ < r̃ < λ + ε, the proper transform intersects the sphere Sr̃ in a
link T̃r̃ defined by

T̃r̃ := Tρ(r̃).

As r̃ → λ, ρ(r̃) → 0. Therefore, this family extends via a finite-point compactification in the
exceptional divisor in the same manner as the algebraic proper transform. Note that we do
not change the symplectic structure on the ambient symplectic 4-manifold, we only modify the
symplectic curve.

Lemma 3.2. The surface
⋃

λ<r̃<λ+ε T̃r̃ is a symplectic curve.

Proof. We want to prove that the tangent spaces to the surface are still symplectic subspaces; the
idea is that this is true because the bases for the tangent spaces only differ by a positive scaling
factor ρ′(r). Namely, if φ(r, t) denotes a polar parametrization of the original surface such that
φ(r, t) = (Tr(t), r), then φ̃(r, t) = (Tρ(r)(t), ρ(r)) is a parametrization for the new surface and

∂φ̃

∂r
(r, t) = ρ′(r)

∂φ

∂r
(ρ(r), t),

∂φ̃

∂t
(r, t) =

∂φ

∂t
(ρ(r), t),

so the value of ω must be positive on an oriented basis for the curve parametrized by φ̃ because
it is positive on an oriented basis for the curve parametrized by φ. �

A symplectic blow-down reverses this procedure. Deleting an ε-neighborhood of an excep-
tional sphere of weight λ (i.e. the symplectic area is πλ2), we replace it with a symplectic ball of
radius λ + ε. To define the image of a symplectic curve which intersects the exceptional divisor
over Bλ+ε(p) we reverse the squeezing procedure above to stretch the transverse link family back
out. Namely we take the surface defined by the union of the center p of the ball together with
the transverse links Tr ⊂ Sr(p) where

Tr := T̃ρ−1(r).

Note that the definition of the proper transform depends on the choice of the Darboux chart, of
ε and of ρ. However, the symplectic isotopy class is independent of all these choices.

Proposition 3.3. The symplectic isotopy class of the proper transform of a singular symplectic
curve C ⊂ (X, ω) is independent of the choice of the Darboux ball, of ε and ρ, and is related to the
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algebraic proper transform by a diffeomorphism supported in a neighborhood of the exceptional
divisor.

Proof. We start by showing independence of ε. Without loss of generality assume that ε1 > ε0.
If one blow-up/down is performed using ε0 with function ρ0 and the other using ε1 with function
ρ1, we may extend ρ to the interval [λ, λ + ε1] by extending by the identity on the interval
[λ + ε0, λ + ε1]. Therefore, without loss of generality we may assume ε0 = ε1 and simply show
independence of ρi.

To find the symplectic isotopy connecting the proper transforms for different choices of
ρi, define a 1-parameter family of proper transforms using ρs(r) = (1 − s)ρ0(r) + sρ1(r). The
required characteristics of ρ are convex conditions so ρs(r) defines a symplectic proper transform
for s ∈ [0, 1] interpolating between the two choices of proper transform.

We now note that the space of embeddings of Darboux balls (with varying radius) in any
connected symplectic manifold is itself connected. Thus, in order to prove independence (up to
isotopy) of the Darboux ball, we can suppose that we have a 1-parameter family Dt of Darboux
balls centered at p, parametrized by symplectomorphisms (φt : D4

r → X)t∈[0,1] connecting two
Darboux balls D0 and D1. (We can assume that the balls have the same volume by passing to a
subfamily.) Then, by choosing ρ + ε < r, and applying the recipe above, we obtain a 1-parameter
family C̃t of symplectic proper transforms that varies smoothly with t, i.e. a symplectic isotopy
between C̃0 and C̃1.

To see that the symplectic proper transform is related to the algebraic proper transform
by a diffeomorphism, simply re-stretch out the ring between radius λ and λ + ε in the blow-up
by reparametrizing the radial coordinate by ρ−1 (and shrink by reparametrizing by ρ in the
blow-down). Note, this diffeomorphism will not be a symplectomorphism. �

3.2 Pseudoholomorphic curves

Here we prove two technical lemmas that we use throughout.

Lemma 3.4. Let (M, ω) be a symplectic 4-manifold and C ⊂ M be a singular symplectic surface.
The space J ω(C) of almost complex structures J which are compatible with the symplectic
structure ω such that C is J-holomorphic is non-empty and contractible.

Proof. The proof is a mild upgrade of a standard proof that the space of almost complex struc-
tures compatible with a given symplectic structure is contractible. There are multiple ways to
prove this classical fact, and here we follow one given in [MS17, Proposition 2.63].

The first observation to make is that the condition that J ∈ J ω(C) is a pointwise condition.
Namely, at each point x ∈ M , Jx must be an ωx-compatible almost complex structure (at the
vector space level), and whenever x ∈ C, we also require that J preserves all tangent spaces
to C at x. Note that at a singular point in C, there may be more than one branch defining
finitely many distinct tangent spaces, however each branch does have a well-defined tangent
space (Remark 2.1). Note that at a critical point of a J-holomorphic map u : Σ → M , du = 0
so the J-holomorphic condition du ◦ j = J ◦ du is actually vacuous at that point. However, at
nearby smooth points, the J-holomorphic condition does require that J preserves the tangent
space to C, so if J varies continuously over points in M , because the tangent space at a singular
point is the limit of nearby tangent spaces, the requirement that J preserve the tangent spaces
at singular points will be automatically satisfied.

We want to choose J as a continuous section of the bundle π : E → M whose fiber Ex

over x is the space of ωx compatible almost complex structures on TxM , such that the section is
constrained over points x ∈ C to the subset Ex(C) ⊂ Ex of compatible almost complex structures
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on TxM which preserve the tangent space(s) to C. We show that the contraction of Ex to a
point from [MS17, Proposition 2.50] preserves the subset Ex(C). Therefore, the space J ω(C) is
contractible.

One way to show that Ex is contractible is by showing that Ex is homeomorphic to the space
of symmetric positive definite symplectic matrices [MS17, Proposition 2.50(i), (iii)]. Fixing a
standard symplectic basis on TxM , let J0 be the matrix for the standard complex structure.
Then we can identify any almost complex structure J on TxM with a symmetric, positive-
definite, symplectic matrix P by P = −J0J (and J = J0P ). Here, we choose the basis on TxM
with some care along points of C. Near singular points of C, there is, by definition, a symplectic
identification with a subset of C2 such that C is identified with a complex curve (with respect
to the standard complex structure). We choose the basis of TxM compatibly with the standard
coordinates on C2 under this identification so that at singular points, J0 preserves all tangent
spaces to C in TxM . Along smooth points of C, the basis for TxM should extend a symplectic
basis for TxC. Therefore, J0 preserves the tangent space(s) of C at every point. Away from C
Darboux coordinates can be extended arbitrarily.

A deformation contraction from the space of symmetric, positive-definite, symplectic matrices
to a point is given by sending P to P 1−t for t ∈ [0, 1]. It is proven in [MS17, Lemma 2.21]
that P 1−t is a (symmetric, positive-definite) symplectic matrix whenever P is. The contraction
deforming J = J0P to J0P

1−t gives the contraction of Ex. Therefore, it suffices to check that this
contraction preserves the subset Ex(C) of almost complex structures J on TxM which preserve
the tangent spaces of C.

As J0 preserves the tangent spaces of C by assumption on the choice of frame for TM
along C, J preserves the tangent spaces of C if and only if the corresponding matrix P does.
As P is symmetric, it is diagonalizable. A subspace of TxM is an invariant subspace of P
if and only if it is spanned by eigenvectors of P . Similarly a subspace is invariant under
P 1−t if and only if it is spanned by eigenvectors of P 1−t. As the eigenvectors of P are the
same as the eigenvectors of P 1−t, their invariant subspaces are the same. Therefore, if P pre-
serves the tangent spaces of C, P 1−t does as well. Thus, the contraction preserves the subset
Ex(C). �

The strength of using J-holomorphic curves is that we have much greater control over their
geometric intersections. Two general symplectic surfaces may intersect with a canceling pair of
positive and negative intersections, but in this case they could not be realized as J-holomorphic
simultaneously for the same almost complex structure J . When (M, ω) is a 4-manifold with
a compatible almost complex structure J , the orientation induced by ω and J agree. Two
transversally intersecting J-holomorphic curves can be easily seen to have positive intersections
because the almost complex structure induces complex orientations on each of the curves at
an intersection point, which adds up to the positive orientation on the 4-manifold induced by
J . More generally, any (not necessarily transverse) intersection between simple J-holomorphic
curves (possibly with singularities) contributes positively (see [MS12, Section 2.6,
Appendix E.2]).

Lemma 3.5 [McD90]. Let h, e1, . . . , eN be the standard basis for H2(CP2#NCP2) with h2 = 1
and e2

i = −1. Suppose C is a configuration of positively intersecting symplectic surfaces in
CP2#NCP2. Let ei1 , . . . , ei� be exceptional classes which have non-negative algebraic intersec-
tions with each of the symplectic surfaces in the configuration C. Then there exist disjoint
exceptional spheres Ei1 , . . . , Ei� representing the classes ei1 , . . . , ei� , respectively, such that any
geometric intersections of E with C are positive.
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Blowing down exceptional spheres using this lemma, together with exceptional spheres
appearing in a configuration, eventually we blow down spheres in all ei classes and reach a
configuration in CP2.

Proof. Fix an almost complex structure J ∈ J ω(C) which is C∞. Let Λ = 〈ei1 , . . . , ei�〉. As
in [McD90, Theorem 3.4], one can find a maximal collection of disjoint exceptional J-holomorphic
curves generating Λ. (These necessarily represent ei classes, because these are the only classes
of square −1 which are positively oriented by J .) They will intersect C positively because both
are J-holomorphic. �

The order of the ei which we choose to J-holomorphically blow down does depend to some
extent on the configuration C because if one of the surfaces in C represents the class ei0 − ei1 −
· · · − eik , then we cannot blow down a J-holomorphic exceptional sphere in the class ei0 until
we have blown down exceptional spheres in the classes ei1 , . . . , eik first. This is because ei0 has
negative algebraic intersection number with ei0 − ei1 − · · · − eik . If k = 0, then the surface in C
represents the class ei0 so it can itself act as the J-holomorphic exceptional sphere. However,
this is the only restriction on the ordering because the positively intersecting exceptional classes
can be geometrically realized disjointly.

3.3 Embeddings of plumbings into CP2#NCP2

Suppose P is a plumbing of symplectic spheres, such that one of the spheres has self-intersection
+1. In our context, this will typically be a neighborhood of the normal crossing resolution of a
rational cuspidal curve (or possibly a further blow-up). A theorem of McDuff strongly restricts
the closed symplectic manifolds in which P can symplectically embed.

Theorem 3.6 [McD90]. If (X, ω) is a closed symplectic 4-manifold and C0 ⊂ X is a smooth
symplectic sphere of self-intersection number +1, then there is a symplectomorphism of
(X, ω) to a symplectic blow up of (CP2, λωFS) for some λ > 0, such that C0 is identified
with CP1.

More generally, McDuff’s result shows that if the plumbing contains a sphere of square
p �= 4, p > 0, then the symplectic manifold is a blow-up of the pth Hirzebruch surface and the
sphere is identified with the associated 0-section. A sphere of square 4 might be the conic in
CP2 or the sphere representing 2[S2 × {∗}] + [{∗} × S2] in S2 × S2. A sphere of square 0 is a
fiber in a ruled surface. We typically work in cases where we can guarantee that our symplectic
4-manifold is a blow-up of CP2 (or occasionally in S2 × S2). (Note that S2 × S2#CP2 ∼= CP2#
2CP2.)

We now discuss how to classify all symplectic embeddings of P into CP2#NCP2. A symplectic
embedding of a rational cuspidal curve is equivalent (by a sequence of blow-ups supported in a
neighborhood of the rational cuspidal curve) to a symplectic embedding of its normal crossing
resolution plumbing (U, ωU ).

We classify embeddings of P into CP2#NCP2 in two steps (similar arguments appear in many
classification of fillings results, starting with Lisca [Lis08]). First, we determine the possibilities
for the map on second homology induced by the embedding. As the core spheres of the plumbing
form a basis for H2(P ), we just need to classify the possible classes in H2(CP2#NCP2) that these
symplectic spheres can represent. The restrictions here are given by the adjunction formula and
the intersection form on P , as well as the constraint that the +1-sphere in P is identified with
CP1 ⊂ CP2#NCP2. Next, for each possible adjunctive embedding H2(P ) → H2(CP2#NCP2),
we classify the geometric realizations of embeddings P → CP2#NCP2 up to symplectic isotopy.
Typically, we show that such a geometric embedding is unique or that it cannot exist. This will
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be done by supposing that we have such a geometric embedding into CP2#NCP2, keeping track
of the configuration formed by the core symplectic spheres of the plumbing, and then blowing
down using Lemma 3.5. We then look at the possible images of this configuration after blowing
down to CP2. This will generally be a reducible configuration, which we will then try to classify
up to symplectic isotopy. This classification of reducible symplectic configurations in CP2 is the
subject of § 5.

Now we analyze the possible homology classes represented by the spheres in P . A symplectic
surface Σ in a symplectic 4-manifold (X, ω) satisfies the adjunction formula (2.2). When X =
CP2#NCP2, KX = −c1(X) = −3H + E1 + · · · + EN . Here our convention is that h is the class
of CP1, with dual H and ei is represented by the ith exceptional sphere with dual Ei. The
following lemma is a generalization of [Lis08, Propositions 4.4]

Lemma 3.7. Suppose Σ is a smooth symplectic sphere in CP2#NCP2 intersecting CP1 non-
negatively. Then writing [Σ] = a0h + a1e1 + · · · + aNeN (so a0 ≥ 0), we have:

(i)
∑

(a2
i + ai) = 2 + a2

0 − 3a0;
(ii) if a0 = 0, there is one i0 such that ai0 = 1 and all other ai ∈ {0,−1};
(iii) if a0 �= 0, then for all i ≥ 1, ai ≤ 0.

Some particular cases which we use often are:

(iv) if a0 = 1 or a0 = 2, ai ∈ {0,−1} for all 1 ≤ i ≤ N ;
(v) if a0 = 3, then there exists a unique i0 such that ai0 = −2, and ai ∈ {0,−1} for all other i.

The self-intersection number of Σ can be used to compute how many ai have coefficient 0
versus −1.

Proof. As Σ is a sphere (g = 0), the adjunction formula gives

3a0 + a1 + · · · + aN = 2 + a2
0 − a2

1 − · · · − a2
N ,

which can be rearranged to item (i). Note that a2
i + ai ≥ 0 because ai ∈ Z, so the coefficient a0

determines a bound on the possible coefficients ai.
To prove items (ii) and (iii), we use positivity of intersections. Fix an index 0 < i0 ≤ N

and suppose first that ai0 > 0. As Σ and CP1 are symplectic with non-negative intersections,
there is an almost complex structure on CP2#NCP2 such that Σ and CP1 are J-holomorphic
by Lemma 3.4. By Lemma 3.5, we can blow-down a J-holomorphic exceptional sphere in the
class ei for some i. If we blow down a J-holomorphic sphere corresponding to ei for i �= i0, there
is an induced J ′ on the blow-down such that Σ is a singular J ′-holomorphic curve. Therefore,
eventually we have a situation where both Σ and ei0 are represented by J-holomorphic spheres,
so if ai0 > 0, then [Σ] · ei0 < 0. As J-holomorphic spheres must intersect non-negatively, this can
only occur if Σ is exactly equal to the J-holomorphic exceptional sphere representing ei0 . In
particular, if ai0 > 0, then a0 = 0, thus proving item (iii). If a0 = 0, it implies ai0 = 1 and Σ is
a blow-up of the exceptional class representing ei0 . In this case, for ij �= i0 the same argument
shows that aij cannot be positive so we get item (ii).

The particular cases follow from combining items (i) and (iii) and observing which integers
give low values of n2 + n. �

In the following lemmas, Ci and Cj are smooth symplectic spheres in a positive plumbing in
CP2#NCP2 such that [Ci] · h = [Cj ] · h = 0.
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Lemma 3.8. If [Ci] · [Cj ] = 1 (and [Ci] · h = [Cj ] · h = 0), there is exactly one exceptional class
ei which appears with non-zero coefficient in both [Ci] and [Cj ]. The coefficient of ei is +1 in
one of [Ci], [Cj ] and −1 in the other.

Proof. It follows from Lemma 3.7(ii), that [Ci] and [Cj ] have the form [Ci] = en0
− en1

− · · · −
enk

, [Cj ] = em0
− em1

− · · · − em�
. As the algebraic intersection is +1, either en0

= emq or em0
=

enp for some q, p. To rule out the possibility that both of these occur, we consider the symplectic
areas. As Ci and Cj are both symplectic spheres, 〈ω, [Ci]〉, 〈ω, [Cj ]〉 > 0. Each of the exceptional
classes also has positive symplectic area. Let a := 〈ω, en0

〉 > 0 and b := 〈ω, em0
〉 > 0. Then

0 < 〈ω, [Ci]〉 < a − b and 0 < 〈ω, [Cj ]〉 < b − a,

which is a contradiction. �

Lemma 3.9. If em appears with coefficient +1 in [Ci], then it does not appear with coefficient
+1 in the homology class of any other sphere in the plumbing.

Proof. This follows from positivity of intersection and Lemma 3.7. �

Lemma 3.10. If [Ci] · [Cj ] = 0, then either there is no exceptional class which appears with non-
zero coefficients in both, or there are exactly two exceptional classes em and en appearing with
non-zero coefficients in both. One of these classes em has coefficient −1 in both [Ci] and [Cj ] and
the other en appears with coefficient +1 in one of [Ci] or [Cj ] and coefficient −1 in the other.

Proof. This follows from a similar argument as in Lemma 3.8, but with an additional excep-
tional class appearing with coefficient −1 in both [Ci] and [Cj ] to cancel out the positive
intersection. �

When there is a linear chain of such symplectic spheres with self-intersection −2 (consecutive
spheres intersect once), there are few options for the homology classes of the spheres in that chain.

Lemma 3.11. Suppose Σ1, . . . ,Σk are a chain of symplectic spheres of self-intersection −2 dis-
joint from CP1 in CP2#NCP2. Then the homology classes are given by one of the following two
options up to re-indexing the exceptional classes:

(A) [Σi] = ei − ei+1 for i = 1, . . . , k;
(B) [Σi] = ei+1 − ei for i = 1, . . . , k.

The homology class of any surface disjoint from the chain has the same coefficient for e1, . . . , ek+1.

Proof. By Lemma 3.7(ii), each [Σi] = eki
1
− eki

2
. As consecutive spheres intersect once positively,

by Lemma 3.10 either:

(i) ki
2 = ki+1

1 ; or
(ii) ki

1 = ki+1
2 .

Each exceptional class can appear with positive coefficient at most once by Lemma 3.9 so all ki
1

are distinct. Therefore, if for any i0, ki0
1 = ki0+1

2 , we must have that ki
1 = ki+1

2 for all i0 ≤ i ≤ k.
We can never switch from choosing option (ii) to choosing option (i) as we go down the chain.

If ki0
2 = ki0+1

1 and ki0+1
1 = ki0+2

2 (i.e. if we switch from option (i) to option (ii)), then we
have [Σi0 ] = ea − eb, [Σi0+1] = eb − ec, and [Σi0+2] = ed − eb. As [Σi0 ] · [Σi0+2] = 0 we must have
(ea − eb) · (ed − eb) = 0 but (ea − eb) · (ed − eb) = ea · ed − 1 < 0, so we cannot switch from
option (i) to option (ii) either.
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Therefore, if we start with option (i), we get choice (A), and if we start with option (ii) we
get choice (B). For last statement, let ai denote the coefficient of ei in [Σ]. Then the statement
follows from 0 = [Σ] · [Σi] = ∓(ai − ai+1). �

Often, only one of these options can occur. The following particular case will appear
frequently in our homological classifications.

Lemma 3.12. If Σ1, . . . ,Σk form a chain of (−2)-spheres as in Lemma 3.11, such that the chain
is attached to another symplectic sphere Σ0 which does intersect CP1, option (B) can only occur
if e2, . . . , ek+1 all appear with coefficient −1 in [Σ0]. In particular if [Σ0] · h = 1, option (B) can
only occur if [Σ0]

2 ≤ 1 − k.

Proof. By Lemma 3.7, all coefficients of exceptional classes in [Σ0] are negative. Let [Σ0] =
a0h +

∑
i aiei. As [Σ0] · [Σ1] = 1 because they are joined in the chain, the exceptional class which

appears with coefficient +1 in [Σ1] must appear with coefficient −1 in [Σ0]. If the chain Σ1, . . . ,Σk

has homology classes as in option (B), this means a2 = −1. As [Σ0] · [Σi] = 0 for i = 2, . . . , k, we
find that −ai+1 + ai = 0 for i = 2, . . . , k so a2 = · · · = ak+1 = −1.

When a0 = 1, ai ∈ {0,−1} for all i ≥ 1 by Lemma 3.7 so [Σ0]
2 = 1 − #{ai �= 0}. If we have

the chain of −2 spheres with homology classes as in option (B), we must have at least k non-zero
coefficients so [Σ0]

2 ≤ 1 − k. �

These lemmas, together with some arithmetic considerations, generally suffice to allow us to
classify all possibilities for the homology classes of the spheres in a normal crossing resolution.
Given these homology classes we can apply Lemma 3.5 to blow down to a configuration in CP2.
The way that the exceptional classes appeared in the homology classes of the plumbing spheres
affects the intersections between the proper transforms. We record the data of these intersections,
including the degree of tangency between surfaces at each intersection and when intersections
between different components coincide. There may also be singularities in a single component
which we record as well. Fixing this data of the singularities and intersections, we then try to
classify symplectic configurations of surfaces in CP2 up to equisingular symplectic isotopy. In
the next section we solve this classification for families of singular reducible configurations of
symplectic surfaces in CP2 that we need.

3.4 Birational transformations

In complex dimension two, a birational transformation is a sequence of blow-ups and blow-downs.
As blow-ups and blow-downs can be done symplectically [McD90], these transformations from
algebraic geometry can be imported into the symplectic context. When we have a singular surface
in CP2, the birational transformation may change the singularities and self-intersection number
of the surface. The blow-ups can begin to resolve singularities, and blow-downs may create new
singularities.

There are two ways that we will relate singular symplectic surfaces in CP2 using birational
transformations. The first notion is weaker, but for two surfaces related in this way, the existence
of one type of singular surface will imply the existence of another type of singular surface.

Definition 3.13. A configuration C2 in (M2, ω2) is birationally derived from another configura-
tion C1 ⊂ (M1, ω1) if for every symplectic realization Σ1 of C1 in (M1, ω1), there is a sequence of
blow-ups of the pair (M1, Σ1) to the total transform (M1#NCP2, Σ1), followed by a sequence of
blow-downs of exceptional spheres π : M1#NCP2 → M2, such that Σ2 = π(Σ1) is a realization
of C2.

1615

https://doi.org/10.1112/S0010437X2200762X Published online by Cambridge University Press



M. Golla and L. Starkston

From this definition, if we birationally invert the blow-down π by blowing-up, we see that
the total transform of Σ2 in M1#NCP2, contains the total transform of Σ1, i.e. Σ1 ⊆ Σ2. This
follows from the fact that a set is contained in the preimage of its image, so Σ2 = π−1(Σ2) =
π−1(π(Σ1)) ⊇ Σ1. For this reason, we can also refer to the birational derivation relation as saying
that C1 is birationally contained in C2.

Note that this relation is directional. If C2 is birationally derived from C1, it is not typically
true that C1 is birationally derived from C2. To strengthen this notion, we impose a more restric-
tive condition that the exceptional spheres that are blown down by π are actually contained
in Σ1.

Definition 3.14. We say that C1 in (M1, ω1) is birationally equivalent to C2 in (M2, ω2) if for
every symplectic realization Σ1 of C1 there is a sequence of blow-ups of the pair (M1, Σ1) to the
total transform (M1#NCP2, Σ1), followed by a sequence of blow-downs of exceptional spheres
π : M1#NCP2 → M2 such that the exceptional locus of π is contained in Σ1 and Σ2 = π(Σ1) is
a symplectic realization of C2.

Equivalently, a birational equivalence is a birational derivation where in the blow-up Σ1 = Σ2.
Reversing the sequence of blow-ups and blow-downs, we see that any realization Σ2 of C2 in
(M2, ω2) will have exceptional spheres contained in its total transform Σ2 which can be blown
down to obtain a realization of C1 in (M1, ω1). Therefore, birational equivalence is a symmetric
relation. If C1 and C2 are birationally equivalent, they are each birationally derived from the
other.

Without the extra condition for birational equivalence, a birational derivation is not an
equivalence relation. More precisely, suppose that a configuration C2 that is birationally derived
from a configuration C1. Then for any realization Σ1 of C1 it has a resolution such that Σ1 ⊆ Σ2

for some realization Σ2 of C2. However, Σ2 may contain some additional exceptional spheres that
were not contained in Σ1. Therefore, when we blow down the exceptional spheres in Σ1, the image
of Σ2 will only contain Σ1 instead of being equal to Σ1. A weaker equivalence relation could be
obtained from the definition of birational derivation by replacing the condition Σ2 = π(Σ1) by
Σ2 ⊆ π(Σ1), however this relation will not be particularly useful to us.

