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Continuous-variable (CV) teleportation is a fundamental protocol in quantum information science. A number

of experiments have been designed to simulate ideal teleportation under realistic conditions. In this paper,

we detail an analytical approach for determining optimal input states for quantifying the performance of

CV unidirectional and bidirectional teleportation. The metric that we consider for quantifying performance is

the energy-constrained channel fidelity between ideal teleportation and its experimental implementation, and

along with this, our focus is on determining optimal input states for distinguishing the ideal process from the

experimental one. We prove that, under certain energy constraints, the optimal input state in unidirectional as

well as bidirectional teleportation is a finite entangled superposition of twin-Fock states saturating the energy

constraint. Moreover, we also prove that, under the same constraints, the optimal states are unique; that is, there

is no other optimal finite entangled superposition of twin-Fock states.

DOI: 10.1103/PhysRevA.107.062603

I. INTRODUCTION

Quantum teleportation is a foundational protocol in quan-

tum information science that has no classical analog [1] (see

also Ref. [2]). It consists of transmitting an unknown quantum

state from one place to another by using shared entanglement

and local operations and classical communication (LOCC).

Quantum teleportation plays an important role in quantum

technologies such as quantum information processing proto-

cols [3], quantum computing [4,5], and quantum networks

[6]. Since the invention of this protocol, various modifica-

tions have been proposed, such as probabilistic teleportation

[7–9], controlled teleportation [10–13], and bidirectional tele-

portation [14–22]. There has also been significant progress

in implementing quantum teleportation in laboratories around

the world in the last three decades [23]. Several experiments

have implemented the teleportation protocol for simple quan-

tum systems [24–29], and attempts are being made to extend

them to more complex quantum systems [30–33].

The first theoretical proposal for quantum teleportation was

for two-level quantum systems, also commonly called qubits

[1]. Later, continuous-variable (CV) teleportation was devised

as an extension of the original protocol to quantum systems

described by infinite-dimensional Hilbert spaces [14,34]. This

was followed by many experimental implementations of CV

teleportation, which include teleportation of collective spins

of atomic ensembles [35,36], polarization states of photon

beams [33], coherent states [37], etc. In standard CV telepor-

tation, the entangled resource state shared between the sender

and receiver—Alice and Bob, respectively—is a two-mode

squeezed vacuum (TMSV) state. The protocol begins with

Alice mixing an unknown input state with her share of the

entanglement on a balanced beam splitter and then performing

homodyne detection of complementary quadratures. Based on

the classical measurement outcomes received by Alice and

subsequently transmitted to Bob, he then performs displace-

ment operations on his share of the TMSV state and recovers

an approximation of the original state [34].

An ideal implementation of CV teleportation in princi-

ple allows for perfect transmission of quantum states and

hence simulates an ideal quantum channel. However, an

ideal implementation also demands the unphysical conditions

of noiseless homodyne detection and infinite squeezing in

the TMSV state, which is not possible in practice because

both noiseless homodyne detection and infinite squeezing

require infinite energy. Any experimental implementation of

CV teleportation accounts for an unideal detection and fi-

nite squeezing, which results in an imperfect transmission of

quantum states, and hence simulates a noisy quantum channel

[34]. It is therefore important for experimentalists to employ

performance metrics, as well as quantify the performance, for

any experimental simulation of ideal teleportation.

Several works on characterizing the performance of ex-

perimental implementations of the teleportation protocol have

been conducted for finite-dimensional quantum systems in the

past few years [38–44], including a more recent work on bidi-

rectional teleportation, which benchmarks the performance in

terms of normalized diamond distance and channel infidelity

for transmission of arbitrary quantum states [45]. There have

also been many theoretical and experimental works on quanti-

fying the performance of experimental implementations of the

CV teleportation protocol. However, most of them study the

performance by evaluating specific classes of quantum states,

such as coherent states [46–49], pure single-mode Gaussian

states [50,51], squeezed states [52], cat states [53], etc. All

such evaluations are incomplete, in the sense that they test the
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performance by transmitting specific states rather than arbi-

trary unknown states. A true quantifier for CV unidirectional

teleportation was given in Ref. [54], which benchmarks the

performance of an experimental implementation in terms of

the energy-constrained channel fidelity between ideal telepor-

tation and its experimental implementation. We also note here

that Ref. [54] is foundational for the present paper.

In this paper, we quantify the performance of any ex-

perimental implementation of CV unidirectional, as well as

bidirectional, teleportation, under certain energy constraints.

The performance metric that we consider is the energy-

constrained channel fidelity between an ideal teleportation

and its experimental implementation. We explicitly find op-

timal input states, i.e., quantum states whose output fidelity

corresponding to the ideal channel and its experimental ap-

proximation is the same as the energy-constrained channel

fidelity between the two channels. Our method is purely ana-

lytical, employing optimization techniques from multivariable

calculus. The optimal states for unidirectional, as well as

bidirectional, teleportation are finite entangled superpositions

of twin-Fock states saturating the energy constraint. Further-

more, we prove that the optimal input states are unique; i.e.,

there is no other optimal finite entangled superposition of

twin-Fock states.

Our results on bidirectional teleportation are also related to

one of the most interesting mathematical problems in quantum

information theory: the study of additive and multiplicative

properties of measures associated with quantum channels

[55–58]. Much progress has been made in addressing these

additivity issues [59–63], settling some of the questions posed

in Refs. [64,65]. The fidelity of quantum states is well known

to be multiplicative for tensor-product quantum states [63].

This induces an inequality for energy-constrained channel

fidelity between two tensor-product channels. As a conse-

quence of our work, we give examples where the induced

inequality is strict; that is, our results also imply that the

energy-constrained fidelity between the identity channel and

an additive-noise channel is strictly submultiplicative.

The rest of our paper is organized as follows. In Sec. II, we

review some definitions. We present a derivation of the opti-

mal input state for CV unidirectional teleportation in Sec. III

and for CV bidirectional teleportation in Sec. IV. We show

in Sec. V that the energy-constrained fidelity between the

ideal swap channel and the tensor product of two additive-

noise channels is strictly submultiplicative. We then discuss

possible extensions and generalizations of the present work

in Sec. VI. Finally, in Sec. VII we summarize our results and

outline questions for future work.

The appendices contain necessary calculations for deriv-

ing the results. In Appendix A, we provide proofs of some

preliminary results required to derive the optimal input state

for CV unidirectional teleportation. Similarly, we prove some

preliminary results in Appendix B that are used to derive the

optimal input state for CV bidirectional teleportation.

II. PRELIMINARIES

Let H be a separable Hilbert space, and let T be an operator

acting on H. The adjoint of T is the unique operator T † acting

on H defined by 〈φ|T |ψ〉 = 〈ψ |T †|φ〉 for all |φ〉, |ψ〉 ∈ H; T

is said to be self-adjoint if T = T †. If Tr(
√

T †T ) < ∞ then

T is said to be a trace-class operator, and its trace norm is

defined as ‖T ‖1 := Tr(
√

T †T ). A quantum state is a positive

semidefinite, trace-class operator with trace norm equal to

one. We denote by D(H) the set of all quantum states or

density operators acting on H. Let ρ, σ ∈ D(H). The fidelity

between ρ and σ is defined by [66]

F (ρ, σ ) := ‖√ρ
√

σ‖2
1. (1)

If one of the quantum states is pure, i.e., say, ρ = |ψ〉〈ψ |,
then F (ρ, σ ) = Tr(ρσ ). The sine distance between ρ and σ

is given by [67–70]

C(ρ, σ ) :=
√

1 − F (ρ, σ ). (2)

The following inequalities relate the fidelity, sine distance, and

trace distance [71, Theorem 1]:

1 −
√

F (ρ, σ ) � 1
2
‖ρ − σ‖1 � C(ρ, σ ). (3)

The set of bounded operators on H forms a C∗-algebra

under the operator norm, and we denote it by L(H). Let

HA denote the Hilbert space corresponding to a quantum

system A. A quantum channel from a quantum system A to

a quantum system B is a completely positive, trace-preserving

linear map from L(HA) to L(HB). Let MA→B and NA→B be

quantum channels. Let HA be a Hamiltonian corresponding to

the quantum system A, and let R denote a reference system.

The energy-constrained channel fidelity between MA→B and

NA→B for E ∈ [0,∞) is defined by [72,73]

FE (MA→B,NA→B)

:= inf
ρRA:Tr(HAρA )�E

F (MA→B(ρRA),NA→B(ρRA)), (4)

where ρRA ∈ D(HR ⊗ HA), ρA = TrR(ρRA), and it is implicit

that the identity channel IR acts on the reference system R.

Furthermore, the optimization in (4) is taken over every possi-

ble reference system R. Similarly, the energy-constrained sine

distance between MA→B and NA→B for E ∈ [0,∞) is defined

by [72,73]

CE (MA→B,NA→B)

:= sup
ρRA:Tr(HAρA )�E

C(MA→B(ρRA),NA→B(ρRA)). (5)

Although the optimizations in (4) and (5) are over arbitrary

mixed states and arbitrary reference systems, it suffices to re-

strict the optimization over pure states such that the reference

system R is isomorphic to the channel input system A. This

is a consequence of purification, the Schmidt decomposition,

and data processing [74, Sec. 3.5.4]. We thus have

FE (MA→B,NA→B)

= inf
φRA:Tr(HAφA )�E

F (MA→B(φRA),NA→B(φRA)), (6)

CE (MA→B,NA→B)

= sup
φRA:Tr(HAφA )�E

C(MA→B(φRA),NA→B(φRA)), (7)

where the optimizations (6) and (7) are taken over pure states

φRA with reference system R isomorphic to system A.
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III. OPTIMAL INPUT STATE FOR CV UNIDIRECTIONAL

TELEPORTATION

The CV quantum teleportation protocol describes how to

transmit an unknown quantum state from Alice to Bob when

their systems are in CV modes and they share a prior entan-

gled state known as a resource state [34]. In this protocol,

Alice mixes the unknown quantum state with her share of

the resource state (TMSV state) and performs homodyne de-

tection. The homodyne detection destroys the input state on

Alice’s end. Alice then communicates the classical outcomes

of the detection to Bob, based on which he performs unitary

operations on his share of the resource state to generate an

approximation of the input state. Let A denote the input mode,

and let B denote the output mode. An ideal teleportation

protocol requires noiseless homodyne detection and infinite

squeezing in the TMSV state, and it induces the identity

channel IA→B on the input states [1,34] (see Ref. [75] for

further clarification of the convergence of the protocol to

the identity channel). However, an experimental implemen-

tation of CV teleportation has a noisy detector and finite

squeezing in the resource state which makes the experimental

implementations of teleportation perform less than ideal. It

realizes an additive-noise channel T
ξ

A→B, where the noise pa-

rameter ξ > 0 encodes unideal detection and finite squeezing

[34,76]. The additive-noise channel T ξ is a composition of

the quantum-limited amplifier A1/η with gain parameter 1/η

and the pure-loss channel Lη with transmissivity η, where

η = 1/(1 + ξ ) [77,78]. See Ref. [79, Sec. II.B] for more de-

tails.

