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Continuous-variable (CV) teleportation is a fundamental protocol in quantum information science. A number

of experiments have been designed to simulate ideal teleportation under realistic conditions. In this paper,
we detail an analytical approach for determining optimal input states for quantifying the performance of
CV unidirectional and bidirectional teleportation. The metric that we consider for quantifying performance is
the energy-constrained channel fidelity between ideal teleportation and its experimental implementation, and

along with this, our focus is on determining optimal input states for distinguishing the ideal process from the
experimental one. We prove that, under certain energy constraints, the optimal input state in unidirectional as
well as bidirectional teleportation is a finite entangled superposition of twin-Fock states saturating the energy
constraint. Moreover, we also prove that, under the same constraints, the optimal states are unique; that is, there

is no other optimal finite entangled superposition of twin-Fock states.

DOI: 10.1103/PhysRevA.107.062603

I. INTRODUCTION

Quantum teleportation is a foundational protocol in quan-
tum information science that has no classical analog [1] (see
also Ref. [2]). It consists of transmitting an unknown quantum
state from one place to another by using shared entanglement
and local operations and classical communication (LOCC).
Quantum teleportation plays an important role in quantum
technologies such as quantum information processing proto-
cols [3], quantum computing [4,5], and quantum networks
[6]. Since the invention of this protocol, various modifica-
tions have been proposed, such as probabilistic teleportation
[7-9], controlled teleportation [10—13], and bidirectional tele-
portation [14-22]. There has also been significant progress
in implementing quantum teleportation in laboratories around
the world in the last three decades [23]. Several experiments
have implemented the teleportation protocol for simple quan-
tum systems [24-29], and attempts are being made to extend
them to more complex quantum systems [30-33].

The first theoretical proposal for quantum teleportation was
for two-level quantum systems, also commonly called qubits
[1]. Later, continuous-variable (CV) teleportation was devised
as an extension of the original protocol to quantum systems
described by infinite-dimensional Hilbert spaces [14,34]. This
was followed by many experimental implementations of CV
teleportation, which include teleportation of collective spins
of atomic ensembles [35,36], polarization states of photon
beams [33], coherent states [37], etc. In standard CV telepor-
tation, the entangled resource state shared between the sender
and receiver—Alice and Bob, respectively—is a two-mode
squeezed vacuum (TMSV) state. The protocol begins with
Alice mixing an unknown input state with her share of the
entanglement on a balanced beam splitter and then performing
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homodyne detection of complementary quadratures. Based on
the classical measurement outcomes received by Alice and
subsequently transmitted to Bob, he then performs displace-
ment operations on his share of the TMSV state and recovers
an approximation of the original state [34].

An ideal implementation of CV teleportation in princi-
ple allows for perfect transmission of quantum states and
hence simulates an ideal quantum channel. However, an
ideal implementation also demands the unphysical conditions
of noiseless homodyne detection and infinite squeezing in
the TMSV state, which is not possible in practice because
both noiseless homodyne detection and infinite squeezing
require infinite energy. Any experimental implementation of
CV teleportation accounts for an unideal detection and fi-
nite squeezing, which results in an imperfect transmission of
quantum states, and hence simulates a noisy quantum channel
[34]. It is therefore important for experimentalists to employ
performance metrics, as well as quantify the performance, for
any experimental simulation of ideal teleportation.

Several works on characterizing the performance of ex-
perimental implementations of the teleportation protocol have
been conducted for finite-dimensional quantum systems in the
past few years [38—44], including a more recent work on bidi-
rectional teleportation, which benchmarks the performance in
terms of normalized diamond distance and channel infidelity
for transmission of arbitrary quantum states [45]. There have
also been many theoretical and experimental works on quanti-
fying the performance of experimental implementations of the
CV teleportation protocol. However, most of them study the
performance by evaluating specific classes of quantum states,
such as coherent states [46—49], pure single-mode Gaussian
states [50,51], squeezed states [52], cat states [53], etc. All
such evaluations are incomplete, in the sense that they test the
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performance by transmitting specific states rather than arbi-
trary unknown states. A true quantifier for CV unidirectional
teleportation was given in Ref. [54], which benchmarks the
performance of an experimental implementation in terms of
the energy-constrained channel fidelity between ideal telepor-
tation and its experimental implementation. We also note here
that Ref. [54] is foundational for the present paper.

In this paper, we quantify the performance of any ex-
perimental implementation of CV unidirectional, as well as
bidirectional, teleportation, under certain energy constraints.
The performance metric that we consider is the energy-
constrained channel fidelity between an ideal teleportation
and its experimental implementation. We explicitly find op-
timal input states, i.e., quantum states whose output fidelity
corresponding to the ideal channel and its experimental ap-
proximation is the same as the energy-constrained channel
fidelity between the two channels. Our method is purely ana-
lytical, employing optimization techniques from multivariable
calculus. The optimal states for unidirectional, as well as
bidirectional, teleportation are finite entangled superpositions
of twin-Fock states saturating the energy constraint. Further-
more, we prove that the optimal input states are unique; i.e.,
there is no other optimal finite entangled superposition of
twin-Fock states.

Our results on bidirectional teleportation are also related to
one of the most interesting mathematical problems in quantum
information theory: the study of additive and multiplicative
properties of measures associated with quantum channels
[55-58]. Much progress has been made in addressing these
additivity issues [59-63], settling some of the questions posed
in Refs. [64,65]. The fidelity of quantum states is well known
to be multiplicative for tensor-product quantum states [63].
This induces an inequality for energy-constrained channel
fidelity between two tensor-product channels. As a conse-
quence of our work, we give examples where the induced
inequality is strict; that is, our results also imply that the
energy-constrained fidelity between the identity channel and
an additive-noise channel is strictly submultiplicative.

The rest of our paper is organized as follows. In Sec. II, we
review some definitions. We present a derivation of the opti-
mal input state for CV unidirectional teleportation in Sec. I1I
and for CV bidirectional teleportation in Sec. IV. We show
in Sec. V that the energy-constrained fidelity between the
ideal swap channel and the tensor product of two additive-
noise channels is strictly submultiplicative. We then discuss
possible extensions and generalizations of the present work
in Sec. VI. Finally, in Sec. VII we summarize our results and
outline questions for future work.

The appendices contain necessary calculations for deriv-
ing the results. In Appendix A, we provide proofs of some
preliminary results required to derive the optimal input state
for CV unidirectional teleportation. Similarly, we prove some
preliminary results in Appendix B that are used to derive the
optimal input state for CV bidirectional teleportation.

II. PRELIMINARIES

Let H be a separable Hilbert space, and let T be an operator
acting on H. The adjoint of T is the unique operator T ' acting

on H defined by (¢|T ) = (¥ |TT|¢) for all |@), |¥) € H; T

is said to be self-adjoint if T = T7. If Tr(+/T'T) < oo then
T is said to be a trace-class operator, and its trace norm is
defined as ||T||; := Tr(~TTT). A quantum state is a positive
semidefinite, trace-class operator with trace norm equal to
one. We denote by D(H) the set of all quantum states or
density operators acting on H. Let p, 0 € D(H). The fidelity
between p and o is defined by [66]

F(p,0) = ll/ovol?. (1)

If one of the quantum states is pure, i.e., say, p = |¥ XV,
then F(p, o) = Tr(po). The sine distance between p and o
is given by [67-70]

Clp,0)=1-F(p,o0). 2

The following inequalities relate the fidelity, sine distance, and
trace distance [71, Theorem 1]:

I =VF(p,o) < 5lp=ally < Clp, o). 3)

The set of bounded operators on H forms a C*-algebra
under the operator norm, and we denote it by L(#H). Let
‘Ha denote the Hilbert space corresponding to a quantum
system A. A quantum channel from a quantum system A to
a quantum system B is a completely positive, trace-preserving
linear map from L(H,) to L(Hp). Let M4_,p and N_.p be
quantum channels. Let H4 be a Hamiltonian corresponding to
the quantum system A, and let R denote a reference system.
The energy-constrained channel fidelity between M _, 5 and
Nu_p for E € [0, 00) is defined by [72,73]