Note that the number of components of the configuration is preserved by a birational
equivalence but not by a birational derivation.

Example 3.15. Let C1 be a configuration in (CP2, ωFS) whose realizations consist of a single
symplectic conic C with three symplectic lines L1, L2, L3 that intersect the conic tangentially at
three distinct points p1, p2, p3, respectively, and intersect each other transversally at three distinct
points. Blow up at each of the three tangential intersection points, and denote the resulting proper
transforms by C̃ and L̃i. The resulting self-intersection numbers satisfy [C̃]2 = 1 and [L̃i]

2 = 0.
The intersections between C̃ and L̃i are transverse and there are three new exceptional spheres
E1, E2, E3 which pass through those intersection points. See Figure 2. Because [C̃]2 = +1 and
C̃ is a smooth sphere, we can find a symplectomorphism of CP2#3CP2 which identifies C̃ with
CP1. We calculate the possible homology classes of the other surfaces in the picture in terms of
a standard basis which identifies [C̃] = h using Lemma 3.7 and intersection numbers. We find
the only option is

[C̃] = h, [L̃1] = h − e1, [L̃2] = h − e2, [L̃3] = h − e3,

[E1] = h − e2 − e3, [E2] = h − e1 − e3, [E3] = h − e1 − e2.

Lemma 3.5 implies that there exist exceptional spheres in classes e1, e2, e3 which intersect the
labeled surfaces non-negatively. Blowing down such exceptional spheres results in a configuration
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Figure 2. Birational derivation. The lines forming the triangle on the left are L1, L2, L3, and
the circle represents the conic C. After blowing up as indicated in the center figure, we obtain
three exceptional spheres E1, E2, E3. There exist three other exceptional spheres which are not
visible in the center diagram that can be blown down to result in the configuration shown on
the right.

of seven symplectic lines intersecting in six triple points (the three triple points that already
existed between C, Li, Ei for i = 1, 2, 3, and the three triple points that are created when
blowing down e1, e2, e3). Therefore, the configuration of seven lines with six triple points can
be birationally derived from the configuration of a conic with three tangent lines. Note, the
exceptional spheres which are blown down in the last step of the transformation are not included
in the configuration (because none of the surfaces C̃, L̃i or Ei represented a class ei). Therefore,
this is not a birational equivalence.

In order to get a birational equivalence, we would need to augment the original configuration
by adding in components which will become the exceptional spheres that eventually will be blown
down. We can reverse engineer to predict what must be added to our configuration to obtain a
birational equivalence to the same final configuration. The exceptional sphere S̃1 in CP2#3CP2

representing e1 intersects E2 and E3. Reversing the birational transformation by blowing down
E2 and E3, we find that the image S1 in CP2 will be a sphere of self-intersection +1 which must
pass transversally through the tangential intersections between C with L2 and C with L3. The
other exceptional spheres descend similarly to +1-spheres passing through two of the tangential
intersections. Replace our starting configuration by a configuration consisting of the original
conic C and lines L1, L2, L3 with Li tangent to C at pi together with three additional symplectic
lines S1, S2, S3 such that Si intersects C transversally at the points pi+1 and pi+2 (where indices
are taken mod 3). Now the same birational transformation becomes a birational equivalence
between a configuration consisting of a conic with three tangent lines and three lines through
the three pairs of tangent points with a configuration of seven lines with six triple points and
three double points. See Figure 3.

Remark 3.16. In this article, we prove the existence of birational derivations and birational
equivalences using pseudoholomorphic curves. As demonstrated in Example 3.15, we primarily
infer the existence of a particular birational derivation from a singular curve using Theorem 3.6
and Lemma 3.5. Alternatively, we can look for birational equivalences. As seen in Example 3.15,
to upgrade a birational derivation to a birational equivalence, we generally need to augment
the original configuration Σ1 by adding extra components. If these components are symplectic
lines (degree one) in CP2 with sufficiently simple intersections with the other components of Σ1,
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Figure 3. An example of a birational equivalence. The lines forming the outer triangle in
the left figure represent L1, L2, L3, the circle represents the conic C, and the lines forming the
inscribed triangle represent S1, S2, S3. After blowing up at the marked points to get the center

figure, the proper transforms S̃1, S̃2, S̃3 are exceptional spheres. The short line segments in the
center figure represent the exceptional spheres E1, E2, E3. The right figure is obtained by blowing

down S̃1, S̃2, S̃3. The images of E1, E2, E3 after this blow-down are lines in the right figure.

we will see that we can use pseudoholomorphic curves to infer the existence of such augment-
ing curves through Proposition 5.1. In practice, we typically use Theorem 3.6 and Lemma 3.5
along with the homological analysis from § 3.3 to discover a birational derivation. If desired,
we can then reverse engineer to find an augmented configuration yielding a birational equiva-
lence. Then, in proving our results, we may justify the existence of the birational derivation or
justify the existence of the augmentation using the pseudoholomorphic curve results mentioned
previously. Note that once a configuration is augmented to produce a birational equivalence,
no pseudoholomorphic curve result is necessary to justify the existence of the birational equiv-
alence because all of the exceptional curves which one needs to blow-down are visibly included
in the total transform of the configuration. Instead, pseudoholomorphic curves are used for aug-
menting the configuration to get the birational equivalence. By contrast, to state the existence
of a birational derivation from one configuration to another can require pseudoholomorphic
curve machinery to imply the existence of appropriate exceptional divisors which may not be
visible.

Our use of birational derivations and equivalences arises from their implications to symplectic
isotopy problems, which we state next. These implications are somewhat immediate from the
definitions, so the mathematical power goes into proving such birational derivations exist as
described in the previous remark.

Now we give the relations between symplectic isotopy problems and birational derivations
and equivalences.

Proposition 3.17. If C1 is a configuration in (M1, ω1), and C2 in (M2, ω2) is birationally derived
from C1, then any subconfiguration of C2 symplectically embeds into (M2, ω).

This statement is immediate from the definition, but the utility of the statement comes
from its contrapositive. Namely, we show that certain configurations C1 cannot be symplectically
realized in a closed symplectic manifold (M1, ω1), using the non-existence of a subconfiguration
of symplectic curves that can be birationally derived from C1.
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Proposition 3.18. Suppose a configuration C2 in (M2, ω2) is birationally derived from C1

in (M1, ω1), and suppose C2 has a unique (non-empty) equisingular symplectic isotopy class
in (M2, ω2). Then C1 also has a unique (non-empty) symplectic isotopy class in (M1, ω1). If
(M1, ω1) = (M2, ω2) = (CP2, ωFS) and C2 can be realized by a complex curve, then C1 can also
be realized by a complex curve.

Proof. Suppose any two symplectic embeddings of C2 into (M2, ω2) are symplectically isotopic.
Let Q0 and Q1 be two symplectic embeddings of C1 into (M1, ω1). By the definition of birational
derivation, for each i = 0, 1 there is a sequence of blow-ups of Qi to Qi and a sequence of blow-
downs that contract Qi to Ri, where Ri is a symplectic embedding of C2 into (M2, ω2). Then
there exists a family Rt of equisingular symplectic embeddings of C2 into (M2, ω2) for t ∈ [0, 1]
which connects R0 and R1. For each Rt, perform the sequence of blow-ups along the appro-
priate smooth or singular points in Rt to obtain Rt. By the definition of birational derivation,
there is a distinguished subset of the components Qt ⊆ Rt for t ∈ [0, 1], agreeing Q0 and Q1

for t = 0, 1. There are exceptional spheres in Qt for each t ∈ [0, 1] which can be blown down to
give equisingular symplectic embeddings Qt of C1 into (M1, ω1). This gives a symplectic family
connecting Q0 and Q1.

As complex curves are preserved under birational transformations, the last statement follows
from the same proof. �

If C1 and C2 are birationally equivalent, they are each birationally derived from the other
yielding the following corollary.

Corollary 3.19. Suppose C1 in (M1, ω1) and C2 in (M2, ω2) are birationally equivalent. There
is a unique equisingular symplectic isotopy class for C1 in (M1, ω1), if and only if there is a unique
equisingular symplectic isotopy class for C2 in (M2, ω2). If (M1, ω1) = (M2, ω2) = (CP2, ωFS)
and if the equisingular symplectic isotopy class contains complex representatives for one
configuration, it contains complex representatives for the other.

3.5 Riemann–Hurwitz

The Riemann–Hurwitz obstruction uses symplectic information in a more global way. Fix an
almost complex structure J on CP2 such that C is J-holomorphic. Fix a point p ∈ CP2, and con-
sider the pencil of J-holomorphic lines through p, and the associated projection πp : CP2 \ {p} →
CP1. Restricting this projection to π : C → CP1, and pre-composing with the normalization map
n : C̃ → C, gives a ramified covering map π ◦ n : C̃ → CP1. The fact that the only singularities
are ramification points follows from positivity of intersections between J-holomorphic curves.
Ramification points arise from tangencies between lines in the pencil with C and from singular
points of C.

For a point q �= p, the ramification index of n−1(q) is equal to the multiplicity of intersection
of the J-line through q with C. For a smooth point, this is just the order of tangency between the
J-line and C at q. At a singular point q �= p with multiplicity sequence starting with [mq, mq,2]
the ramification index of x = n−1(q) is mq if the J-line from p to q is transverse to C at q. If the
J-line from p to q is tangent to C at q, then x will have ramification index at least mq + mq,2.

A priori, if p ∈ C, the map is not well-defined at p, but, in fact, π has a unique continuous
extension defined by sending p to the image of the J-holomorphic line through p which is tangent
to C at p. In this case, the ramification index of p is equal to the multiplicity of intersection
of the J-line tangent to C at p minus the multiplicity of C at p. Therefore, if p is a singular
point whose multiplicity sequence starts with [mp, mp,2] (where we set mp,2 = 1 if the multiplicity
sequence has length one), then the ramification index of π ◦ n at p is at least mp,2.
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The Riemann–Hurwitz formula is the calculation of the Euler characteristic of the branched
covering in terms of the ramification indices and degree of the cover. If π̃ := π ◦ n : C̃ → CP1 is a
k-fold ramified cover with ramification points x1, . . . , x� with corresponding ramification indices
eπ̃(xj), then

χ(C̃) = k(2 − �) +
�∑

j=1

(k + 1 − eπ̃(xj)) = 2k −
�∑

j=1

(eπ̃(xj) − 1).

In our case, C̃ is a 2-sphere so χ(C̃) = 2. Suppose d is the degree of C. If we choose p /∈ C, then
a generic line through p intersects C d times, so the degree of the cover is d. Therefore, this
equation specializes to

2d − 2 =
�∑

j=1

(eπ̃(xj) − 1).

If instead, we choose p ∈ C, where p has multiplicity mp (where mp is the first entry of the
multiplicity sequence if p is a singular point and is 1 if p is a smooth point of C), then a generic
line through p intersects C at d − mp other points. Therefore, π̃ is a (d − mp)-fold cover. This
gives the following equation and inequality. The inequality is particularly useful as an obstruction
to symplectically realizing certain cuspidal curves in CP2:

2(d − mp) − 2 =

�∑

j=1

(eπ̃(xj) − 1) ≥
∑

q �=p

(mq − 1) + (mp,2 − 1),

which we re-write as follows,

2d − 2mp ≥ 2 +
∑

q �=p

(mq − 1) + (mp,2 − 1). (3.1)

Example 3.20. We can apply Riemann–Hurwitz to exclude the following configurations of cusps
for a quintic: {[3, 2], [2], [2]}, {[3], [2], [2], [2]}, {[2, 2], [2], [2], [2], [2]}, and {[2], [2], [2], [2], [2], [2]}.
In the first case, we project from the [3, 2]-cusp, and we obtain the following contradiction:

2 · 5 − 2 · 3 ≥ 2 + 1 + 1 + 1.

In the second, we project from the [3]-cusp:

2 · 5 − 2 · 3 ≥ 2 + 1 + 1 + 1.

In the third case, we project from the [2, 2]-cusp:

2 · 5 − 2 · 2 ≥ 2 + 1 + 1 + 1 + 1 + 1,

and in the last from any of the cusps, to obtain

2 · 5 − 2 · 2 ≥ 2 + 1 + 1 + 1 + 1 + 1.

Thus, in each of the four cases, we get a contradiction.

4. The necessity of rationality

An interesting question to ask is the following: can we distinguish exotic symplectic 4-manifolds
(for example, a potentially exotic CP2) in terms of the singular symplectic submanifolds they
contain? For example, we show that there are certain rational cuspidal curves which admit no
symplectic embedding in CP2, but a priori such curves could admit symplectic embeddings in
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an exotic symplectic CP2. Though this is an alluring hope, we explain here that rational cuspidal
curves we consider here cannot exist in any exotic or even homology CP2. As mentioned in the
introduction, a similar question was raised, and partially addressed, by Chen [Che18].

We recall that Taubes proved that any symplectic structure on the standard, smooth CP2 is
in fact symplectomorphic, up to rescaling, to the Fubini–Study form [Tau96, Theorem 0.3].

We consider triples (X, ω, C), where X is a rational homology CP2, ω is a symplectic form
on X, and C ⊂ X is a symplectic rational cuspidal curve, and show that X is necessarily CP2.

This question is answered in the algebraic setting by dividing into two cases, depending
on the sign of the canonical divisor. If X is an algebraic surface that is a rational homology
CP2, either KX is not nef, which proves that X is rational (and hence CP2, by our homological
assumption) or KX is nef, in which case Yau proved that X is a ball quotient [Aub76, Yau77].
These are known as Mumford surfaces, or fake projective planes; the first example was given by
Mumford [Mum79], and were classified by Cartwright and Steger [CS10], building on work of
Prasad and Yeung [PY07]. As they are all ball quotients, they have no symplectic rational curves,
for maps from S2 lift to the universal cover, and there are no compact complex (or symplectic)
curves in B4.

In the proof of Theorem 1.4 we also distinguish between the two cases, according to the sign
of the canonical divisor KX (or, equivalently, of the first Chern class); we use techniques inspired
by gauge theory in both cases, albeit in two different ways. The proof in the case where KX < 0
is essentially known to experts, and was already proved by Chen [Che18, Corollary 2.3]; we give
a slightly different proof here. The proof in the case KX > 0 uses tools from Heegaard Floer
homology, and is the part of the proof that is genuinely novel.

Proof of Theorem 1.4. Recall that, for links of curve singularities and their connected sums one
has that the invariant ν+ coming from Heegaard Floer homology [HW16], the slice genus, and
the 3-genus all agree [HW16, Proposition 3]. As pg(C) = 0, the arithmetic genus pa(C) of C is
equal to the sum of the δ-invariants of the singular points of C. In particular, if we let K denote
the connected sum of all links of singularities of C, then ν+(K) = pa(C).

As X admits a compatible almost-complex structure J , c2
1(J) − 2χ(X) − 3σ(X) = 0. As X is

assumed to be a homotopy CP2, this implies that c2
1(J) = 9 and, thus, c1(J) = ±3 PD(h) (where

h = [CP1] ∈ H2(CP2; Z)).
If C has degree d and c1(J) = 3h, as it is for (CP2, ωFS), the adjunction formula (2.2) yields

pa(C) = 1
2(d − 1)(d − 2), and Proposition 4.1 guarantees that X is the standard CP2.

We turn now to the case when c1(J) = −3h; as in the algebraic case, we argue that there are
no symplectic 4-manifolds X with c1(J) = −3h admitting rational cuspidal curves. In fact, now
the adjunction formula yields

pa(C) =
(d + 1)(d + 2)

2
.

Consider the boundary of a regular neighborhood N of C, which is homeomorphic to S3
d2(K).

Then the complement of the interior of N , taken with the opposite orientation, is a rational
homology ball whose boundary is S3

d2(K). Since pa(C) = ν+(K) we have that

d(d − 1)

2
− ν+(K) =

d(d − 1) − (d + 1)(d + 2)

2
= −2d − 1 < 0,

contradicting the bound obtained in [AG17, Theorem 5.1]. �

We conclude the proof with the following proposition, which is mostly a corollary of [MS96,
Corollary 1.5]. This, in turn, follows from work of Liu [Liu96], building on Taubes’ work on
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Seiberg–Witten theory. (See also [Wen18, Theorem 7.36] for a more modern and self-contained
treatment.) The theorem asserts that, if C is a smooth symplectic curve in a closed symplectic
4-manifold (X, ω) such that 〈c1(ω), C〉 ≥ 1, and C is not a (−1)-sphere, then (X, ω) is rational or
ruled. Using the adjunction formula, we can rephrase the hypothesis on the first Chern class into
an assumption on the self-intersection. Namely 〈c1(ω), C〉 = 2 − 2g(C) + [C]2, so the hypothesis
is equivalent to [C]2 ≥ 2g(Σ) − 1 and C is not an exceptional sphere. (Note that the case g(Σ) = 0
is Theorem 3.6.)

Proposition 4.1. Suppose C is a rational cuspidal curve with C · C ≥ 2pa(C) − 1 > 0. If C
symplectically embeds into a closed symplectic manifold (X, ω), then (X, ω) is a rational surface.

Proof. By deforming the curve C in a regular neighborhood using the Milnor fibration model, we
can find a smooth, symplectic surface C ′ ⊂ (X, ω) in the same homology class as C, with genus
g(C ′) = pa(C). By [MS96, Corollary 1.5], (X, ω) must be either a rational surface or an irrational
ruled surface (X ′, ω′). However, Lemma 4.2 shows that X ′ cannot be irrational ruled. �

Lemma 4.2. Let C be a (possibly singular) curve of positive self-intersection in a (pos-
sibly non-minimal) symplectic 4-manifold (X ′, ω′), ruled over a Riemann surface Σ. Then
pg(C) ≥ g(Σ).

Proof. Let J̃ ∈ J ω′

(C). By [McD90, Theorem 3.4] we can find a maximal collection of disjoint
J̃-holomorphic exceptional spheres, to blow down to a minimal surface b : (X ′, ω′) → (X, ω) that
is still ruled over Σ. Note that b(C) is still a singular symplectic surface and it is J-holomorphic
where J is the almost complex structure on X induced from J̃ .

Now, (X, ω) is symplectomorphic to a ruled surface. Let B be the homology class of a
smooth fiber. Consider the moduli space M(J ′, B). As argued in [McD90, Proposition 4.1], if
J is regular for the associated Fredholm operator, there is a unique J-holomorphic B curve
from M(J, B) through each point p ∈ X. Moreover, because B2 = 0 > −2, J is automatically a
regular value of the associated Fredholm operator PB (see [Gro85], [McD90, Lemma 2.8], and
[HLS97]). Therefore, we have a projection map π : X → Σ whose fibers intersect b(C) positively.

By compactness and positivity of intersection, (π ◦ b)|C is onto Σ. Let n : C ′ → C be the
normalization map, and note that, by definition, g(C ′) = pg(C). Pre-composing π ◦ b with n
yields a surjective map π′ = (π ◦ b) ◦ n : C ′ → Σ, hence g(C ′) ≥ g(Σ), as desired. �

5. Symplectic isotopy problems for reducible configurations

In order to obstruct and classify symplectic isotopy classes of rational cuspidal curves and sym-
plectic fillings of their associated contact manifolds, we perform birational transformations to
relate the original problem to a classification of a reducible configuration consisting of multiple
lower-degree smooth components intersecting in a particular way. Depending on the intersec-
tion pattern, such a configuration may be verified to have a unique symplectic isotopy class, or
shown not to exist in CP2. Examples of such configurations shown not to exist symplectically in
CP2 appeared in [RS19]. The example from that article that we use most is the Fano plane: a
configuration of seven lines intersecting in seven transverse triple points.

Typically, we use script letters to denote abstract configuration types, and non-script letters
to denote actual realizations.

5.1 Existence and uniqueness

Our first method of extending symplectic isotopy results to a larger collection of reducible con-
figurations is through the following lemma that allows us to add a line with limited constraints
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to an existing configuration. A single smooth component is known to have a unique symplectic
isotopy class in CP2 if its degree is at most 17 (see [ST05]).

The following proposition gives a way of obtaining many configurations in CP2 with unique
isotopy classes by adding degree-one components sufficiently generically.

All configurations in the statements have labeled components and labeled singular points,
and isotopies preserve the labelings. That is, if C is a configuration of n curves, then its
components are labeled B1, . . . , Bn, and its singular points are labeled P 1, . . . , Pm. When we
say that two realizations of C are isotopic, we mean that the isotopy preserves the labeling.
Viewed differently, an isotopy from a labeled realization of C to an unlabeled one induces a
labeling of C.

Proposition 5.1. Suppose C1 is a configuration of singular symplectic curves in (CP2, ωFS)
obtained from C0 by adding a single symplectic line L. Suppose that in the configuration C1

either:

(i) L intersects the curves of C0 transversally and the intersection points of L with C0 contain
at most two singular points, P i and P j , of C0; or

(ii) L has a simple tangency to a subset of the components of C0, {Bi1 , . . . , Bik} at a single
point P i in C0 (P i may be either a smooth or singular point of B� and it can be a singular
point of C0 in which case it uses the existing label, or a smooth point of C0 in which case
it takes a new label index) and all other intersections of L with C0 are transverse double
points; further assume in this case that in C1, there are no other intersections of L with the
components Bi1 , . . . , Bik outside of the tangent point (but L may intersect other components
in transverse double points).

Then there is a bijection between the isotopy classes of realizations of C0 and those of C1. In
particular, C0 has a unique equisingular symplectic isotopy class if and only if C1 does.

The hypothesis in item (ii) fixes the multiplicity of the intersection of L with the components
of C0 at the point P . The requirement that the tangency is simple means that the multiplicity of
the intersection is as small as possible for a symplectic curve with tangential components. More
specifically, when B� is smooth at P , a line has a simple tangency with B� if and only if the
multiplicity of intersection is two. If B� has a singularity at P , a line has a simple tangency to
B� if and only if the multiplicity of intersection is equal to the third element of the semigroup
of (B�, P ). The second requirement in the hypothesis in item (ii) says that the multiplicity
of intersection of L with B� at P is as large as it possibly can be for global degree reasons.
Thus, these two conditions ensure that the multiplicity of intersection between L and B� is
automatically as it should be whenever L is tangent to B� and their union is a singular symplectic
configuration.

Note that the second constraint in item (ii) is automatically satisfied when B� is a smooth
conic (degree-two curve). It also holds when the tangency occurs at a singular point of B� with
multiplicity sequence [d − 1] when B has degree d. This will be sufficient to cover our applications
in this article. We hope to generalize this isotopy statement for reducible configurations and in
particular, remove the second constraint from the hypothesis in item (ii) through future work.

In most cases, in this article we need not worry about the labels: in most cases, the type of
the points P i and P j (or, in case (ii), of P i) determine the labeling. (For instance, there could
be exactly two triple points in the configuration C0, so that ‘the line passing through the two
triple points’ is well defined, or a unique conic in C0, so that ‘the line tangent to the conic at a
generic point’ is well defined.) However, in general the labels are important when applying this
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Figure 4. Two configurations B1 and B2 which are equivalent as unlabeled configurations. The
circle and oval represent conics C1 and C2. The vertical lines represent lines L1 and L2. A third
line L is the diagonal line in B1 and the horizontal line in B2. The configurations B1 and B2 are
combinatorially equivalent as unlabeled configurations.

proposition. Specifically there may be more than one point in the configuration C0 of the same
type (even lying on the same collection of curves), which one may choose as candidates for P i (or
P j). In this case, the configuration C1 obtained from one choice of candidate for P i is different
than the configuration C′

1 obtained from a different choice of candidate for P i, and there need
not be an equisingular isotopy which takes a realization of C1 to a realization of C′

1, even if C0

has a unique equisingular isotopy class.

Example 5.2. This phenomenon is made explicit in [ASST21]. The configurations concerned, B1

and B2, are made up of two conics C1 and C2 which are tangent at two points, two generic
tangents L1 and L2 to C1, and a third line L passing through a point in L1 ∩ C2 and through
a point in L2 ∩ C2. Depending on the choice of the point in L2 ∩ C2 we obtain two possible
configurations as in Figure 4 (the line L can be either the diagonal line or the horizontal line).
As unlabeled abstract configurations, B1 and B2 are the same; as a labeled configuration, there
are (a priori) four choices for L. It is shown in [ASST21] that two of the four choices admit
realizations B1 and B2 whose complements have non-isomorphic fundamental groups. (In fact,
it is clear from the figure that choices come in symmetric pairs.)

We now can see that an unlabeled version of Proposition 5.1 would lead to a contradiction.
Here Bi \ L has a unique isotopy class: this can be seen, for instance, using the techniques we
develop in this section to show that the two conics have a unique isotopy class and then applying
Proposition 5.1 twice. If we tried to apply an unlabeled version of Proposition 5.1, we would treat
B1 and B2 as the same configuration, and thus their realizations B1 and B2 of Figure 4 (which
is taken from [ASST21, Figure 1]) would be symplectically isotopic. As we know by [ASST21]
that these are non-isotopic, we see that this unlabeled version of Proposition 5.1 is false.