By taking the performance metric to be the energy-

constrained channel fidelity between ideal teleportation and

the additive-noise channel, the performance of experimental

implementations has been studied in Ref. [54]. By choos-

ing the Hamiltonian HA to be the photon number operator

n̂A =
∑∞

n=0 n|n〉〈n|A, the energy-constrained channel fidelity

in (6) for the identity channel IA→B and the additive-noise

channel T
ξ

A→B can be further simplified, as a consequence of

phase averaging and joint phase covariance of these channels

[54,73], as

FE (IA→B, T
ξ

A→B) = inf
ψRA

F
(

IA→B(ψRA), T
ξ

A→B(ψRA)
)

, (8)

where the infimum is taken over pure and entangled superpo-

sitions of twin-Fock states ψRA = |ψ〉〈ψ |RA such that

|ψ〉RA =
∞
∑

n=0

λn|n〉R|n〉A, (9)

λn ∈ R
+ for all n,

∑∞
n=0 λ2

n = 1, and
∑∞

n=0 nλ2
n � E . An

analytical solution to the energy-constrained channel fidelity

in (8), using Karush–Kuhn–Tucker conditions, was given in

Ref. [54] for small values of ξ and arbitrary values of E . The

optimal input state so obtained was

|ψ〉RA =
√

1 − {E}|�E�〉R|�E�〉A +
√

{E}|
E�〉R
E�〉A,

(10)

where {E} := E − �E�. Another contribution of Ref. [54] was

to provide a method, using a combination of numerical and

analytical techniques, for finding optimal input states to test

the performance of unidirectional CV teleportation under the

energy-constrained channel fidelity measure.

In this section, we show that an optimal input state

for the energy-constrained channel fidelity (8) is a finite

entangled superposition of twin-Fock states saturating the

energy constraint for arbitrary values of ξ and E satisfying

E � (1 + ξ )/(1 + 3ξ ), and it is given by

|ψ〉RA =
√

1 − E |0〉R|0〉A +
√

E |1〉R|1〉A. (11)

Observe that the optimal state in (11) is the same as that in

(10) under the common conditions of E � (1 + ξ )/(1 + 3ξ )

and small ξ . Our method also shows that the optimal state

in (11) is unique; i.e., there is no other optimal finite entan-

gled superposition of twin-Fock states for (8). We emphasize

that our method is purely analytical. We use optimization

techniques from multivariable calculus, and the constraint

E � (1 + ξ )/(1 + 3ξ ) is needed in our analysis in the proof

of Proposition 2 that plays a major role in establishing the

result. We also note that it is still an open problem to find the

optimal state for larger values of E analytically.

In order to compute the energy-constrained channel fi-

delity between the ideal channel IA→B and its experimental

implementation T
ξ

A→B, we define the M-truncated energy-

constrained channel fidelity between IA→B and T
ξ

A→B as

FE ,M

(

IA→B, T
ξ

A→B

)

:= inf
ψRA

F
(

IA→B(ψRA), T
ξ

A→B(ψRA)
)

,

(12)

where the infimum is taken over pure states ψRA = |ψ〉〈ψ |RA

of the form

|ψ〉RA =
M
∑

n=0

√
pn|n〉R|n〉A, (13)

such that pn � 0 for all n,
∑M

n=0 pn = 1, and
∑M

n=0 npn � E .

In Proposition 1 in Appendix A, we show that

F
(

IA→B(ψRA), T
ξ

A→B(ψRA)
)

�
1

(1 + ξ )

⎡

⎣

(

M
∑

n=0

pn

(1 + ξ )n

)2

+

(

M
∑

n=1

pnξ

(1 + ξ )n

)2
⎤

⎦

(14)

for every state of the form in (13). Define the real-valued

function

fM,ξ (p) :=
1

(1 + ξ )

⎡

⎣

(

M
∑

n=0

pn

(1 + ξ )n

)2

+

(

M
∑

n=1

pnξ

(1 + ξ )n

)2
⎤

⎦

(15)

for all p ∈ R
M+1. By (14) and (15), we thus have

F
(

ψRA, T
ξ

A→B(ψRA)
)

� fM,ξ (p). (16)

The minimizer of the function fM,ξ subject to pn � 0 for all

n ∈ {0, . . . , M},
M
∑

n=0

pn = 1,

M
∑

n=0

npn � E , (17)
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is the unique point given by p0 = 1 − E , p1 = E , and pn = 0

for all n � 2, whenever E � (1 + ξ )/(1 + 3ξ ). See Propo-

sition 2 in Appendix A. It thus follows from (14) that the

optimal input state to the M-truncated energy-constrained

channel fidelity is unique, and it is given by (11), whenever

E � (1 + ξ )/(1 + 3ξ ). See Lemma 3 in Appendix A. From

the solution to the M-truncated energy-constrained channel

fidelity, and the inequality (A35) in Appendix A, it follows

that the optimal input state in (8) is given by (11), when-

ever E � (1 + ξ )/(1 + 3ξ ). The uniqueness follows from the

uniqueness of the optimal state for the M-truncated energy-

constrained channel fidelity. See Theorem 4 in Appendix A.

We compare two classes of experimentally relevant quan-

tum states, namely, coherent states and TMSV states, with the

optimal state under the given energy constraint. See Ref. [80]

for further background on CV quantum information. Let |α〉
denote a coherent state, which is given by

|α〉 := e− |α|2
2

∞
∑

n=0

αn

√
n!

|n〉. (18)

The energy of the coherent state |α〉 is E = |α|2, and its

covariance matrix is I2, the 2×2 identity matrix. The co-

variance matrix of T ξ (|α〉〈α|) is (1 + 2ξ )I2. Let ψ (n)RA =
|ψ (n)〉〈ψ (n)|RA be the TMSV state given by

|ψ (n)〉RA :=
1

√
n + 1

∞
∑

n=0

√

(

n

n + 1

)n

|n〉R|n〉A. (19)

The energy of its reduced state is E = n, and its covariance

matrix is

Vψ (n)RA
=

[

(2n + 1)I2 2
√

n(n + 1)σz

2
√

n(n + 1)σz (2n + 1)I2

]

, (20)

where σz is the Pauli-z matrix. The covariance matrix of

T ξ [ψ (n)RA] is given by

VT ξ (ψ (n)RA ) =

[

(2n + 1)I2 2
√

n(n + 1)σz

2
√

n(n + 1)σz (2n + 1 + 2ξ )I2

]

. (21)

We then have

F (|α〉〈α|, T ξ (|α〉〈α|)) =
2

√
Det (2(1 + ξ )I2)

(22)

=
1

1 + ξ
, (23)

and also

F (ψ (n)RA, T ξ (ψ (n)RA)) =
22

√

Det
(

Vψ (n)RA
+ VT ξ (ψ (n)RA )

)

(24)

=
1

1 + (2n + 1)ξ
(25)

=
1

1 + (2E + 1)ξ
. (26)

These fidelity expressions are evaluated using Eq. (4.51) of

Ref. [80].
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Fidelity FE

Coherent TMSV Optimal

FIG. 1. The graph plots the output fidelity FE between the ideal

channel and an additive-noise channel versus the input energy E ,

corresponding to a coherent state, a TMSV state, and the optimal

state (each having input energy E ). The noise parameter for the

additive-noise channel is taken as ξ = 0.5 and the states have energy

E ∈ [0, 0.5]. The dotted (orange), dashed (magenta), and solid (blue)

lines represent the output fidelity for the coherent state, the TMSV

state, and the optimal state, respectively.

In Fig. 1, we plot the output fidelity FE between the ideal

channel and an additive-noise channel versus the input energy

E , corresponding to a coherent state, a TMSV state, and

the optimal state, with input energy E ∈ [0, 0.5]. The noise

parameter is taken as ξ = 0.5. In order, the dotted (orange),

dashed (magenta), and solid (blue) lines indicate the output

fidelity for the coherent state (23), the TMSV state (26), and

the optimal state (A33). The graph indicates that coherent and

TMSV states are not optimal states in general. Interestingly,

however, the TMSV state is very close to being an optimal

input state for CV unidirectional teleportation. This was ob-

served in a different regime for the energy constraint, in Fig. 2

of Ref. [54].

0.1 0.2 0.3 0.4 0.5
Energy E

0.25

0.30

0.35

0.40

0.45

Fidelity FE

Coherent TMSV Optimal

FIG. 2. The graph plots the output fidelity FE between the ideal

swap channel and the tensor product of two identical additive-noise

channels versus input energy E , corresponding to a tensor product of

coherent states, a tensor product of TMSV states, and the optimal

state (each having input energy E ). The noise parameter for the

additive-noise channels is taken as ξ = 0.5 and the states have energy

E ∈ [0, 0.5]. The dotted (orange), dashed (magenta), and solid (blue)

lines represent the output fidelity for the coherent state, the TMSV

state, and the optimal state, respectively.
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IV. OPTIMAL INPUT STATE FOR CV BIDIRECTIONAL

TELEPORTATION

The CV bidirectional teleportation protocol consists of a

two-way transmission of unknown quantum states between

Alice and Bob. One implementation of the protocol, which

we consider here, allows for a simulation of two ideal CV

unidirectional quantum channels with the help of shared en-

tanglement and LOCC. See Ref. [45] for a discussion of more

general implementations. The protocol that we consider here

can be thought of as a combination of two CV unidirectional

teleportations, one from Alice to Bob and the other from Bob

to Alice. Let A and B denote the input modes for Alice and

Bob, and let A′ and B′ denote the output modes for Alice

and Bob, respectively. An ideal CV bidirectional teleportation

between Alice and Bob is represented by the following unitary

swap channel

SAB→A′B′ (·) := SWAP(·) SWAP†, (27)

where the unitary swap operator SWAP is defined as

SWAP :=
∞
∑

m,n=0

|m〉A′〈n|A ⊗ |n〉B′〈m|B. (28)

Here {|m〉A}∞m=0 is the photonic number basis corresponding

to the system A, and so on. The swap channel acts on product

states by swapping them, i.e.,

SAB→A′B′ (φA ⊗ ψB) = ψA′ ⊗ φB′ . (29)

Thus, the swap channel can be thought of as the tensor prod-

uct of the ideal channels IA→B′ and IB→A′ . An experimental

implementation of CV bidirectional teleportation realizes an

approximate swap channel given by the tensor product of two

additive-noise channels T
ξ

A→B′ ⊗ T
ξ ′

B→A′ . The Hamiltonian for

the composite system AB is the total photon number operator:

n̂AB := n̂A ⊗ IB + IA ⊗ n̂B. (30)

Given any state ρAB ∈ D(HA ⊗ HB), the inequality

Tr(n̂ABρAB) � 2E implies that the average photon number

in ρAB over each of the modes A and B is at most E . So,

the energy-constrained channel fidelity (6) between the ideal

bidirectional teleportation SAB→A′B′ and its experimental

implementation T
ξ

A→B′ ⊗ T
ξ ′

B→A′ is given by

FE

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

= inf
φRAB: Tr(n̂ABφAB )�2E

F
(

SAB→A′B′ (φRAB),

T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (φRAB)
)

, (31)

where φRAB is a pure state and φAB = TrR(φRAB). As a conse-

quence of the joint phase covariance of SAB→A′B′ and T
ξ

A→B′ ⊗
T

ξ ′

B→A′ , and the arguments given for (8), the infimum in (31)

can be recast as

FE

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

= inf
ψRAB

F
(

SAB→A′B′ (ψRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (ψRAB)
)