Fr(Ma—p, Na_p)
= inf

Pra:Tr(Hapa)SE

F(Map(pra), Nassg(pra)),  (4)

where pgra € D(Hr ® Ha), pa = Trr(pra), and it is implicit
that the identity channel Zy acts on the reference system R.
Furthermore, the optimization in (4) is taken over every possi-
ble reference system R. Similarly, the energy-constrained sine
distance between M _, g and N_, 5 for E € [0, oo) is defined
by [72,73]

Ce(Ma—p, Nasp)

= sup
PrA:Tr(Hppa)SE

C(Ma—p(pra)s Nasp(pra)).  (5)

Although the optimizations in (4) and (5) are over arbitrary
mixed states and arbitrary reference systems, it suffices to re-
strict the optimization over pure states such that the reference
system R is isomorphic to the channel input system A. This
is a consequence of purification, the Schmidt decomposition,
and data processing [74, Sec. 3.5.4]. We thus have

Fe(Ma—p, Nasp)
= inf F (M p(dra)s Nassp(dra)),  (6)

T g et ba)<E
Ce(Ma—p, Nap)
C(Ma—p(Pra), Nassg(Pra)),  (7)

= sup
Pra:Tr(Hadpa)SE

where the optimizations (6) and (7) are taken over pure states
¢ra with reference system R isomorphic to system A.
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III. OPTIMAL INPUT STATE FOR CV UNIDIRECTIONAL
TELEPORTATION

The CV quantum teleportation protocol describes how to
transmit an unknown quantum state from Alice to Bob when
their systems are in CV modes and they share a prior entan-
gled state known as a resource state [34]. In this protocol,
Alice mixes the unknown quantum state with her share of
the resource state (TMSV state) and performs homodyne de-
tection. The homodyne detection destroys the input state on
Alice’s end. Alice then communicates the classical outcomes
of the detection to Bob, based on which he performs unitary
operations on his share of the resource state to generate an
approximation of the input state. Let A denote the input mode,
and let B denote the output mode. An ideal teleportation
protocol requires noiseless homodyne detection and infinite
squeezing in the TMSV state, and it induces the identity
channel Z,_,p on the input states [1,34] (see Ref. [75] for
further clarification of the convergence of the protocol to
the identity channel). However, an experimental implemen-
tation of CV teleportation has a noisy detector and finite
squeezing in the resource state which makes the experimental
implementations of teleportation perform less than ideal. It
realizes an additive-noise channel ’7;5_) p» Where the noise pa-
rameter £ > 0 encodes unideal detection and finite squeezing
[34,76]. The additive-noise channel 7% is a composition of
the quantum-limited amplifier A'/"7 with gain parameter 1/7
and the pure-loss channel £" with transmissivity 1, where
n=1/(1+§&)[77,78]. See Ref. [79, Sec. I1.B] for more de-
tails.

By taking the performance metric to be the energy-
constrained channel fidelity between ideal teleportation and
the additive-noise channel, the performance of experimental
implementations has been studied in Ref. [54]. By choos-
ing the Hamiltonian Hy to be the photon number operator
iy = chzon|n)(n| 4, the energy-constrained channel fidelity
in (6) for the identity channel Z,_,p and the additive-noise
channel 7:5_) g can be further simplified, as a consequence of
phase averaging and joint phase covariance of these channels
[54,73], as

Fe(Tpaon. Typ) = inf F (T n(ra), Tos(Wra).  (8)

where the infimum is taken over pure and entangled superpo-
sitions of twin-Fock states g4 = | }¥|ra such that

[W)ra = Y huln)rln)a, ©)
n=0

dn € RT for all n, Y02 A2=1, and Y 2 ni2 < E. An
analytical solution to the energy-constrained channel fidelity
in (8), using Karush—Kuhn-Tucker conditions, was given in
Ref. [54] for small values of & and arbitrary values of E. The
optimal input state so obtained was

W)ra = V1 —A{EHLEDRILED) A + VAEHTEDRIET)A,
(10)
where {E} .= E — | E ]. Another contribution of Ref. [54] was

to provide a method, using a combination of numerical and
analytical techniques, for finding optimal input states to test

the performance of unidirectional CV teleportation under the
energy-constrained channel fidelity measure.

In this section, we show that an optimal input state
for the energy-constrained channel fidelity (8) is a finite
entangled superposition of twin-Fock states saturating the
energy constraint for arbitrary values of & and E satisfying
E < (1+&)/(1+ 3£), and it is given by

[¥)ra = V1T = E|0)g]0)4 + VE[1)g|1)4. (11

Observe that the optimal state in (11) is the same as that in
(10) under the common conditions of E < (1 +&)/(1 + 3&)
and small &. Our method also shows that the optimal state
in (11) is unique; i.e., there is no other optimal finite entan-
gled superposition of twin-Fock states for (8). We emphasize
that our method is purely analytical. We use optimization
techniques from multivariable calculus, and the constraint
E < (1+&)/(1+ 3%) is needed in our analysis in the proof
of Proposition 2 that plays a major role in establishing the
result. We also note that it is still an open problem to find the
optimal state for larger values of E analytically.

In order to compute the energy-constrained channel fi-
delity between the ideal channel Z,_, 5 and its experimental
implementation 7:{1 g» we define the M-truncated energy-

constrained channel fidelity between Z,_, g and ’7:5_) g as
Fe(Taens Tip) =00 F (T n W), T p (W),
YRA
(12)

where the infimum is taken over pure states Yga = |V XV |ra
of the form

M
[V)ra = D /Paln)rln)a, (13)

n=0

such that p, > 0 for all n, Zan() pn =1, and Zano np, < E.
In Proposition 1 in Appendix A, we show that

F(Taes(Wra). T s(Wra)
1 w (e Y
Pn Pn
oL _ P
TET) (;(1%)”) +(;(1+5)")
(14)

for every state of the form in (13). Define the real-valued
function

| M 2 M £ 2
. Pn Pn
IneP) =g, (Z(1+S)"> +<n_1 (1+s>">

n=0
(15)
for all p € RM*!. By (14) and (15), we thus have
F(Yra- Top(Ura)) = fure (D). (16)

The minimizer of the function fy ¢ subject to p, > 0 for all
nef{0,...,M},

Yop=1 Y np<E, a7

062603-3



MISHRA, OSKOUEI, AND WILDE

PHYSICAL REVIEW A 107, 062603 (2023)

is the unique point givenby po =1 —E, p; = E, and p, =0
for all n > 2, whenever E < (1 +£&)/(1 4+ 3£). See Propo-
sition 2 in Appendix A. It thus follows from (14) that the
optimal input state to the M-truncated energy-constrained
channel fidelity is unique, and it is given by (11), whenever
E<L(+&)/(1+43). See Lemma 3 in Appendix A. From
the solution to the M-truncated energy-constrained channel
fidelity, and the inequality (A35) in Appendix A, it follows
that the optimal input state in (8) is given by (11), when-
ever E < (1 +&)/(1 4 3§). The uniqueness follows from the
uniqueness of the optimal state for the M-truncated energy-
constrained channel fidelity. See Theorem 4 in Appendix A.

We compare two classes of experimentally relevant quan-
tum states, namely, coherent states and TMSV states, with the
optimal state under the given energy constraint. See Ref. [80]
for further background on CV quantum information. Let |o)
denote a coherent state, which is given by

n

| ad o
= . 18
o) = e go m"” (18)

)
o

The energy of the coherent state |«) is E = lee|?, and its
covariance matrix is I, the 2x2 identity matrix. The co-
variance matrix of 7% (Ja)a]|) is (1 +28)L. Let ¥ ()ga =
| (1)) ()| ra be the TMSV state given by

_ 1 ad 7\
v (7)) ra '_ﬁ; (_n_+1> Imygln)a.  (19)

The energy of its reduced state is £ = 7, and its covariance
matrix is

v _[ eaton
YO T G Do,

where o, is the Pauli-z matrix. The covariance matrix of
TE [y ()ral is given by

2/ + 1o, 20)
Qi+ DL | (

. Qn+ Db 2/ + Do, o
T T a A Do, @+ 1426 |
‘We then have
2
F(laal, TE(Jaefal)) = e (22)
1
- 2
14+¢&° 23)
and also
3 2
F (Y (Mra, T° (W (M)ra)) =
\/ Det (Vi + V7w )
(24)
S 25)
1+ Q2+ 1)
= ;. (26)
1+ E + 1)

These fidelity expressions are evaluated using Eq. (4.51) of
Ref. [80].