Proof. Let Iso(C0) and Iso(C1) denote the sets of symplectic isotopy classes in (CP2, ωFS) of the
configurations C0 and C1, respectively. There is a natural map

Ψ : Iso(C1) → Iso(C0)

defined by Ψ([C ′]) = [C] where C is the realization of C0 obtained from the realization C ′ of C1

by deleting the realization in C ′ of the line L. It is clear that this map is well-defined, because
if C ′

1 and C ′
2 are symplectically isotopic realizations of C1, there exists a symplectic isotopy C ′

t

1624

https://doi.org/10.1112/S0010437X2200762X Published online by Cambridge University Press



The symplectic isotopy problem for rational cuspidal curves

between them and dropping the realization of the line L from each C ′
t yields a symplectic isotopy

between the realizations C1 and C2 of C0. We show that the map Ψ is surjective and injective to
obtain the stated result.

Recall that Gromov proved that for any almost complex structure J compatible with the
symplectic form, and any two distinct points (P, Q), there is a unique J-holomorphic line through
P and Q [Gro85]. Similarly, for any almost complex structure J compatible with the symplectic
form, and any point and tangent vector (P, T ), there is a unique J-holomorphic line through
P with tangent vector T . This is shown in the proof of [Wen10, Theorem 6.1] (see also [McD91]).

Outline. Before diving further into the proof, we provide an outline of the arguments that follow.
For the proofs of surjectivity and injectivity, we augment a realization C of C0 with an additional
line to a realization of C1. For injectivity, (the harder direction), we augment a 1-parameter
family of realizations Ct of C0 with lines Lt to form a family of realizations of C1. We obtain
these augmented configurations in three steps (performing these three steps first in the case of
discrete realizations, and then in the 1-parametric version). We summarize the three steps here
(stated for a single realization C of C0). In the first step, choose an almost complex structure
J which makes C J-holomorphic, and use the results from [Gro85, McD91, Wen10] to find the
unique J-holomorphic line L passing through two points P, Q, or through a single point P with
tangency T , so that L intersects C in the two singular points or one tangency on C0 required
by the hypotheses. It may seem like at this point we are done, but in fact C ∪ L may not yet
realize C1 because L may intersect C more degenerately than required. We address this issue
in the second and third steps. In step two, case (i), we adjust the line L in a C1 small manner
locally near the points P and Q so that it intersects C transversally at those points (in case it
was originally accidentally tangent at those points). This step is unnecessary in case (ii) because
the multiplicity of the tangency is fixed by the hypotheses. For either case, we perform step
three, where we look at all other intersections of L with C outside of P (and Q), and adjust
L keeping it fixed in small neighborhoods of P (and Q) so that at the end, away from P and
Q, C and L only intersect in generic transverse double points. This provides the augmentation
to a realization of C1. Now we provide the details of this argument and apply it to prove each
direction of the statement.

Surjectivity. We begin with the easier direction: that for each symplectic isotopy class [C] ∈
Iso(C0), there exists a symplectic isotopy class [C ′] ∈ Iso(C1) such that Ψ([C ′]) = [C].

Step 1. Suppose C is a symplectic realization of C0. Let J be an almost complex structure making
C J-holomorphic. In case (i), let P and Q be the special points in C which L is required to pass
through to form the configuration C1 (if there are less than two singular points, one or both of
these points can be chosen generically). Similarly, in case (ii), let (P, T ) be the point and tangent
direction at which L must be placed to form the configuration C1 (again, the point can be chosen
generically if it is not a singular point of C0). Now using the results above from [Gro85, McD91,
Wen10], let L be the unique J-holomorphic line through P and Q or through P tangent to T .
It is possible that at this stage, L passes through additional singular or tangency points of C
which is not desirable for the configuration C1. It also is possible that the intersections at P or
Q fail to be transverse in case (i). In case (ii), the multiplicity of the tangency at P with the
components of i are fixed by the hypotheses so this latter problem is not relevant. We deal with
the latter problem in case (i) first, and then deal with degenerate intersections away from P and
Q in both cases.
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Step 2. For case (i), we now explain how to make any required adjustments to ensure that the
intersections of L with C at P and Q are transverse. Let ÛP and ÛQ be open neighborhoods
of P and Q with disjoint closures, such that P and Q are the only singular points of L ∪ C in
the closures of ÛP and ÛQ. Let UP and UQ be open neighborhoods of P and Q such that the

closures satisfy UP ⊂ ÛP and UQ ⊂ ÛQ. Let MP be the moduli space of J-holomorphic lines
which pass through P , and MQ the corresponding moduli space of lines through Q. Each of
these moduli spaces is diffeomorphic to CP1. The subset of MP of lines which are tangent to C
at P is a compact zero-dimensional subset (similarly for Q). Because this subset has codimension
2, there exists a J-holomorphic line LP (respectively, LQ) which is C∞-close to L and intersects
C transversally at P (respectively, Q). Because LP and LQ are C∞-close to L, and the closures

of the neighborhoods ÛP and ÛQ are disjoint, these lines can be spliced together symplectically.
Our splicing will be a symplectic line which agrees with LP inside UP , agrees with LQ inside

UQ, and agrees with the original L outside of ÛP ∪ ÛQ. Because L has no intersections with C in

ÛP \ UP or ÛQ \ UQ, by choosing the appropriate C∞-closeness for LP and LQ in terms of the

fixed neighborhoods, we can ensure that the spliced line has no intersections with C in ÛP \ UP

or ÛQ \ UQ. Therefore, any intersections of the spliced line with C occur in regions where it is
J-holomorphic, thus creating singularities of C ∪ L with allowable models for singular symplectic
curves (in particular, the intersections are positive). Abusing notation, we rename this spliced
line as L. Note that C has not been changed.

Now the new L ∪ C satisfies the singularity requirements of C1 near P and Q (in case (i) via
the modification and in case (2) by the assumption constraining its intersections). However, it
is still possible that L passes through additional singular or tangency points of C which cause it
to differ from the configuration C1, because it should be intersecting C generically away from P
and Q.

Step 3. To make the final adjustment to L so that C ∪ L will represent the configuration C1,
let U , Û be open sets with U ⊂ Û such that P and Q are not in the closure of Û and any
singular point of C ∪ L which is not one of the designated points P or Q is contained in U . For
a given J , the space of J-holomorphic lines in CP2 has real dimension four. The subspace of
lines which intersect C at a particular singular point is stratified with real co-dimension at least
two, and similarly the subspace of lines which intersects C tangentially is stratified with real
co-dimension at least two. In particular, there exists a J-holomorphic line L̃ which is C∞-close to
L that intersect C generically inside of U , and has no intersections with C in Û \ U . (Again, we
use the assumption that there are no intersections of L with C in the closure of Û \ U .) Although
L̃ likely does not satisfy the required intersection properties at P or Q, we can splice together L
with L̃ inside of Û . Because each L̃ is chosen C∞-close to L, we can construct a symplectic line
which agrees with L̃ inside of U , agrees with L outside of Û , and has no intersections with C in
Û \ U . Again, we rename this spliced line as L. Note that because P and Q lie outside of the Û ,
the new L still intersects C in the special points there as required.

Conclusion. Since C has not been modified, and L has been constructed so that C ∪ L is a
symplectic realization of C1, we have found that Ψ([C ∪ L]) = [C], as desired so Ψ is surjective.

Injectivity. To show that Ψ is injective, suppose that Ψ(A) = Ψ(B) for A, B ∈ Iso(C1). This
means that A is realized by a configuration L0 ∪ C0 of C1 and B is realized by a configuration
L1 ∪ C1 of C1 such that C0 and C1 are symplectically isotopic realizations of C0. Using the
symplectic isotopy from C0 to C1 as realizations of C0, we extend this to a symplectic isotopy
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from L0 ∪ C0 to L0 ∪ C1 as realizations of C1. Let Ct denote the equisingular symplectic isotopy
from C0 to C1.

Step 1 ( 1-parametric). By Lemma 3.4, there exists a family of compatible almost complex struc-
tures Jt such that Ct is Jt-holomorphic for t ∈ [0, 1]. As Ci ∪ Li is a singular symplectic curve,
the space of compatible almost complex structures J ω(Ci ∪ Li) is a non-empty, contractible
subspace of J ω(Ci), which is also contractible. As J ω(Ci ∪ Li) ⊆ J ω(Ci), there are almost
complex structures Jt, t ∈ [−1, 2] agreeing with the previously defined Jt for t ∈ [0, 1] such
that J−1 ∈ J ω(C0 ∪ L0), J2 ∈ J ω(C1 ∪ L1), Jt ∈ J ω(C0) for t ∈ [−1, 0] and Jt ∈ J ω(C1) for
t ∈ [1, 2].

Let Ct = C0 for t ∈ [−1, 0], and Ct = C1 for t ∈ [1, 2]. Now Ct for t ∈ [−1, 2] is an equisingular
symplectic isotopy which is Jt-holomorphic. Define L−1 := L0 and L2 := L1. We construct an
equisingular symplectic isotopy connecting L−1 ∪ C−1 = L0 ∪ C0 to L2 ∪ C2 = L1 ∪ C1.

Let (P t, Qt) (respectively, (P t, T t)) be the two points in Ct (respectively, point and tangent
direction in Ct) which the line Lt must pass through in order to satisfy the constraints of the
configuration C1. Even if some of these points are chosen generically, we make sure to choose
them to vary smoothly with t, and such that P i and Qi lie on Li for i = −1, 2. As in the first
direction, we use Gromov’s and McDuff’s theorems to initially define Lt for t ∈ [−1, 2] as the
unique Jt-holomorphic line passing through P t and Qt (respectively, passing through P t with
tangent direction T t). Because L−1 and L2 are the unique lines satisfying the point (respectively
point and tangency) conditions, this provides a 1-parameter family of Jt-holomorphic symplectic
lines connecting L−1 to L2.

Again we need to deal with the possibility that Lt may develop non-generic intersections
away from P t and Qt, or that the intersections at P t or Qt may become tangencies between
Lt and components of Ct in case (i). We perform a similar C∞-small adjustment of the line
near such problematic points, but now fitting this into the 1-parameter family relative to the
endpoints of the family. Let I = [−1, 2] denote the parameter interval.

Step 2 ( 1-parametric). We again start by ensuring the intersection behavior of Lt is correct near
P t and Qt. (Note this stage is unnecessary in case (ii) because of the stronger hypothesis.) For

this, fix open sets Û t
P and Û t

Q with disjoint closures with Pt ∈ U t
P ⊂ U

t
P ⊂ Û t

P and Qt ∈ U t
Q ⊂

U
t
Q ⊂ Û t

Q for all t ∈ I, such that Lt ∪ Ct has no singular points in Û t
P \ U t

P or Û t
Q \ U t

Q and where

ÛP =
⋃

t∈I

Û t
P ⊂ CP2 × I

and

ÛQ =
⋃

t∈I

Û t
Q ⊂ CP2 × I

are open neighborhoods of the paths Pt and Qt in CP2 × I (and similarly for the smaller neigh-
borhoods denoted without hats). Let MP be the moduli space of pairs (Kt, t) where t ∈ I and
Kt is a Jt-holomorphic line in CP2 which passes through Pt. Similarly, let MQ be the moduli
space of pairs (Kt, t) where t ∈ I and Kt is a Jt-holomorphic line in CP2 which passes through
Qt. Both MP and MQ have natural maps πP : MP → I and πQ : MQ → I (sending (Kt, t) to t),
and these maps are fibrations with fiber diffeomorphic to CP1. The subset BP of MP of pairs
(Kt, t) which are tangent to Ct at P t is a finite set of points in each t-slice, which form a section
or multi-section of the projection MP → I. The same statement holds for the analogous subset
BQ ⊂ MQ. As it is required to pass through P t and Qt, Lt gives a section of πP and a section
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of πQ. As Ct ∪ Lt realizes the configuration C1 for t near ∂I, Lt avoids the bad subsets BP (respec-
tively, BQ) of MP (respectively, MQ) near π−1

P (∂I) (respectively, π−1
Q (∂I)). For X ∈ {P, Q}, let

Lt
X be a section of πX : MX → I which agrees with Lt near π−1

X (∂I), is C∞-close to the section
Lt everywhere and which avoids the bad subset BX . Then Lt

P and Lt
Q are Jt-holomorphic lines

which are C∞-close to Lt. We will splice them together to a smoothly varying I-family of sym-
plectic lines which agree with Lt

P in U t
P , with Lt

Q in U t
Q and with the original Lt outside of

Û t
P ∪ Û t

Q. To make the splicing vary smoothly with t ∈ I, we choose the cut-off functions to vary
continuously with t by letting them be the restrictions to t slices of a smooth cut-off function
supported on ÛX \ UX , for X ∈ {P, Q}. The splicing is trivial near ∂I. We rename the spliced
family Lt.

Step 3 ( 1-parametric). Once the behavior near P t and Qt is correct, we next fix any overly
degenerate intersections of Lt with Ct away from P t and Qt in either case (i) or (ii).
Let U ⊂ U ⊂ Û ⊂ CP2 × I be open subsets whose closures do not contain (P t, t) or (Qt, t) for
any t ∈ I, such that every intersection point of Lt with Ct which is not P t or Qt is contained
in U ∩ CP2 × {t}. Note that this is possible to achieve because no other intersection points can
approach P t or Qt after the above modification which ensures that the multiplicities of the
intersection of Lt with Ct at P t and Qt remain constant.

Let M be the moduli space of all pairs (Kt, t) where t ∈ I and Kt is any Jt-holomorphic
line in CP2. There is a natural fibration π : M → I sending (Kt, t) to t, whose fibers Mt are
diffeomorphic to CP2 (in particular, the fibers are four-dimensional manifolds). The subset Bt of
Mt of Jt-lines Kt which are tangent to Ct at some point other than P t in case (ii) or pass through
a singular point of Ct other than P t or Qt is a stratified subspace with strata of codimension at
least two in Mt. As these subspaces vary smoothly with t, the union B = ∪t∈IBt forms a stratified
subspace of M with strata of codimension at least two. The family (Lt, t) provides a section of
π : M → I, which avoids B near its endpoints, but may intersect B at interior values of t. Let
L̃t be a section which agrees with Lt near its end points, is C∞-close to Lt everywhere and is
disjoint from B. We splice together Lt and L̃t to form a smoothly varying family of symplectic
lines which agree with L̃t inside of U and with Lt outside of Û. This ensures that the intersections
of Lt with Ct near P t and Qt remain as they should be outside of Û and the other intersections
of Lt with Ct remain inside of U (by C∞-closeness) and are made generic as required for the
configuration C1.

Conclusion. Replacing Lt with this splicing provides the required equisingular symplectic isotopy
from C−1 ∪ L−1 to C2 ∪ L2. As C−1 ∪ L−1 = C0 ∪ L0 and C2 ∪ L2 = C1 ∪ L1, this shows that
any two realizations of C1 are equisingularly symplectically isotopic. �

We can immediately recover unique isotopy classifications for small line arrangements.

Corollary 5.3. A symplectic line arrangement with at most six lines has a unique symplectic
isotopy class.

Corollary 5.4. Any configuration of one symplectic conic with three symplectic lines has a
unique symplectic isotopy class unless it is the configuration G of Figure 14 (which we obstruct
in Proposition 5.21).

Proof. Gromov proved there is a unique symplectic isotopy class of a conic Q in CP2 [Gro85].
We are adding at most three lines, and we add lines tangent to the conic first. Therefore we add
the first line, L1 which intersects this conic either tangentially at a point or transversally at two
points and this does not change the uniqueness of the isotopy classification by Proposition 5.1.
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Figure 5. Configuration G3.

If the second line L2 is tangent to the conic, it must intersect L1 generically off of Q. Similarly, if
all three lines are tangent to Q, they must intersect generically unless they form the configuration
G where they intersect at a triple point away from Q. Therefore, tangent lines can be added with
no further constraint than their tangency to the conic at a point, and thus Proposition 5.1 suffices
in these cases. For lines being added with no tangency condition to Q, the only combinatorial
constraints can be that Li should pass through an intersection point of Q ∩ Lj or Lj ∩ Lk for
j, k < i. As Li can intersect Lj at most once, the combinatorics requires Li to pass through at
most i − 1 ≤ 2 points, so Proposition 5.1 suffices to prove there is a unique symplectic isotopy
class of such a configuration. �

Our second strategy to extend the known list of unique symplectic isotopy classes of reducible
curves is to use birational transformations to modify configurations to collections of curves where
at most one of the components is degree greater than one. We use a birational equivalence to
relate the reducible configuration of interest to a reducible configuration we can understand
through Proposition 5.1. We now give a collection of examples using this technique, which we
use later in the paper.

5.1.1 Two conics with a common tangent line. Let G3 denote the configuration consisting of
two conics Q1 and Q2 and a line L1 tangent to both Q1 and Q2 (at different points) such that
Q1 and Q2 intersect at one point with multiplicity three and at another point transversally. See
Figure 5.

Proposition 5.5. The configuration G3 has a unique equisingular symplectic isotopy class.

Let A denote the augmented configuration obtained from G3 by adding two additional lines
L2 and L3 where L2 is tangent to Q1 and Q2 at their multiplicity three tangency point and L3

intersects Q1 transversally at its tangent point with L1 and its tangent point with Q2. See the
upper left part of Figure 6.

Let B denote the configuration consisting of a conic R and four lines M1, M2, M3, M4 such
that M1 and M2 are tangent to R, the intersection of M3 with M2 lies on R, the intersection of
M3 with M4 lies on R and M1, M2 and M4 intersect at a triple point. See the lower right part
of Figure 6.

Lemma 5.6. There is a birational equivalence between A and B.

Proof. Starting with a realization of A, blow up twice at the multiplicity three tangential inter-
section of Q1 with Q2 and once at the tangential intersection of L1 with Q1. The resulting
configuration in CP2#3CP2 is shown in the upper right part of Figure 6. There are three excep-
tional divisors D1, D2, D3 where D2 and D3 have self-intersection −1 and D1 has self-intersection
−2. The proper transforms of L2 and L3 have self-intersection −1 so they can be symplectically
blown down. After this the proper transform of D1 becomes a (−1)-exceptional sphere which
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Figure 6. Birational equivalence from A to B. The upper right and lower left configurations are
the same, just redrawn indicating a symplectomorphism of CP2#3CP2 identifying the vertical
+1-curve with CP1.

can be blown down as well. The resulting curve has configuration type B as in the bottom row
of Figure 6. �

Proof of Proposition 5.5. As A is obtained from G3 by adding one line with a point tangency
condition, and one line with two transverse intersection conditions, G3 has a unique equisin-
gular symplectic isotopy class if and only if A does by Proposition 5.1. By Lemma 5.6, and
Corollary 3.19, A has a unique equisingular symplectic isotopy class if and only if B does. We
prove B has a unique symplectic isotopy class by iteratively applying Proposition 5.1 to add
lines to the configuration of a single conic R which has a unique symplectic isotopy class by
Gromov [Gro85]. We apply Proposition 5.1 four times to add the four lines, starting with the
two tangent lines M1 and M2, then adding M3 transversally through the tangent intersection of
M2 with R, and finally adding M4 through M1 ∩ M2 and the other intersection of M3 with R.
Therefore, B has a unique equisingular symplectic isotopy class so G3 does as well. �

Remark 5.7. The configurations A and B were not pulled out of thin air, but rather come from
augmenting a birational derivation obtained using Theorem 3.6 and Lemma 3.5. To find these
configurations, start with G3 and blow up twice at the tangency of Q1 and Q2 and once at the
tangency of Q1 and L1 to make these intersections transverse and to bring the self-intersection
number of Q1 to +1. Keep track of the exceptional divisors in the total transform. Now apply
Theorem 3.6 to identify the proper transform of Q1 with CP1 and determine the possible homol-
ogy classes of the other curves in the configuration in terms of the standard basis (they are
uniquely determined up to re-indexing). Next use Lemma 3.5 to blow down exceptional curves
in classes e1, e2, e3 and observe the effect on the configuration (it will descend to B). To change
this from a birational derivation to a birational equivalence, we need to add in curves represent-
ing the ei which are not represented by curves in the configuration. Back-tracking these curves
to G3 we find the two lines we need to augment G3 by to obtain A.
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Figure 7. Birational transformation between A2 (left) and B2 (right).

We can prove similar uniqueness statements for configurations of two conics with a common
tangent line when the conics intersect more generically. Let G2 denote the configuration of two
conics simply tangent to each other at one point with a line tangent to both conics away from
their intersections. Let G1 denote two transversally intersecting conics with a line tangent to
both.

Proposition 5.8. The configuration G2 has a unique equisingular symplectic isotopy class.

Proof. Let the conic components of G2 be denoted by Q1, Q2 and the line by L1. By
Proposition 5.1, the symplectic isotopy classification of G2 is equivalent to the classification
for the augmented configuration A2 obtained from G2 by adding two more lines L2 through
the tangential intersection of Q1 with Q2 and the tangency point L ∩ Q2. There is a birational
equivalence of A2 to a configuration B2 consisting of a single conic, two tangent lines, a line
passing through one of the tangency points (and, otherwise, generic), and a line passing through
the intersection of the two tangent lines (and, otherwise, generic). (See Figure 7.) Here B2 can
be built from the single conic configuration by repeated applications of Proposition 5.1 so it has
a unique equisingular symplectic isotopy class. �

Proposition 5.9. The configuration G1 has a unique equisingular symplectic isotopy class.

Proof. Let the conic components of G1 be denoted by Q1, Q2 and the line by L1. Fix two of
the four intersection points q1, q2 of Q1 with Q2 and let p = L1 ∩ Q2. By Proposition 5.1, the
symplectic isotopy classification of G1 is equivalent to the classification for the augmented config-
uration A1 obtained from G1 by adding three lines passing transversally through the three pairs
of the points p, q1, q2. Here A1 is birationally equivalent to B1, the configuration built from one
conic with one tangent line, and four other lines intersecting as in Figure 8. The configuration
B1 can be built from the single conic configuration by repeated applications of Proposition 5.1
so it has a unique equisingular symplectic isotopy class. �

By a similar set of birational transformations, we can prove uniqueness of the symplectic
isotopy class of two conics without the additional tangent line. There are five ways that two
conics can intersect each other: transversally at four points, with one simple tangency and two
transverse points, with one triple tangency and one transverse point, with two simple tangencies,
or with one quadruple tangency. Note that the last two configurations cannot be realized with
an additional common tangent line (see Proposition 5.23).

Proposition 5.10. Any of the five configurations of two positively intersecting symplectic
conics has a unique equisingular symplectic isotopy class.
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Figure 8. Birational transformation between A1 (left) and B1 (right).

Proof. Blow up the configuration three times at intersection points between the two conics. This
transforms each of the conics to a +1-sphere, and includes three exceptional divisors (whose
intersection configuration depends on the configuration of conics we started with). Regardless of
the starting configuration, the pairwise intersections between curves in the configuration (includ-
ing the exceptional divisors and proper transforms of the conics) are transverse and each pair
of curves intersects at most once. By McDuff’s Theorem 3.6, there is a symplectomorphism of
the resulting CP2#3CP2 which identifies the proper transform of one of the conics with CP1.
By Lemma 3.7, the proper transform of the other conic represents the class h = [CP1], and the
exceptional divisors represent classes of the form h − ei − ej or ei − ej . By Lemma 3.5, we can
realize new exceptional spheres in the classes ei which intersect the configuration positively, and
blow these down. Afterwards, we can blow down any exceptional spheres which then appears in
the configuration representing a class ei. Repeating this if needed, we reach a configuration of
at most five curves in CP2, each representing the class h = [CP1]. Therefore, a configuration of
at most five symplectic lines can be birationally derived from the original configuration of two
conics. As any configuration of at most five lines has a unique non-empty symplectic isotopy class
by Proposition 5.1, we conclude that the configuration of two conics has a unique non-empty
symplectic isotopy class by Proposition 3.18. �

Corollary 5.11. Any configuration of two conics with one line has a unique equisingular
symplectic isotopy class (which is empty only if it is obstructed in Proposition 5.23).

Proof. This follows from Propositions 5.10 and 5.1 when the line is not required to be tangent to
both conics. This is because the line must intersect each conic exactly twice (with multiplicity),
and the only special points occur at the intersection of both conics (so a tangent line could
not go through any special points, and a transverse line could go through at most two special
points). When the line is tangent to both conics, this follows from Propositions 5.5, 5.8, 5.9,
and 5.23. �

5.1.2 Unisingular curves with a maximally tangent line. Suppose (C, 0) is the germ of a (not
necessarily locally irreducible) singularity with multiplicity sequence [d − 1]. Up to topological
equivalence, (C, 0) is determined by a partition d = (d1, . . . , dm) of d − 1, i.e. an un-ordered
m-tuple of positive integers d1, . . . , dm such that d1 + · · · + dm = d − 1; here m is the number
of branches of (C, 0). Therefore, if (C, 0) has multiplicity sequence [d − 1], we say that it is of
type d if the corresponding partition is d. Note that link of a singularity of type d is obtained
by cabling the link given by m fibers of the Hopf fibration with cabling parameters (d1, d1 +
1), . . . , (dm, dm + 1).
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Proposition 5.12. Let d be a positive integer and d a partition of d − 1. Let C denote the
configuration with the following two irreducible components:

(i) C is a rational curve of degree d in with a singular point P with multiplicity sequence [d − 1]
and of type d;

(ii) L is a line with a tangency of order d with C at a point Q, where P �= Q.