, (32)

where ψRAB = |ψ〉〈ψ |RAB is a pure, entangled superposition of

twin-Fock states given by

|ψ〉RAB =
∞
∑

m,n=0

λm,n|m, n〉R|m, n〉AB, (33)

such that λm,n � 0 for all m and n,
∑∞

m,n=0 λ2
m,n = 1, and

∑∞
m,n=0(m + n)λ2

m,n � 2E . We further simplify the fidelity

expression in (32) as follows. Since we are working with CV

modes, the systems A, B, A′, B′ are all isomorphic to each

other. So, the energy constrained channel fidelity between

SAB→A′B′ and T
ξ

A→B′ ⊗ T
ξ ′

B→A′ must be the same as that of

IA→A′ ⊗ IB→B′ and T
ξ

A→A′ ⊗ T
ξ ′

B→B′ . For simplicity of nota-

tions, we shall denote any channel MC→C′ by MC, where C

and C′ are isomorphic systems. Recall that an additive-noise

channel T ξ can be written as a composed channel A1/η ◦ Lη

for η = 1/(1 + ξ ). Also, the adjoint of the quantum-limited

amplifier is related to the pure-loss channel by (A1/η )† = ηLη

[81]. For the given pure state in (33), we have

F
(

SAB→A′B′ (ψRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (ψRAB)
)

= F
(

(IA ⊗ IB)(ψRAB),
(

T
ξ

A ⊗ T
ξ ′

B

)

(ψRAB)
)

(34)

= Tr
(

ψRAB

(

T
ξ

A ⊗ T
ξ ′

B

)

(ψRAB)
)

(35)

= Tr
(

ψRAB

((

A
1/η

A ◦ L
η
A

)

⊗
(

A
1/η′

B ◦ L
η′

B

))

(ψRAB)
)

(36)

= Tr
((

A
1/η

A ⊗ A
1/η′

B

)†
(ψRAB)

(

L
η
A ⊗ L

η′

B

)

(ψRAB)
)

(37)

= ηη′ Tr
((

L
η
A ⊗ L

η′

B

)

(ψRAB)
(

L
η
A ⊗ L

η′

B

)

(ψRAB)
)

(38)

= ηη′ Tr
(((

L
η
A ⊗ L

η′

B

)

(ψRAB)
)2)

(39)

= ηη′ Tr

⎧

⎪

⎨

⎪

⎩

⎡

⎣

(

L
η
A ⊗ L

η′

B

)

⎛

⎝

∞
∑

m,n,m′,n′=0

λm,nλm′,n′ |m, n〉〈m′, n′|R ⊗ |m, n〉〈m′, n′|AB

⎞

⎠

⎤

⎦

2
⎫

⎪

⎬

⎪

⎭

(40)

= ηη′ Tr

⎧

⎪

⎨

⎪

⎩

⎡

⎣

∞
∑

m,n,m′,n′=0

λm,nλm′,n′ |m, n〉〈m′, n′|R ⊗ L
η
A(|m〉〈m′|A) ⊗ L

η′

B (|n〉〈n′|B)

⎤

⎦

2
⎫

⎪

⎬

⎪

⎭

(41)

= ηη′ Tr

{

[
∑∞

m,n,m′,n′=0 λm,nλm′,n′ |m, n〉〈m′, n′|R ⊗ L
η
A(|m〉〈m′|A) ⊗ L

η′

B (|n〉〈n′|B)
]

×
[
∑∞

m′′,n′′,m′′′,n′′′=0 λm′′,n′′λm′′′,n′′′ |m′′, n′′〉〈m′′′, n′′′|R ⊗ L
η
A(|m′′〉〈m′′′|A) ⊗ L

η′

B (|n′′〉〈n′′′|B)
]

}

(42)
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= ηη′
∞
∑

m,n,m′,n′=0

λ2
m,nλ

2
m′,n′ Tr

[

L
η
A(|m〉〈m′|A)L

η
A(|m′〉〈m|A)

]

Tr
[

L
η′

B (|n〉〈n′|B)L
η′

B (|n′〉〈n|B)
]

(43)

=
1

(1 + ξ )(1 + ξ ′)

∞
∑

m,n,m′,n′=0

λ2
m,nλ

2
m′,n′ Tr

[

L
1

1+ξ

A (|m〉〈m′|A)L
1

1+ξ

A (|m′〉〈m|A)
]

Tr
[

L
1

1+ξ ′

B (|n〉〈n′|B)L
1

1+ξ ′

B (|n′〉〈n|B)
]

. (44)

Let pm,n := λ2
m,n for all m, n � 0, and

T mm′

ξ := Tr
[

L
1

1+ξ

A (|m〉〈m′|A)L
1

1+ξ

A (|m′〉〈m|A)
]

, (45)

T nn′

ξ ′ := Tr
[

L
1

1+ξ ′

B (|n〉〈n′|B)L
1

1+ξ ′

B (|n′〉〈n|B)
]

. (46)

This gives

F
(

SAB→A′B′ (ψRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (ψRAB)
)

=
1

(1 + ξ )(1 + ξ ′)

∞
∑

m,n,m′,n′=0

pm,n pm′n′T mm′

ξ T nn′

ξ ′ . (47)

Let p denote the infinite vector p = (pm,n)∞m,n=0. Define

fξ,ξ ′ (p) :=
1

(1 + ξ )(1 + ξ ′)

∞
∑

m,n,m′,n′=0

pm,n pm′,n′T mm′

ξ T nn′

ξ ′ .

(48)

Therefore, (32) reduces to the following quadratic optimiza-

tion problem in terms of an infinite number of variables:

FE

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

inf
p

fξ,ξ ′ (p)

subject to pm,n � 0 ∀m, n � 0,
∞
∑

m,n=0

(m + n)pm,n � 2E ,

∞
∑

m,n=0

pm,n = 1.

(49)

In this section, we find an optimal input state for the

energy-constrained channel fidelity (49). We consider two

cases. The first case is when ξ = ξ ′ and 2E � (1 + ξ )/(2 +
3ξ ), which corresponds to having identical additive-noise

channels in both directions and states with low energy.

The second case is when ξ ′ � 1 and 2E � min{(ξ ′2 − 1)/

[ξ ′(3ξ ′ − 1)], (1 + ξ )/(2ξ )}, which corresponds to experi-

mental implementations with minimum excess noise in one

of the quantum channels and low-energy states. In both cases,

we show that the optimal input state is a finite entangled super-

position of twin-Fock states saturating the energy constraint.

Furthermore, our method shows that such optimal states are

unique; i.e., there is no other optimal finite entangled superpo-

sition of twin-Fock states that achieves this performance. Our

method is again purely analytical, similar to the unidirectional

case, which uses optimization techniques from multivariable

calculus. Also, the given constraints on E , ξ , and ξ ′ are

consequences of our analysis in the proofs of Proposition 6

and Proposition 9 used to establish the main results. It still

remains to solve (49) for larger values of E ; we note here that

numerical solutions can be obtained using truncation.

In order to find the solution to the energy-constrained

channel fidelity (49), we define the M-truncated energy-

constrained channel fidelity between SAB→B′A′ and T
ξ

A→B′ ⊗
T

ξ ′

B→A′ as

FE ,M

(

SAB→B′A′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

:= inf
ψRAB

F
(

SAB→B′A′ (ψRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (ψRAB)
)

, (50)

where the infimum is taken over pure bipartite states |ψ〉RAB =
∑M

m,n=0

√
pm,n|m, n〉R|m, n〉AB, where pm,n � 0 for all m, n,

M
∑

m,n=0

pm,n = 1,

M
∑

m,n=0

(m + n)pm,n � 2E . (51)

It turns out that the energy-constrained channel fidelity (49)

can be bounded from above and from below by the M-

truncated energy-constrained channel fidelity (50), which

gives a way to approximate the former in terms of the latter.

See Proposition 5 of Appendix B.

We show in Lemma 7 of Appendix B 1 that the unique

optimal input state for the M-truncated energy-constrained

channel fidelity is given by

|ψ〉RAB =
√

1 − 2E |0, 0〉R|0, 0〉AB

+
√

E |0, 1〉R|0, 1〉AB +
√

E |1, 0〉R|1, 0〉AB, (52)

whenever ξ = ξ ′ and 2E � (1 + ξ )/(2 + 3ξ ). We then use

the bounds in (B1) to show that (52) is also an optimal input

state for the energy-constrained channel fidelity (49) under the

same conditions ξ = ξ ′ and 2E � (1 + ξ )/(2 + 3ξ ), and it is

unique, as described earlier. See Theorem 8 in Appendix B 1

for a detailed proof. Using similar methods, we also find an

optimal input state for (49) in the case ξ ′ � 1 and 2E �

min{(ξ ′2 − 1)/[ξ ′(3ξ ′ − 1)], (1 + ξ )/(2ξ )}. The optimal in-

put state in this case is

|ψ〉RAB =
√

1 − 2E |0, 0〉R|0, 0〉AB

+
√

2E − pE |0, 1〉R|0, 1〉AB + √
pE |1, 0〉R|1, 0〉AB,

(53)

where pE is given by (B73) in Appendix B 2. Again, the state

in (53) is unique. See Theorem 11 in Appendix B 2.

We compare the optimal state with a tensor product of two

coherent states |α〉 ⊗ |α〉 given by (18) and a tensor product

of two TMSV states ψ (n)RA ⊗ ψ (n)RA given by (19) under
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the given conditions of Theorem 8. We find that

F (S (|α〉〈α| ⊗ |α〉〈α|), T ξ ⊗ T ξ (|α〉〈α| ⊗ |α〉〈α|))
= (F (|α〉〈α|, T ξ (|α〉〈α|)))2 (54)

=
1

(1 + ξ )2
. (55)

Also,

F (S (ψ (n)RA ⊗ ψ (n)RA), T ξ ⊗ T ξ (ψ (n)RA ⊗ ψ (n)RA))

= F (ψ (n)RA, T ξ (ψ (n)RA))2 (56)

=
1

(1 + (2E + 1)ξ )2
. (57)

Figure 2 plots the output fidelity FE between the ideal swap

channel and the tensor product of two identical additive-noise

channels versus the input energy E , corresponding to a ten-

sor product of coherent states, a tensor product of TMSV

states, and the optimal state, with input energy E ∈ [0, 0.5].

The noise parameter is taken as ξ = 0.5. In order, the dotted

(orange), dashed (magenta), and solid (blue) lines indicate

the output fidelity corresponding to the coherent state (55),

the TMSV state (57), and the optimal state (B70). Similar to

unidirectional teleportation, neither coherent nor TMSV states

are optimal. However, we have proven here that entanglement

between the channel uses and a reference system has the op-

timal performance in distinguishing the two identity channels

from the two additive-noise channels [recall (52)].

V. MULTIPLICATIVITY OF ENERGY-CONSTRAINED

CHANNEL FIDELITY

Let Mi and Ni be quantum channels from quantum sub-

system Ai to subsystem Bi, and let ρi and σi be quantum states

in Ai for i ∈ {1, . . . , n}. The multiplicative property of the

fidelity of tensor-product states follows from the definition in

(1), i.e.,

F

(

n
⊗

i=1

ρi,

n
⊗

i=1

σi

)

=
n

∏

i=1

F (ρi, σi ). (58)

This implies that

F

((

n
⊗

i=1

Mi

)(

n
⊗

i=1

ρi

)

,

(

n
⊗

i=1

Ni

)(

n
⊗

i=1

σi

))

=
n

∏

i=1

F (Mi(ρi ),Ni(σi)). (59)

The energy-constrained channel fidelity between the tensor-

product channels
⊗n

i=1 Mi and
⊗n

i=1 Ni is

FE

(

n
⊗

i=1

Mi,

n
⊗

i=1

Ni

)

= inf
ψRA1 ...An :Tr(ĤnψA1 ...An )�nE

F

((

n
⊗

i=1

Mi

)

(ψRA1...An
),

(

n
⊗

i=1

Ni

)

(ψRA1...An
)

)

. (60)

0.1 0.2 0.3 0.4 0.5
Energy E

0.002

0.004

0.006

0.008

0.010

Fidelity difference

FIG. 3. The graph plots the difference between the right-hand

and the left-hand side of (66) versus the energy E ∈ [0, 0.5] for

ξ = 0.5.