Fidelity Fg

0.65

0.60

0.55

0.50

Energy E

Optimal

FIG. 1. The graph plots the output fidelity Fr between the ideal
channel and an additive-noise channel versus the input energy E,
corresponding to a coherent state, a TMSV state, and the optimal
state (each having input energy E). The noise parameter for the
additive-noise channel is taken as £ = 0.5 and the states have energy
E € [0, 0.5]. The dotted (orange), dashed (magenta), and solid (blue)
lines represent the output fidelity for the coherent state, the TMSV
state, and the optimal state, respectively.

In Fig. 1, we plot the output fidelity Fr between the ideal
channel and an additive-noise channel versus the input energy
E, corresponding to a coherent state, a TMSV state, and
the optimal state, with input energy E € [0, 0.5]. The noise
parameter is taken as & = 0.5. In order, the dotted (orange),
dashed (magenta), and solid (blue) lines indicate the output
fidelity for the coherent state (23), the TMSV state (26), and
the optimal state (A33). The graph indicates that coherent and
TMSV states are not optimal states in general. Interestingly,
however, the TMSV state is very close to being an optimal
input state for CV unidirectional teleportation. This was ob-
served in a different regime for the energy constraint, in Fig. 2
of Ref. [54].

Fidelity Fg
0.45

0.40
0.35
0.30

0.25

Energy E

Optimal

FIG. 2. The graph plots the output fidelity Fr between the ideal
swap channel and the tensor product of two identical additive-noise
channels versus input energy E, corresponding to a tensor product of
coherent states, a tensor product of TMSV states, and the optimal
state (each having input energy E). The noise parameter for the
additive-noise channels is taken as £ = 0.5 and the states have energy
E € [0, 0.5]. The dotted (orange), dashed (magenta), and solid (blue)
lines represent the output fidelity for the coherent state, the TMSV
state, and the optimal state, respectively.
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IV. OPTIMAL INPUT STATE FOR CV BIDIRECTIONAL
TELEPORTATION

The CV bidirectional teleportation protocol consists of a
two-way transmission of unknown quantum states between
Alice and Bob. One implementation of the protocol, which
we consider here, allows for a simulation of two ideal CV
unidirectional quantum channels with the help of shared en-
tanglement and LOCC. See Ref. [45] for a discussion of more
general implementations. The protocol that we consider here
can be thought of as a combination of two CV unidirectional
teleportations, one from Alice to Bob and the other from Bob
to Alice. Let A and B denote the input modes for Alice and
Bob, and let A’ and B’ denote the output modes for Alice
and Bob, respectively. An ideal CV bidirectional teleportation
between Alice and Bob is represented by the following unitary
swap channel

Sap—np (-) = SWAP(-) SWAP', @7

where the unitary swap operator SWAP is defined as

> Ima(nla ® In)g (mls. (28)

m,n=0

SWAP =

Here {|m)4}5>_, is the photonic number basis corresponding
to the system A, and so on. The swap channel acts on product
states by swapping them, i.e.,

Sup—ap (P @ ¥p) = Yu Q dp. (29)

Thus, the swap channel can be thought of as the tensor prod-
uct of the ideal channels Z4_.p and Zp_, 4. An experimental
implementation of CV bidirectional teleportation realizes an
approximate swap channel given by the tensor product of two
additive-noise channels T_) p ® 7}2 - The Hamiltonian for
the composite system AB is the total photon number operator:

fiap = fix @ Ip + 14 ® 7ip. (30)

Given any state pap € D(Ha ® Hp), the inequality
Tr(fiappap) < 2E implies that the average photon number
in pap over each of the modes A and B is at most E. So,

implementation ’7:;’%_) g ® ’7?_) 4 1s given by

Fe(Sap—np s 7:4%3, ® T%A,)

= inf SaBarp ,
rAB: TT(IﬁAB¢AB)<ZE ( An—>a8 (Pran)
72%3, ® T, B%A (PraB)) (3D

where ¢rap is a pure state and ¢4 = Trr(¢rap). As a conse-
quence of the joint phase covariance of Syp_, o and 7;5; g ®

7;?; 4» and the arguments given for (8), the infimum in (31)
can be recast as

Fe (Sap—ap s 7:5_) » ® 7;2 »)
= inf F(Supam (Vran), Ty ® T (Wran)), (32)
RAB

where Yrap = | XV |rap 1s a pure, entangled superposition of
twin-Fock states given by

oo

[V)ras =Y Amalm, n)rlm, nas, (33)

m,n=0

such that A, >0 for all m and n, >, A2, =1, and
S oneo(m+m)is < 2E. We further simplify the fidelity
expression in (32) as follows. Since we are working with CV
modes, the systems A, B, A’, B' are all isomorphic to each
other. So, the energy constrained channel fidelity between
Sapap and T p @ 7;_) , Mmust be the same as that of

Tan Q@ Ip_p and ’7;‘_) o ® 7;_> - For simplicity of nota-
tions, we shall denote any channel M¢_, ¢ by M, where C
and C’ are isomorphic systems. Recall that an additive-noise
channel 7¢ can be written as a composed channel A'/7 o £7
for n = 1/(1 + &). Also, the adjoint of the quantum-limited
amplifier is related to the pure-loss channel by (AY/")" = nL"
[81]. For the given pure state in (33), we have

F(Sap—as (Vran), T, A_> 5 ®T; B_> A/(WRAB )

= F((Za ® Ze) Wran)s (T5 © T ) (Wras)) (34)
= Tr (Vran(TF © T3 ) (Yran)) (35)
= Tr (Yran((AY" 0 £]) ® (A" 0 L)) Yrap) (36)

= Tr (A" ® AY") (Wrap) (£ ® L) Yrar))  B7)
= Tr (L] ® L5) Yran) (L) ® L) Yran))  (38)

. . . / ’ 2
the.enerlgy-constramed ghannel fidelity (6) between the ideal =y’ Tr ((( Ll® Ly )(wR AB)) ) (39)
bidirectional teleportation Ssp_.4p and its experimental
|
- 2
oo
=o' Ty | (R0 LG Do Awkwrlm )i’ 1l ® Im. nm' 1| (40)
m,n,m’' ,n’=0
_ 42
o0
=y Tr D ke lm, nm' 1| ® L) (Im)im|4) ® L] (In)n'|5) (41)
m,n,m’ ,n'=0
_ e | R b, oo @ L3 lmon 1) © 3 (1o )] @)
X [ Z;o”m”,m’”,n’”:O )"m”,n”)\m”’,n”’ |m”7 n >< W W|R ® En (|m”><mm|A) & [:'7 (|I’l//)( W|B):|
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00
’
=1

m,n,m’,n'=0

1
- - )\(2 )\’2
A +86)A+&) 2 it

m,n,m’ ,n'=0

Let pyp = A , forallm,n > 0, and

" =Tt [EIE ( Ifn)(m'IA)ﬁflTs (Im'Ymla)], — (45)

T2 = Te [Ly7 (n)n' 1)L (n)nlp)].  (46)
This gives
F (Sap—ap (Wran), T Y A (1/fRAB))

1

- wn P T T (47
A+&)1+&) Z PrnPuin g T (47)

m,n,m’ ,n'=0

Let p denote the infinite vector p = (P, n)S° Define

m,n=0"

00
Z Pm.nPm’ .0 Tgmm Tgr/m .

m,n,m’ ,n'=0

1
fee(p) = ESG D)

(48)

Therefore, (32) reduces to the following quadratic optimiza-
tion problem in terms of an infinite number of variables:

F (SAB%A’B“ 7;.23/ ® 7§;A’)
il;f fee'(P)

subject to pm,,,

= Z (m~+n)pmn < 2E, (49)

m,n=0

Z Pmn = 1.

m,n=0

>0 Vm,n>0,

In this section, we find an optimal input state for the
energy-constrained channel fidelity (49). We consider two
cases. The first case is when € = &’ and 2E < (1 +&)/2 +
3&), which corresponds to having identical additive-noise
channels in both directions and states with low energy.
The second case is when & > 1 and 2E < min{(§”? — 1)/
[6'(3¢" — 1], (1 + &)/(28)}, which corresponds to experi-
mental implementations with minimum excess noise in one
of the quantum channels and low-energy states. In both cases,
we show that the optimal input state is a finite entangled super-
position of twin-Fock states saturating the energy constraint.
Furthermore, our method shows that such optimal states are
unique; i.e., there is no other optimal finite entangled superpo-
sition of twin-Fock states that achieves this performance. Our
method is again purely analytical, similar to the unidirectional
case, which uses optimization techniques from multivariable
calculus. Also, the given constraints on E, &, and & are
consequences of our analysis in the proofs of Proposition 6
and Proposition 9 used to establish the main results. It still
remains to solve (49) for larger values of E; we note here that
numerical solutions can be obtained using truncation.

N AR Te [LAmem | LS (m Yem|a)] Te [L] (n)n |5)L] (1Yl )] 43)

T [ L7 (m)m | ) L4 (ImYm| )] Te [L57 (I’ 1)L (') (nlp)]. (44)

In order to find the solution to the energy-constrained
channel fidelity (49), we define the M-truncated energy-
constrained channel fidelity between Sjp_. g4 and ’7;2 g ®

7795;14' as
Fem (Sap—na, 7:423, ® 7§;A,)
= Hlf F(SAB—>B’A’(WRAB) AHB ® B%Ar(WRAB)) (50)

where the infimum is taken over pure bipartite states |\ ) gap =
Zﬁ‘,f,n:o /Dmplm, n)g|m, n)ap, where p, , = 0 for all m, n,

M
Y mtmpu, <2E. (5D

m,n=0

M
Z Pm.n = 1,

m,n=0

It turns out that the energy-constrained channel fidelity (49)
can be bounded from above and from below by the M-
truncated energy-constrained channel fidelity (50), which
gives a way to approximate the former in terms of the latter.
See Proposition 5 of Appendix B.

We show in Lemma 7 of Appendix B 1 that the unique
optimal input state for the M-truncated energy-constrained
channel fidelity is given by

[V rap = V1 —2E|0, 0)g|0, 0)4p
+ VE|0, 1)z|0, 1)ap + VE|1, 0)&|1,0)a5, (52)

whenever £ =&’ and 2FE < (1+&)/(2+ 3&). We then use
the bounds in (B1) to show that (52) is also an optimal input
state for the energy-constrained channel fidelity (49) under the
same conditions & = &’ and 2E < (1 +&)/(2 + 3£), and it is
unique, as described earlier. See Theorem 8§ in Appendix B 1
for a detailed proof. Using similar methods, we also find an
optimal input state for (49) in the case & > 1 and 2E <
min{(§2 — 1)/[€'(3&" — D], (1 + £)/(2€)). The optimal in-
put state in this case is

V)rap = v 1 —2E]0,0)¢[0, 0)a5

+V2E — pgl0, 1)g10, 1)ap + /Pel1, 0)g|1, 0) 4B,
(53)

where pg is given by (B73) in Appendix B 2. Again, the state
in (53) is unique. See Theorem 11 in Appendix B 2.

We compare the optimal state with a tensor product of two
coherent states |o) ® |«) given by (18) and a tensor product
of two TMSYV states ¥ ()ra @ ¥ (11)ra given by (19) under
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the given conditions of Theorem 8. We find that
F(S(la)e| @ la)al), T* @ T¢ (la)a| @ |a)al))

= (F (la)al, T5 (la)Xa)))? (54)
1
= UTer 4
Also,
F(SW@ra @ ¥ (@ra), TS @ TE (W (M)ra @ ¥ ()ra))
= F(Y(Mrar TE (W ()ra))> (56)
! (57)

T+ QE+DEY

Figure 2 plots the output fidelity Fi between the ideal swap
channel and the tensor product of two identical additive-noise
channels versus the input energy E, corresponding to a ten-
sor product of coherent states, a tensor product of TMSV
states, and the optimal state, with input energy E € [0, 0.5].
The noise parameter is taken as & = 0.5. In order, the dotted
(orange), dashed (magenta), and solid (blue) lines indicate
the output fidelity corresponding to the coherent state (55),
the TMSYV state (57), and the optimal state (B70). Similar to
unidirectional teleportation, neither coherent nor TMSV states
are optimal. However, we have proven here that entanglement
between the channel uses and a reference system has the op-
timal performance in distinguishing the two identity channels
from the two additive-noise channels [recall (52)].

V. MULTIPLICATIVITY OF ENERGY-CONSTRAINED
CHANNEL FIDELITY

Let M; and N; be quantum channels from quantum sub-
system A; to subsystem B;, and let p; and o; be quantum states
in A; for i € {1,...,n}. The multiplicative property of the
fidelity of tensor-product states follows from the definition in
(1), ie.,

F<® pr ®o,~) =[1F i 0on. (58)
i=1 i=1 i=1

This implies that

((®)(@) (@)(@)

= [ [FMi(oi), Ni(or)). (59)

i=1

The energy-constrained channel fidelity between the tensor-
product channels Q_, M; and @', N; is

Fg (é M;, éM)
i=1 =1

= inf
VRA . TO(Hp Y4y )SHE

F (<® M») (Vra,..a,), <® M) (Vra .4, )) - (60)
i=1

i=1

Fidelity difference
0.010¢t

0.008+
0.006
0.004 -

0.0021

Energy E

0.1 0.2 0.3 0.4
FIG. 3. The graph plots the difference between the right-hand

and the left-hand side of (66) versus the energy E € [0, 0.5] for
£ =0.5.

In (60), A, is the Hamiltonian operator acting on the compos-
ite system A; ...A, given by

A=HQ® QL+  -+L® --®H, (6])
where Hy, ..., H, are Hamiltonian operators, and I}, ..., I,
are the identity operators for the subsystems Aj...A,, re-
spectively. The reference system R can be taken to be
R =R, ...R,, where each reference subsystem R; is isomor-
phic to the input subsystem A;. By taking g4, 4, as the
n-tensor-product state

YrA . A, = YRA, ® - @ YR o4, (62)
we know from (59) that
F (<® Mi) (Vra,..A,) <® M) (Vra, ...A, ))
i=1 i=1
= [ [FMi(¥ra) Ni(Wra,)- (63)

i=1

If each state g 4, satisfies the energy constraint Tr(H;y4,) <
E, then ypy4, 4, satisfies the energy constraint in (60). Thus,
by taking the appropriate infimum on each side of (63), we get

Fg (®M,~,®N,~) <[]RWMLN). (64
i=1 i=1

i=1
By using the fact that Spp_ap = Za—p Q@ Ip_ 4, from (64)
we get
Fg (SAB*A/B“ 7:5—>B/ ® 7;;1%)
< Fe(Zasp, ESQB,)FE (Zpons 7?;,4/). (65)

The submultiplicative property (65) is well known. An
interesting consequence of Theorems 4 and 8 is that the in-
equality in (65) can be strict. In particular, we have

FE (SAB%A’BH 7,—45_>B’ ® 7;;—#\’)
< Fp(Tasp, 7:423/)1:5 (Zp—a', ’EaiA')’ (66)

whenever 2E < (1 +&)/(2 + 3§). This is illustrated in Fig. 3,
which plots the difference between the right-hand and
the left-hand side of (66) for & = 0.5. Thus, a conse-
quence of our result on bidirectional teleportation is that the
energy-constrained channel fidelity is not multiplicative, i.e.,
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entanglement between a reference and the channel inputs pro-
vides a benefit in distinguishing an identity channel from an
additive-noise channel, when there is an energy constraint.