Then C has a unique equisingular symplectic isotopy class, and this unique isotopy class contains
a complex curve.

Proof. Suppose that C has m branches at P ; number them so that each of them has a singularity
of multiplicity di, where d = [d1, . . . , dm] is the given partition of d − 1. In particular, d1 + · · · +
dm = d − 1.

By iteratively applying Proposition 5.1, the uniqueness of the symplectic isotopy class of
the configuration C is equivalent to the uniqueness of the symplectic isotopy class of a config-
uration C′ obtained from C by adding m distinct lines tangent to C at P along the m distinct
branches, together with one line that passes transversally through P and Q. Note that for degree
reasons the only other intersections are transverse double points between L and each of the m
tangent lines. Note that for the tangent lines, to satisfy the hypotheses of Proposition 5.1, it
is important that they have no other intersections with C. This is because the intersection at
P has multiplicity d: a generic line through P has intersection multiplicities d1, . . . , dm with
its branches; if L is tangent to the ith branch of C at P , then its intersection with C at P
satisfies:

(C · L)P ≥ d1 + · · · + di−1 + (di + 1) + di+1 + · · · + dm = d,

which simultaneously implies that (C · L)P = d and that the intersection multiplicity of L with
the ith branch is exactly di + 1.

By Lemma 5.13, there is a birational equivalence from C′ to a configuration of m + 3 lines
with a single (m + 1)-fold point and a single triple point. This latter configuration has a unique
symplectic isotopy class by Proposition 5.1. Therefore by Corollary 3.19, the configurations C′

has a unique symplectic isotopy class containing complex curve representatives, and thus C does
as well. �

Lemma 5.13. Let C′ denote the configuration above, obtained from C by adding m lines tangent
to C at P as well as one line through P and Q. Then the configuration C′ is birationally equivalent
to a configuration of m + 3 lines where m + 1 intersect at a single point and the other two
intersect the m + 1st at a triple point. (See Figure 9.)

Proof. Blowing up at the singular point of C yields a smooth rational curve, the proper transform
of C, with m points of tangency with the exceptional divisor E0, of order d1, . . . , dm respectively.
Blow up di times at the ith tangency, so that the proper transform of E0 is disjoint from that
of C. Next, blow up d − 1 times at the tangency of C with L, so that their proper transforms
intersect transversely.

We obtain the configuration of rational curves represented in Figure 10.
The proper transform of C has self-intersection +1 = d2 − (d − 1)2 − 2(d − 1), and is a

smooth sphere. We identify it with CP1 using Theorem 3.6 and use this to determine the
homology classes of the other curves in the configuration.

By Lemma 3.7, and their pairwise disjointness, the vertical (−1)-curves intersecting C must
represent classes h − e0 − ei

1 for i = 1, . . . , m with the final vertical (−1)-curve which also inter-
sects L in the class h − e0 − e0

1. The chains of (−2)-curves emanating from these (−1)-curves
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Figure 9. The two birationally equivalent configurations from Lemma 5.13. On the left,
the configuration C′ coming from the configuration C of Proposition 5.12. On the right, the
configuration of m + 3 lines with one (m + 1)-fold point and one triple point.

Figure 10. The configuration of curves in the proof of Lemma 5.13. The long hooked curves are
(−1)-spheres which will be blown down to obtain the line arrangement on the right of Figure 9.

are fully determined by Lemma 3.12 to be ei
1 − ei

2, . . . , e
i
di−1 − ei

di
. The last chain of (−2)-curves

is similarly e0
1 − e0

2, . . . , e
0
d−2 − e0

d−1. The intersection relations imply [E0] = e0 − e0
1 − · · · − e0

d−1

and [L] = h − e1
1 − · · · − e1

d1
− · · · − em

1 − · · · − em
dm

. The proper transforms of the tangent lines

represent the classes ei
di

for 1 ≤ i ≤ m, and the proper transform of the line through the two

singular points represents the class e0
d−1. Therefore, we can blow down these exceptional curves,

and consequently blow down the entire chain of (−2)-curves as the end curve becomes an
exceptional divisor.

The resulting configuration consists of m + 3 symplectic lines coming from the proper trans-
forms of C, L, and the m + 1 vertical (−1)-curves. The first m vertical (−1)-curves will have
a common intersection point which is the image of the blow-down of e0. Here C, L, and the
last vertical (−1)-curve have a common triple intersection point before blowing down, so this is
preserved in the proper transform. �

This completes the proof of Theorem 1.5.
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Figure 11. The configuration H built from a conic with three tangent lines and three additional
lines intersecting in triple points as shown.

Proof of Theorem 1.5. Line arrangements of degrees up to six are proven to have a unique and
non-empty isotopy class in Corollary 5.3. Configurations of one conic and up to three lines are
dealt with in Corollary 5.4, whereas configurations of two conics, or two conics and a line are
taken care of by Corollary 5.11, and Proposition 5.12 settles the case of a rational degree-d curve
with a unique singularity of multiplicity [d − 1] and a line with an order-d tangency. �

5.1.3 Two more configurations. Here we show two additional configurations have a unique
symplectic isotopy class. The proofs require some new ideas along with the pseudoholomorphic
techniques and birational transformations we have been relying on. For the first, we utilize a
fixed point argument. For the second, we define certain branched covering maps from a singular
curve to CP1 utilizing pseudoholomorphic tangent lines and pencils. We will need the uniqueness
of these configurations to prove there are unique symplectic isotopy classes of certain cuspidal
quintics in Propositions 7.11 and 7.12.

The first configuration, that we call H, is composed of a conic inscribed in a triangle of
tangent lines meeting in vertices A, B, and C, and three lines �1, �2, and �3 through A, B, and
C, respectively, such that their pairwise intersections are on the conic. See Figure 11.

Proposition 5.14. There is a unique equisingular symplectic isotopy class of the
configuration H.

Proof. Consider the configuration H0 of a single symplectic conic with three distinct tangent
lines. This configuration has a unique equisingular symplectic isotopy class by Corollary 5.4.
Moreover, for each symplectic realization of H0 in CP2, the space of almost complex structures
J on CP2 for which the realization is J-holomorphic is non-empty and contractible by Lemma 3.4.
Therefore, the space of pairs (H0, J0) where H0 is a J0-holomorphic realization of H0 is a path-
connected space.

For a fixed pair (H0, J0), we prove that we can add J0-holomorphic lines to H0 to get
a realization of H in exactly two ways, and the map p : {H ∈ H symplectic} → {(H0, J0) ∈
H0 × J ω(H0)} is a double covering map. Then, to show that it is the connected cover rather
than the trivial covering, we show that for a particular pair (Hstd

0 , i), the two extensions to
complex realizations of H are symplectically isotopic. Therefore, any two symplectic realizations
H1, H2 of H can be equisingularly symplectically isotoped each to one of the two extensions of
(Hstd

0 , i) and these two extensions are equisingularly symplectically isotopic, so H1 and H2 are
as well.
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For a given B = (H0, J0), let Q denote the conic in H0, and let p1, p2, p3 denote the three
points of intersection of the three tangent lines. Consider the three pencils of lines πi : CP2 \
{pi} → �i through the points pi, i = 1, 2, 3, where �i are J0-holomorphic lines not containing pi.
Restricting these pencils to the conic Q, gives a branched double covering map πi|Q : Q → �i

with exactly two branch points. The map is degree two because a generic line intersects the
conic Q in two points. There are two branch points, each corresponding to a point q ∈ Q where
the J0-holomorphic line through q and pi is tangent to Q, by the Riemann–Hurwitz formula:
2 = 2(2) −

∑
q∈Q(eπi

(q) − 1).

Let fB
i : Q → Q denote the unique involution such that πi ◦ fB

i = πi|Q. Note that fB
i is

independent of the choice of the auxiliary line �i. Informally, fB
i (q) is the other intersection of

the line �pi,q through pi and q with Q; if �pi,q is tangent to Q, then fB
i (q) = q.

Consider now the composition fB
3 ◦ fB

2 ◦ fB
1 : Q → Q: this is a complex automorphism of Q,

which therefore has two fixed points a1 and a2. Note that if q is one of the tangent points between
Q and a line in H0, then q is not a fixed point of fB

3 ◦ fB
2 ◦ fB

1 because each tangency point is
fixed by exactly two of the fB

i and is sent to a different point by the third fB
i .

Add to H0 J0-holomorphic lines L1 through p1 and a, L2 through p2 and fB
1 (a), and L3

through p3 and fB
2 (fB

1 (a)). Note that L3 intersects L1 at a point on Q if and only if a ∈ {a1, a2}.
Therefore each realization of H which is J0-holomorphic and whose conic and tangent lines agree
with H0, is given by H ∪ L1 ∪ L2 ∪ L3 where the Li are defined using a ∈ {a1, a2}. This tells us
that the preimage of a point in the map p : {H ∈ H symplectic} → {(H0, J0) ∈ H0 × J ω(H0)} is
two realizations of H. Moreover, the constructions of a1, a2 and L1, L2, L3 depend continuously
on J0, the conic Q, and the points p1, p2, p3, which depend continuously on H0 ∈ H0, so p is a
covering map.

Finally, we consider the relation between two explicit complex realizations of H with the same
underlying H0. Let H0 be the following realization of H0. Start with three lines in R2 intersecting
to form an equilateral triangle ABC with side length AB = 1 in the real Euclidian plane, and
its inscribed circle Q, and then we complexify the configuration. For θ ∈ (0, π/3), consider the
half-line �θ

A starting from A, interior to the angle BAC, and such that the angle between �A and
AB is θ. Analogously, define �θ

B and �θ
C . Let X = �θ

B ∩ �θ
C , Y = �θ

C ∩ �θ
A, and Z = �θ

A ∩ �θ
B (here

we drop the dependence on θ for convenience). We claim that there is a unique θ0 ∈ (0, π/6)
such that X, Y , and Z all lie on Q and that for π/3 − θ0 the corresponding points all lie on Q,
too. The area of the triangle XY Z is given by

AXY Z = AABC − AABZ − ABCX − ACAY = AABC − 3AABZ

=

√
3

4
− 3 · 1

2
AX · AB · sin θ =

√
3

4
− 3 · 1

2
· AB · sin

(
π
3 − θ

)

sin 2π
3

· AB · sin θ

=

√
3

4
−
√

3 · sin
(

π

3
− θ

)
sin θ =

√
3

4

(
1 − 2 cos

(
π

3
− 2θ

)
+ 2 cos

(
π

3

))

=

√
3

2

(
1 − cos

(
π

3
− 2θ

))

and the latter is a continuous, decreasing function from [0, π/6] to [0, +∞), taking values
√

3/4
at θ = 0 and 0 at θ = π/6. This means that there is a unique value of 0 < θ0 < π/6 such that
the area of XY Z is the area of the inscribed triangle in Q. By rotational symmetry, at θ0 the
triangle XY Z is in fact inscribed in Q, i.e. the configuration of H = H0 ∪ �θ0

A ∪ �θ0

B ∪ �θ0

C is a
realization of H. We observe that a reflection across one of the axes of the triangle preserves
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Figure 12. The configuration L of two conics and three lines. There are two simple tangency
points between the conics not visible in this real picture.

the triangle and the inscribed circle. As it preserves incidences, it sends the configuration H to
a configuration H ′ that realizes H (indeed, H ′ corresponds to the solution θ1 = π/3 − θ0; note
that θ1 > π/6). We can extend the reflection to a complex linear isometry in PU(3). As PU(3)
is a path-connected subset of Symp(CP2), there is a family of symplectomorphisms carrying H
to H ′ and tracing out a symplectic isotopy between them. �

The second configuration, that we call L, is made up of two conics Q1,Q2, tangent at two
points, together with three lines such that each line is tangent to Q1 and the pairwise intersections
of the lines are three distinct points on Q2. See Figure 12.

Proposition 5.15. There is a unique non-empty equisingular symplectic isotopy class of the
configuration L.

Proof. We define two auxiliary configurations, L′ and L′
0. The latter, L′

0, consists of a tricuspidal
quartic V and the triangle of lines passing transversally through its singularities. The former, L′,
is obtained from L′

0 by adding a bitangent to V, i.e. a line that is tangent to V at two distinct
points, each of which is a smooth point of V.

First, observe that L is birationally equivalent to the configuration L′. This is seen by blowing
up once at each vertex of the triangle formed by the three lines, and then blowing down the proper
transforms of the three lines (which are (−1)-spheres).

Next, we see that L′
0 has a unique symplectic realization, up to isotopy. Using the inverse

birational equivalence just described, we see that L′
0 is birationally equivalent to the configuration

H0 of a conic inscribed in a triangle of lines, which has a unique realization, up to isotopy, by
Corollary 5.4.

What we really want to show is that L′ has a unique symplectic isotopy realization, which
follows from showing that there is a unique way, up to symplectic isotopy, to add the bitangent
line to L′

0 to obtain L′. This is shown in the following proposition. Then because of the birational
equivalence above, L itself will have a unique non-empty equisingular isotopy class. �

Proposition 5.16. In any symplectic realization V ∪ L1 ∪ L2 ∪ L3 of L′
0, the tricuspidal quartic

V has a unique bitangent up to isotopy, and this bitangent necessarily intersects the lines Li in
generic transverse double points. Therefore, L′ has a unique symplectic realization.

Proof. Fix a tricuspical quartic V ⊂ CP2, and call V0 the set of smooth points of V . Let n : CP1 →
V be the normalization map. Fix an almost complex structure J compatible with ω such that V
is J-holomorphic. Note that the set of such choices is contractible by Lemma 3.4. We prove that
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there is a unique J-holomorphic bitangent line to V . As this will hold for every J compatible with
V , we will have a unique J-holomorphic realization of L′ whose tricuspidal quartic agrees with V
for each J ∈ J ω(V ). Varying J through this contractible (and thus path-connected) space yields
equisingular isotopies fixing V and isotoping the lines (the triangle of lines L1, L2, L3 through
the cusps and the bitangent line) in the configuration of L′ by defining the lines Li and T as
the unique Jt-holomorphic lines with the specified intersection properties. Therefore, any two
symplectic extensions of V to a realization of L′ will be related by an equisingular symplectic
isotopy.

From now on, we fix a J which makes V J-holomorphic, and all of our choices of curves will
be J-holomorphic. Fix a generic J-holomorphic line � to be the target of a pencil-like map.

First, we associate to each point p ∈ V0, a J-holomorphic line �p through p with the property
that �p is tangent to V at another point q �= p, q ∈ V . We prove that such �p exists and is unique
in Lemma 5.17. By tangency at q, we mean that either q ∈ V0 and �p is tangent to V at q, or
that q is a cusp of V , and �p is the tangent to the cusp. We also note that, in fact, the line �p

might also be tangent to V at p, in which case it is a bitangent to V .
Next, define a map φ0 : V0 → � by p �→ �p ∩ �. Extend this map to V by letting, for each cusp

p of V , �p be the tangent to V at the cusp. We can show that this extension gives a continuous
map φ1 : V → � as follows. For any point q in a neighborhood of a cusp p, let Tq be the unique
J-holomorphic tangent line to V at q. Then the family of submanifolds Tq varies continuously
with q. Therefore, the intersection points with multiplicities Tq ∩ V also vary continuously with
q. When q �= p, Tq ∩ V = {q, pq, rq} where q has multiplicity two and pq and rq have multiplicity
one. When q = p, Tp ∩ V = {p, r} where p has multiplicity three and r has multiplicity one.
Therefore, we must have rq → r as q → p and pq → p as q → p. Now, let N be a small closed
neighborhood of p in V , and consider the map f : N → V defined by f(q) = pq (we choose N
sufficiently small to be able to distinguish pq (the points which converge to p as q → p) from
rq (the points which converge to r as q → p). Then f is a continuous map and f(p) = p. In
addition, f is injective because if f(q) = f(q′) = pq, then the J-holomorphic pencil based at pq

would include a tangent line to V at q and a tangent line to V at q′, but such a pencil can
only include a single tangent line to V by Lemma 5.17. As N is compact, and f is continuous
and injective, f is a homeomorphism onto its image. Therefore, f(N) ⊂ V is homeomorphic to
a disk centered at p. In particular, there is a neighborhood U of p such that for all p′t ∈ U , �p′t

is
tangent to V inside N so �p′t

= Tqt for some qt ∈ N . Therefore, if p′t → p, �p′t
= Tqt → Tp.

Let φ = φ1 ◦ n : CP1 → �. We show that φ : CP1 → � is a branched covering of degree six and
analyze all the ways in which ramification points can arise.

Given a point s ∈ � \ V , φ−1(s) consists of points p such that the unique J-holomorphic line
through s and p is tangent to V at a point different from p (i.e. �p passes through s). Therefore, we
need to understand the J-holomorphic lines in the pencil based at s which have tangencies to V .
As s /∈ V , the Riemann–Hurwitz formula gives us that for this pencil, the sum of the ramification
numbers corresponding to precomposing this pencil with the normalization is

∑
(e(xj) − 1) = 6.

Each of the three cusps will be a ramification point n(xj) for some j. We have e(xj) = 2 if the
line in the pencil through the cusp n(xj) is transverse to V at n(xj), and e(xj) is at least three
if the line in the pencil through the cusp n(xj) is tangent to V at n(xj). Therefore, we could
have in the pencil through s:

(a) three distinct tangent lines to V , each intersecting V transversally at two other points (or if
the tangency is at a cusp, intersecting V only at one other point transversally, but counting
the cusp as the other point);
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(b) one bitangent line to V and one tangent line with two transverse intersections to V ; or
(c) at least one line in the pencil has a higher order tangency to V .

(Note that there cannot be a line with three distinct tangencies to V because V only has degree
four and three tangencies would contribute six to the intersection.)

In the first case (the generic case), we have six points in φ−1(s) coming from the six transverse
intersections of the tangent lines with V . (In the case that one of the tangent lines is tangent at
the cusp, the two points are the cusp point and the transverse intersection.) As transversality is
an open condition, any such s has an open neighborhood U such that the pencil through s′ ∈ U
falls into the first case. After possibly shrinking U , we can show φ−1(U) is homeomorphic to
U × {1, 2, 3, 4, 5, 6}. To show this, let q ∈ V be a point such that the line from q to s is tangent
to V at q. For qt converging to q, the tangent line to V at qt intersects � at points st covering
to s, and intersects V at points p1

t and p2
t converging to p1, p2 ∈ φ−1(s). Because the number of

tangent lines to V in any given pencil is finite, we can ensure that if qt is sufficiently close to
q, then pi

t �= pi
t′ for i = 1, 2, and st �= st′ for t �= t′. Therefore, the maps qt �→ st and qt �→ pi

t are
continuous and injective maps, so they locally have continuous inverses. As φ(pt) = st, we see
that φ is a covering map of degree six at generic points.

In the second case, the bitangent line intersects V at the two tangent points, p0, p1. Let τ0

denote the J-line in the pencil through s which is bitangent to V and let τ1 denote the J-line
in the pencil through s which is simply tangent to V . Therefore, by the definition of φ, φ−1(s)
consists of the two transverse intersections of τ1 with V and the two tangential intersections
τ0 ∩ V . Thus, there are only four preimage points instead of six so the contribution to the Euler
characteristic reduction is

∑
x∈φ−1(s)(eφ(x) − 1) = 2.

The third case is ruled out as a possibility in Lemmas 5.18 and 5.19.
Next, consider a point s ∈ � ∩ V (there are four of them). It follows from Lemma 5.17 that

there is a unique line �s which passes through s and is tangent to V at a different point q �= s.
Its two transverse intersections with V (s and one other point p) will be regular points in φ−1(s)
as in the generic case. The only other way that a line tangent to V could pass through s is if
the tangency occurs at s. Let Ts be the tangent J-line to V at s. Then the only other points in
φ−1(s) are the two points where Ts intersects V transversally. (By the genericity of �, we ensure
that Ts intersects V at two points transversally.) Therefore, φ−1(s) consists of four points instead
of six, so at each intersection s ∈ � ∩ V ,

∑
s∈φ−1(s)(eφ(x) − 1) = 2.

Finally, we apply the Riemann–Hurwitz formula to φ:

2 = χ(CP1) = 6χ(CP1) −
∑

x∈CP1

(eφ(x) − 1) = 12 − 8 −
∑

x∈CP1\n−1(�)

(eφ(x) − 1).

Therefore,
∑

x∈CP1\n−1(�)(eφ(x) − 1) = 2. As the only contribution to ramification indices for

points in φ−1(� \ V ) is a bitangent, and each bitangent contributes two to this sum, we conclude
that there is a unique J-holomorphic bitangent line to V as claimed. �

Lemma 5.17. For every point p ∈ V0 there is a unique line �p through p that has a tangency to
V at another point q �= p.

Proof. Consider the J-linear pencil based at p: π0 : CP2 \ {p} → CP1. Restrict π0 to V \ {p}, and
extend it to π1 : V → CP1 by defining π1(p) = Tp, where Tp is the tangent to V at p. The map
π1 is continuous: the tangent Tp is the only curve that has local multiplicity of intersection two
with C at p, and the lines �pq through p and q converge to such a curve as q limits to p. Finally,
define π : CP1 → CP1 by π = π1 ◦ n, where n : CP1 → V is the normalization. By positivity of
intersections, π is a branched cover CP1 → CP1 of degree 4 − 1 = 3. Moreover, if n(x) is a cusp
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of V , then x is a ramification point of x. The index of x as a ramification point is two if p is not
the intersection of the tangent to π(x) with V , and three otherwise.

In the former case, the Riemann–Hurwitz formula yields

2 = χ(CP1) = 3χ(CP1) −
∑

x∈CP1

(eπ(x) − 1) = 6 − 3 −
∑

n(x)∈V0

(eπ(x) − 1),

which implies that there is exactly one point x in CP1 such that π has ramification of index two
at x. This means exactly that �p is tangent to V at n(x).

In the latter case, Riemann–Hurwitz gives

2 = χ(CP1) = 3χ(CP1) −
∑

x∈CP1

(eπ(x) − 1) = 6 − 2 − 1 − 1 −
∑

n(x)∈V0

(eπ(x) − 1),

which means that the only ramification points of π are at the preimages of cusps of V . This
means that the only tangent to V through p is the tangent to the cusp.

We exclude the possibility that n−1(p) itself is a ramification point of π in Lemma 5.18.
If this occurred, Tp would be a simple inflection line of V , which is exactly what the lemma
obstructs. �

Lemma 5.18. The tricuspidal quartic V has no simple inflection J-lines at non-singular points.

Proof. Suppose p ∈ V0 is a simple inflection point, and let q be the unique other intersection of
Tp and Q. Observe that, by positivity of intersections, q ∈ V0. Now define the branched covering
map π′ : CP1 → CP1 as in Lemma 5.17, but use the point q as the base of the pencil instead of p.
This is a degree-three cover. Each of the three cusps has ramification index two, and the inflection
point has ramification index at least three. However, using the Riemann–Hurwitz formula, we
get a contradiction

2 = 3 · 2 −
∑

x∈CP1

(eπ′(x) − 1) ≤ 6 − 1 − 1 − 1 − 2 = 1. �

Lemma 5.19. The tricuspidal quartic V has no multiplicity-four tangent J-lines.

Proof. Suppose that there was such a J-line and call p its (unique) intersection point with V .
Here p could either be a non-singular point, i.e. p ∈ V0, or a cusp of V . In either case, we consider
the pencil of J-lines through p and project from p. Precomposing with the normalization of V ,
we get a branched cover π′ : CP1 → CP1.

In the first case, when p is a non-singular point of V , π′ is a three-fold branched covering,
with ramification points of index at least two at each of the three cusps and of index four at p
itself. This violates the Riemann–Hurwitz formula because we would have

2 = 3 · 2 −
∑

x∈CP1

(eπ′(x) − 1) ≤ 6 − 3 − 1 − 1 − 1 = 0.

In the second case, when p is a cusp, the considering the same pencil, π′ is a two-fold branched
covering which has ramification points of index at least two at the two remaining cusps and
exactly two at p, yielding a similar contradiction:

2 = 2 · 2 −
∑

x∈CP1

(eπ′(x) − 1) ≤ 4 − 2 − 1 − 1 = 1. �

5.2 Obstructions

Next we show that certain singular configurations do not symplectically embed into CP2 using
birational derivations, and the following result.
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Figure 13. The Fano configuration of seven lines intersecting in seven triple points.

Figure 14. Configuration G consists of three lines intersecting at a common triple point, each
tangent to a conic.

Theorem 5.20 [RS19, Theorem 1.1]. There is no symplectic embedding in CP2 of the Fano
plane: seven lines intersecting positively at seven triple intersection points (see Figure 13).