In (60), Ĥn is the Hamiltonian operator acting on the compos-

ite system A1 . . . An given by

Ĥn := H1 ⊗ · · · ⊗ In + · · · + I1 ⊗ · · · ⊗ Hn, (61)

where H1, . . . , Hn are Hamiltonian operators, and I1, . . . , In

are the identity operators for the subsystems A1 . . . An, re-

spectively. The reference system R can be taken to be

R = R1 . . . Rn, where each reference subsystem Ri is isomor-

phic to the input subsystem Ai. By taking ψRA1...An
as the

n-tensor-product state

ψRA1...An
= ψR1A1

⊗ · · · ⊗ ψRnAn
, (62)

we know from (59) that

F

((

n
⊗

i=1

Mi

)

(ψRA1...An
),

(

n
⊗

i=1

Ni

)

(ψRA1...An
)

)

=
n

∏

i=1

F (Mi(ψRiAi
),Ni(ψRiAi

)). (63)

If each state ψRiAi
satisfies the energy constraint Tr(HiψAi

) �

E , then ψRA1...An
satisfies the energy constraint in (60). Thus,

by taking the appropriate infimum on each side of (63), we get

FE

(

n
⊗

i=1

Mi,

n
⊗

i=1

Ni

)

�

n
∏

i=1

FE (Mi,Ni ). (64)

By using the fact that SAB→A′B′ ≡ IA→B′ ⊗ IB→A′ , from (64)

we get

FE

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

� FE

(

IA→B′ , T
ξ

A→B′

)

FE

(

IB→A′ , T
ξ ′

B→A′

)

. (65)

The submultiplicative property (65) is well known. An

interesting consequence of Theorems 4 and 8 is that the in-

equality in (65) can be strict. In particular, we have

FE

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ

B→A′

)

< FE

(

IA→B′ , T
ξ

A→B′

)

FE

(

IB→A′ , T
ξ

B→A′

)

, (66)

whenever 2E � (1 + ξ )/(2 + 3ξ ). This is illustrated in Fig. 3,

which plots the difference between the right-hand and

the left-hand side of (66) for ξ = 0.5. Thus, a conse-

quence of our result on bidirectional teleportation is that the

energy-constrained channel fidelity is not multiplicative, i.e.,
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entanglement between a reference and the channel inputs pro-

vides a benefit in distinguishing an identity channel from an

additive-noise channel, when there is an energy constraint.

VI. DISCUSSION

A characterization of the performance of any experimental

implementation of CV unidirectional teleportation in terms of

the energy-constrained channel fidelity is known for arbitrary

values of the noise parameter ξ and the energy constraint E

[54]. In our work, we characterize the performance of an ex-

perimental implementation of CV bidirectional teleportation

under certain conditions on the noise parameters ξ and ξ ′, as

well as the energy constraint E . It still remains to solve the

problem in the most general case, i.e., for arbitrary values of

the noise parameters and every energy constraint.

It is also an interesting question for future work to consider

the following quantity, and which states achieve the optimal

value:

FE (I⊗n, (T ξ )⊗n). (67)

This quantity applies to a generalization of CV bidirectional

teleportation in which there are n parties involved, and the ith

party is trying to communication quantum information to the

i + 1st party for i ∈ {1, . . . , n − 1} and the nth party is trying

to do so to the 1st party. Based on the findings of our paper, in

particular, the structures of the optimal states (11) and (53) for

unidirectional and bidirectional teleportation, we suspect that

for a sufficiently low-energy constraint E , the following state

optimizes the value in (67):

√
1 − nE |0〉R|00 . . . 00〉A1A2...An−1An

+
√

E |1〉R|10 . . . 00〉A1A2...An−1An

+
√

E |2〉R|01 . . . 00〉A1A2...An−1An

...

+
√

E |n − 1〉R|00 . . . 10〉A1A2...An−1An

+
√

E |n〉R|00 . . . 01〉A1A2...An−1An
. (68)

Note that the reduced state on systems A1 . . . An has total en-

ergy nE . To support the conjecture for n = 3, we compare the

output fidelity corresponding to a tensor product of coherent

states, a tensor product of TMSV states, and the conjectured

optimal state, and show that the conjectured optimal state

behaves the same as the optimal states for unidirectional and

bidirectional teleportation. For the coherent state α = |α〉〈α|
given by (18), we have

F (I⊗3(α⊗3), (T ξ )⊗3(α⊗3)) = (F (α, T ξ (α)))3 (69)

=
1

(1 + ξ )3
. (70)

For the TMSV state ψ (n) given by (19), we have

F (I⊗3(ψ (n)⊗3), (T ξ )⊗3(ψ (n)⊗3))

= (F (ψ (n), T ξ (ψ (n))))3 (71)

=
1

(1 + (1 + 2E )ξ )3
. (72)

0.1 0.2 0.3 0.4 0.5
Energy E

0.15

0.20

0.25

0.30

Fidelity FE

Coherent TMSV Conjectured Optimal

FIG. 4. The graph plots the output fidelity FE between the tensor

product of three identity channels and the tensor product of three

identical additive-noise channels versus the input energy E , corre-

sponding to a tensor product of coherent states, a tensor product

of TMSV states, and the conjectured optimal state (each having the

input energy E ). The noise parameter for the additive-noise channels

is taken as ξ = 0.5 and the states have energy E ∈ [0, 0.5]. The

dotted (orange), dashed (magenta), and solid (blue) lines represent

the output fidelity for the coherent state, the TMSV state, and the

optimal state, respectively.

Let φ be the conjectured optimal state given by (68) for n = 3.

By following the same arguments given in (34)–(44), we get

F (I⊗3(φ⊗3), (T ξ )⊗3(φ⊗3))

=
1

(1 + ξ )3

(

1 − 6

(

ξ

1 + ξ

)

E + 12

(

ξ

1 + ξ

)2

E2

)

.

(73)

In Fig. 4, we plot the output fidelity FE corresponding to

(70), (72), and (73) versus the input energy E ∈ [0, 0.5] for

ξ = 0.5. The plot shows similar behavior of the conjectured

optimal state as the plots for the optimal states for unidirec-

tional and bidirectional teleportation, which is expected.

VII. CONCLUSION

We have characterized the performance of CV unidi-

rectional and bidirectional teleportation in terms of the

energy-constrained channel fidelity between ideal CV telepor-

tation and its experimental approximation. Through a purely

analytical method, using optimization techniques from multi-

variable calculus, we explicitly determined the optimal input

state for CV unidirectional as well as bidirectional telepor-

tation. We showed that, in both the protocols, the optimal

input state is a finite entangled superposition of twin-Fock

states. Furthermore, the optimal states are unique; i.e., there is

no other optimal finite entangled superposition of twin-Fock

states. As an application of our results, we have shown that

the energy-constrained channel fidelity of two tensor-product

channels is strictly submultiplicative.

Another metric to quantify performance of any experi-

mental implementation of CV unidirectional and bidirectional

protocol is the Shirokov–Winter energy-constrained diamond

distance [82,83] between ideal CV teleportation and its ex-

perimental approximation. We leave the study of this quantity

for future work. Additionally, it remains an intriguing open
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question to determine optimal input states for multidirectional

CV teleportation, which we also leave for future work.
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APPENDIX A: OPTIMAL STATE FOR CV

UNIDIRECTIONAL TELEPORTATION

We shall use the following Kraus representation for the

pure-loss channel [81]:

L
η
A→B(|m〉〈m′|A) =

min{m,m′}
∑

k=0

√

(

m

k

)(

m′

k

)

η
1
2

(m+m′−2k)

×(1 − η)k|m − k〉〈m′ − k|B. (A1)

Proposition 1. Let p = (p0, p1, p2, . . .) be an arbitrary

infinite-dimensional probability vector, and let ψRA be a pure

state given by |ψ〉RA =
∑∞

n=0

√
pn|n〉R|n〉A. Then

F
(

IA→B(ψRA), T
ξ

A→B(ψRA)
)

�
1

(1 + ξ )

⎡

⎣

(

M
∑

n=0

pn

(1 + ξ )n

)2

+

(

M
∑

n=1

pnξ

(1 + ξ )n

)2
⎤

⎦.

(A2)

The inequality in (A2) is saturated if pn = 0 for all n � 2.

Proof. Let ψA = TrR(ψRA) =
∑∞

n=0 pn|n〉〈n|A. From (A1)

we get

L
1−η
A→B(ψA) =

∞
∑

n=0

pn

n
∑

k=0

(

n

k

)

(1 − η)kηn−k|k〉〈k|B. (A3)

For η = 1/(1 + ξ ), we have

F
(

IA→B(ψRA), T
ξ

A→B(ψRA)
)

= η Tr
((

L
1−η
A→B(ψA)

)2)

(A4)

� η Tr

⎡

⎣

(

M
∑

n=0

pn

n
∑

k=0

(

n

k

)

(1 − η)kηn−k|k〉〈k|B

)2
⎤

⎦ (A5)

= η Tr

⎡

⎣

(

M
∑

k=0

(

M
∑

n=k

pn

(

n

k

)

(1 − η)kηn−k

)

|k〉〈k|B

)2
⎤

⎦ (A6)

= η

M
∑

k=0

{

M
∑

n=k

pn

(

n

k

)

(1 − η)kηn−k

}2

(A7)

� η

1
∑

k=0

{

M
∑

n=k

pn

(

n

k

)

(1 − η)kηn−k

}2

(A8)

= η

(

M
∑

n=0

pnη
n

)2

+ η

(

M
∑

n=1

pnn(1 − η)ηn−1

)2

(A9)

� η

(

M
∑

n=0

pnη
n

)2

+ η

(

M
∑

n=1

pn(1 − η)ηn−1

)2

(A10)

=
1

(1 + ξ )

⎡

⎣

(

M
∑

n=0

pn

(1 + ξ )n

)2

+

(

M
∑

n=1

pnξ

(1 + ξ )n

)2
⎤

⎦. (A11)

The equality (A4) is given in Ref. [54], the inequality (A5)

follows by truncating the infinite sum in (A3) to M, the equal-

ity (A6) is obtained by interchanging the indices of the sum

in (A5), and (A7) follows by definition of trace. We get (A8)

by truncating the outer sum in (A7) to 1, and the inequality

(A10) is obtained by replacing n with 1 in the multiples of pn

in the second term of (A9). We use the relation η = 1/(1 + ξ )

in the last equality. Furthermore, each inequality is saturated

if pn = 0 for all n � 2. �

Proposition 2. The minimum value of fM,ξ , as defined in

(15), subject to pn � 0 for all n ∈ {0, . . . , M},
M
∑

n=0

pn = 1,

M
∑

n=0

npn � E , (A12)

is attained at the unique point p = (pn)M
n=0 given by p0 =

1 − E , p1 = E , and pn = 0 for all n ∈ {2, . . . , M}, whenever

E � (1 + ξ )/(1 + 3ξ ).
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Proof. We divide the proof into two parts. Let E0 ∈ [0, E ].