VI. DISCUSSION

A characterization of the performance of any experimental
implementation of CV unidirectional teleportation in terms of
the energy-constrained channel fidelity is known for arbitrary
values of the noise parameter £ and the energy constraint £
[54]. In our work, we characterize the performance of an ex-
perimental implementation of CV bidirectional teleportation
under certain conditions on the noise parameters £ and &', as
well as the energy constraint E. It still remains to solve the
problem in the most general case, i.e., for arbitrary values of
the noise parameters and every energy constraint.

It is also an interesting question for future work to consider
the following quantity, and which states achieve the optimal
value:

Fp(Z®", (T5)®). (67)

This quantity applies to a generalization of CV bidirectional
teleportation in which there are n parties involved, and the ith
party is trying to communication quantum information to the
i+ st party fori € {1, ...,n — 1} and the nth party is trying
to do so to the 1st party. Based on the findings of our paper, in
particular, the structures of the optimal states (11) and (53) for
unidirectional and bidirectional teleportation, we suspect that
for a sufficiently low-energy constraint E, the following state
optimizes the value in (67):

/1 —=nE|0)g|00...00)4,4,..4, A,
+ VE1)g[10...00)4,4,.4, 4,
+ VE[2)RI01...00)4,4,.4, 4,

+VE|n—1)£100...10)4,4,.4 4,
+ VEIn)g]00...01) 44,4 ,4,- (68)

Note that the reduced state on systems A; ... A, has total en-
ergy nE. To support the conjecture for n = 3, we compare the
output fidelity corresponding to a tensor product of coherent
states, a tensor product of TMSV states, and the conjectured
optimal state, and show that the conjectured optimal state
behaves the same as the optimal states for unidirectional and
bidirectional teleportation. For the coherent state o = |a )|
given by (18), we have

F(I®@®), (TH®(@®) = (F(a, T* (@) (69)

= ﬁ (70)
For the TMSV state 1 (77) given by (19), we have
FI® @), (TH® @ (m)®))

= (F(y @), TS (¥ m))))* (1)

1 (72)

T U+ (2E)ER

Fidelity Fg
0.30

0.25

0.20

0.15

T T Energy E
0.1 0.2 0.3 0.4 0.5

Coherent ----- TMSV Conjectured Optimal

FIG. 4. The graph plots the output fidelity Fr between the tensor
product of three identity channels and the tensor product of three
identical additive-noise channels versus the input energy E, corre-
sponding to a tensor product of coherent states, a tensor product
of TMSYV states, and the conjectured optimal state (each having the
input energy E). The noise parameter for the additive-noise channels
is taken as £ = 0.5 and the states have energy E € [0, 0.5]. The
dotted (orange), dashed (magenta), and solid (blue) lines represent
the output fidelity for the coherent state, the TMSV state, and the
optimal state, respectively.

Let ¢ be the conjectured optimal state given by (68) for n = 3.
By following the same arguments given in (34)—(44), we get

F(Z® (%), (TH)® (%))

2
_ ;<1 _ 6<L)E i 12<L> E2>.
(1+&)3 1+& 1+¢&
(73)

In Fig. 4, we plot the output fidelity Fr corresponding to
(70), (72), and (73) versus the input energy E € [0, 0.5] for
& = 0.5. The plot shows similar behavior of the conjectured
optimal state as the plots for the optimal states for unidirec-
tional and bidirectional teleportation, which is expected.

VII. CONCLUSION

We have characterized the performance of CV unidi-
rectional and bidirectional teleportation in terms of the
energy-constrained channel fidelity between ideal CV telepor-
tation and its experimental approximation. Through a purely
analytical method, using optimization techniques from multi-
variable calculus, we explicitly determined the optimal input
state for CV unidirectional as well as bidirectional telepor-
tation. We showed that, in both the protocols, the optimal
input state is a finite entangled superposition of twin-Fock
states. Furthermore, the optimal states are unique; i.e., there is
no other optimal finite entangled superposition of twin-Fock
states. As an application of our results, we have shown that
the energy-constrained channel fidelity of two tensor-product
channels is strictly submultiplicative.

Another metric to quantify performance of any experi-
mental implementation of CV unidirectional and bidirectional
protocol is the Shirokov—Winter energy-constrained diamond
distance [82,83] between ideal CV teleportation and its ex-
perimental approximation. We leave the study of this quantity
for future work. Additionally, it remains an intriguing open
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question to determine optimal input states for multidirectional
CV teleportation, which we also leave for future work.
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APPENDIX A: OPTIMAL STATE FOR CV
UNIDIRECTIONAL TELEPORTATION

We shall use the following Kraus representation for the
pure-loss channel [81]:

min{m,m’}

Proposition 1. Let p = (po, p1, p2,...) be an arbitrary
infinite-dimensional probability vector, and let ¥g4 be a pure

state given by |¥)ra = > re /Puln)rIn)a. Then

F(ZasWra), To s s(Wra))
D) 2
1 M DPn U Pnf
> —
(1+8) (;}(ws)ﬂ) +< (1 +&y

(A2)

The inequality in (A2) is saturated if p, = 0 for all n > 2.

Proof. Let Y4 = Trr(Yra) = > ey Puln)nla. From (A1)
we get

L p(mma) = (’Z) <n,: )ﬂ“’”""z’” Ly =Y Y (Z)(l = ks (A3)
k=0 n=0 k=0
< (1 =n)jm —k)m' —klg. (Al
J
Forn =1/(1 + &), we have
F(Tacs(ra). Tio s (W) = 0 Tr (L45(0)7) (A4)
B M n 2
>nTr (an > (Z)(l - n)kn”_klkaIB) (AS5)
n=0 k=0
M M " 2
=nTr (Z ( P (k)(l - n)"n""‘)lkxkls) (A6)
L k=0 \n=k
M (M " 2
_ _ Nk n—k
—nZ{an<k>(l nn } (A7)
k=0 \n=k
1 M Y 2
> {an<k)(1 - n)kn”k} (A8)
k=0 \n=k
M 2 M 2
= (Z pm") +7 (Z pan(l — n)n”“) (A9)
n=0 n=1
M 2 M 2
> (Z pm") +1 (Z pa(l = n)n”“) (A10)
n=0 n=1
| M 2 M £ 2
Pn Pn
= All
1+6) <§(1+§)”> +<;(1+s>"> (AID

The equality (A4) is given in Ref. [54], the inequality (AS)
follows by truncating the infinite sum in (A3) to M, the equal-
ity (A0) is obtained by interchanging the indices of the sum
in (AS), and (A7) follows by definition of trace. We get (A8)
by truncating the outer sum in (A7) to 1, and the inequality
(A10) is obtained by replacing n with 1 in the multiples of p,
in the second term of (A9). We use the relationn = 1/(1 + &)
in the last equality. Furthermore, each inequality is saturated
if p, =0foralln > 2. [ |

Proposition 2. The minimum value of fj; ¢, as defined in
(15), subject to p, = O foralln € {0, ..., M},

M

2

n=0

M
Pn=1» anngE’
n=0

(A12)

is attained at the unique point p = (p,)M, given by py =
1—E, py=E,and p, =0foralln € {2,..., M}, whenever
E<(1+8)/(1+38).
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Proof. We divide the proof into two parts. Let Ey € [0, E].
In the first part, we show that the minimum of fj ¢, subject to
pn = 0foralln € {0, ..., M} and the equality constraints

(A13)

M M
anzl, ananm
n=0 n=0

Part 1. Let p € RY*! be any vector satisfying the equality
constraints (A13), which gives
M M
po=1-Eg+) (n=Dps pr=Eo—) np. (Al4)
n=2 n=2
Substitute the values of py and p; in (15), and use the relation
n=1/(14+&)e]l0,1]to get

M 2
fug(p) = n(l —(I=mE+ Y [n(l—n)—1+ n"]pn)
=2
is uniquely attained at py = 1 — Ey, p; = Ey, and p, = 0 for "

alln € {2, ..., M}. In the second part, we show that the min-
imum value obtained in the first part is a strictly decreasing
function of Ej.