The next configuration we consider is made up of three lines each tangent to a conic such
that the three lines intersect each other at a triple point. We call this configuration G (Figure 14).

Proposition 5.21. There is no symplectic embedding of G into CP2.

Proof. Let Q be any smooth symplectic sphere in CP2 with [Q] = 2h. Let T1, T2, and T3 be three
symplectic tangent lines at points p1, p2, and p3 on Q. Suppose T1, T2, and T3 all intersect at a
common triple point.

Follow Figure 15 with the rest of the proof. Blow up once at each of p1, p2, and p3. Then the
proper transform of Q is a symplectic sphere of self-intersection +1 so by Theorem 3.6 it can
be identified with CP1 with homology class h via a symplectomorphism Ψ of CP2#3CP2. Under
this identification, Lemma 3.7 and the intersections of the components determines the homology
classes of the remaining curves as follows:

Ψ∗[Q] = h, Ψ∗[Ti] = h − ei, Ψ∗[Ei] = h − e1 − e2 − e3 + ei.

Next, by Lemma 3.5, we can blow down exceptional spheres in the homology classes ei such
that any intersection with Ψ(Q), Ψ(Ti), or Ψ(Ei) is positive. After blowing down three times,
the proper transform in CP2 of each of the seven surfaces is in the homology class h and
there are the following triple intersections: Pi = Ψ(Q) ∩ Ψ(Ei) ∩ Ψ(Ti) for i = 1, 2, 3, R1 =
Ψ(T1) ∩ Ψ(E2) ∩ Ψ(E3), R2 = Ψ(T2) ∩ Ψ(E1) ∩ Ψ(E3), R3 = Ψ(T3) ∩ Ψ(E1) ∩ Ψ(E2). If there
were a seventh triple intersection between Ψ(T1), Ψ(T2), and Ψ(T3) this would give an embedding
of the Fano configuration into CP2.

Thus, we have shown that the Fano plane is birationally derived from G, so by the con-
trapositive of Proposition 3.17, there is no symplectic realization of G in CP2. (In fact, the
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Figure 15. Birational derivation from G to the Fano configuration.

same argument using the full strength of Theorem 3.6 shows that there is no symplectic real-
ization of a configuration G with the same self-intersection numbers into any closed symplectic
4-manifold.) �

Note that the exceptional spheres representing e1, e2, e3 are not contained in the total trans-
form of the embedding of G, so the Fano plane is birationally derived from G, but they are not
birationally equivalent.

Here G is dual to the configuration G
, comprised of three conics in a pencil (intersecting at
four triple points) and a line tangent to all three of them. We can also obstruct G
.

Proposition 5.22. There is no symplectic embedding of the configuration G
 in CP2.

Proof. We show that there is a birational derivation from G
 to a configuration containing G.
Given a symplectic realization of G
, blow up at three of the four basepoints of the pencil.
The proper transforms of the conics are symplectic +1-spheres, intersecting at a single point
(namely, the fourth basepoint). We can apply Theorem 3.6 to identify one of the three conics
with CP1. Then Lemma 3.7 implies the other two conics are also symplectic lines, the image of the
tangent line has class 2h − e1 − e2 − e3, and the three exceptional spheres represent h − e1 − e2,
h − e2 − e3, and h − e1 − e3. Blowing down positively intersecting exceptional spheres in classes
e1, e2, e3 using Lemma 3.5, the total transform of the realization of G
 blows down to a conic
simultaneously tangent to each of the three concurrent lines, together with a triangle of lines
inscribed in the conic. As this configuration contains G, the configuration G
 is obstructed by
Proposition 3.17. �

We also obstruct the following related configurations:

G4: comprising two conics with a single point of tangency of order four, and a line tangent to
both;
G2,2: comprising two conics with two simple tangencies, and a line tangent to both.

Proposition 5.23. There is no symplectic embedding of any of the configurations G4 or G2,2

in CP2.
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Figure 16. Birational derivation of G from G4.

Figure 17. Birational derivation of G from G2,2.

Proof. Suppose that there existed an embedding of G4 in CP2. After blowing up three times
at the tangency point of the two conics, the proper transforms of the two conics are two +1-
spheres. See Figure 16. Applying Theorem 3.6, we obtain a symplectomorphism of CP2 blown
up three times that sends the proper transform of one of the conics to CP1. Using Lemma 3.7
and intersection numbers, the proper transforms of all the conics are in the homology class
h, the proper transforms of the three exceptional divisors (in the order in which we made the
blow-ups) are mapped to spheres in homology classes e1 − e2, e2 − e3, and h − e1 − e2, and the
proper transform of the line is sent to the homology class 2h − e1 − e2 − e3. Using Lemma 3.5
to blow down a positively intersecting sphere in the class e3 followed by the (−1)-spheres in the
configuration representing e2 and e1, we get a birational derivation from G4 to G.

For G2,2 we blow up twice at one of the tangencies, and once at the other. See Figure 17.
Identifying the proper transforms of the conics with CP1, the homology classes of the other
curves in the total transform are uniquely determined by Lemma 3.7 and intersection numbers.
The proper transform of the line is again identified with a sphere in the class 2h − e1 − e2 − e3,
and exceptional sphere at the intersection where we blew up once represents h − e1 − e2. The two
exceptional curves from the other blow-ups are identified with spheres representing the classes
h − e2 − e3 and e2 − e1. Using Lemma 3.5 to blow-down exceptional spheres in classes e1, e2, e3,
the configuration blows down to a configuration containing G (with an additional line). Therefore,
by Proposition 3.17, a symplectic embedding of G2,2 into CP2 is obstructed. �

Remark 5.24. The existence of a symplectic embedding of G into CP2 can also be obstructed
using a J-holomorphic linear pencil based at the triple point p, and finding a contradiction
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using Riemann–Hurwitz. Indeed, consider the projection π : Q → CP1 induced by the pencil. By
positivity of intersections, this is a branched covering map. Each tangent to Q through p gives
a branching point of π of index 2, and Riemann–Hurwitz yields

2 · 2 = 2χ(Q) = χ(CP1) +
∑

q∈Q

eπ(q) ≥ 5,

a contradiction.
A similar argument also works for G
, G4, and G2,2.

6. Unicuspidal curves with one Newton pair

The goal of this section is to prove Theorem 1.2, that every symplectic unicuspidal curve in
CP2 whose singularity has one Puiseux pair is isotopic to a complex curve. In fact, for each
of such curve we classify all of its symplectic embeddings into any closed symplectic mani-
fold. Correspondingly, we classify all the strong symplectic fillings of the corresponding contact
manifolds.

According to [Liu14, Theorem 2.3] (see also [BCG16, Remark 6.18]), if a rational cuspidal
curve with a unique singularity of type (p, q) satisfies the adjunction formula, that is (p − 1)
(q − 1) = (d − 1)(d − 2), and the semigroup distribution property (2.4), then (p, q) belongs to the
list of [FLMN07, Theorem 1.1]; namely, (p, q) is one of:

(i) (p, p + 1), with p ≥ 2, and the curve has degree p + 1;
(ii) (p, 4p − 1), with p ≥ 2, and the curve has degree 2p
(iii) (Fj−2, Fj+2), with j ≥ 5 and odd, and the curve has degree Fj ;
(iv) (F 2

j ; F 2
j+2) with j ≥ 3 and odd, and the curve has degree FjFj+2;

(v) (3, 22), and the curve has degree 8;
(vi) (6, 43) and the curve has degree 16.

Here, Fj denotes the jth Fibonacci number; recall that the sequence {Fj} is defined by the
recursion Fj+1 = Fj + Fj−1, starting from F0 = 0, F1 = 1.

Remark 6.1. To be more precise, in [BCG16] the result is only stated asymptotically, i.e. for
‘sufficiently large’ degrees. (One can explicitly compute what ‘sufficiently large’ and verify that
the result holds for all degrees. This is not mentioned in [BCG16].) In [Liu14], Liu explains in
the paragraphs above Theorem 1.1 and above Theorem 2.3 that his results are obtained in a
purely combinatorial way from the semigroup distribution property, which is a consequence of
the Heegaard Floer restriction together with the adjunction formula. A more general result than
what is needed here was obtained in [AGLL20], where the requirement on the adjunction formula
is dropped. Sifting through the lists of [AGLL20, Theorem 1.1], one verifies that the only ones
that satisfy the adjunction formula are those mentioned above.

As symplectic curves satisfy the adjunction formula (2.2) and the semigroup distribution
property (2.4), we can restrict to the six cases above. For each of them, we use a resolution to
classify symplectic fillings of the associated contact 3-manifold, and correspondingly classify the
symplectic embeddings of these cuspidal curves in closed symplectic manifolds up to symplectic
isotopy.

In § 6.1, we describe the choice of resolutions that we use to classify the embeddings. Each such
resolution will contain a smooth symplectic +1-sphere as the proper transform of the cuspidal
curve. In § 6.2, we use McDuff’s theorem and the lemmas of § 3.3 to classify all homological
embeddings of each of the resolutions. In this story, the two Fibonacci families will play a
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Figure 18. The top and bottom legs correspond to the continued fraction expansions (p +

1)/1 = [p + 1]− and p/(p − 1) = [2[p−1]]−, respectively. The chain on the right is artificially longer
than needed to make a +1-sphere appear.

different role; we treat them in § 6.3. In § 6.4, we look at geometric realization of these homological
embeddings, and prove a strengthening of Theorem 1.2. Finally, in § 6.5, we talk about rational
blow-down relations.

6.1 The resolutions

Here we describe our preferred resolutions for the singular curves in each of cases (i)–(vi), except
the Fibonacci families (for which we have a different argument in § 6.3). In general, our pre-
ferred resolution will not be either the minimal or the normal crossing divisor resolution of the
singularity; the goal is to find a smooth symplectic +1-sphere.

We start with the first family: a degree-(p + 1) curve with a unique singularity of type
(p, p + 1). We first find the normal crossing resolution. In the notation of § 2.1, we have q = p + 1,
p∗ = p (because p2 ≡ 1 (mod p + 1)) and q∗ = 1. We are interested in the continued fraction
expansions of p/(p − 1) and (p + 1)/(p + 1 − p), which are [2[p−1]]− and [p + 1]−, respectively.
As the curve has degree p + 1, its self-intersection is (p + 1)2 and, therefore, the self-intersection
of the proper transform in the normal crossing divisor resolution has self-intersection (p + 1)2 −
p(p + 1) = p + 1. From this normal crossing resolution, we blow up p additional times along this
third leg2 (i.e. at the intersection between the latest exceptional divisor and the proper transform
of the curve). The net effect of this operation is that the central vertex is decorated by Euler
class −2 and the third leg consists of a chain of (p − 1) (−2)-vertices, a (−1)-vertex, and a
(+1)-vertex. We refer to this symplectic plumbing as Ap; see Figure 18.

We now turn to the second case: a degree-2p curve with a singularity of type (p, 4p − 1).
The normal crossing resolution of this unicuspidal curve has two legs with expansions of p/1 =
[p]− and (4p − 1)/(4p − 5) = [2[p−2], 3, 2, 2]−, and the third leg has one vertex, which is initially
decorated by (2p)2 − p(4p − 1) = p. We blow up along this leg p − 1 additional times, so that the
central vertex is decorated by −2, and the third leg becomes a chain of p − 2 vertices decorated
by −2, one by −1, and one by +1. We refer to this symplectic plumbing as Bp.

The normal crossing resolution for the singularity of type (3, 22) has two legs expanding
3
2 = [2, 2]− and 22

7 = [4, 2[6]]−, with the third leg decorated by 82 − 3 · 22 = −2. As we want a
sphere of square +1, we blow back down to the minimal resolution, whose neighborhood will
be called E3. See Figure 19. The triple edge indicates a multiplicity-three tangency between the
(+1)-sphere and the (−1)-sphere.

The normal crossing resolution for (6, 43) has two legs corresponding to the continued fraction

expansions 6
5 = [2[5]]− and 43

7 = [7, 2[6]]−, and the third leg is labeled by 162 − 6 · 43 = −2. Again
we must blow down three times to get a (+1)-sphere. We end up between the minimal smooth

2 What we call ‘leg’ here is usually called a ‘twig’ in algebraic geometry. We stick to the terminology of low-
dimensional topology here.
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Figure 19. The resolution graph E3.

Figure 20. The resolution graph E6.

resolution and the minimal normal crossing resolution, with a configuration indicated by the
graph of Figure 20. We call the neighborhood E6. Here the (+1)- and (−4)-spheres intersect
tangentially with multiplicity three, and the (−1)-sphere intersects these two at the same point
transversally.

6.2 The homological embeddings

In this subsection, we apply McDuff’s theorem to each of the resolutions of the previous sub-
section. In order to shorten up the statements in this section, using Theorem 3.6 we implicitly
identify the (+1)-sphere in each of the configurations with a line in a blow-up of CP2, and cor-
respondingly its homology class will be identified with h. We work with a standard basis for
H2(CP2#NCP2) = 〈h, e1, . . . , eN 〉. In each of the following statements and proofs describing the
possible homology classes represented by components of a resolution, the uniqueness will always
be up to a reordering of the ei.

We start with the configuration Ap, corresponding to curves with a singularity of type
(p, p + 1).

Lemma 6.2. In the configuration Ap of Figure 18, the homology classes of the curves in the
chain which excludes the (−p − 1)-sphere are

(h, h − e0 − e1, e1 − e2, . . . , ep−1 − ep, ep − ep+1, ep+1 − ep+2, . . . , e2p−1 − e2p)

and the symplectic (−p − 1)-sphere represents

e0 − e1 − · · · − ep.

Proof. The classes of the components of the chain, excluding the (−p − 1)-sphere, are uniquely
determined by Lemma 3.12. The remaining (−p − 1)-sphere intersects once positively with the
class ep − ep+1 and zero with the other classes. As the class ep+1 appears with positive coefficient
already, by Lemmas 3.8–3.10 the class of this last sphere is uniquely determined as stated. �

The cap corresponding to the rational cuspidal curve with singularity of type (p, 4p − 1) has
similar restrictions on its possible homology classes.

Lemma 6.3. In the configuration Bp of Figure 21, the long chain starting with the +1-sphere
and including the entire configuration except the (−p)-sphere has two possible homology con-
figurations differing only in the last sphere of the chain when p ≥ 3. The first possibility
is

(h, h − e0 − e1, e1 − e2, . . . , ep−2 − ep−1, ep−1 − ep, ep − ep+1, . . . , e2p−3 − e2p−2,

e2p−2 − e2p−1 − e2p, e2p − e2p+1, e2p+1 − e2p+2).

For the other possibility, the last sphere can represent the class e2p−1 − e2p.
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Figure 21. The top and bottom legs correspond to the continued fraction expansions p/1 =

[p]− and (4p − 1)/(4p − 5) = [2[p−2], 3, 2, 2], respectively. The chain on the right is artificially
longer than needed to make a +1-sphere appear.

In both cases, there is a unique possibility for the class represented by the (−p)-sphere:

e0 − e1 − · · · − ep−1.

When p = 2, there are the above two options as well as the following additional case where the
long chain starting at the +1-sphere represents

(h, h − e0 − e1, e1 − e2, e0 − e1 − e3, e3 − e4, e4 − e5)

and the length-one arm is a (−p)-sphere in the class e2 − e6.

Note that the second option is a homological embedding into CP2#(2p + 2)CP2 whereas
the first option is a homological embedding into CP2#(2p + 3)CP2. As the cap has b+

2 = 1 and
b−2 = 2p + 2, the symplectic filling complementary to the first embedding will have b2 = 1 and
that complementary to the second embedding will be a rational homology ball filling. In partic-
ular, the filling complementary to the second homology embedding is the only one that could
give the complement of the rational cuspidal curve in CP2.

Proof. The Bp configuration is identical to the Ap−1 configuration with three additional vertices
of weights −3,−2,−2 on the lower left leg. Therefore, all of the homology classes excluding
these last three, are determined by Lemma 6.2. By Lemmas 3.8 and 3.10, the (−3)-sphere must
represent e2p−2 − e2p−1 − e2p unless p = 2 (we will come back to this case). When p ≥ 3, the
subsequent (−2)-sphere must represent e2p − e2p+1, and the last (−2)-sphere can either represent
e2p+1 − e2p+2 or e2p−1 − e2p by Lemma 3.11.

When p = 2, the (−3)-sphere can also represent e0 − e1 − e3, and the remaining classes are
determined as in the statement. �

Lemma 6.4. There are three homological embeddings of the symplectic configuration E3 into
blow-ups of CP2 given as follows, listed linearly starting from the +1-sphere:

(h, 3h − 2e0 − e1 − e2 − e3 − e4 − e5 − e6, e1 − e7, e7 − e8, e8 − e9, e9 − e10, e10 − e11, e11 − e12),
(6.1)

(h, 3h − 2e0 − e1 − e2 − e3 − e4 − e5 − e6, e1 − e7, e2 − e1, e3 − e2, e4 − e3, e5 − e4, e6 − e5),
(6.2)

(h, 3h − 2e0 − e1 − e2 − e3 − e4 − e5 − e6, e0 − e1, e1 − e2, e2 − e3, e3 − e4, e4 − e5, e5 − e6).
(6.3)

Proof. The class of the (−1)-sphere which intersects CP1 with multiplicity three is determined
by Lemma 3.7. The remaining chain of (−2)-spheres has one of two forms determined by
Lemma 3.11. If it has form (B), except for the first sphere in the chain, all of the exceptional
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classes appearing in the chain must have coefficient −1 in the previous sphere (Lemma 3.12),
which uniquely yields option (6.2). If the chain has the form in Lemma 3.11 for option (A), the
exceptional class with positive coefficient for the first (−2)-sphere is either e0 or e1 (without loss
of generality). To ensure the correct intersection numbers, this uniquely determines options (6.3)
and (6.1), respectively. �

The possibilities for embeddings of E6 are determined in the same way for the lower chain.
The intersection numbers then limit the possibilities for the indices of the exceptional classes on
the upper chain as follows.

Lemma 6.5. There are six homological embeddings of the symplectic configuration E6 into blow-
ups of CP2.

As in Lemma 6.4, there are three possibilities for the lower chain:

(i) (h, 3h − 2e0 − e1 − · · · − e9, e1 − e10, e10 − e11, e11 − e12, e12 − e13, e13 − e14, e14 − e15);
(ii) (h, 3h − 2e0 − e1 − · · · − e9, e1 − e10, e2 − e1, e3 − e2, e4 − e3, e5 − e4, e6 − e5);
(iii) (h, 3h − 2e0 − e1 − · · · − e9, e0 − e1, e1 − e2, e2 − e3, e3 − e4, e4 − e5, e5 − e6).

When the lower chain is option (i), the upper chain can be

(h − e8 − e9, e8 − e7, e7 − e6). (6.4)

When the lower chain is option (i) or (ii), the upper chain can be

(h − e0 − e16, e16 − e17, e17 − e18) or (h − e0 − e11, e11 − e12, e12 − e13), respectively. (6.5)

When the lower chain is any of the three options, the upper chain can be

(h − e8 − e9, e8 − e7, e9 − e8). (6.6)

6.3 The Fibonacci families

We start with the third family, (Fj−2, Fj+2) with j odd. We recall that Fibonacci numbers
satisfy the identity F 2

j = Fj−2Fj+2 − 1, so that by Moser [Mos71] the boundary Yj of a regular
neighborhood of a curve in this family, with the orientation induced by the cuspidal contact
structure ξj , is

Yj = −S3
F 2

j
(T (Fj−2, Fj+2)) = −L(F 2

j ,−F 2
j−2) = L(F 2

j , F 2
j−2).

Note that the identity F 2
j−2 = Fj−4Fj − 1 implies that F 2

j−2 ≡ −1 (mod Fj), and that

gcd(Fj−2, Fj) = Fgcd(j−2,j) = F1 = 1, because j is odd. In particular, Yj = L(m2, mk − 1) for
some m, k with gcd(m, k) = 1.

As there is a symplectic realization of a rational cuspidal curve in CP2 in this family, com-
ing from algebraic geometry [FLMN07], ξj has a rational homology ball symplectic filling. By
Proposition A.1, ξj is the canonical contact structure on Y (perhaps up to conjugation), and by
Proposition A.2, this filling is unique up to symplectic deformation.

We now turn to the fourth family, (F 2
j , F 2

j+2), with j odd. Call (Y ′
j , ξ′j) the cuspidal contact

manifold; by Moser [Mos71],

Y ′
j = −S3

F 2
j F 2

j+2

(T (F 2
j , F 2

j+2)) = −(L(F 2
j ,−F 2

j−2)#L(F 2
j+2,−F 2

j )) = Yj#Yj+2.

As previously, by [FLMN07], ξ′j has a rational homology ball (strong) symplectic filling W0;
moreover, (Y ′, ξ′j) is the contact connected sum (Yj , ηj)#(Yj+2, ηj+2). Note that ξ′j is planar,
because all contact structures on lens spaces are; we recall that, by [Wen10], all strong sym-
plectic fillings of planar contact structures can be deformed to Stein fillings, so that W0 is
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in fact the boundary connected sum of two rational homology ball fillings of ηj and ηj+2,
by Eliashberg [Eli90]. This implies that, up to conjugation, ηj = ξj and ηj+2 = ξj+2, and
that they both have a unique rational homology ball symplectic filling; again, by [Eli90],
so does ξ′j .

6.4 Isotopy classification

Theorem 6.6. In CP2, every symplectic rational unicuspidal curve whose unique singularity is
the cone on a torus knot is symplectically isotopic to a complex curve.

(i) The only minimal symplectic embedding of a rational unicuspidal curve with a (p, p + 1)-
singularity with normal Euler number (p + 1)2 into a closed symplectic manifold is the
unique embedding into CP2.

(ii) When p > 2, there are exactly two minimal symplectic embeddings of a rational unicuspidal
curve with a (p, 4p − 1)-singularity with normal Euler number 4p2 into closed symplectic
manifolds. One into CP2 and another into S2 × S2, each unique up to symplectomorphism
and symplectic deformation. When p = 2, in addition to these two minimal symplectic
embeddings into CP2 and S2 × S2, there is also one into CP2#CP2.

(iii) There are exactly three minimal symplectic embeddings of a rational unicuspidal curve
with a (3, 22)-singularity with normal Euler number 64. They are embeddings into CP2,
CP2#CP2, and CP2#6CP2 with each unique up to symplectomorphism and symplectic
deformation.

(iv) There are exactly six minimal symplectic embeddings of a rational unicuspidal curve
with a (6, 43)-singularity with normal Euler number 256. There is a single symplectic
embedding into CP2, CP2#CP2, CP2#4CP2, and CP2#9CP2, up to symplectomorphism.
There are two symplectic embeddings into CP2#6CP2, up to symplectomorphism and
symplectic deformation.

(v) For the rational unicuspidal curves in the Fibonacci families, there is a unique symplectic
embedding in CP2, and there is always at least one other minimal symplectic embedding
into another rational surface with larger b2.

In each of these cases, each symplectic isotopy class of embeddings corresponds to a distinct
minimal symplectic filling of the associated contact manifold, distinguished by their second
homology and intersection forms.

Proof. We start with the non-Fibonacci families.
Suppose we have a symplectic embedding of the cuspidal curve into (M, ω). Then we have

an embedding of the resolution Ap, Bp, E3, or E6 into M#KCP2. By Theorem 3.6 we can iden-
tify M#KCP2 with CP2#NCP2 and the (+1)-sphere with a line. In particular, M is either
CP2#mCP2 for some m ≥ 0 or S2 × S2 (the symplectic structures on these manifolds are unique
up to symplectomorphism and symplectic deformation). The homological embeddings of the res-
olutions in CP2#NCP2 are classified in Lemmas 6.2–6.5. Next use Lemma 3.5 to find exceptional
spheres representing the classes ei to blow down to CP2, keeping track of the intersections of
these exceptional spheres with the resolution to determine how it descends. The core spheres of
Ap or Bp descend to two symplectic spheres each in the homology class h of the line. There-
fore, any embedding of a cuspidal curve of type Ap or Bp into a closed symplectic manifold
(M, ω) has a birational derivation to (CP2, L1 ∪ L2) where L1 and L2 are symplectic lines. There
is a unique symplectic isotopy class of two symplectic lines by Proposition 5.1. Therefore, by
Proposition 3.18, there is a unique symplectic isotopy class of such curves for each possible (M, ω)
that they embed into.
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The configuration Ap. Lemma 6.2 gives a unique homological embedding of Ap (which is obtained
from the cuspidal curve by blowing up 2p + 1 times) into CP2#(2p + 1)CP2. Therefore, the only
relatively minimal embedding of these cuspidal curves is into CP2.