In the first part, we show that the minimum of fM,ξ , subject to

pn � 0 for all n ∈ {0, . . . , M} and the equality constraints

M
∑

n=0

pn = 1,

M
∑

n=0

npn = E0, (A13)

is uniquely attained at p0 = 1 − E0, p1 = E0, and pn = 0 for

all n ∈ {2, . . . , M}. In the second part, we show that the min-

imum value obtained in the first part is a strictly decreasing

function of E0.

Part 1. Let p ∈ R
M+1 be any vector satisfying the equality

constraints (A13), which gives

p0 = 1 − E0 +
M
∑

n=2

(n − 1)pn, p1 = E0 −
M
∑

n=2

npn. (A14)

Substitute the values of p0 and p1 in (15), and use the relation

η = 1/(1 + ξ ) ∈ [0, 1] to get

fM,ξ (p) = η

(

1 − (1 − η)E0 +
M
∑

n=2

[n(1 − η) − 1 + ηn]pn

)2

+ η(1 − η)2

(

E0 −
M
∑

n=2

(n − ηn−1)pn

)2

. (A15)

Let g : R
M−1 → R be the function defined by

g(x2, . . . , xM ) := η

(

1 − (1 − η)E0 +
M
∑

n=2

[n(1 − η) − 1 + ηn]xn

)2

+ η(1 − η)2

(

E0 −
M
∑

n=2

(n − ηn−1)xn

)2

. (A16)

From (A15), we thus have fM,ξ (p) = g(p2, . . . , pM ). We show that g is a strictly increasing function in each variable over

R
M−1
+ = {(x2, . . . , xm) : ∀k ∈ {2, . . . , M}, xk � 0}. (A17)

This implies that the unique global minimizer of g over R
M−1
+ is at the origin. For all k ∈ {2, . . . , M}, differentiate g partially

with respect to xk . We get

∂g(x2, . . . , xM )

∂xk

= 2η(ηk − kη + k − 1)

[

1 − E0 + ηE0 +
M
∑

n=2

[n(1 − η) − 1 + ηn]xn

]

+ 2η(1 − η)2(ηk−1 − k)

[

E0 +
M
∑

n=2

(ηn−1 − n)xn

]

. (A18)

Simplifying (A18) gives

∂g(x2, . . . , xM )

∂xk

= 2η[ [k(1 − η) − (1 − ηk )][1 − (1 − η)E0] − (k − ηk−1)(1 − η)2E0]

+ 2η

M
∑

n=2

[[k(1 − η) − (1 − ηk )][n(1 − η) − (1 − ηn)] + (1 − η)2(k − ηk−1)(n − ηn−1)]xn. (A19)

The coefficients of xn are positive because for all k � 2,

k(1 − η) − (1 − ηk ) = (1 − η)

k−1
∑

i=0

(1 − ηi ) > 0. (A20)

Also, the remaining term in (A19) is positive:

2η[[k(1 − η) − (1 − ηk )][1 − (1 − η)E0] − (k − ηk−1)(1 − η)2E0]

� 2η

[

[k(1 − η) − (1 − ηk )]

(

1 −
1 − η

3 − 2η

)

−
(k − ηk−1)(1 − η)2

3 − 2η

]

(A21)

=
2η

3 − 2η
[[k(1 − η) − 1 + ηk](2 − η) − (k − ηk−1)(1 − η)2] (A22)

=
2η

3 − 2η
[k(1 − η) − 1 + ηk + [k(1 − η) − 1 + ηk](1 − η) − k(1 − η)2 + ηk−1(1 − η)2] (A23)

=
2η

3 − 2η
[k(1 − η) − 1 + ηk + k(1 − η)2 − (1 − η) + ηk (1 − η) − k(1 − η)2 + ηk−1(1 − η)2] (A24)

=
2η

3 − 2η
[k(1 − η) + ηk + η + ηk−1(1 − η)] (A25)
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=
2η

3 − 2η
[k(1 − η) + η + ηk−1] (A26)

> 0. (A27)

The inequality (A21) follows from the fact that E0 � E � (1 + ξ )/(1 + 3ξ ) = 1/(3 − 2η), and (A27) follows from (A20). We

thus have ∂g(x2, . . . , xM )/∂xk > 0, and hence g is a strictly increasing function of each of its variables in R
M−1
+ .

Part 2. We know from the first part of the proof that the minimum value of fM,ξ subject to the constraints (A14) is

fM,ξ (1 − E0, E0, 0, . . . , 0) =
1

(1 + ξ )

[

1 − 2

(

ξ

1 + ξ

)

E0 + 2

(

ξ

1 + ξ

)2

E2
0

]

. (A28)

The quadratic polynomial 1 − 2[ξ/(1 + ξ )]E0 + 2[ξ/(1 + ξ )]2E2
0 is a strictly decreasing function in the interval [0, (1 + ξ )/

(2ξ )], and from the hypothesis we have E0 � E ∈ [0, (1 + ξ )/(2ξ )]. Therefore, the minimum value of fM,ξ subject to the

constraints (A12) is obtained at p0 = 1 − E , p1 = E , and pk = 0 for all k � 2. �

Lemma 3. The M-truncated energy-constrained channel fidelity (12) has the unique optimal state given by (11), whenever

E � (1 + ξ )/(1 + 3ξ ). Furthermore,

FE ,M

(

IA→B, T
ξ

A→B

)

=
1

(1 + ξ )

[

1 − 2

(

ξ

1 + ξ

)

E + 2

(

ξ

1 + ξ

)2

E2

]

. (A29)

In particular, FE ,M (IA→B, T
ξ

A→B) is independent of M.

Proof. Let us consider any pure bipartite state |φ〉RA =
∑M

n=0

√
pn|n〉R|n〉A with pn � 0 for all n ∈ {0, . . . , M}, such that

M
∑

n=0

pn = 1,

M
∑

n=0

npn � E . (A30)

From Propositions 1 and 2, we have

F
(

φRA, T
ξ

A→B(φRA)
)

� fM,ξ (1 − E , E , 0, . . . , 0) =
1

(1 + ξ )

[

1 − 2

(

ξ

1 + ξ

)

E + 2

(

ξ

1 + ξ

)2

E2

]

. (A31)

By taking the infimum in (A31) over φRA, and by definition (12), we get

FE ,M

(

IA→B, T
ξ

A→B

)

�
1

(1 + ξ )

[

1 − 2

(

ξ

1 + ξ

)

E + 2

(

ξ

1 + ξ

)2

E2

]

. (A32)

Also, the inequality in (A31) is saturated for the state in (11). This means that (A32) is actually an equality. The uniqueness of

the optimal state follows from Proposition 2. �

Theorem 4. The energy-constrained channel fidelity (8) has an optimal input state given by (11), whenever E � (1 + ξ )/(1 +
3ξ ). Moreover, the optimal state is unique in the sense that there is no other optimal finite entangled superposition of twin-Fock

states. The value of the energy-constrained channel fidelity is

FE

(

IA→B, T
ξ

A→B

)

=
1

(1 + ξ )

[

1 − 2

(

ξ

1 + ξ

)

E + 2

(

ξ

1 + ξ

)2

E2

]

. (A33)

Proof. From the inequalities (B31) of Ref. [54], we have

1 −

[

2

√

E

M + 1
+

√

1 − FE ,M

(

IA→B, T
ξ

A→B

)

]2

� FE

(

IA→B, T
ξ

A→B

)

� FE ,M

(

IA→B, T
ξ

A→B

)

. (A34)

By Lemma 3, we thus get

1 −

⎡

⎢

⎣
2

√

E

M + 1
+

√

√

√

√1 −
1

(1 + ξ )

(

1 − 2

(

ξ

1 + ξ

)

E + 2

(

ξ

1 + ξ

)2

E2

)

⎤

⎥

⎦

2

� FE

(

IA→B, T
ξ

A→B

)

�
1

(1 + ξ )

[

1 − 2

(

ξ

1 + ξ

)

E + 2

(

ξ

1 + ξ

)2

E2

]

. (A35)

(A33) is obtained by taking the limit M → ∞, and the optimal state is given by (11), which follows from the proof of Lemma 3.
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Any finite entangled superposition of twin-Fock states that is optimal for FE (IA→B, T
ξ

A→B) is also optimal for

FE ,M (IA→B, T
ξ

A→B) for large M. We know by Lemma 3 that FE ,M (IA→B, T
ξ

A→B) has the same unique optimal state for large

M. This implies the uniqueness of the optimal state (11) in the given sense. �

APPENDIX B: OPTIMAL STATE FOR THE BIDIRECTIONAL TELEPORTATION PROTOCOL

The proof of the following result is based on the ideas of Refs. [54, Appendix B] and [79, Proposition 2].

Proposition 5. The energy-constrained channel fidelity (49) and its truncated version (50) satisfy the inequalities

1 −

⎡

⎣2

√

1 −
(

1 −
2E

M + 1

)2

+
√

1 − FE ,M

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

⎤

⎦

2

� FE

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

� FE ,M

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

. (B1)

Proof. By definition, we have

FE

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

� FE ,M

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

. (B2)

We now establish the inequality in the other direction. Let �M
AB be the (M + 1)2-dimensional projection operator defined as

�M
AB :=

M
∑

m,n=0

|m, n〉〈m, n|AB. (B3)

Let ψRAB be an arbitrary pure state in (33). We then have

Tr
(

�M
ABψRAB

)

= 1 −
∞
∑

m,n=0
max{m,n}�M+1

〈m, n|ψAB|m, n〉 (B4)

= 1 −
∞
∑

m,n=0
max{m,n}�M+1

λ2
m,n (B5)

� 1 −
∞
∑

m,n=0
max{m,n}�M+1

(

m + n

M + 1

)

λ2
m,n (B6)

� 1 −
2E

M + 1
. (B7)

(B6) follows from the fact (m + n)/(M + 1) � 1, and (B7) is a consequence of the constraint
∑∞

m,n=0(m + n)λ2
m,n � 2E . Let

ψM
RAB be the truncated state given by

ψM
RAB :=

�M
ABψRAB�M

AB

Tr
(

�M
ABψRAB

) . (B8)

We have

F
(

ψRAB, ψM
RAB

)

�

(

1 −
1

2

∥

∥ψRAB − ψM
RAB

∥

∥

1

)2

(B9)

�

(

1 −
√

2E

M + 1

)2

. (B10)

The inequality (B9) follows from (3), and (B10) follows from the gentle measurement lemma (see, e.g., Ref. [63, Lemma 9.4.1]).