M 2
+n(1 —n)z(Eo—Z(n—n"_l)p,) . (AL5)

n=2

Let g : R¥~! — R be the function defined by

M 2 M 2
g, .. xy) = n(l —(l=mE+ ) [n(1—n)—1 +n"]xn> +n(l — 77)2(150 - (n— n"—l)xn> : (A16)

n=2 n=2

From (A15), we thus have fy; :(p) = g(p2, ..., pu). We show that g is a strictly increasing function in each variable over

RY' = {(x2, ..., xn) : VK € {2,..., M}, x; > O} (A17)
This implies that the unique global minimizer of g over ]Rj_‘f ~!is at the origin. For all k € {2, ..., M}, differentiate g partially
with respect to x;. We get
dg(x Xpm) M
22 = ot — ke +k — 1)[1 —Ey+nE+ ) _[n(1 —n)—1+n"]xn}
8xk 2
M
+2n(1 — )’ (" - k)|:Eo +Y ot - n)xn}. (A18)
n=2
Simplifying (A18) gives
0g(xa, ..., Xp) _
28Xk 22 =20 [k(1— 1) — (L= )T — (1 = nEg] — (k — n* =) — n)*Eo]
M
+20 Y M1 =) = (1 =)@ =) = (L= g+ (A =)’k =y D= n"Dlxe. (A19)
n=2
The coefficients of x,, are positive because for all k > 2,
k—1
k(1—m)—(1=n)=0=n) (1—n)>0. (A20)
i=0
Also, the remaining term in (A19) is positive:
20[lk(1 =) = (1 = 7)1 = (1 = mEel — (k — n*~H(1 = n)*Eol
1—1 (k —n*~HA —n)?
>2n| k(1 —n)— A =751 1 - - A21
n[[( m —( n)]( 3—2n> 32 (A21)
2n _
= 35k —m— 1+ 12 =) — (k=1 "D = )] (A22)
2
=3 _"2n[k<1 —m) =17 k(=) = T+ 10 =) = k(1 =) + 7' (1 = )] (A23)
2n _
= 3_zn[k(l—r/)—1+n"+k(1—n)z—(l—n)+nk(1—r/)—k(1—r/)2+nk "=’ (A24)
__2n k k-1
—3_2n[k(l—n)+n +n+n (1 =mn)] (A25)
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_ 2 k-1
= k(@ =m+n+n""] (A26)
3-2n
> 0. (A27)
The inequality (A21) follows from the factthat Eg < E < (1 +&)/(1 4+ 3&) = 1/(3 — 27), and (A27) follows from (A20). We
thus have dg(x,, ..., xp)/9x; > 0, and hence g is a strictly increasing function of each of its variables in R"f -1
Part 2. We know from the first part of the proof that the minimum value of fj; ¢ subject to the constraints (A14) is
fue(l — Eo, Eo,0,...,0) = ! 1— 2<L)E0 + 2(i>2Eg ) (A28)
’ (1+8§) 1+& 1+&

The quadratic polynomial 1 — 2[&/(1 + &)1Ey + 2[& /(1 + &)]°E] is a strictly decreasing function in the interval [0, (1 + &)/
(28)], and from the hypothesis we have Ey < E € [0, (1 4 &)/(28)]. Therefore, the minimum value of fys¢ subject to the
constraints (A12) is obtained at po = 1 — E, py = E, and py = 0 for all k > 2. |

Lemma 3. The M-truncated energy-constrained channel fidelity (12) has the unique optimal state given by (11), whenever
E < (14+&)/(1 + 3&). Furthermore,

e v L |5 £V
Fen (Zan, T 5) = q +€)[1 2(1 +§)E+2<1 +$> E } (A29)

In particular, Fg y(Za— B, 7:5_) ) 1s independent of M.
Proof. Let us consider any pure bipartite state |¢p)gra = Zano /DPnn)rIN)4 With p, > 0 foralln € {0, ..., M}, such that

M M
dop=1. ) np<E. (A30)
n=0 n=0
From Propositions 1 and 2, we have
F(ra. Ty (¢ra)) = fue(1 —E,E,0 0) = ! 1—2<L)E+2(L>ZE2 (A31)
RA> 1AosB RA = JME ’ 3 My ey (1+%_) 1+§ 1+§_ .
By taking the infimum in (A31) over ¢4, and by definition (12), we get
Fen (Tron T p) > | 1 2(L>E +2(i>2E2 : (A32)
' 1+ 1+& 1+§&
Also, the inequality in (A31) is saturated for the state in (11). This means that (A32) is actually an equality. The uniqueness of
the optimal state follows from Proposition 2. ]

Theorem 4. The energy-constrained channel fidelity (8) has an optimal input state given by (11), whenever E < (1 +&)/(1 +
3&). Moreover, the optimal state is unique in the sense that there is no other optimal finite entangled superposition of twin-Fock
states. The value of the energy-constrained channel fidelity is

e v Ll (5 &\
FE(IA%B@%B)_(HE)[l 2<1+§>E+2(1+E>E:|. (A33)

Proof. From the inequalities (B31) of Ref. [54], we have

2
E
I- |:2,/ VTl + \/1 — Fem(Zass, 7:5_,3)] < Fg(Zass, 7:\&_)3) < Fp.m(Zas s, 7;&_)3). (A34)

By Lemma 3, we thus get
2

I P R PR 1—2(L>E+2<L)ZE2 < Fe(Tasn TE p)
Ml ) 1+& 1+ SRR e

1 £ £\ .,
< 1—2(—=—)E+2(—=—) E2| (A35)
(1+¢) <1+s> <1+s)

(A33) is obtained by taking the limit M — oo, and the optimal state is given by (11), which follows from the proof of Lemma 3.
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Any finite entangled superposition of twin-Fock states that is optimal for FE(IA%BinB) is also optimal for

Fep(Zasp, 7f_> ) for large M. We know by Lemma 3 that Fg y(Zs— 5, 71'42 ) has the same unique optimal state for large
M. This implies the uniqueness of the optimal state (11) in the given sense. ]

APPENDIX B: OPTIMAL STATE FOR THE BIDIRECTIONAL TELEPORTATION PROTOCOL

The proof of the following result is based on the ideas of Refs. [54, Appendix B] and [79, Proposition 2].
Proposition 5. The energy-constrained channel fidelity (49) and its truncated version (50) satisfy the inequalities

2

2E 1\’ )
§ §
1- 2\/1—<1— +1) +\/1—FE,M(SAB%B/,Q%,®7,;ﬁA,)

< Fe(Sap—ap, 7:\%‘_)3, ® 7}5/_),4/) < Fem(Sap—ams 7;(13' ® 7;?/_)A/)- (B1)
Proof. By definition, we have
Fe (Sap—ap 7;1%3/ ® 7;%,4 ) < Fem(Sap—ap, 72%3/ ® EﬁA )- (B2)

We now establish the inequality in the other direction. Let ITY; be the (M + 1)>-dimensional projection operator defined as

M
My =Y |m,n)m, nlas. (B3)
m,n=0
Let ¥gap be an arbitrary pure state in (33). We then have
oo
Tr (Tsyras) = 1= ) (m,nlyuslm. n) (B4)
m,n=0

max{m,n}>M+1

=1- > A, (B5)

m,n=0
max{m,n}>M+1

> m-+n
>1- ) ( ))\2 (B6)
m,n=0 M + 1
max{m,n}>M+1
2F
ST ®D

(B6) follows from the fact (m +n)/(M + 1) > 1, and (B7) is a consequence of the constraint Zm oM + n))»m S 2E. Let
¥ » be the truncated state given by

R I,
yM = —ABTRAE AB (BS)

MO T (T Yran)

We have
| 2
F (Yran, Vhsp) = (1 3 |¥ras — w,’é’m”l) (B9)
2
2F

> (1 - —) . (B10)