The configuration Bp. Lemma 6.3 gives two homological embeddings of Bp (which is obtained
from the cuspidal curve by blowing up 2p + 2 times), one into CP2#(2p + 3)CP2 and the other
into CP2#(2p + 2)CP2, plus an additional embedding when p = 2 into CP2#7CP2. Therefore
the cuspidal curve of type Bp has one symplectic embedding into CP2 and one (two if p = 2)
more into a manifold X which is either CP2#CP2 or S2 × S2. We now see how to determine
whether the manifold is S2 × S2 or CP2#CP2 in this latter case. Here C is the rational cuspidal
curve in X, so using our chosen resolution, the total transform of C embeds in a blow-up X of
X. The intersection form of X is recovered from that of X by ‘algebraically blowing down’ all
the exceptional divisors in the total transform of C. This boils down to taking the orthogonal
of the homology classes. For the homological embedding from Lemma 6.3 which applies to all
p ≥ 2 cases, we need the orthogonal of the classes

h − e0 − e1, e2p−2 − e2p−1 − e2p,

e0 − e1 − · · · − ep−1, ei − ei+1 (i ∈ {1, . . . , 2p − 3, 2p, 2p + 1})

in H2(X) = 〈h, e0, . . . , e2p+2〉. Orthogonality to the classes ei − ei+1 forces classes in the
orthogonal to be of the form

ah − b0e0 − b1(e1 + · · · + e2p−2) − b2p−1e2p−1 − b2p(e2p + e2p+1 + e2p+2).

The orthogonal is generated by C1 = ph − (p − 1)e0 − e1 − · · · − e2p−1, C2 = ph − (p − 1)e0 −
e1 − · · · − e2p−2 − e2p − e2p+1 − e2p+2. We calculate C2

1 = 0 and that C2
2 = −2, so that the inter-

section form of X is even, hence necessarily X = S2 × S2. As another way that we could have
seen this, we show in Proposition 6.7 that the latter embedding is obtained from the former by
doing a rational blow-up of T ∗RP2, thus showing that the ambient 4-manifold is indeed S2 × S2.

For the additional homological embedding in the p = 2 case, we claim this corresponds
to an embedding of C into CP2#CP2. In this case, the intersection form of X is isometric
to the subspace 〈h − e0 − e1, e1 − e2, e0 − e1 − e3, e3 − e4, e4 − e5, e2 − e6〉⊥ ⊂ H2(CP2#7CP2).
This subspace is generated by the classes h − e0 − e3 − e4 − e5 and 2h − e0 − e1 − e2 − e6. As
the self-intersection of the first class is −3, which is odd, X is CP2#CP2.

The configuration E3. For E3, after blowing down the exceptional spheres in the ei classes using
Lemma 3.5, the configuration descends to a symplectic nodal or cuspidal cubic (depending on
whether the exceptional sphere of class e0 intersects the configuration transverally or tangen-
tially), together with a symplectic line which is tangent to the cubic with multiplicity 3. Each
such configuration has a unique symplectic isotopy class by Proposition 5.12 with d = 3. To
connect these two possibilities, observe that each of these possibilities is realizable in the com-
plex setting. There is a deformation from a complex algebraic cuspidal cubic {x3 − y2z = 0}
with inflection line {z = 0}, to a nodal cubic {x3 − y2z − εx2z = 0} with the same inflec-
tion line {z = 0}. Blowing up at the cusp or node in the ε family provides an equisingular
isotopy of the proper transforms in CP2#CP2. Therefore, there is a unique symplectic iso-
topy class of the configuration C′ in CP2#CP2 consisting of one smooth rational curve in the
class 3h − 2e0 and a line in class h, such that the two components intersect tangentially at a
single point of multiplicity three. The birational transformation described previously shows
that the configuration E3 has a birational transformation to C′ in CP2#CP2. Therefore, by
Proposition 3.18, for each possible (M, ω) determined by a homological embedding, there is
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a unique symplectic isotopy class of embeddings of the cuspidal curve of type E3. The three
homological embeddings of E3 (which is obtained from the cuspidal curve by seven blow-ups) are
into CP2#7CP2, CP2#8CP2 and CP2#13CP2. Therefore, the cuspidal curve has one minimal
symplectic embedding in CP2, one in either CP2#CP2 or S2 × S2, and one into CP2#6CP2. To
determine that the second embedding is into CP2#CP2 instead of S2 × S2 we find a homol-
ogy basis complementary to the classes of the exceptional divisors in the embedding of E3

(3h − 2e0 − e1 − · · · − e6, e1 − e7, e2 − e1, e3 − e2, e4 − e3, e5 − e4, and e6 − e5). Such a basis
is given by 10h − 6e0 − 3(e1 + · · · + e7) and 6h − 3e0 − 2(e1 + · · · + e7). The intersection form
generated by this basis is the odd form for CP2#CP2:

[
1 0
0 −1

]
.

The configuration E6. By Lemma 6.5, there are six different homological embeddings of E6 into
blow-ups of CP2. We show that each such homological embedding has a unique symplectic isotopy
class. In each case, we blow down exceptional spheres until we reach CP2 using Lemma 3.5, and
consider the image of E6.

For either of the homological embeddings where the upper chain is described by (6.5), the
image of E6 in CP2 is a nodal or cuspidal cubic R (depending on whether the exceptional sphere
representing e0 intersects the component representing 3h − 2e0 − e1 − · · · − e9 transversally or
tangentially), together with an inflection line T tangent to the cubic with multiplicity three,
and another line L which passes through the singularity of R and through the point R ∩ T
(intersecting the other components transversally at each of these points). The configuration of
R ∪ T has a unique symplectic isotopy class by Proposition 5.12, so the configuration R ∪ T ∪ L
has a unique symplectic isotopy class by Proposition 5.1. Therefore, any two embeddings of E6

which descend to the version of this configuration where R is nodal are symplectically isotopic,
and similarly any two which descend to the version of this configuration where R is cuspidal
are symplectically isotopic. We connect the nodal and cuspidal cases of R ∪ T as in the E3 case,
and augment the deformation from the cusp to the node by the line L to connect the nodal and
cuspidal instances of R ∪ T ∪ L.

For the homological embedding where the upper chain is described by (6.4), the embedding
of E6 descends under blow downs to a configuration R ∪ T ∪ L′. Again R is a nodal or cuspidal
cubic, and T is again an inflection line (tangent of order three to C). This time L′ is a line which
passes transversally through R ∩ T and intersects R again transversally at two smooth points
(the first point is the image of exceptional spheres representing e6, e7, and e8 and the second
point is the image of the exceptional sphere representing e9). Here R ∪ T has a unique symplectic
isotopy class by Proposition 5.12, and we can add L′ maintaining a unique symplectic isotopy
class using Proposition 5.1. The nodal and cuspidal cases are connected as in the E3 case.

For the homological embeddings where the upper chain is described by (6.6), the embedding
of E6 descends to R ∪ T ∪ L′′ where R and T are the same as the previous cases and L′′ passes
transversally through R ∩ T and intersects R at one other smooth point with a simple tangency
(the image of the exceptional spheres representing e7, e8, and e9). In this case, we show that
there is a unique symplectic isotopy class of such a configuration when the cubic is nodal and
no realization of the configuration if the cubic has a cusp.

To prove this, choose an almost complex structure J which makes the cubic R and its
inflection line T J-holomorphic (note the space of such J is contractible by Lemma 3.4).
Let p = R ∩ T . Consider the pencil of J-lines through p, π : CP2 \ {p} → CP1 and restrict this
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to R \ {p}. This restriction extends over p by sending p to the image of the line tangent to R at
p. We pre-compose with the normalization of R.

In the cusp case, projecting the cubic from the inflection point gives a degree-two map
π : CP1 → CP1 with at least two ramification points (corresponding to the inflection line and the
cusp, respectively). Therefore, Riemann–Hurwitz reads: 2 = 2 · 2 − ∑

(eπ(p) − 1), which implies
that these are the only two ramification points, from which we deduce that there is no other
tangent drawn to the cubic from the inflection point. In the nodal case, the projection π : CP1 →
CP1 of the cubic from p has no ramification at the node, and ramification two at the inflection
line, so there is exactly another point of ramification two, which corresponds to a tangent line
to the cubic.

Therefore, for each fixed homological embedding of the resolution, there is a unique symplec-
tic embedding of the cuspidal curve up to isotopy. The resolution is obtained from the cuspidal
curve by performing 10 blow-ups. Therefore, the embeddings of the resolution into CP2#10CP2,
CP2#11CP2, two into CP2#16CP2, one into CP2#19CP2, and CP2#14CP2 correspond to embed-
dings of the cuspidal curve into CP2, CP2#CP2 or S2 × S2, two embeddings into CP2#6CP2,
and one into CP2#9CP2 and CP2#4CP2.

It remains to distinguish the two embeddings into CP2#6CP2 and prove that this cuspidal
curve embeds into CP2#CP2 instead of S2 × S2. For the latter question, the answer is similar
to the E3 case, but e7 is replaced by e10. Therefore, a basis for the homology complementary
to the exceptional divisors is given by 10h − 6e0 − 3(e1 + · · · + e6 + e10) and 6h − 3e0 − 2(e1 +
· · · + e6 + e10) which have the odd intersection form of CP2#CP2.

To distinguish the two embeddings into CP2#6CP2, we show that their complementary
symplectic fillings have different intersection forms. The two homological embeddings we are
considering from Lemma 6.5 both use option (i) for the lower chain, and differ in the upper
chain, being either option (6.4) or (6.6).

A homology basis for the complement of the embedding of the cap (not just the exceptional
spheres but also the proper transform representing h) in the first case (option (6.4)) is given by
the following:

{e0 − e4 − e5, e2 − e1 − e10 − · · · − e15, e2 − e3, e3 − e4, e4 − e5, e0 + e9 − e6 − e7 − e8}

giving an intersection form represented by

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−3 0 0 −1 0 −1
0 −8 −1 0 0 0
0 −1 −2 1 0 0

−1 0 1 −2 1 0
0 0 0 1 −2 0

−1 0 0 0 0 −5

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In the second case (option (6.6)) a basis is given by the following:

{e2 − e1 − e10 − · · · − e15, e2 − e3, e3 − e4, e4 − e5, e5 − e6, e0 − e5 − e6}
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giving an intersection form represented by

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−8 −1 0 0 0 0
−1 −2 1 0 0 0

0 1 −2 1 0 0
0 0 1 −2 1 −1
0 0 0 1 −2 0
0 0 0 −1 0 −3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

As det Q1 = 256 and detQ2 = 64, the two embeddings are not even homeomorphic.

The Fibonacci families. In the previous subsection, we have shown that in each case the cuspidal
contact structure has a unique rational homology ball filling up to symplectic deformation. In
particular, there is a unique symplectomorphism class of curves in CP2 for each of the mem-
bers of either family, and by Gromov there is a unique symplectic isotopy class, so the complex
representatives are necessarily in that isotopy class. In addition, we observe that each member
in the first Fibonacci family has at least one other filling, whereas each member in the second
Fibonacci family has at least two. Indeed, in the first Fibonacci family, each of the cuspidal
contact 3-manifolds (YC , ξC) is a universally tight lens space. Each universally tight contact
lens space admits at least another filling (namely, a plumbing of symplectic spheres); gluing
this filling to the cuspidal cap yields a closed symplectic 4-manifold into which C embeds (with
minimal complement). In the second Fibonacci family, each of the cuspidal contact 3-manifolds
(YC , ξC) is a connected sum of two distinct universally tight lens spaces (each admitting a
rational homology ball symplectic filling), so it has at least three non-rational homology ball
minimal symplectic fillings, obtained by boundary connected summing either a plumbing fill-
ing and a rational homology ball filling for each of the summand, or the two plumbings. To
show that these fillings are distinct, we look at the order of their first homology: the two
rational homology balls have H1 = Z/FjZ and H1 = Z/Fj+2Z, respectively, whereas the plumb-
ings are simply connected, so the four fillings we exhibited have |H1| = FjFj+2, Fj , Fj+2, and 1,
respectively. �

6.5 Rational blow-down relations

In this section we study the relationships between the two fillings of the cuspidal contact structure
associated with the rational unicuspidal curves in the second family, i.e. those with a singularity
of type (p, 4p − 1). The two fillings are complements of concave neighborhoods of the two different
embeddings.

We study the two sporadic cases (3, 22) and (6, 43) in a companion paper [GS21], by showing
that the corresponding cuspidal contact structure is, in fact, the canonical contact structure on
the link of a singularity (compare with Stipsicz, Szabó, and Wahl [SSzW08]) and studying the
relationship between the different fillings.

As argued in § 6.3, the two Fibonacci families correspond to lens spaces with their canonical
contact structure, for which fillings and rational blow-down relationships have been studied
extensively [BO18].

Recall that when p > 2 each rational curve with self-intersection 4p2 and a singularity of
type (p, 4p − 1) comes with two fillings, W0, W1, with b2(Wi) = i. (See Remark 6.8 for the p = 2
case.)

Proposition 6.7. Let C be a rational unicuspidal curve with a singularity of type (p, 4p − 1)
and self-intersection 4p2, and ξ the corresponding cuspidal contact structure. Then two of the
symplectic fillings of ξ are related by a rational blow-down of a symplectic (−4)-sphere.
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Proof. We need to look for a symplectic (−4)-sphere in the filling with b2 = 1, which we call
W1. Recall from Lemma 6.3 that the homology classes of the embeddings of the spheres of the
plumbing Bp whose complement is W1 are

h, h − e0 − e1, e1 − e2, . . . , e2p−3 − e2p−2, e2p−2 − e2p−1 − e2p,

e2p − e2p+1, e2p+1 − e2p+2, e0 − e1 − · · · − ep−1.

The homology class e2p−1 − e2p − e2p+1 − e2p+2 generates the orthogonal of these classes in
H2(CP2#(2p + 2)CP2). We can choose to realize the configuration above by performing the
last three blow-ups on the exceptional sphere in class e2p−1. Then, the proper transform of e2p−1

is an embedded symplectic sphere in the class e2p−1 − e2p − e2p+1 − e2p+2 with self-intersection
−4, in the complement of the embedding of Bp. As ξ only has two strong symplectic fillings, the
rational blow-down of this (−4)-sphere must give the unique rational homology ball filling. �

Remark 6.8. The same rational blow-down relation holds in the p = 2 case for the two fillings
associated with the homological cases that generalize for p > 2. The additional filling with b2 = 1
that appears only in the p = 2 case is not related to the rational homology ball filling via rational
blow-down. This is because the intersection form of this exceptional filling is 〈−16〉, so it cannot
contain a (−4)-sphere to rationally blow down. To calculate the intersection form, start with
the homological embedding of Lemma 6.3 and observe that the orthogonal to the subspace
generated by the components of the total transform of C in H2(CP2#7CP2) is generated by the
class e0 − e1 − e2 + 2e3 + 2e4 + 2e5 − e6, which has self-intersection −16.

7. Low-degree cuspidal curves

The goal of this section is to prove Theorem 1.3; namely, we want to prove that every rational
cuspidal curve of degree up to five has a unique isotopy class, and that this class contains a
complex representative.

We split the proof degree by degree; there are no singular lines or conics, so we only need
to start at degree three. By the degree-genus formula (2.1), a cuspidal cubic can only have
one singularity, which is necessarily a simple cusp. This case was already considered in § 6 and
in [OO05].

In the next two subsections, we look at quartics and quintics. As in the previous section,
we actually provide classifications of symplectic embeddings of these cuspidal curves (with pre-
scribed normal Euler number) into any closed symplectic manifold, equivalently classifying the
symplectic fillings of the associated contact structures.

7.1 Quartics

By the degree-genus formula (2.1), a cuspidal quartic can only have multiplicity multi-sequence
[[3]] or [[2, 2, 2]]; correspondingly, the allowed types of configurations of singularities are the
following:

• [3]: a single cusp of type (3, 4) which we showed has a unique symplectic isotopy class of
embeddings into CP2 in § 6;

• [2, 2, 2]: a single cusp of type (2, 7) which was also shown to have a unique embedding into
CP2 in § 6;

• [2, 2], [2]: one cusp of type (2, 5) and one of type (2, 3) will be shown to have a unique relatively
minimal symplectic embedding into each of CP2, CP2#CP2, and S2 × S2 in Proposition 7.1;
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Figure 22. A resolution of a rational cuspidal quartic with one cusp of type (2, 3) and one of
type (2, 5) with the possible homological embeddings.

• [2], [2], [2]: three simple cusps will be shown to have a unique symplectic embedding into CP2

in Proposition 7.2.

As it turns out, all these configurations are realized by rational cuspidal quartics in CP2, and
each realization has a unique equisingular isotopy class in CP2. The bicuspidal quartic also has
realizations in CP2#CP2 and S2 × S2.

Proposition 7.1. Let C be a curve with normal Euler number 16 with one cusp of type (2, 5)
and one of type (2, 3). Then the only relatively minimal symplectic embeddings of C are into CP2,
CP2#CP2, and S2 × S2. For each of these there is a unique non-empty symplectic isotopy class
of embeddings up to symplectomorphism. Correspondingly, the associated contact structure ξC

has three fillings; one is a rational homology ball, and the other two have second Betti number
1 and are distinguished by their intersection forms.

Proof. Suppose C embeds minimally symplectically in (X, ω). Blow up at the (2, 3)-cusp of C
to the normal crossing resolution, and blow up at the (2, 5)-cusp once more than its minimal
resolution (not quite normal crossing). See Figure 22. The proper transform of C becomes a
smooth symplectic +1-sphere, so we apply McDuff’s theorem to identify it with a line in some
blow up of CP2.

We determine the homology classes of the remaining divisors in the total transform of C
relative to this identification. Using Lemma 3.7, and the intersection relations, the homology
classes of the divisors have three possibilities differing from each other only in the (−2)- and
(−3)-spheres in the normal crossing resolution of the (2, 3)-cusp. The divisors in the resolution
of the (2, 5)-cusp must be h − e1 − e2, h − e3 − e4 − e5, and e5 − e6, and the (−1)-curve in the
resolution of the (2, 3)-cusp must be in the class h − e1 − e3 (up to relabeling the ei). The
remaining (−2)-sphere class must be either e1 − e2 or e3 − e4. If it is e1 − e2 there are two
possibilities for the (−3)-sphere class: e3 − e5 − e6 and e3 − e4 − e7. If the (−2)-class is e3 − e4,
the (−3)-class must be e1 − e2 − e7. See Figure 22.

Observe that two of these three possibilities require seven exceptional classes and the third
requires six exceptional classes. As the resolution was obtained from the cuspidal curve by blowing
up six times, the two embeddings of the resolution using seven exceptional classes correspond to
potential embeddings of the cuspidal curve into either CP2#CP2 or S2 × S2.

In option (B), where the (−3)-sphere represents e3 − e4 − e7 and the (−2)-sphere represents
e1 − e2, the homology of the complement of the exceptional divisors is generated by 2h − e1 −
e2 − e3 − e4 and 4h − 2e1 − 2e2 − 2e3 − e4 − e5 − e6 − e7. The intersection form generated by
these two classes is [

0 1
1 0

]
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so this corresponds to an embedding of the bicuspidal quartic into S2 × S2.
In option (C), where the (−3)-sphere represents e1 − e2 − e7 and the (−2)-sphere represents

e3 − e4, the homology of the complement of the exceptional divisors in the resolution is gen-
erated by 3h − 2e1 − e2 − e3 − e4 − e5 − e6 − e7 and 5h − 3e1 − 2e2 − 2e3 − 2e4 − e5 − e6 − e7

which gives an intersection form
[
−1 0
0 1

]

so this corresponds to an embedding of the bicuspidal quartic into CP2#CP2.
The embedding of the resolution using six ei classes (option (A)) corresponds to a potential

embedding of the cuspidal curve into CP2.
To verify that there is a unique isotopy class for each homology embedding, we apply

Lemma 3.5 to find exceptional spheres in the ei classes. In all three cases, the configuration
blows down to four lines with one triple point and three double points. This has a unique sym-
plectic isotopy class by Proposition 5.1, so this cuspidal quartic has a unique symplectic isotopy
class in CP2 by Proposition 3.18.

The complement of the embedding of the cuspidal curve into CP2 is a rational homol-
ogy ball filling. We can further check that the fillings complementary to the embeddings of
the cuspidal curve into CP2#CP2 and S2 × S2 are, in fact, differentiated by their intersection
forms. As each has b2 = 1, we simply need to find the self-intersection number of a primitive
class orthogonal to all of the divisors in the cap (the exceptional divisors together with the
proper transform which represents h). In option (B), the embedding into S2 × S2, such a class
is represented by e4 − e5 − e6 − e7 which has self-intersection number −4 (and actually is rep-
resented by a symplectic sphere which can be blown down to get the rational homology ball
filling). In option (C), the embedding into CP2#CP2, such a class is given by e1 − e2 − e3 −
e4 + 2e5 + 2e6 + 2e7 which has self-intersection number −16. Therefore, the two fillings are not
homeomorphic. �

Finally, we turn to the case of three cusps of type (2, 3). We call E1, E2, and E3 the three
exceptional divisors in the minimal resolution of the curve.

Proposition 7.2. Let C be a curve with normal Euler number 16 with three cusps of type (2, 3).
Then the only relatively minimal symplectic embedding of C is into CP2 and this is unique up to
symplectic isotopy. Correspondingly, the associated contact structure ξC has a unique minimal
symplectic filling, and it is a rational homology ball.

Proof. Suppose C embeds minimally symplectically in (X, ω). Blow up at each cusp twice giving a
resolution in between the minimal resolution and the normal crossing resolution. See Figure 23.
The proper transform of C becomes a smooth symplectic +1-sphere, so we apply McDuff’s
theorem to identify it with a line in some blow up of CP2, and determine the homology classes
of the exceptional divisors relative to this identification. The exceptional divisors from the first
two cusps are uniquely determined up to relabeling the ei, and there are three options for the
exceptional divisors for the third cusp as shown in Figure 23.

Next, we blow down exceptional spheres in the ei classes in each case using Lemma 3.5. The
two homological embeddings utilizing seven ei classes (options (A) and (B)) both blow down to
a Fano configuration of seven lines with seven triple points (three are already in the resolution
and four more come from blowing down e1, e2, e3, e4). The Fano configuration is obstructed
from realization by symplectic (or even smooth) lines by Theorem 5.20. As both embeddings of
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Figure 23. A resolution of a rational cuspidal quartic with three cusps of type (2, 3) with the
possible homological embeddings.

the cuspidal curve into any symplectic manifold with b2 = 2 have birational derivations to the
Fano configuration, they cannot exist by Proposition 3.17.

The last homological embedding (option (C)) uses six ei classes so because the resolution
was obtained from the cuspidal curve by performing six blow-ups, this option corresponds to an
embedding of the cuspidal curve into CP2. We now verify this exists uniquely, by blowing down
exceptional spheres in ei classes using Lemma 3.5. In this case, the configuration blows down to
seven lines intersecting in 6 triple points and two double points. This can be built up line by line
using Proposition 5.1. Therefore, it has a unique symplectic isotopy class so there is a unique
symplectic isotopy class of C in CP2 by Proposition 3.18. �

7.2 Quintics

A quintic C in CP2 has arithmetic genus pa(C) = 1
2(5 − 1)(5 − 2) = 6. This allows for a large

number of potential ways to absorb that genus into cusps. Some of these collections of singularity
types are realized by rational cuspidal complex curves of degree five, and others cannot be
realized. Here we prove that each equisingular type which is realized by complex curves, has a
unique symplectic isotopy class of realizations, and that equisingular types which do not admit
a complex realization do not admit a symplectic realization either.

To prove Theorem 1.3 for quintics, and the classifications of embeddings into other closed
symplectic manifolds, we first check what are the possible multiplicity multi-sequences which
yield a rational cuspidal curve of arithmetic genus pa(C) = 6.

If C is rational and cuspidal, then pa(C) =
∑

δ(p), where the sum is taken over all singular
points of C. By (2.3), summing (1/2)m(m − 1) over all multiplicity sequences of singular points,
we have to obtain six; this leaves the following possibilities to arise as multiplicity multi-sequences
of the singularities of C: [[4]], [[3, 3]], [[3, 2, 2, 2]], and [[2, 2, 2, 2, 2, 2]].

As observed in § 2.1, not all sequences of integers correspond to multiplicity sequences
of singularities. In particular, among the possible sequences coming from the list above,
[3, 2, 2] and [3, 2, 2, 2] are not allowed. This leaves the following possibilities for each individual
singularity:

• [4], which corresponds to the singularity of type (4, 5);
• [3[k]], which corresponds to the singularity of type (3, 3k + 1) (k = 1, 2);
• [3, 2], which corresponds to the singularity of type (3, 5);
• [2[k]], which corresponds to the singularity of type (2, 2k + 1), (k = 1, . . . , 6).

In particular, all singularities we encounter here have one Puiseux pair. Starting from degree
six on, there will appear curves with multiple Puiseux pairs. For instance, in degree six, there
is a unicuspidal curve whose singularity has multiplicity sequence [4, 2, 2, 2, 2] (this is curve C2
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Table 1. The first two columns contain the collections of singularities of each quintic, expressed

as multiplicity sequences (MS) and as the type of their links (L). The third and fifth columns state

whether they are realized as quintics in CP2 or in any other rational surface, respectively. The

fourth column contains the reference to [Nam84, Theorem 2.3.10] for the algebraic realization.

Finally, the last column gives a reference to the relevant statement.