We have

C
(

SAB→A′B′ (ψRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (ψRAB)
)

� C
(

SAB→A′B′ (ψRAB),SAB→A′B′
(

ψM
RAB

))

+ C
(

SAB→A′B′
(

ψM
RAB

)

, T
ξ

A→B′ ⊗ T
ξ ′

B→A′

(

ψM
RAB

))

+C
(

T
ξ

A→B′ ⊗ T
ξ ′

B→A′

(

ψM
RAB

)

, T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (ψRAB)
)

(B11)

� 2C
(

ψRAB, ψM
RAB

)

+ C
(

SAB→A′B′
(

ψM
RAB

)

, T
ξ

A→B′ ⊗ T
ξ ′

B→A′

(

ψM
RAB

))

(B12)
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= 2

√

1 − F
(

ψRAB, ψM
RAB

)

+
√

1 − F
(

SAB→A′B′
(

ψM
RAB

)

, T
ξ

A→B′ ⊗ T
ξ ′

B→A′

(

ψM
RAB

))

(B13)

� 2

√

1 −
(

1 −
2E

M + 1

)2

+
√

1 − FE ,M

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

. (B14)

The inequalities (B11) and (B12) are consequences of the triangle inequality and monotonicity of the sine distance, respectively;

(B14) follows from (B10) and the fact that ψM
RAB is a legitimate finite dimensional state that satisfies the energy constraint

Tr (n̂ABψM
AB) � 2E . The inequality (B14) is true for arbitrary ψRAB in (33). So, we get

CE

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

� 2

√

1 −
(

1 −
2E

M + 1

)2

+
√

1 − FE ,M

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

. (B15)

Squaring and then rearranging (B15) gives the desired inequality. �

Define fM,ξ ,ξ ′ : R
(M+1)2 → R as

fM,ξ ,ξ ′ (p) :=
1

(1 + ξ )(1 + ξ ′)

M
∑

m,n,m′,n′=0

pm,n pm′,n′T mm′

ξ T nn′

ξ ′ . (B16)

We recall from (47) that for any probability vector p in R
(M+1)2

, a pure state of the form |φ〉RAB =
∑M

m,n=0

√
pm,n|m, n〉R|m, n〉AB

satisfies

F
(

SAB→A′B′ (φRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (φRAB)
)

= fM,ξ ,ξ ′ (p). (B17)

By (47) and (50) we thus have

FE ,M

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

= inf
p

fM,ξ ,ξ ′ (p), (B18)

where the minimum is taken over probability vectors p in R
(M+1)2

satisfying
∑M

m,n=0(m + n)pm,n � 2E . Let

DM := {(m, n, m′, n′) ∈ Z
4
+ : m, n, m′, n′

� M, m′ + n′
� 2, m + n � 2}, (B19)

where Z
4
+ ⊂ Z

4 is the set of 4-tuples of nonnegative integers. We can rewrite fM,ξ ,ξ ′ as

(1 + ξ )(1 + ξ ′) fM,η,η′ (p) =
M
∑

m,n,m′,n′=0
(m,n,m′,n′ )/∈DM

pm,n pm′,n′T mm′

ξ T nn′

ξ ′ +
M
∑

m,n,m′,n′=0
(m,n,m′,n′ )∈DM

pm,n pm′,n′T mm′

ξ T nn′

ξ ′

=
M
∑

m,n,m′,n′=0
m+n�1

m′+n′�1

pm,n pm′,n′T mm′

ξ T nn′

ξ ′ +
M
∑

m,n,m′,n′=0
m+n�1

m′+n′�2

pm,n pm′,n′T mm′

ξ T nn′

ξ ′

+
M
∑

m,n,m′,n′=0
m+n�2

m′+n′�1

pm,n pm′,n′T mm′

ξ T nn′

ξ ′ +
M
∑

m,n,m′,n′=0
(m,n,m′,n′ )∈DM

pm,n pm′,n′T mm′

ξ T nn′

ξ ′ . (B20)

From (A1), using η = 1/(1 + ξ ) we get

L
1

1+ξ (|m〉〈m′|)L
1

1+ξ (|m′〉〈m|) =
min{m,m′}

∑

k=0

(

m

k

)(

m′

k

)

ξ 2k

(1 + ξ )m+m′ |m − k〉〈m − k|. (B21)

By taking the trace on both sides of (B21), and from (45) we get

T mm′

ξ =
min{m,m′}

∑

k=0

(

m

k

)(

m′

k

)

ξ 2k

(1 + ξ )m+m′ . (B22)

In particular, T 0k
ξ = 1/(1 + ξ )k and T 1k

ξ = 1/(1 + ξ )k+1 + kξ 2/(1 + ξ )k+1 for all k � 0. Similarly,

T nn′

ξ ′ =
min{n,n′}
∑

k=0

(

n

k

)(

n′

k

)

ξ ′2k

(1 + ξ ′)n+n′ . (B23)
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We also note that T mm′

ξ = T m′m
ξ and T nn′

ξ ′ = T n′n
ξ ′ . From (B20) we thus get

fM,ξ ,ξ ′ (p) =
1

(1 + ξ )(1 + ξ ′)

⎡

⎢

⎢

⎢

⎢

⎣

M
∑

m,n,m′,n′=0
m+n�1

m′+n′�1

pm,n pm′,n′T mm′

ξ T nn′

ξ ′ + 2

M
∑

m,n,m′,n′=0
m+n�1

m′+n′�2

pm,n pm′,n′T mm′

ξ T nn′

ξ ′ +
M
∑

m,n,m′,n′=0
(m,n,m′,n′ )∈DM

pm,n pm′,n′T mm′

ξ T nn′

ξ ′

⎤

⎥

⎥

⎥

⎥

⎦

.

(B24)

1. Optimal input state for the energy-constrained channel fidelity for ξ = ξ′

Proposition 6. The minimum of fM,ξ ,ξ , subject to pm,n � 0 for all m, n ∈ {0, . . . , M},

M
∑

m,n=0

pm,n = 1,

M
∑

m,n=0

(m + n)pm,n � 2E , (B25)

is attained at the unique point p = (pm,n)M
m,n=0 in R

(M+1)2

, given by

pm,n =

⎧

⎨

⎩

1 − 2E if m = n = 0,

E if m + n = 1,

0 if m + n � 2,

(B26)

whenever 2E � (1 + ξ )/(2 + 3ξ ).

Proof. We divide the proof into two parts, similar to the proof of Proposition 2. Let E0 ∈ [0, E ]. In the first part, we show that

the minimum of fM,ξ ,ξ , subject to pm,n � 0 for all m, n ∈ {0, . . . , M}, and the equality constraints

M
∑

m,n=0

pm,n = 1,

M
∑

m,n=0

(m + n)pm,n = 2E0 (B27)

is uniquely attained at p as given in (B26). In the second part, we show that the minimum value obtained in the first part is a

strictly decreasing function of E0. It then follows that the minimizer of fM,ξ ,ξ subject to (B25) is given by (B26).

Part 1. In (B24), substitute the values of T mm′

ξ and T nn′

ξ from (B22) and (B23) to get

fM,ξ ,ξ (p) = η2

[

p2
0,0 + 2ηp0,0 p0,1 + 2ηp0,0 p1,0 + 2η2 p0,1 p1,0 + (η2 + (1 − η)2)

(

p2
0,1 + p2

1,0

)

+ 2

M
∑

m,n=0
m+n�2

{ηm+n p0,0 + ηm(ηn+1 + nηn−1(1 − η)2)p0,1 + ηn(ηm+1 + mηm−1(1 − η)2)p1,0}pm,n

+
M
∑

m,n,m′,n′=0
(m,n,m′,n′ )∈DM

pm,n pm′,n′T mm′

ξ T nn′

ξ

]

. (B28)

Here we used the relation η = 1/(1 + ξ ) for making the following calculations convenient. From (B27), we can write p0,0 and

p0,1 as

p0,1 = 2E0 − p1,0 −
M
∑

m,n=0
m+n�2

(m + n)pm,n, (B29)

p0,0 = 1 − 2E0 +
M
∑

m,n=0
m+n�2

(m + n − 1)pm,n. (B30)

Using the relations (B29) and (B30), we can treat p0,0, p0,1 as dependent variables so that fM,ξ ,ξ (p) is a function of (M + 1)2 − 2

independent variables {pr,s : r, s ∈ {0, . . . , M}}\{(0, 0), (0, 1)}. We have

∂ p0,0

∂ pr,s

= r + s − 1,
∂ p0,1

∂ pr,s

= −(r + s). (B31)

062603-14



OPTIMAL INPUT STATES FOR QUANTIFYING THE … PHYSICAL REVIEW A 107, 062603 (2023)

We now argue that a necessary condition for a minimizer is pr,s = 0 whenever r + s � 2. Differentiate fM,ξ ,ξ partially with

respect to pr,s for r + s � 2. We get

1

2η2

∂ fM,ξ ,ξ (p)

∂ pr,s

= (r + s − 1)p0,0 + η[−(r + s)p0,0 + (r + s − 1)p0,1] + η[(r + s − 1) − η(r + s)]p1,0

− [η2 + (1 − η)2](r + s)p0,1 + ηr+s p0,0 + ηr[ηs+1 + sηs−1(1 − η)2]p0,1 + ηs[ηr+1 + rηr−1(1 − η)2]p1,0

+
M
∑

m,n=0
m+n�2

{

(r + s − 1)ηm+n − (r + s)ηm[ηn+1 + nηn−1(1 − η)2] + T mr
ξ T ns

ξ

}

pm,n. (B32)

Further simplification gives

1

2η2

∂ fM,ξ ,ξ (p)

∂ pr,s

= [(r + s − 1) − η(r + s) + ηr+s]p0,0

+ [η(r + s − 1) − (η2 + (1 − η)2)(r + s) + ηr+s+1 + sηr+s−1(1 − η)2]p0,1

+ [η((r + s − 1) − η(r + s)) + ηr+s+1 + rηr+s−1(1 − η)2}p1,0

+
M
∑

m,n=0
m+n�2

[

(r + s − 1)ηm+n − (r + s)
(

ηm+n+1 + nηm+n−1(1 − η)2
)

+ T mr
ξ T ns

ξ

]

pm,n. (B33)

Substitute the values of p0,0 and p0,1 in (B33) from (B29) and (B30), and simplify to get

1

2η2

∂ fM,ξ ,ξ (p)

∂ pr,s

= (r + s)(1 − η) − (1 − ηr+s) − 2E0(1 − η)[(2(r + s) − sηr+s−1)(1 − η) − (1 − ηr+s)]

+ (1 − η)2[(r + s) + (r − s)ηr+s−1]p1,0 +
M
∑

m,n=0
m+n�2

�m,n,r,s,η pm,n, (B34)

where

�m,n,r,s,η = (1 − η)2

[

2(m + n)(r + s) −
1 − ηr+s

1 − η
(m + n) −

1 − ηm+n

1 − η
(r + s)

]

+ 1 − ηm+n − ηr+s + T mr
η T ns

η

− (1 − η)2[s(m + n)ηr+s−1 + n(r + s)ηm+n−1]. (B35)

The following arguments show that �m,n,r,s,η > 0. We have

T mr
η � ηm+r, (B36)

T ns
η � ηn+s

[

1 + ns

(

1 − η

η

)2
]

. (B37)

This implies

T mr
η T ns

η � ηm+nηr+s

[

1 + [(r + s) − r][(m + n) − m]

(

1 − η

η

)2
]

. (B38)

Let α = r + s and β = m + n. Using the inequality (B38), from (B35) we get

�m,n,r,s,η � (1 − η)2

[

2αβ −
1 − ηα

1 − η
β −

1 − ηβ

1 − η
α

]

+ 1 − ηβ − ηα + ηα+β

[

1 + (α − r)(β − m)

(

1 − η

η

)2
]

−(1 − η)2[(α − r)βηα−1 + (β − m)αηβ−1] (B39)

= (1 − η)2

[

2αβ −
1 − ηα

1 − η
β −

1 − ηβ

1 − η
α

]

+ 1 − ηβ − ηα + ηα+β

+(1 − η)2[(α − r)(β − m)ηα+β−2 − (α − r)βηα−1 − (β − m)αηβ−1] (B40)

= (1 − η)2

[

2αβ −
1 − ηα

1 − η
β −

1 − ηβ

1 − η
α

]

+ (1 − ηα )(1 − ηβ )