M+1

The inequality (B9) follows from (3), and (B10) follows from the gentle measurement lemma (see, e.g., Ref. [63, Lemma 9.4.1]).
We have

C(Sap—ap (Yran), T, e ® B_)Ar(I/fRAB))

< C(Sas—ws (Yran): Sapaw (wm)) +C (SABHA/B/ (V) Tan © Tya (Viths)
+C(Tip ® Ty (Vihs)s Tap ® Tya(Vran)) (B11)
<20(Vran. Vias) + C(San—aw (Vihs): T ® Tooon (Vihs)) (B12)
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= 2\/1 - F('ﬂRAB, wﬁlAB) + \/1 - F(SAB»A’B’(‘PRAQB)f 7;23’ ® 7§;A/(w1g/[AB)) (B13)
2E \? ;
< 2\/ 1— <1 - M——i-l> + \/ 1= Fep(Saoan s Th oy ® Ty p)- (B14)

The inequalities (B11) and (B12) are consequences of the triangle inequality and monotonicity of the sine distance, respectively;
(B14) follows from (B10) and the fact that ¥}, , is a legitimate finite dimensional state that satisfies the energy constraint
Tr (ﬂAgx/fj\‘%) < 2E. The inequality (B14) is true for arbitrary ygap in (33). So, we get

, 2E \? ,
Ce(Supnn iy @ T i) < 2\/ 1= (1o 7)1 RS T, 9T 19
Squaring and then rearranging (B15) gives the desired inequality. ]

Define fyrze : RMTD* 5 R as

1 M
1+856)A+8§) 2

m,n,m' ,n'=

Tues(p) = Pl w T T (B16)
0

We recall from (47) that for any probability vector pin R™+D* a pure state of the form |¢)gap = an/l,n:O [Pmnlin, B)g|m, 1) Ap
satisfies

F(Saponn (Pran)s Tep ® To o o (Pran)) = fuee(p). (B17)
By (47) and (50) we thus have

Fem (Sap—ap, 7;4131 ® 7?;/,/) = ir[17f Suee (P, (B18)

where the minimum is taken over probability vectors p in R+’ satisfying Zfinzo (m~+n)pmn < 2E. Let
Dy = {(m,n,m' . ') € Z :mn.m' .0/’ <M,m' +n' 22, m+n>2} (B19)

where Zi C Z*is the set of 4-tuples of nonnegative integers. We can rewrite fis ¢ ¢ as

M M
A+EA+EV P = D Puabwn T+ D Pl T T
m,n,m’ ,n'=0 m,n,m’ ,n'=0
(m,n,m',n")¢Dy (m,n,m’ ,n")eDy

M M
- Z PmnPr Tfmm T{__’?" + Z PmnDPm' . Tgmm Tgrm

m,n,m’ ,n'=0 m,n,m’ ,n'=0
m+n<1 m+n<1
m'+n'<1 m'+n'>2
M M
+ Z pm,npm’,n’zémm T;n + Z pm,npm’,n’Tgmm Tgr[m . (B20)
m,n,m’ ,n'=0 m,n,m’ ,n'=0
m+n>2 (m,n,m’ ,n")eDy
m'+n'<1
From (A1), using n = 1/(1 4+ &) we get
min{m,m’} , 2%
1 o m\ (m &
LT+ "NLTE (I = — _|\m—kYm — k. B21
(Im)m' VLT (|m'Yom] ) kZo: (k)(k)(1+é)m+m, m — k)m — k| (B21)
By taking the trace on both sides of (B21), and from (45) we get
min{m,m’} B 2%
/ m\ (m &
" = PR Pare— B22
> (k)<k><1+g>m+m/ 2

In particular, 7¥ = 1/(1 4+ §)* and T,' = 1/(1 + &' 4 k&2/(1 + &) for all k > 0. Similarly,

min{n,n’] 7 12k
‘ n\ (n &
" = E —_—, B23
¢ <k><k)(1 + &y (329

k=0
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We also note that 7%’"’"/ = Tg’”" and Tg,’"/ = Tg’”‘ From (B20) we thus get

M M M
1 _— — —
m,n,m’ ,n'=0 m,n,m’,n'=0 m,n,m’ ,n'=0
m+n<1 m+n<1 (m,n,m’ ,n"YeDy
m'+n'<1 m'4n'>2
(B24)
1. Optimal input state for the energy-constrained channel fidelity for § = &
Proposition 6. The minimum of fy ¢ ¢, subject to p,, , = O forallm,n € {0, ..., M},
M M
D pua=1. Y (m+n)pu. <2E, (B25)
m,n=0 m,n=0
is attained at the unique point p = (py..)}t ,_, in R% + given by
1-2E if m=n=0,
Pmn=1{E if m+n=1, (B26)

0 if m+n>2,

whenever 2E < (1 +&)/(2 + 38).
Proof. We divide the proof into two parts, similar to the proof of Proposition 2. Let Ey € [0, E]. In the first part, we show that

the minimum of fy ¢ ¢, subject to p,, , = O forallm,n € {0, ..., M}, and the equality constraints
M M
D pun=1 Y (m+n)pu, =2E (B27)
m,n=0 m,n=0

is uniquely attained at p as given in (B26). In the second part, we show that the minimum value obtained in the first part is a
strictly decreasing function of Ej. It then follows that the minimizer of fj ¢ ¢ subject to (B25) is given by (B26).
Part 1. In (B24), substitute the values of TE’”’”' and Tg‘”/ from (B22) and (B23) to get

fuee(p) =1 [p%,o + 20po.opo.1 + 20poopio + 207 po.ip1o + (P + (1 —)A)(pg + Pl o)

M
+2 3 " poo + 0" 0" 4 " (= )Mpos + 0" 0" 4 my" T (= 0))p1o}Pma

m,n=0
m+n>2

M

+ Z pm,npl71/,n/7émm,7—énn,:| . (B28)

m,n,m’ ,n'=0
(m,n,m’ ,n")eDy

Here we used the relation n = 1/(1 4 &) for making the following calculations convenient. From (B27), we can write po and
Po,1 as

M
Poa=2E0—pio— Y (m+n)pmn (B29)
o)
M
poo=1-=2Eg+ Y (m+n—1)pu,. (B30)
i

Using the relations (B29) and (B30), we can treat py o, po,1 as dependent variables so that fy ¢ £ (p) is a function of (M + 1> -2
independent variables {p,, : r, s € {0, ..., M}}\{(0, 0), (0, 1)}. We have

9 9
Po0 g1, 22U _ ). (B31)
Oprs Oprs
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We now argue that a necessary condition for a minimizer is p,, = 0 whenever r + s > 2. Differentiate fy ¢ ¢ partially with
respect to p, for r + 5 > 2. We get

1 0
2—%% = (r+5 = Dpoo+nl=(r +)pog + (r+s = Dpoal +nlr +5 = 1) = n(r +)lpio
s
— [+ A =1+ 9)pos + 0 poo+ 0" + s A=) lpoa + 0™+ (=) po
M
+ > e +s= D™ = ™" " A = )]+ T pn- (B32)
inss