Sing. (MS) Sing. (L) In CP2 Namba Fillable Reference

[4] (4, 5) Yes 1 No Theorem 6.6

[3, 3] (3, 7) No No Proposition 7.3
[3], [3] (3, 4), (3, 4) No No Proposition 7.3

[3, 2], [2, 2] (3, 5), (2, 5) Yes 2 No Proposition 7.4

[3, 2], [2]2 (3, 5), (2, 3)2 No No Proposition 7.5

[3], [2, 2, 2] (3, 4), (2, 7) Yes 4 No Proposition 7.4
[3], [2, 2], [2] (3, 4), (2, 5), (2, 3) Yes 3 No Proposition 7.4

[3], [2]3 (3, 4), (2, 3)3 No No Proposition 7.5

[2[6]] (2, 13) Yes 5 Yes Theorem 6.6

[2[5]], [2] (2, 11), (2, 3) No Yes Proposition 7.9

[2[4]], [2, 2] (2, 9), (2, 5) Yes 7 Yes Proposition 7.9

[2[4]], [2]2 (2, 9), (2, 3)2 No No Proposition 7.8

[2[3]], [2[3]] (2, 7), (2, 7) No Yes Proposition 7.9

[2[3]], [2, 2], [2] (2, 7), (2, 5), (2, 3) No No Proposition 7.8

[2[3]], [2]3 (2, 7), (2, 3)3 Yes 6 No Proposition 7.12
[2, 2]3 (2, 5)3 Yes 8 No Proposition 7.11

[2, 2]2, [2]2 (2, 5)2, (2, 3)2 No No Proposition 7.8

[2, 2], [2]4 (2, 5), (2, 3)4 No No Proposition 7.7

[2]6 (2, 3)6 No No Proposition 7.7

in [Fen99, Corollary 1.5]); the link of this singularity is the iterated torus knot T (2, 3; 2, 17) (i.e.
the (2, 17)-cable of T (2, 3)).

Theorem 1.3 for degree five results from analyzing all the possibilities, which we do in the
propositions making up the rest of this subsection. We provide a table summarizing the results
and giving references (Table 1).

For the multi-sequence [[3, 3]], as mentioned in Example 2.18, the semigroup condition
obstructs such quintic curves from being realized even smoothly in CP2. For the two possible
cusp types with this multi-sequence, we prove with other techniques that there is no symplectic
embedding of these curves in any closed symplectic manifold. Our proof actually shows that
a resolution of such a curve admits no homological embedding whose components satisfy the
adjunction formula into a blow-up of CP2 when we identify a +1-sphere in the resolution with
the line. This is the crudest type of obstruction from the perspective of this paper, occurring
already at the level of homology.

Proposition 7.3. There is no symplectic embedding into any closed symplectic manifold of a
rational cuspidal curve C with normal Euler number 25 and with a single cusp of type (3, 7)
or with two cusps of type (3, 4). Thus, the corresponding contact manifolds have no symplectic
fillings. In particular, there is no symplectic rational cuspidal quintic in CP2 with one singularity
of type (3, 7) or two of type (3, 4).

Proof. For the case of a single cusp of type (3, 7), we blow up the normal crossing resolution
three additional times, and obtain the configuration shown in Figure 24.
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Figure 24. A resolution of a rational cuspidal quintic with one cusp of type (3, 7) showing that
it admits no homological embedding.

Figure 25. A resolution of a rational cuspidal quintic with two cusps of type (3, 4) showing
that it admits no homological embedding.

We identify the +1-curve with a line in CP2#NCP2 by Theorem 3.6. The homology classes
of the upper chain are uniquely determined by Lemmas 3.7 and 3.12 to be

(h, h − e0 − e1, e1 − e2, e2 − e3, e3 − e4, e4 − e5, e5 − e6).

The (−4)-sphere must have the form ei0 − ei1 − ei2 − ei3 . By Lemma 3.9 the classes e1, . . . , e5

cannot appear with positive coefficient twice. Using this and the intersections with the other
classes in the chain, the (−4)-sphere represents e0 − e3 − e2 − e1. The remaining (−2)-sphere, C
must have the form [C] = ei − e0 for some i > 3, since [C] · (e0 − e1 − e2 − e3) = 1 and e1, e2, e3

cannot appear with positive coefficient again. Because [C] · (h − e0 − e1) = 0, we must have [C] =
e1 − e0, but then [C] · (e1 − e2) = −1 when it should be zero. Therefore there is no adjunctive
embedding of this resolution configuration.

For the curve with two cusps of type (3, 4), the normal crossing resolution graph is given by
Figure 25.

Again, identify the +1-sphere with a line in CP2#NCP2. By Lemmas 3.11 and 3.12, the
chain emanating to the right from the +1-sphere initially has two possibilities

(h − e0 − e1, e1 − e2, e2 − e3) or (h − e0 − e1, e1 − e2, e0 − e1).

The other (−1)-sphere must have the form h − e0 − e4 or h − e1 − e4 based on its intersection
with the +1 and other (−1)-spheres. This rules out the second possibility for the chain emanating
to the right because e0 − e1 intersects non-trivially with both options. The chain emanating to
the left from the +1-sphere is uniquely determined similarly as shown in Figure 25.

However, then the two (−4)-spheres must each have one exceptional class with coefficient
+1, and that class must appear with coefficient −1 in the (−1)-sphere they are adjacent to.
As e1 and e4 have already appeared with positive coefficient, and no exceptional class can appear
with positive coefficient twice by Lemma 3.9, there is no possible homological embedding. �

Now we consider three related cases of rational cuspidal quintics which symplectically embed
uniquely into CP2. Each of these curves is known to have a complex algebraic realization in CP2

(cases 2, 4, and 3 in [Nam84, Theorem 2.3.10], respectively).
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Figure 26. A resolution of a rational cuspidal quintic with one cusp of type (3, 5) and one of
type (2, 5) with the only possible homological embedding.

Proposition 7.4. If a rational cuspidal curve C has normal Euler number 25 and one of the
following three cusp collections:

(i) one of type (3, 5) and one of type (2, 5);
(ii) one of type (3, 4) and one of type (2, 7);
(iii) one of type (3, 4), one of type (2, 5), and one of type (2, 3);

then the only relatively minimal symplectic embedding of C is into CP2 and this embedding
is unique up to symplectic isotopy. Equivalently, the corresponding contact structure ξC has a
unique minimal filling which is a rational homology ball.

Proof. For each of three cusp types, we blow up to a resolution where the proper transform of
the cuspidal curve is smooth and has self-intersection +1. We apply McDuff’s theorem to identify
the +1-sphere with a line in CP2#NCP2.

For the curve with a (3, 5)- and (2, 5)-cusp take the normal crossing resolution at the (3, 5)-
cusp, and the minimal smooth resolution at the (2, 5)-singularity, blown up one additional time
as in Figure 26. Note that this resolution was obtained from the cuspidal curve by blowing up
a total of seven times (there are seven exceptional divisors). Relative the identification of the
+1-sphere with a line, the homology classes of the other curves are uniquely determined up to
relabeling the ei by Lemma 3.7 and the intersection relations as shown in Figure 26. Note that
this homological embedding uses seven ei classes, so if this resolution is minimally embedded,
the ambient symplectic 4-manifold must be CP2#7CP2. Thus, if we return to the cuspidal curve
by blowing down seven times to reverse the resolution, the cuspidal curve can only minimally
symplectically embed in CP2. Blowing down spheres in the ei classes using Lemma 3.5 gives a
birational derivation from the cuspidal curve to a line arrangement of four lines with a single triple
point. This line arrangement has a unique symplectic isotopy class by Proposition 5.1. Therefore,
this cuspidal quintic has a unique symplectic isotopy class in CP2 by Proposition 3.18.

For the cuspidal curve with a (3, 4)- and (2, 7)-cusp, blow up two times more than the minimal
resolution at the (3, 4)-cusp, and blow up one time more than the minimal resolution at the
(2, 7)-cusp as in Figure 27. The homology classes relative the +1-line are uniquely determined as
shown, and use seven ei classes (the same as the number of exceptional divisors in the resolution).
Therefore, the cuspidal curve embeds symplectically minimally only in CP2. Using Lemma 3.5 to
successively blow down exceptional spheres in the ei classes to CP2, the configuration descends
to five lines {Li} where L1, L2, L3 intersect at a triple point and L3, L4, L5 intersect at a
triple point, and the other intersections are generic. This has a unique symplectic isotopy class
by Proposition 5.1. As this line arrangement is birationally derived from the embedding of the
cuspidal curve, Proposition 3.18 implies that the cuspidal curve has a unique symplectic isotopy
class in CP2.
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Figure 27. A resolution of a rational cuspidal quintic with one cusp of type (3, 4) and one of
type (2, 7) with the only possible homological embedding.

Figure 28. A resolution of a rational cuspidal quintic with one cusp of type (3, 4), one of type
(2, 5), and one of type (2, 3) with the only possible homological embedding.

For the curve with cusps of type (3, 4), (2, 5), and (2, 3), we blow up to the minimal resolution
and then once more at each of the (3, 4)- and (2, 5)-cusps resulting in Figure 28. The homology
classes relative the +1-line are uniquely determined as shown. (The uniqueness requires a little
additional thought in this case, because some of the curves a priori have other options (the (−3)-
curve and the (−2)-curves disjoint from the line). However, any combinations of these other than
the one shown violate the intersection relations.) The unique homological embedding uses the
same number of ei classes as exceptional divisors in the resolution. Therefore, the cuspidal curve
embeds symplectically minimally only in CP2.

We blow down exceptional spheres in the classes ei, using Lemma 3.5 together with blow-
downs of the images of the (−2)-spheres disjoint from the +1-sphere. (For example, after blowing
down a representative of e4, the image of the (−2)-sphere in the class e3 − e4 becomes an excep-
tional sphere representing e3. The exceptional spheres representing e4 and e3 are sent to the same
point after these two sequential blow downs.) This gives a birational derivation from the cuspidal
curve to a configuration with a conic and five lines with intersections as shown in Figure 29.
This configuration has a unique equisingular symplectic isotopy class by iteratively applying
Proposition 5.1 starting with Q0 and adding L1, . . . , L5 one at a time in order as shown in
Figure 29. Therefore, this cuspidal quintic has a unique symplectic isotopy class in CP2 by
Proposition 3.18 because it has a birational derivation to a configuration with a unique symplectic
isotopy class. �

The remaining two possible cuspidal quintics with multi-sequence [[3, 2, 2, 2]] are obstructed
from being realized by complex curves in CP2 by the Riemann–Hurwitz formula (see
Example 3.20). Because we can use J-holomorphic curves to recover the Riemann–Hurwitz
formula for symplectic curves, the same obstruction holds in the symplectic case. However, we can
actually prove the stronger statement, that these rational cuspidal curves cannot symplectically
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Figure 29. The configuration in CP2 resulting from blowing down e1, . . . , e7 from Figure 28.
The images of the exceptional spheres are indicated by e(i). This has a unique equisingular
symplectic isotopy class by iteratively applying Proposition 5.1 starting with Q0 and adding
L1, . . . , L5 one at a time in order.

embed in any closed symplectic manifold. Moreover, reversing our argument will recover an
obstruction to a symplectic Fano plane, first proven in [RS19].

Proposition 7.5. A rational cuspidal curves C with normal Euler number 25 and either:

(i) one cusp of type (3, 5) and two of type (2, 3); or
(ii) one cusp of type (3, 4) and three of type (2, 3);

has no symplectic embedding into any closed symplectic 4-manifold. Equivalently, the associated
contact structure ξC has no symplectic filling.

Proof. We begin with the first case where C has one cusp of type (3, 5) and two of type (2, 3).
Suppose C embeds symplectically minimally into (X, ω). Blow up four times to the minimal
resolution and then once more at each of the three tangency points, until C has self-intersection
+1, and the configuration is given as in Figure 30. Apply McDuff’s theorem to identify X#7CP2

with CP2#NCP2 sending C to a line. The homology classes of the other curves are uniquely
determined by Lemma 3.7 and the algebraic intersection numbers as in Figure 30. There are
exactly seven ei classes appearing so if C was minimally symplectically embedded in X, we must
have X#7CP2 = CP2#7CP2 so X = CP2. This together with the Riemann–Hurwitz obstruction
suffices to ensure C does not embed into any closed symplectic manifold. However, going a bit
further, if we apply Lemma 3.5 to blow down exceptional spheres representing the ei, the config-
uration blows down to seven lines intersecting in seven triple points: the Fano plane (Figure 13).
(The exceptional spheres representing e1, e2, e3, e4 blow down to triple point intersections
between lines.) Therefore, the Fano line arrangement in CP2 can be birationally derived from
this cuspidal quintic.

Thus, we obtain a proof of the following corollary, independently of [RS19]. (They prove the
stronger statement in the smooth, rather than symplectic, category.)

Corollary 7.6. The Fano configuration cannot be realized as a configuration of symplectic
lines in CP2. �

The cuspidal quintic with one (3, 4)-cusp and three (2, 3)-cusps is obstructed similarly. This
time we blow up to the minimal resolution and then blow-up one additional time at each of
the three (2, 3)-cusp points (a total of 7 blow-ups). The resulting configuration is shown in
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Figure 30. The unique homology classes of an embedding of the blow-up of a cuspidal curve
with one cusp of type (3, 5) and two of type (2, 3).

Figure 31. The unique homology classes of an embedding of the blow-up of a cuspidal curve
with one cusp of type (3, 4) and three of type (2, 3).

Figure 31. Identifying the +1-sphere with a line, the homology classes of the other curves are
uniquely determined by Lemma 3.7 and the intersection relations as shown. There are exactly
seven ei classes used so the only possible 4-manifold where this cuspidal curve can minimally
symplectically embed is CP2. Blowing down using Lemma 3.5 yields a configuration consisting
of the Fano configuration together with a singular cubic. As the Fano configuration cannot
exist (by Theorem 5.20 or Corollary 7.6), this cuspidal quintic cannot embed into CP2 by
Proposition 3.17. �

There are two other quintics which are obstructed from realization by complex curves in
CP2 using Riemann–Hurwitz (Example 3.20). We can obstruct these curves from embedding
symplectically into any closed symplectic 4-manifold also.

Proposition 7.7. Let C a rational cuspidal curve with normal Euler number 25, with either:

(i) one cusp of type (2, 5) and four of type (2, 3); or
(ii) six cusps of type (2, 3).

Then C does not embed symplectically into any closed symplectic 4-manifold and contact
structure ξC associated with C is not symplectically fillable.
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Figure 32. Minimal resolution of a rational cuspidal quintic with one cusp of type (2, 7), one
of type (2, 5), and one of type (2, 3) with the possible homological embeddings.

Proof. Assume C embeds in (X, ω). In both cases, we blow up six times to the minimal resolution,
where the proper transform of C has self-intersection +1. We apply McDuff’s theorem and classify
homological embeddings of the configurations.

Every exceptional curve which is simply tangent to the +1-curve will represent the homology
class 2h − ei1 − · · · − ei5 by Lemma 3.7. Any pair of such curves are disjoint, so each pair must
share exactly four exceptional classes with coefficient −1. When there are more than three such
curves, there are two ways this can happen: either all of these curves have the form 2h − e1 − e2 −
e3 − e4 − ei (for all different values of i) or all of the conics have the form 2h − e1 − · · · − e6 + ej

for j ∈ {1, . . . , 6} (this is possible when there are at most six such curves).
Keeping these generalities in mind, we now focus on the case with five cusps. There are

five conics tangent to the +1-line, which must have homology classes fitting one of the two
possibilities discussed previously. The remaining (−2)-sphere intersects one of these conics and in
each case, its homology class is uniquely determined based on its intersections with the conics as
in Figure 32. In the first embedding where the conics all have the form 2h − e1 − e2 − e3 − e4 − ei,
there are 10 exceptional classes so X#6CP2 ∼= CP2#10CP2, so this corresponds to an embedding
of the cuspidal curve in X = CP2#4CP2.

Blowing down exceptional spheres in ei classes using Lemma 3.5, the configuration in
CP2#10CP2 descends to five conics all intersecting at four common fixed points (the images
of e1, e2, e3, e4), with a line tangent to all five conics. This contains the configuration G


which is obstructed by Proposition 5.22. As we birationally derived an obstructed configuration,
by Proposition 3.17 this homological embedding of the minimal resolution configuration into
CP2#10CP2 cannot be realized by a symplectic embedding (equivalently the cuspidal curve does
not have a corresponding relatively minimal embedding into CP2#4CP2).

In the second embedding, only six exceptional classes are used so this corresponds to a
symplectic embedding of the cuspidal curve in CP2. This is obstructed by the Riemann–Hurwitz
obstruction (see Example 3.20).

In the six-cuspidal case, there are six conics tangent to the +1-curve C. Again, there are
two possible homological embeddings, fully determined by the two options for the classes of the
conics described previously. The first case uses 10 exceptional classes and, thus, corresponds
to an embedding of the cuspidal curve into CP2#4CP2. Blowing down with Lemma 3.5, the
configuration descends to six conics in a pencil with a line tangent to all six. This contains the
configuration G
 so by Propositions 5.22 and 3.17, there is no relatively minimal symplectic
embedding of this cuspidal curve into CP2#4CP2. The second homological embedding uses six
exceptional classes and thus corresponds to an embedding of the cuspidal curve into CP2, which
is obstructed by Riemann–Hurwitz (Example 3.20). �

In the previous two cases, we had potential symplectic embeddings of the minimal resolution
into CP2#10CP2 with homology classes determined relative the +1-curve being identified with
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a line. Blowing down exceptional spheres in the ei classes lead to a configuration of conics and
a line that we could obstruct because it contained G
. Next, we give three more cases where we
can obstruct all of the possible configurations of conics and lines resulting from blowing down ei

classes.

Proposition 7.8. Let C a rational cuspidal curve with normal Euler number 25, with:

(i) one cusp of type (2, 9) and two of type (2, 3);
(ii) one cusp of type (2, 7), one of type (2, 5), and one of type (2, 3); or
(iii) two cusps of type (2, 5), and two of type (2, 3).

Then C does not embed symplectically into any closed symplectic 4-manifold and contact
structure ξC associated with C is not symplectically fillable.

Proof. In all three cases, the minimal resolution results from six blow-ups, and the proper trans-
form of the cuspidal curve becomes a smooth +1-sphere C which we use to apply McDuff’s
theorem. The six exceptional divisors are either (−1)-curves tangent to C or (−2)-curves dis-
joint from C. The two choices (up to relabeling the ei) of homological embedding for the tangent
(−1)-curves each determine the homology classes of the (−2)-spheres. The minimal resolutions
with their two possible homological embeddings are shown in Figures 33–35.

For each of the three cuspidal curves, there is one homological embedding option where
all of the tangent conics represent homology class of the form 2h − e1 − e2 − e3 − e4 − ei (the
upper option in the figures). If we use Lemma 3.5 to blow down exceptional spheres in the ei

classes, this gives a birational derivation to a configuration that contains (or equals) G
. As G


is obstructed by Proposition 5.22, there cannot be any symplectic embedding of the resolution
with such homology classes in CP2#10CP2.

For each of the cuspidal curves we consider the remaining homological embedding, and blow
down exceptional spheres representing the ei using Lemma 3.5.

For the curve with one (2, 9)-cusp and two (2, 3)-cusps, the minimal resolution is shown in
Figure 33. Focusing on the lower homological embedding, we blow down spheres representing
classes e6, e1, e2, and e3 all to the same point. Because all four of these exceptional spheres inter-
sect the two conics on the right (which resolved the two (2, 3)-cusps), the resulting configuration
in the blow-down will contain two conics which intersect at a single point with multiplicity four,
one more conic, and a line tangent to all three conics. Focusing on the first two conics and the
tangent line, we see this configuration contains G4, obstructed by Proposition 5.23. Therefore, by
Proposition 3.17, the cuspidal curve with a (2, 9)-cusp and two (2, 3)-cusps cannot symplectically
embed into CP2.

For the curve with one cusp each of types (2, 7), (2, 5), and (2, 3), the minimal resolution
with the possible homological embeddings appears in Figure 34. Again focusing on the lower
homological embedding, which is the only one left to rule out, we blow down exceptional spheres
in ei classes using Lemma 3.5. We see that exceptional spheres in classes e1, e2, and e6 all blow
down to the same point, and exceptional spheres in classes e3 and e4 blow down to the same
point. The two leftmost conics (coming from the last resolving exceptional divisors of the (2, 7)-
and (2, 3)-cusps) each intersect e1, e2, e3, and e4. Therefore, after blowing down these two conics
become tangent at two different points and the +1-sphere descends to a line tangent to each.
Therefore, G2,2 appears as a subconfiguration of the result of blowing down. As G2,2 is obstructed
by Proposition 5.23, the cuspidal curve cannot symplectically embed because it has a birational
derivation to an obstructed configuration.
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Figure 33. Minimal resolution of a rational cuspidal quintic with one cusp of type (2, 9) and
two of type (2, 3) with the possible homological embeddings.

Figure 34. Minimal resolution of a rational cuspidal quintic with one cusp of type (2, 7), one
of type (2, 5), and one of type (2, 3) with the possible homological embeddings.

Figure 35. Minimal resolution of a rational cuspidal quintic with two cusps of type (2, 5) and
two of type (2, 3) with the possible homological embeddings.

For the curve with two (2, 5)-cusps and two (2, 3)-cusps the minimal resolution with homo-
logical embeddings is in Figure 35. To rule out the second homological embedding, we blow down
using Lemma 3.5. The pairs of exceptional spheres e1, e6 and e2, e3 each blow down to a single
point. The two central conics coming from exceptional divisors where the (2, 3)-cusps were blown
up both intersect all four of these exceptional spheres. Therefore, these two curves descend to
two conics tangent at two points with a line tangent to both, which again is the obstructed con-
figuration G2,2. Thus, by Propositions 5.23 and 3.17, this cuspidal curve cannot symplectically
embed. �

In the next three cases, we look at the bicuspidal curves with multi-sequence [[2, 2, 2, 2, 2, 2]].
This is the first case where we find relatively minimal symplectic embeddings into a non-
trivial blow-up of CP2. All three cases have relatively minimal symplectic embeddings into
CP2#4CP2 and one of the cases also has a symplectic embedding into CP2 (case 7 in [Nam84,
Theorem 2.3.10]).
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Proposition 7.9. Let C be a rational cuspidal curve with normal Euler number 25.
If C has one cusp of type (2, 9) and one of type (2, 5), then C has a unique minimal symplectic

embedding in CP2 and a unique minimal symplectic embedding into CP2#4CP2 up to symplectic
isotopy and symplectomorphism. Equivalently, the corresponding contact structure ξC has two
symplectic fillings with b2 = 0, 4 respectively.

If C has one cusp of type (2, 11) and one of type (2, 3), or two cusps of type (2, 7), then C
has a unique minimal symplectic embedding into CP2#4CP2 up to symplectic isotopy and sym-
plectomorphism. Equivalently, the corresponding contact structure ξC has a unique symplectic
filling with b2 = 4.

Proof. In all three cases, we will blow up the cuspidal curve to its minimal resolution
where the proper transform C is a smooth +1-sphere that we identify with a line using
McDuff’s theorem. Because there are exactly two cusps, the resolution will always con-
tain two (−1)-exceptional divisors tangent to the +1-curve and four other (−2)-exceptional
divisors.

We determine homology classes relative the +1-curve. The two tangent (−1)-divisors nec-
essarily must be 2h − e1 − e2 − e3 − e4 − e5 and 2h − e2 − e3 − e4 − e5 − e6 (up to relabeling
the ei). We then determine the options for the four (−2)-curves according to the intersection
relations. These are shown in Figures 36–38.

In each case, there are two possible homological embeddings of the minimal resolution. One
into CP2#6CP2 and the other into CP2#10CP2. If these homological embeddings can be real-
ized symplectically, they would give symplectic embeddings of the cuspidal curve into CP2 and
CP2#4CP2, respectively.

In each of the three cases, if we assume we have a relatively minimal symplectic embedding
of the minimal resolution into CP2#10CP2, and we blow down exceptional spheres representing
the ei using Lemma 3.5, the resulting configuration in CP2 consists of two conics intersecting
tranversely at four points (the disjoint images of e2, e3, e4, and e5) with a line tangent to each.
This is the configuration G1 which has a unique symplectic isotopy class by Proposition 5.9.
Therefore, we have a birational derivation from the cuspidal curve in CP2#4CP2 to a configura-
tion with a unique nonempty symplectic isotopy class so by Proposition 3.18, each of the three
types of cuspidal curves has a unique relatively minimal symplectic embedding in CP2#4CP2 up
to symplectomorphism.

For the homological embedding of the minimal resolution into CP2#6CP2, we consider each
cuspidal curve separately.

For the case with one cusp of type (2, 11) and one of type (2, 3), we start with a relatively
minimal embedding of the resolution into CP2#6CP2 and blow down exceptional spheres in the
ei classes using Lemma 3.5. The exceptional spheres in classes e2, e3, e4, e5, and e6 all blow
down to the same point. This produces a order-four tangency between the two conics so the
configuration descends to G4 which is obstructed (Proposition 5.23). Therefore, this cuspidal
curve does not symplectically embed in CP2.