+(1 − η)2[(αβ − βr − αm + βm)ηα−1ηβ−1 − (αβ − βr)ηα−1 − (αβ − αm)ηβ−1] (B41)
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= (1 − η)2

[

2αβ −
1 − ηα

1 − η
β −

1 − ηβ

1 − η
α

]

+ (1 − ηα )(1 − ηβ ) + (1 − η)2αβ
[

ηα−1ηβ−1 − ηα−1 − ηβ−1
]

+(1 − η)2[βrηα−1(1 − ηβ−1) + αmηβ−1(1 − ηα−1) + rmηα−1ηβ−1] (B42)

� (1 − η)2

[

2αβ −
1 − ηα

1 − η
β −

1 − ηβ

1 − η
α

]

+ (1 − ηα )(1 − ηβ ) + (1 − η)2αβ[ηα−1ηβ−1 − ηα−1 − ηβ−1] (B43)

= (1 − η)2

[

αβ(1 + ηα−1ηβ−1 − ηα−1 − ηβ−1) + αβ −
1 − ηα

1 − η
β −

1 − ηβ

1 − η
α +

(

1 − ηα

1 − η

)(

1 − ηβ

1 − η

)]

(B44)

= (1 − η)2

⎡

⎣αβ(1 − ηα−1)(1 − ηβ−1) +

(

α −
α−1
∑

i=0

ηi

)

⎛

⎝β −
β−1
∑

i=0

ηi

⎞

⎠

⎤

⎦ > 0. (B45)

Now, the constant term is nonnegative if

2E0(1 − η)[(2α − sηα−1)(1 − η) − (1 − ηα )] � α(1 − η) − (1 − ηα ). (B46)

Using the fact that s � 0, the inequality (B46) holds if

2E0(1 − η)[2α(1 − η) − (1 − ηα )] � α(1 − η) − (1 − ηr+s). (B47)

By basic real analysis it is easy to verify that the coefficient of E0 in (B47) is positive. So, the inequality (B47) is equivalent to

2E0 �
α(1 − η) − (1 − ηα )

(1 − η)[2α(1 − η) − (1 − ηα )]
. (B48)

The right-hand side expression in (B48) is an increasing function of α � 2. To verify this, it suffices to show that

α(1 − η) − (1 − ηα )

(1 − η)[2α(1 − η) − (1 − ηα )]
−

2(1 − η) − (1 − η2)

(1 − η)[4(1 − η) − (1 − η2)]
� 0 ⇐⇒ (B49)

α(1 − η) − (1 − ηα )

2α(1 − η) − (1 − ηα )
−

1 − η

3 − η
� 0 ⇐⇒ (B50)

1 −
α(1 − η)

2α(1 − η) − (1 − ηα )
−

1 − η

3 − η
� 0 ⇐⇒ (B51)

2

3 − η
−

α(1 − η)

2α(1 − η) − (1 − ηα )
� 0 ⇐⇒ (B52)

4α(1 − η) − 2(1 − ηα ) − α(1 − η)(3 − η) � 0 ⇐⇒ (B53)

4α − 4αη − 2 + 2ηα − [3α − 4αη + αη2] � 0 ⇐⇒ (B54)

α − 2 + 2ηα − αη2
� 0 ⇐⇒ (B55)

α(1 − η2) − 2(1 − ηα ) � 0 ⇐⇒ (B56)

α(1 + η) − 2

(

1 − ηα

1 − η

)

� 0 ⇐⇒ (B57)

α + αη − 2 − 2

α−1
∑

i=1

ηi
� 0 ⇐⇒ (B58)

α + αη − 2 − 2(α − 1)η + 2η

α−1
∑

i=1

(1 − ηi−1) � 0 ⇐⇒ (B59)

α − αη − 2 + 2η + 2η

α−1
∑

i=1

(1 − ηi−1) � 0 ⇐⇒ (B60)

(α − 2)(1 − η) + 2

α−1
∑

i=1

η(1 − ηi−1) � 0. (B61)
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The inequality (B61) holds because α = r + s � 2. A sufficient condition on E for the inequality (B47) is thus obtained by

keeping 2E not more than the minimum value of the right hand side of (B48) which is attained for α = 2. This is given by

2E �
1

3 − η
=

1 + ξ

2 + 3ξ
. (B62)

We have thus shown that ∂ fM,ξ ,ξ (p)/∂ pr,s > 0, whenever pr,s > 0 and r + s � 2. So, fM,ξ ,ξ is a strictly increasing function

of the variables pr,s such that r + s � 2. Let q be a minimizer of fM,ξ ,ξ , which exists because fM,ξ ,ξ is a continuous function over

the compact set (B27). From the necessary condition derived earlier, we must have qr,s = 0 for all r + s � 2. Thus, we get

q0,0 = 1 − 2E0, q0,1 = 2E0 − q1,0 (B63)

from (B29) and (B30). This gives

fM,ξ ,ξ (q) = η2
[

1 − 4(1 − η)E0 + 4(1 − 4η + 2η2)E2
0 − 4(1 − η)2E0q1,0 + 2(1 − η)2q2

1,0

]

. (B64)

This is a convex polynomial in q1,0, which has the unique minimizer q1,0 = E0. In other words, the minimizer of fM,ξ ,ξ , subject

to the constraints (B27), is given by q0,0 = 1 − 2E0, q0,1 = q1,0 = E0, and qm,n = 0 for all m, n with m + n � 2.

Part 2. By evaluating (B64) at the minimizer q obtained in the first part, and resubstituting η = 1/(1 + ξ ), we get

fM,ξ ,ξ (q) =
1

(1 + ξ )2

[

1 − 4

(

ξ

1 + ξ

)

E0 + 6

(

ξ

1 + ξ

)2

E2
0

]

, (B65)

which is a strictly decreasing function of E0 in the interval [0, (1 + ξ )/(3ξ )]. Also, we have E0 � E ∈ [0, (1 + ξ )/(3ξ )], which

follows from the hypothesis E � (1 + ξ )/(2 + 3ξ ) < (1 + ξ )/(3ξ ). This completes the proof. �

Lemma 7. The M-truncated energy-constrained channel fidelity (50) has the unique optimal state given by (52), whenever

ξ = ξ ′ and 2E � (1 + ξ )/(2 + 3ξ ). Furthermore, we have

FE ,M

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ

B→A′

)

=
1

(1 + ξ )2

[

1 − 4

(

ξ

1 + ξ

)

E + 6

(

ξ

1 + ξ

)2

E2

]

. (B66)

In particular, the right-hand side of (B66) is independent of the truncation parameter M.

Proof. Let ψRAB be a pure state given by |ψ〉RAB =
∑M

m,n=0

√
pm,n|m, n〉R|m, n〉AB, where p = (pm,n)M

m,n=0 is a probability

vector such that
∑M

m,n=0(m + n)pm,n � 2E . From (B17), we have

F
(

SAB→A′B′ (φRAB), T
ξ

A→B′ ⊗ T
ξ

B→A′ (φRAB)
)

= fM,η,η(p). (B67)

By Proposition 6, for p in (B26), we have

F
(

SAB→A′B′ (ψRAB), T
ξ

A→B′ ⊗ T
ξ

B→A′ (ψRAB)
)

� fM,ξ ,ξ (p) =
1

(1 + ξ )2

[

1 − 4

(

ξ

1 + ξ

)

E + 6

(

ξ

1 + ξ

)2

E2

]

. (B68)

By taking infimum in (B68) over ψRAB, we get

FE ,M

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ

B→A′

)

�
1

(1 + ξ )2

[

1 − 4

(

ξ

1 + ξ

)

E + 6

(

ξ

1 + ξ

)2

E2

]

. (B69)

The inequality in (B68) is saturated for the state (52), which corresponds to the minimizer of fM,ξ ,ξ by Proposition 6. Therefore,

the inequality (B69) is actually an equality. The uniqueness of the optimal state follows from Proposition 6. �

Theorem 8. The energy-constrained channel fidelity (49) has an optimal input state given by (52), whenever ξ = ξ ′ and 2E �

(1 + ξ )/(2 + 3ξ ). Moreover, the optimal state is unique in the sense that there is no other optimal finite entangled superposition

of twin-Fock states. The energy-constrained channel fidelity is given by

FE

(

SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ

B→A′

)

=
1

(1 + ξ )2

[

1 − 4

(

ξ

1 + ξ

)

E + 6

(

ξ

1 + ξ

)2

E2

]

. (B70)

Proof. The equality (B70) follows directly by substituting the value of FE ,M (SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ

B→A′ ) in (B1), and then by

taking limit the limit M → ∞. It thus follows by Lemma 7 that the state in (52) is an optimal state.

Any optimal finite entangled superposition of twin-Fock states for FE (SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ

B→A′ ) is also optimal for

FE ,M (SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ

B→A′ ) for large M. Moreover, for all M, FE ,M (SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ

B→A′ ) has the same unique optimal

state given by (52), which follows from Lemma 7. This implies the uniqueness of the optimal state for FE (SAB→A′B′ , T
ξ

A→B′ ⊗
T

ξ

B→A′ ), in the given sense. �
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2. Optimal input state for energy-constrained channel fidelity for ξ′ � 1 and arbitrary ξ

Proposition 9. The minimum of fM,η,η′ , subject to pm,n � 0 for all m, n ∈ {0, . . . , M}, and the equality constraints

M
∑

m,n=0

pm,n = 1,

M
∑

m,n=0

(m + n)pm,n = 2E , (B71)

is attained at the unique p = (pm,n)M
m,n=0 in R

(M+1)2

, given by

pm,n =

⎧

⎨

⎩

1 − 2E if m = n = 0,

2E − pE if m = 0, n = 1,

0 if m + n � 2,

(B72)

whenever ξ ′ � 1 and 2E � (ξ ′2 − 1)/[ξ ′(3ξ ′ − 1)]. In (B72), we have

pE =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0 if 2E <
(ξ − ξ ′)(1 + ξ ′)

ξ ′2(1 + ξ )
,

2E if 2E <
(ξ ′ − ξ )(1 + ξ )(1 + ξ ′)

ξ 2(1 + ξ ′)2 + (ξ − ξ ′)2
,

(ξ − ξ ′)(1 + ξ )(1 + ξ ′) + 2Eξ ′2(1 + ξ )2

2((ξ − ξ ′)2 + ξξ ′(1 + ξ )(1 + ξ ′))
otherwise.

(B73)

Proof. From (B24), and using the relations η = 1/(1 + ξ ) and η′ = 1/(1 + ξ ′), we get

fM,ξ ,ξ ′ (p) �
1

(1 + ξ )(1 + ξ ′)

M
∑

m,n,m′,n′=0
m+n�1,
m′+n′�1

pm,n pm′,n′T mm′

ξ T nn′

ξ ′ . (B74)

Simplify the right-hand side of (B74) using η = 1/(1 + ξ ) and η′ = 1/(1 + ξ ′) to get

fM,ξ ,ξ ′ (p) � ηη′[p2
0,0 + 2p0,0(η′ p0,1 + ηp1,0) + 2ηη′ p0,1 p1,0 + (η′2 + (1 − η′)2)p2

0,1 + (η2 + (1 − η)2)p2
1,0

]

. (B75)

Let us denote the right-hand side of (B75) by gM,η,η′ : R
(M+1)2 → R,

gM,η,η′ (p) := ηη′[p2
0,0 + 2p0,0(η′ p0,1 + ηp1,0) + 2ηη′ p0,1 p1,0 + (η′2 + (1 − η′)2)p2

0,1 + (η2 + (1 − η)2)p2
1,0

]

. (B76)

We thus have

fM,η,η′ (p) � gM,η,η′ (p). (B77)

We will show that gM,η,η′ has a unique minimizer, and then show that it is also the minimizer of fM,ξ ,ξ ′ . Differentiate gM,η,η′ with

respect to pr,s for r + s � 2. We get

1

2ηη′
∂gM,η,η′ (p)

∂ pr,s

= ((r + s)(1 − η′) − 1)p0,0 − ((r + s)(1 − 2η′)(1 − η′) + η′)p0,1 + η((r + s)(1 − η′) − 1)p1,0. (B78)

Substitute the values of p0,0 and p0,1 from (B29) and (B30) in (B78), and simplify to get

1

2ηη′
∂gM,η,η′ (p)

∂ pr,s

= (r + s)(1 − η′) − 1 − 2E ((1 − η′)(2(r + s)(1 − η′) − 1))

+ [η((r + s)(1 − η′) − 1) + (r + s)(1 − 2η′)(1 − η′)]p1,0

+
M
∑

m,n=0
m+n�2

[(1 − η′)(2(r + s)(1 − η′) − 1)(m + n) + (r + s)(1 − η′)(2(1 − η′) − 1) + η′]pm,n. (B79)

The coefficients of pm,n are positive which follows from the assumption η′ = 1/(1 + ξ ′) � 1/2. The coefficient of p1,0 is

nonnegative. Also, the remaining term of (B79) is nonnegative if

2E �
(r + s)(1 − η′) − 1

(1 − η′)(2(r + s)(1 − η′) − 1)
. (B80)

The right-hand side of Eq. (B80) is an increasing function of r + s � 2, which follows because its derivative with respect

to r + s is given by [1 − 2(r + s)(1 − η′)]−2 and thus is nonnegative for all r + s. Therefore, a sufficient condition on E for
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∂gM,η,η′ (p)/∂ pr,s > 0 is obtained from (B80) by substituting r + s = 2 in the right-hand side. A sufficient condition is

2E �
2(1 − η′) − 1

(1 − η′)(4(1 − η′) − 1)
(B81)

=
1 − 2η′

(1 − η′)(3 − 4η′)
(B82)

=
ξ ′2 − 1

ξ ′(3ξ ′ − 1)
, (B83)

which holds by hypothesis. So, gM,η,η′ is a strictly increasing function of pr,s for all r, s with r + s � 2. Therefore, a necessary

condition for any of its minimizer p ∈ R
(M+1)2

is pr,s = 0 for all r, s with r + s � 2. Also, we know by (B24) that fM,ξ ,ξ ′ = gM,η,η′

at such points. Therefore, it follows by (B77) that the minimum value of fM,η,η′ is obtained at a point p for which pr,s = 0 for all

r, s with r + s � 2. Let q be such a point in the feasible region. From (B25) we have q0,0 = 1 − 2E , q0,1 = 2E − q1,0. Note that

q1,0 ∈ [0, 2E ]. This gives

fM,ξ ,ξ ′ (q) = gM,η,η′ (q) (B84)

= (1 − 2E )2 + 2(1 − 2E )(η′(2E − q1,0) + ηq1,0) + 2ηη′(2E − q1,0)q1,0

+ (η′2 + (1 − η′)2)(2E − q1,0)2 + (η2 + (1 − η)2)q2
1,0 (B85)

= (1 − 2E )(1 − 2E + 4η′E ) + 4E2(η′2 + (1 − η′)2)

+ [2(1 − 2E )(η − η′) + 4ηη′E − 4E (η′2 + (1 − η′)2)]q1,0 + 2[(η − η′)2 + (1 − η)(1 − η′)]q2
1,0. (B86)

It is a quadratic polynomial in q1,0, and the coefficient of q2
1,0 is positive. The global minimum of a quadratic polynomial

c + bx + ax2 with a > 0 is attained by x = −b/(2a). Also, the polynomial is a decreasing function of x < −b/(2a) and an

increasing function of x > −b/(2a). So, the minimum of c + bx + ax2 over [0, 2E ] occurs at

x =

⎧

⎪

⎨

⎪

⎩

0 if − b/2a < 0,

2E if − b/2a > 2E ,

−
b

2a
otherwise.

(B87)

By comparing the quadratic polynomial (B86) with c + bx + ax2, and from (B87), the minimizer of fM,ξ ,ξ ′ is given

by (B72). �

Lemma 10. The M-truncated energy-constrained channel fidelity (50) has the unique solution given by (53), whenever ξ ′ � 1

and 2E � min{(ξ ′2 − 1)/[ξ ′(3ξ ′ − 1)], (1 + ξ )/(2ξ )}. Also, the energy-constrained channel fidelity is

FE ,M

(

SAB→B′A′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′

)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 − 4

(

ξ ′

1 + ξ ′

)

E + 8

(

ξ ′

1 + ξ ′

)2

E2 if 2E <
(ξ − ξ ′)(1 + ξ ′)

ξ ′2(1 + ξ )
,

1 − 4

(

ξ

1 + ξ

)

E + 8

(

ξ

1 + ξ

)2

E2 if 2E <
(ξ ′ − ξ )(1 + ξ )(1 + ξ ′)

ξ 2(1 + ξ ′)2 + (ξ − ξ ′)2
,

4ac − b2

4a
otherwise,

(B88)

where

a =
2(ξ ′ − ξ )2

(1 + ξ )2(1 + ξ ′)2
+

2ξξ ′

(1 + ξ )(1 + ξ ′)
, (B89)

b =
2(ξ ′ − ξ )

(1 + ξ ′)(1 + ξ ′)
+

4ξ ′(ξ (1 − ξ ′) − 2ξ ′)E

(1 + ξ )(1 + ξ ′)2
, (B90)

c = 1 −
4ξ ′E

(1 + ξ ′)
+

8(ξ ′E )2

(1 + ξ ′)2
. (B91)

In particular, the the right-hand side of (B88) is independent of the truncation parameter M.

Proof. Let φRAB be any pure state given by |φ〉RAB =
∑M

m,n=0

√
qm,n|m, n〉R|m, n〉AB, where q = (qm,n)M

m,n=0 is a probability

vector such that
∑M

m,n=0(m + n)qm,n = 2E0 � 2E , and let ψRAB be the pure state given in (53). We know from (B17) that

F
(

SAB→A′B′ (φRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (φRAB)
)

= fM,ξ ,ξ ′ (q). (B92)

By Proposition 9, we thus get

F
(

SAB→A′B′ (φRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (φRAB)
)

� ηη′(h2(E0) + h1(E0)pE0
+ h0(E0)p2

E0

)

, (B93)
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where η = 1/(1 + ξ ), η′ = 1/(1 + ξ ′), pE0
is given by (B73), and h0, h1, h2 are polynomial functions defined by

h0(x) = 2((η − η′)2 + (1 − η)(1 − η′)), (B94)

h1(x) = 2(η − η′) + 4(1 − η′)(2η′ − 1 − η)x, (B95)

h2(x) = 1 − 4(1 − η′)x + 8(1 − η′)2x2. (B96)

The polynomials h0(x), h1(x), h2(x) are decreasing functions of x for x < 1/[4(1 − η′)]. From the given hypothesis, and the

relation ξ ′ = (1 − η′)/η′, we have

E �
ξ ′2 − 1

2ξ ′(3ξ ′ − 1)
(B97)

=
1 − 2η′

2(1 − η′)(3 − 4η′)
(B98)

=
1

2(1 − η′)

(

1 −
2(1 − η′)

3 − 4η′

)

(B99)

<
1

2(1 − η′)

(

1 −
2(1 − η′)

4 − 4η′

)

(B100)

=
1

4(1 − η′)
. (B101)

This implies hi(E0) � hi(E ) for i ∈ {0, 1, 2}.
Our proof is divided into three cases, based on the conditions in (B88). We use Proposition 9 in each case.

Case 1. Suppose 2E < (ξ − ξ ′)(1 + ξ ′)/[ξ ′2(1 + ξ )].

The minimum value of the right-hand side term of (B93) occurs at p1,0 = 0. We thus get

F (SAB→A′B′ (φRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (φRAB)) � ηη′h2(E0) (B102)

� ηη′h2(E ) (B103)

= F
(

SAB→A′B′ (ψRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (ψRAB)
)

. (B104)

Case 2. Suppose 2E < (ξ ′ − ξ )(1 + ξ )(1 + ξ ′)/[ξ 2(1 + ξ ′)2 + (ξ − ξ ′)2].

The minimum value of the right-hand side term of (B93) occurs at p1,0 = 2E . By substituting p1,0 = 2E0 in (B93) and then

by simplifying, we get

F
(

SAB→A′B′ (φRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (φRAB)
)

� ηη′(1 − 4E0(1 − η) + 8(1 − η)2E0). (B105)

The polynomial 1 − 4(1 − η)x + 8(1 − η)2x2 is decreasing for x � 1/[4(1 − η)]. Since we have E � (1 + ξ )/(4ξ ) =
1/[4(1 − η)], by (B105) we get

F
(

SAB→A′B′ (φRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (φRAB)
)

� ηη′(1 − 4(1 − η)E + 8(1 − η)2E2) (B106)

= F
(

SAB→A′B′ (ψRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (ψRAB)
)

. (B107)

Case 3. In this case we have

2E � max

{

(ξ − ξ ′)(1 + ξ ′)

ξ ′2(1 + ξ )
,

(ξ ′ − ξ )(1 + ξ )(1 + ξ ′)

ξ 2(1 + ξ ′)2 + (ξ − ξ ′)2

}

. (B108)

Now, for all x � 0, we have

h2(E0) + h1(E0)x + h0(E0)x2
� h2(E ) + h1(E )x + h0(E )x2 (B109)

� h2(E ) + h1(E )pE + h0(E )p2
E . (B110)

In (B109), we used the fact that hi(E0) � hi(E ) for all i ∈ {0, 1, 2}; (B110) follows because the global minimum of the

polynomial h2(E ) + h1(E )x + h0(E )x2 is attained at x = pE . We thus have

h2(E0) + h1(E0)pE0
+ h0(E0)p2

E0
� h2(E ) + h1(E )pE + h0(E )p2

E . (B111)

From (B93) and (B111), we thus get

F
(

SAB→A′B′ (φRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (φRAB)
)

� F
(

SAB→A′B′ (ψRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (ψRAB)
)

. (B112)
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In all the cases, we proved that

F
(

SAB→A′B′ (φRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (φRAB)
)

� F
(

SAB→A′B′ (ψRAB), T
ξ

A→B′ ⊗ T
ξ ′

B→A′ (ψRAB)
)

. (B113)

This means that the state in (53) is optimal. Also, the value of the energy-constrained channel fidelity (B88) can be obtained by

direct substitution of the minimizer pE from (B73). �

Theorem 11. An optimal state for the energy-constrained channel fidelity (49) is given by (53), whenever ξ ′ � 1 and 2E �

min{(ξ ′2 − 1)/[ξ ′(3ξ ′ − 1)], (1 + ξ )/(2ξ )}. Moreover, the optimal state is unique in the sense that there is no other optimal finite

entangled superposition of twin-Fock states. The value of the energy-constrained channel fidelity FE (SAB→A′B′ , T
ξ

A→B′ ⊗ T
ξ ′

B→A′ )

is the same as the value of any of its M-truncated counterpart given in (B88).

Proof. The proof follows similar arguments as given in the proof of Theorem 8, and using Lemma 10. �
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