Next, we start with a symplectic embedding into CP2#6CP2 of the minimal resolution of the
curve with one cusp of type (2, 9) and one of type (2, 5) with the second homological embedding
given in Figure 37. Blowing down exceptional spheres in the ei classes, we see that the spheres
in classes e3, e4, e5, and e6 descend to the same point, and those in classes e1 and e2 descend to
another point. The effect is that the conics become tangent at one point with multiplicity three
and intersect transversally at another point. This yields the configuration G3 which has a unique
symplectic isotopy class by Proposition 5.5. Therefore, by Proposition 3.18, there is a unique
relatively minimal symplectic embedding of this cuspidal curve into CP2.
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Figure 36. Minimal smooth resolution of a rational cuspidal quintic with one cusp of type
(2, 11) and one of type (2, 3).

Figure 37. Minimal smooth resolution of a rational cuspidal quintic with one cusp of type
(2, 9) and one of type (2, 5).

Figure 38. Minimal smooth resolution of a rational cuspidal quintic with two cusps of type
(2, 7).

Finally, considering a potential symplectic embedding into CP2#6CP2 of the minimal resolu-
tion of the cuspidal quintic with two cusps of type (2, 7), the homological embedding is given in
Figure 38. Blowing down exceptional spheres using Lemma 3.5 we find that exceptional spheres
in classes e4, e5, and e6 descend to one point and those in classes e1, e2, and e3 descend to another
point. This has the effect that the two conics intersect tangentially at two points. Therefore, the
configuration descends to G2,2 which is obstructed by Proposition 5.23. Thus, by Proposition 3.17,
there is no symplectic embedding of this cuspidal quintic in CP2. �

Remark 7.10. The rational cuspidal quintic with two cusps of type (2, 7) can be alternatively be
obstructed in CP2 using spectrum semicontinuity as in Example 2.20.

Finally, there are two more possible collections of cusps with multi-sequence [[2, 2, 2, 2, 2, 2]].
There can be three cusps of type (2, 5) or one of type (2, 7) and three of type (2, 3). Each of these
cases turns out to have a unique symplectic embedding into CP2 and no other relatively minimal
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Figure 39. Minimal resolution of a rational cuspidal quintic with three cusps of type (2, 5)
with the possible homological embeddings.

symplectic embeddings (cases 8 and 6 in [Nam84, Theorem 2.3.10], respectively). Some of the
reducible configurations of conics and lines that appear in these proofs required more extensive
arguments to establish their uniqueness in § 5, so we separate these two cases as the trickiest of
the bunch.

Proposition 7.11. If a rational cuspidal curve C has normal Euler number 25 and three cusps
of type (2, 5), then only relatively minimal symplectic embedding of C is into CP2 and this
embedding is unique up to symplectic isotopy. Equivalently, the corresponding contact structure
ξC has a unique minimal filling which is a rational homology ball.

Proof. We look at the minimal smooth resolution at each singularity of C; the proper transform
of C is a smooth +1-sphere, and the total transform is given in Figure 39 with the possible
homological embeddings where the +1-sphere is identified with a line.

Blowing down exceptional spheres in ei classes with Lemma 3.5, the homological embedding
of the resolution into CP2#10CP2 blows down to the configuration G
. Owing to this birational
derivation, Propositions 3.17 and 5.22 imply this minimal embedding is not realizable.

The other homological embedding is of the minimal resolution into CP2#6CP2. After blowing
down ei spheres we obtain three conics with three intersection points, such that each pair of them
are tangent at a distinct intersection point, plus one line tangent to each of the three conics at
a different point.

We are better equipped to work with configurations with a single conic and many lines than
many conics and a single line. Therefore, we will find a birationally equivalent configuration.
First add one line through each of the three pairs of intersection points of the conics (each
intersecting the tangent line generically in double points). This does not change the symplec-
tic isotopy classification of the configuration by Proposition 5.1. The resulting configuration is
birationally equivalent to the configuration H of one conic with six lines intersecting in triple
points as shown in Figure 11. The birational equivalence comes from by blowing up once at each
of the three intersection points of the conics and then blowing down the proper transforms
of the three added lines. Here H has a unique equisingular symplectic isotopy class by
Proposition 5.14, so this cuspidal quintic also has a unique equisingular symplectic isotopy class
in CP2 by Proposition 3.18. �

Proposition 7.12. If a rational cuspidal curve C has normal Euler number 25 and one cusp
of type (2, 7) and three of type (2, 3), then only relatively minimal symplectic embedding of
C is into CP2 and this embedding is unique up to symplectic isotopy. Equivalently, the cor-
responding contact structure ξC has a unique minimal filling which is a rational homology
ball.
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Figure 40. Minimal resolution of a rational cuspidal quintic with one cusp of type (2, 7) and
three of type (2, 3) with the possible homological embeddings.

Proof. In the minimal resolution, the proper transform of C is smooth with self-intersection +1
so we use Theorem 3.6 to identify it with a line and classify the homological embeddings of the
exceptional divisors in Figure 40.

As previously, using Lemma 3.5 to blow down ei exceptional spheres, the first homological
embedding blows down to a configuration that contains G
, so it leads to no embedding by
Proposition 5.22.

The second homological embedding uses exactly six exceptional classes therefore corresponds
to an embedding of the cuspidal curve in CP2. Blowing down exceptional spheres in ei classes
in the second homological embedding yields a configuration of four conics and a line. Let p0

denote the image of e1, e2, and e3 after the blow-down. At p0, three of the conics Q1, Q2, Q3

intersect tangentially with multiplicity three and the fourth conic Q4 is tangent to these three
with multiplicity two. There are three transverse triple intersections of Qi, Qj , Q4 for the three
pairs {i, j} ⊂ {1, 2, 3}. The line L is tangent to all four conics, but does not go through any of
the intersections of the Qi.

We again look for a birational equivalence to a configuration with fewer conics and more
lines. To ensure we get a birational equivalence, we first add a line T tangent to the four conics
at p0. This does not change the symplectic isotopy uniqueness by Proposition 5.1. Next we
blow up three times at p0 to separate the conics at that point. The proper transform of T
becomes a (−1)-exceptional sphere which we can blow down, and then we blow down two more
(−1)-exceptional spheres as in Figure 41. The result is the configuration L together with an
additional line. Here L is made up of two conics P1, P2 with two tangencies, together with three
lines such that each line is tangent to P1 and the pairwise intersections of the lines are three
distinct points on P2. The line K that is added to L as the result of this birational equivalence
is tangent to the two conics at one of their tangent intersection points. The symplectic isotopy
classifications of L and L ∪ K are equivalent by Proposition 5.1. As L has a unique symplectic
isotopy class by Proposition 5.15, this cuspidal curve has a unique symplectic isotopy class in
CP2 by Proposition 3.18. �

7.3 A note on sextics

In degree six, there is only one multiplicity multi-sequence that passes the semigroup condition,
but such that we cannot find a cap with a sphere of positive self-intersection; this multiplicity
multi-sequence is [[3, 2[7]]].

Proposition 7.13. There is no rational cuspidal curve in CP2 whose multiplicity multi-sequence
is [[3, 2[7]]].

Note that, in fact, this shows that the corresponding contact structures have no rational
homology ball fillings (see § 4).

1670

https://doi.org/10.1112/S0010437X2200762X Published online by Cambridge University Press



The symplectic isotopy problem for rational cuspidal curves

Figure 41. Birational equivalence.

Proof. The only allowed multiplicity sequences that are subsets of [[3, 2[7]]] are [2[k]], [3], and
[3, 2]; these are all simple singularities of types A2k, E6, and E8, respectively; their links are
T (2, 2k + 1), T (3, 4), and T (3, 5), respectively.

Suppose such a curve exists; perturb it to get a smooth curve C ′ of genus 10, and take the
double cover Σ(CP2, C ′) of CP2 branched over C ′; this is a K3 surface, and, by construction,
it contains (as pairwise disjointly embedded) the double covers of B4 branched over the Milnor
fiber of all the singularities of C.

All these Milnor fibers are negative definite, because the singularities are simple, and their
second Betti numbers sum to 20, which contradicts the fact that b−2 (K3) = 19. �

This is where our approach for sextics differs from the previous cases we examined: here
we are not trying to classify fillings, but rather looking specifically at embeddings in CP2 or,
equivalently, at rational homology ball fillings. Moreover, the same argument can be used to
narrow down the number of different splittings of the multiplicity multi-sequences that one
needs to consider; namely, there can be no sextic whose singularities are all simple.

Remark 7.14. A similar argument to that of the proposition above, using five-fold covers instead
of two-fold covers, can be used to obstruct the existence of the two quintics in CP2 with five and
six singularities (which we excluded in Example 3.20; the non-fillability of the corresponding
cuspidal contact structures was established in Proposition 7.7). A general result, of a more
topological flavor, has been proved in [GK22, Theorem 4.7].

8. Differences between the complex and symplectic categories

Every complex algebraic curve in CP2 is a symplectic surface (potentially singular), but most
symplectic surfaces are not complex algebraic. However, in many situations, a symplectic surface
is symplectically isotopic to a complex curve. This is known for smooth symplectic surfaces of
degree at most 17 and is conjectured for smooth symplectic surfaces in CP2 in general. However,
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Figure 42. The fake Pappus configuration.

for singular curves, there need not always be an equisingular symplectic isotopy from a symplec-
tic configuration to a complex configuration. This is easiest to verify when there is a singular
symplectic configuration whose singularity types cannot be realized by any complex curve con-
figuration. Some examples of reducible configurations with this property come from surprising
and ancient theorems in projective geometry. For example, the Pappus theorem shows that given
a configuration of lines as in Figure 42, the points X, Y, Z are necessarily collinear. Therefore,
there is no complex line arrangement consisting of the lines in Figure 42 together with an extra
line passing through X and Y but not Z.

Other examples of reducible symplectic configurations which are not realizable with complex
algebraic curves come from pseudoline arrangements. A pseudoline arrangement is a collection
of simple closed curves in RP2 each of which represents the homology class [RP1]. It was proven
in [RS19] that any pseudoline arrangement in RP2 can be extended (after isotopy) to a symplectic
line arrangement in CP2. Therefore, any pseudoline arrangement which is not realizable by
straight lines (over the complex numbers) gives another example of this phenomenon.

We have seen for rational cuspidal curves in the unicuspidal and low-degree cases we looked
at, every symplectic realization in CP2 is symplectically isotopic to a complex curve. This is in
contrast to the differences appearing in the reducible configurations just mentioned. However,
the differences between symplectic and complex singular curves are not restricted to reducible
configurations.

Using birational transformations, we provide here an example of an irreducible singular curve
which is realizable symplectically but not complex algebraically. This example was given to us
by Orevkov, and we are very grateful to him for explaining it to us. Although this curve is
irreducible, its singularities are not cuspidal, they are locally reducible. It remains open as to
whether there are any symplectic rational cuspidal curves in CP2 which are not symplectically
isotopic to a complex rational cuspidal curve.

Theorem 8.1. There is an irreducible symplectic rational curve of degree eight in CP2 that is
not equisingularly isotopic to a complex curve.

More precisely, we demonstrate a specific example of a symplectic surface C of degree eight,
with three reducible singularities (not cuspidal), each isomorphic to a singularity of type (3, 5)
plus a generic line. That is, the singularity is defined by an equation locally modeled on x(x3 +
y5) = 0. We then prove that no complex curve with the same singularities can exist.
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Figure 43. On the left is a degree-eight curve with three reducible singularities with one branch
of type (3, 5) and the other smooth. A triangle of lines passes through these three singular points.
On the right is the same triangle of lines with three conics. At each intersection point on the
triangle, one pair of the three conics intersects tangentially and the third intersects these two
transversally. Configuration D is built by overlaying the two sides of this configuration. The three
lines on each side coincide and the tangent direction to the (3, 5)-cusp part of each singularity of
the curve agrees with the common tangent direction to two of the three conics at the intersection
points.

To understand the symplectic existence and complex obstruction to this rational singular
curve, we relate it via a birational transformation to a reducible configuration that is easier to
understand.

Define a configuration D by adding to the degree-eight rational singular curve C, three
conics and three lines with the following intersection conditions. The three lines �1, �2, �3 must
pass through the three pairs of the singular points of C. The three conics q1, q2, q3 must each
pass through the three singular points of C, and each must be simply tangent to two of the
cuspidal branches and transverse to the third (none should be tangent to the smooth branch of
C at the singularities or the lines �i). The singular points of C are the only singular points of D
because there are no further intersections between C, �1, �2, �3, q1, q2, q3 for degree reasons. (See
Figure 43.)

Define another configuration T , built from a triangle of three lines with an inscribed conic,
and three non-concurrent lines drawn from a vertex of the triangle to the opposite tangency
point. (See Figure 44.)

Lemma 8.2. The two configurations D and T are birationally equivalent.

Proof. Blow up at the singularities of C, creating three exceptional divisors e1, e2, e3. The sin-
gularities of the proper transform C̃ are three simple cusps, and for each cusp, there is one
exceptional divisor ei intersecting C̃ tangentially at that cusp and transversally at one other
smooth point of C̃. Each �i has been blown up twice, so the self-intersection number of each
�̃i is −1. Therefore, we can blow down the proper transforms �̃1, �̃2, �̃3, returning to CP2 with a
new configuration of curves. Here C̃ blows down to a quartic D with three simple cusp singular-
ities, and q1, q2, q3 blow down to three lines, each passing through two of the simple cusps. The
three exceptional divisors e1, e2, e3 blow down to three tangent lines to the cusps of D, and they
intersect in three distinct points (i.e. the images of �̃1, �̃2, �̃3). (See Figure 45.)

Now blow up at the simple cusps of D, resolving the singularities and creating three tangent
exceptional divisors f1, f2, f3. The proper transforms of the lines q1, q2, q3 become exceptional
divisors which can then be blown down. The result is the configuration T where D is sent to
the smooth conic Q, f1, f2, f3 become its tangent lines, and e1, e2, e3 blow down to lines, each
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Figure 44. Configuration T consists of a conic with three tangent lines, together with three
additional lines passing through the tangent intersections and the intersection of the other two
lines, and intersecting each other in double points as shown. In a complex algebraic arrangement,
these three additional lines would necessarily intersect each other all at the same point in a triple
intersection.

Figure 45. Intermediate configuration between configurations D and T . The singular compo-
nent is a degree-four curve with three simple cusps. There is one line through each pair of these
three cusps, together with one line tangent to each cusp. The intersections of the three tangent
lines are required to be three distinct double points instead of a coinciding triple point.

connecting a tangency of Q and fi with the intersection of fi+1 and fi−1 (here we consider the
labels modulo three). �

Lemma 8.3. The configuration T is symplectically realizable, but not complex realizable.

Proof. We start by proving that T is not complex realizable. In fact, this follows from Brianchon’s
theorem: this states that if an hexagon ABCDEF is circumscribed to a conic, then AD, BE,
and CF are concurrent. Indeed, if we call ACE the vertices of the triangle in T , and B, D, F the
tangency points of the conics (so that B lies on AC), then ABCDEF is a degenerate hexagon
circumscribed to a conic, and therefore AD, BF , and CE are concurrent.

To prove the existence of a symplectic realization of T , we just perturb the degenerate
Brianchon configuration locally around the triple point of intersection of the secants. As the
symplectic condition is open, performing this operation in a C1-small way preserves the fact
that the curves are symplectic. �
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Proof of Theorem 8.1. We construct the curve C starting from the configuration T ; indeed,
Lemma 8.3 shows that T exists symplectically, and by Lemma 8.2, D is birationally equiv-
alent to it; because C is a component of D, we have proved its existence as a symplectic
curve.

Conversely, suppose that C existed as a complex curve. We can augment any such realization
of C to a configuration D as follows. Let p1, p2, p3 be the three singular points of C. There is
a unique complex line through any pair of distinct points, so let �1, �2, �3 be the unique lines
through the three pairs of p1, p2, p3. Each transverse intersection of �i with C at pj contributes
+4 to their intersection number. Therefore, p1, p2, p3 cannot be collinear because then C would
intersect a line with intersection number 12 instead of 8. Therefore, the three lines �i are distinct.
Furthermore, the intersections of �i with C must be transverse, because a tangential intersection
would add an additional positive intersection beyond the required eight. Similarly, the �i cannot
intersect C at any other point besides the pj .

If we fix two distinct points A, B ∈ CP2 with complex lines in their tangent spaces TA, TB,
and a third distinct point C ∈ CP2, there is a unique complex conic through A, B, and C tangent
to TA and TB. (These five conditions give five linear constraints on the six projective coefficients
of the six degree-two monomials. The solution is unique because any two such conics would have
intersection number five instead of four.) In general, it is possible for this conic to be singular
by degenerating into two lines. Let T1, T2 and T3 be the complex tangent line directions to the
simple cusps of C at p1, p2, and p3. Letting A = pi, TA = Ti, B = pi+1, TB = Ti+1, and C = pi+2

with mod 3 cyclic indices for i = 1, 2, 3, we construct three conics as required in the configuration
D. To check that none of these conics is a degenerate pair of lines, we observe that the unique
pair of lines through AB and AC is a pair of the �i which are not tangent to TA and, thus,
cannot be the chosen conic.

Therefore, if we had a complex realization of C, we could construct a complex realization of
the configuration D and then use the birational transformation to construct a complex realization
of the configuration T , but this is impossible. �
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Appendix A. Symplectic rational ball fillings of lens spaces

In this section, we prove two results on rational homology ball fillings of lens spaces. The first
has recently appeared in independent work of Fossati [Fos20, Theorem 4].
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Proposition A.1. If a lens space (L(p, q), ξ) has a weak symplectic rational homology ball
filling, then there exist coprime integers 0 < k < m such that (p, q) = (m2, mk − 1), and ξ is
universally tight.

The family coincides with the family of cyclic quotient singularities with rational disk smooth-
ing, which were classified by Wahl [Wah81, Example 5.9.1] (see also [Lis08, Corollary 1.2]).
In the proof, we use the Ozsváth–Szabó contact invariant [OSz05] in Heegaard Floer homol-
ogy [OSz04b]; the relevant properties of the theory are the non-vanishing of the contact invariant
for fillable contact structures [OSz05, Theorem 1.5], the fact that lens spaces are L-spaces (i.e.
they have the smallest possible Heegaard Floer homology) [OSz04a, Proposition 3.1], and the
absolute grading on Heegaard Floer homology [OSz03].

Proof. Call L = L(p, q) and W a weak symplectic rational homology ball filling of (L, ξ). As ξ is
fillable, it is tight [EG91]. All tight contact structures on lens spaces are planar [Sch07], and it
follows from Wendl’s theorem that all weak symplectic fillings can be deformed to Stein [Wen10].
Let J denote a complex structure such that (W, J) is a Stein filling of (L, ξ).

In particular, W admits a handle decompositions with no 3-handles. This implies that π1(W )
is a quotient of π1(L), and hence it is cyclic, and that H1(W, L) ∼= H3(W ) = 0. As L bounds a
rational ball, p = m2 for some positive integer m, and from the long exact sequence of the pair
(W, L) and the universal coefficient theorem, it follows that H1(W ) = Z/mZ (this is classical;
see, e.g., [AG17, Proposition 2.2]).

Let W ′ be the universal cover of W . We know that χ(W ′) = mχ(W ) = m. As W ′ is
simply-connected, H1(W

′) = 0 and H2(W ′) is torsion-free. As W ′ has a decomposition without
3-handles, lifted from that of W , we deduce that H3(W

′) = 0 and that H2(W
′) is torsion-free.

Adding all pieces together, it follows that H2(W
′) = Zm−1. The boundary L′ is the m-fold cover

of L and, therefore, L′ = L(m, q). Let ξ′ be the pull-back of ξ to L, filled by the pull-back J ′ of
J . The first Chern class c1(J

′) of J ′ is the pull-back under the covering map of c1(J). As the
latter is torsion and H2(W ′) is torsion-free, c1(J

′) = 0.
The Ozsváth–Szabó contact invariant c(ξ′) ∈ HF+(−L′, tξ′) lives in degree d(−L′, tξ′), com-

puted as the degree of the map associated to the cobordism X = W ′ \ B4. The degree of the
map FX,sJ′

carrying c(ξ) to c(ξst) is

deg FX,sJ′
=

c2
1(J

′) − 2χ(X) − 3σ(X)

4
=

m − 1

4

and, hence, d(−L′, tξ′) = (m − 1)/4.
It follows from [AG17, Lemma 4.5] that q ≡ ±1 (mod m). By explicitly computing correction

terms of L(m,±1), we see that if q ≡ 1 (mod m) there is no spin c structure on L(m, q) with
correction term (m − 1)/4.

Therefore, we reduced to the case when q ≡ −1 (mod m). That is, q = mk − 1 for some
0 < k ≤ m. As L bounds a smooth rational homology ball, it follows from Lisca’s classification
of lens spaces that bound rational homology balls that gcd(m, k) = 1 or gcd(m, k) = 2 [Lis07]
(see [Lec12, p. 247] for an amendment to the statement of [Lis07, Theorem 1.2] that includes the
case gcd(m, k) = 2). The former case corresponds to structures in Wahl’s family, and we set out
to exclude the second.

In this case, m = 2m′′ is even, and we can look at the m′′-fold cover (W ′′, J ′′) of (W, J), with
boundary (L′′, ξ′′). Observe that our assumption gcd(m, k) = 2 implies that L′′ = L(2m, 2m − 1).
The same argument as before shows that d(−L′′, tξ′′) = (m′′ − 1)/4 = (m − 2)/8. However, by
classification of tight contact structures on lens spaces [Hon00], L(2m, 2m − 1) admits a unique
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tight contact structure ξ0, namely the boundary of the plumbing of 2m − 1 copies of T ∗S2, whose
corresponding contact structure has deg c(ξ0) = (−2m + 1)/4.

To conclude the proof, we need to show that ξ′ is universally tight. As mentioned previously,
however, ξ′ is tight (because it is filled by W ′), and L′ = L(m, m − 1) admits a unique tight
contact structure (by [Hon00]). As on each lens space there is always a universally tight con-
tact structure (obtained by taking a quotient of S3 with its standard contact structure), ξ′ is
universally tight. �

Alternatively, to exclude the case gcd(k, m) = 2 in the proof, one can argue that the unique
contact structure on L(2m, 2m − 1) is also universally tight, and then so is ξ. Then Lisca’s
classification of fillings [Lis08, Corollary 1.2] rules this possibility out.

The second result concerns the uniqueness of the rational homology ball filling. It is very
likely that the result is known to experts (either in the context of Milnor fibers of cyclic quotient
singularities, or in the context of symplectic fillings of contact structures), but we were unable
to locate the precise statement.

Proposition A.2. The standard contact structure on the lens space L(m2, mk − 1) has a
unique rational homology ball symplectic filling up to symplectic deformation.

The proof is, in fact, somewhat implicit in Lisca’s classification paper [Lis08]. We refer to the
paper for notation and context. We start by recalling the following two facts about continued
fractions. Both facts follow from Riemenschneier’s point rule [Rie74] (see [Lis08, Lemma 2.6]).

If we have two continued fraction expansions [a]− and [b]− such that

1/[a1, . . . , am]− + 1/[b1, . . . , b�]
− = 1

(or, equivalently, the two associated fractions are of the form p/q and p/(p − q) for some q < p
coprime positive integers), we say that [a]− and [b]− are dual to each other.

If [a]− and [b]− are dual to each other, then
∑

(ai − 1) =
∑

(bj − 1). We also have that

[n1, . . . , nj−1, 1, nj+1, . . . , n�]
− = 0

if and only if [nj−1, . . . , n2, n1]
− and [nj+1, . . . , n�] are dual to each other.

Proof. The (negative) continued fraction expansion of m2/(mk − 1) is of the form
[n1, . . . , nj−1, 2, nj+1, . . . , n�]

−, such that [n1, . . . , nj−1, 1, nj+1, . . . , n�]
− = 0 (see the proof

of [Lis08, Theorem 1.2(c)]).
Recall from the proof of [Lis08, Theorem 1.1] that symplectic deformation classes of sym-

plectic fillings of L(p, q) with p/q = [n1, . . . , n�]
− correspond to strings m = (m1, . . . , m�) such

that 1 ≤ mi ≤ ni for each i and [m1, . . . , m�]
− = 0.

Moreover, the Euler characteristics of the filling corresponding to m is
∑

(ni − mi), so that
the filling is a rational homology ball if and only if mi = ni for all indices except for one, for
which mi = ni − 1. We claim that for such any p, q there is at most one index j such that
the corresponding sequence m = (n1, . . . , nj−1, nj − 1, nj+1, n�) has [m]− = 0, and in that case
nj = 2.

If nj > 2, then [m]− is the continued fraction expansion of a rational number p′/q′ > 1.
Suppose now nj = 2. If [m]− = 0, then [nj−1, . . . , n1]

− and [nj+1, . . . , n�]
− are dual to each

other; however, as j varies between 1 and �, the difference
∑

h<j

(nh − 1) −
∑

h>j

(nh − 1)
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is strictly decreasing, hence there is at most one value of j such that it vanishes. As we recalled
previously, the difference must vanish if [nj−1, . . . , n1]

− and [nj+1, . . . , n�]
− are dual to each

other.
The proposition now follows. �
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