Further simplification gives

1 3fuce(p) rts
L 0uee®) _ b1y = g4 9) + 17 0o
2n Opr.s
+Ir+s=D =0 +A =) +s)+0 7+ 71 = n)1pos
+((r+s—1D—n@+s))+0 " ™10 = n)pio
M
+ Z [(r 45— 1)nm+n —(r+ s)(nm+n+1 + nnm+n—1(1 _ 77)2) + Tgan;s] Ponn- (B33)
by
Substitute the values of pg ¢ and pg ; in (B33) from (B29) and (B30), and simplify to get
19 :S>» ( ) r+s r4s— r+s
W% = (r+9)(1 =) = (1= 0™ = 2E(1 = I +5) =50 ~)(A =) = (1 =7™)]
rs
M
+ (U= +9)+ =M pro+ D TwnrsnPmn (B34)
s
where
2 1 - nr+s B nern m+n r+s mrpns
Conrsy = =n)7| 20m 4+ n)(r +5) — - (m+n)—ﬁ(r+s) +1—n -7 +T,7 Tn
— (L= n)[s(m +n)n"™ " + n(r + )" (B35)
The following arguments show that I'y, ,, .5,, > 0. We have
Tnmr > nerr’ (B36)
ns n+s 1— U 2
T 20" | 1+ns . (B37)
n
This implies
mrns m+n_r+s 1 - n 2
T,"T," =2 n"""n 14+ [(r+s)—rll(m+n) —m] T . (B38)
Leta = r + s and B = m + n. Using the inequality (B38), from (B35) we get
i 1—n 1—pnf ] 1—n\?
oy = (=P |20 — —1p— Lo | 41— nf =y 40| 14+ (@ — 1B — m)(—")
L 1—n 1—n | n
—(1 =)l = r)pn*~" + (B —myan'] (B39)
_ I L T
= (1= 0P| 20— ——p— | +1—nf =y 4t
L 1—n l—n |
+(1 =)l = (B —mm* P2 — (@ —r)pn*~" = (B —man’~'] (B40)
[ 1—n 1—7nf 7 N
=(1—n)*|2ep — B— al+ =70 —n)
L I—n l—n |
+(1 = n)[(@B — Br —am+ Bmn*'n~' — (@B — Brin®~" — (@B — am)n’~'] (B41)
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[ 1—n* 1—1pf « a1 p-1 _ ae -
= (- 20~ TP a}+(1—n)(l—nﬁ)+(1—n)2aﬂ[n Pt =t =]
+( = Brn* A = 0P+ amn® A = 0" rmp* P (B42)
[ 1—n*  1—nf o aml fo1 _ am -
> (1—n)*|2aB — = 1_na}+(l—n A=)+ (1 =0 afln® '~ —n*~t =071 (B43)
o[ a=1_p-1 _ a—1 _  p—1 - 1—n’ L—n*\(1-n’
== fapd+n""n"" =" =n"" ) +apf - B— o+ |\ — (B44)
L I—n I—n I—n I—n
B a1 B—1
=1 =n?|lapd = H —nH+ (a - Zn’) B-Y n'||=>o0 (B45)
i=0 i=0
Now, the constant term is nonnegative if
2Ey(1 — Qe — sn* H(1 =) — (1 = ")) < (1l — ) — (1 — n%). (B46)
Using the fact that s > 0, the inequality (B46) holds if
2Ep(1 = m2a(l —n) = (1 =) < a(l —n) = (1 =), (B47)

By basic real analysis it is easy to verify that the coefficient of Ej in (B47) is positive. So, the inequality (B47) is equivalent to

a(l —n)— 1 -n%)

2E, < ) (B48)
(I =m2a(l —n)— (1 —n*)]
The right-hand side expression in (B48) is an increasing function of & > 2. To verify this, it suffices to show that
l—n)—->0-n" 2l —n)— (1 —n?
a(l —n) — (1 —n*) _ d—=m—( ”)2/0<=> (B49)
(I=m2a(1=n)— A =n*] A —=n4d—n)—(1—n%)]
a(l-n—->0-7n%) 1-—7
— 20— (B50)
20(1—m)—(1—=n%) 3—n~
a(l —n) l1—n
- — >0 (BS1)
20(1—m)—(1—n%) 3—n~
2 a(l—n)
— 0 (B52)
3—n 20(l-m—(1-n% "~
da(l=n) =21 —n")—a(l—n)B—n) 2 0 (B53)
4o — dan — 2 + 2% — [Ba — dan + an?] > 0 < (B54)
o —2420% —an® >0 (B55)
al—n*) =201 —1*) >0 (B56)
1 — n%
oz(1+n)—2<l ">>0<=> (B57)
-1
a—1
a+an—2—2zn">0<=> (B58)
i=1
a—1
atan—2-2@—n+2nY (1-1"") >0 (B59)
i=1
a—1
a—an—2+2+2nY (1-7""H >0 (B60)
i=1
a—1
@=2A=m+2) -y~ >0. (B61)

i=1
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The inequality (B61) holds because @ = r + s > 2. A sufficient condition on E for the inequality (B47) is thus obtained by
keeping 2E not more than the minimum value of the right hand side of (B48) which is attained for ¢ = 2. This is given by
1 1

2EL — = +8 .

3—n 2+43¢

We have thus shown that 9 fi ¢ £(p)/9p,s > 0, whenever p,; > 0 and r 4+ > 2. So, fy¢¢ is a strictly increasing function

of the variables p,; such that r 4+ s > 2. Let g be a minimizer of fj ¢ ¢, which exists because fj ¢ ¢ is a continuous function over
the compact set (B27). From the necessary condition derived earlier, we must have g, ; = 0 for all r + s > 2. Thus, we get

(B62)

goo =1—2Ey, qo1 =2E)—q10 (B63)
from (B29) and (B30). This gives
fuee(@) =n[1 =41 = MEy +4(1 — 4n + 20")E; — 4(1 — n)Eoqro +2(1 — n)’q o] (B64)

This is a convex polynomial in g; o, which has the unique minimizer ¢ o = Ey. In other words, the minimizer of fi ¢ ¢, subject
to the constraints (B27), is given by goo = 1 — 2Ey, qo.1 = q1,0 = Eo, and gy, = 0 for all m, n withm +n > 2.
Part 2. By evaluating (B64) at the minimizer ¢ obtained in the first part, and resubstituting n = 1/(1 4+ &), we get

_ 1 £ £V 2
Juse@= m[l ~(rrg)mr o) E} (B63

which is a strictly decreasing function of Ey in the interval [0, (1 + &)/(3&)]. Also, we have Ey < E € [0, (1 + §)/(3£)], which
follows from the hypothesis E < (1 +£)/(2 + 3£) < (1 4+ £)/(3&). This completes the proof. |

Lemma 7. The M-truncated energy-constrained channel fidelity (50) has the unique optimal state given by (52), whenever
& =¢& and 2E < (1 + &)/(2 + 3£). Furthermore, we have

! 5 Y
3 2
FEM(SAB—>A’B’,7:4%31®7;HA) m[l 4(14—%) +6<1+$>E . (B66)
In particular, the right-hand side of (B66) is independent of the truncation parameter M.
Proof. Let Ygap be a pure state given by |¢)gap = Z%;;:o /Dm.n|nt, RYg|M, n)ap, where p = (pm,n)ﬁ/,{,lzo is a probability
vector such that Z%mo(’" + n)pm.n < 2E. From (B17), we have

F(Sap—np ($ran). T, Ty ® Toon @raB)) = futnn(P). (B67)
By Proposition 6, for p in (B26), we have
F(S (Yrag): Ty @ Tpoa(Wra)) = fi ()—; -4 & E+6 & 2E2 (B63)
AB—A'B'\WRAB A%B %A RAB M (D) = a +§)2 1+e 1+& .
By taking infimum in (B68) over y¥gsp, we get
¢ ey | £ £V o
Fen(Sa—an, Ty p @ Tyon) = REY3 1-4 T+E E+6 s E“|. (B69)

The inequality in (B68) is saturated for the state (52), which corresponds to the minimizer of fj/ ¢ ¢ by Proposition 6. Therefore,
the inequality (B69) is actually an equality. The uniqueness of the optimal state follows from Proposition 6. |

Theorem 8. The energy-constrained channel fidelity (49) has an optimal input state given by (52), whenever § = &' and 2F <
(1+&)/(2+ 3&). Moreover, the optimal state is unique in the sense that there is no other optimal finite entangled superposition
of twin-Fock states. The energy-constrained channel fidelity is given by

¢ ¢ oy_ | _ § £\
Fe(Sapoans Ty p @ Tgon) = T5ep [1 4(1 +$)E+6<1 +s> E } (B70)

Proof. The equality (B70) follows directly by substituting the value of Fg 4 (Sap—as', ’7;\% B ® T Ba 4 in (B1), and then by
taking limit the limit M — oo. It thus follows by Lemma 7 that the state in (52) is an optimal state.

Any optimal finite entangled superposition of twin-Fock states for Fg(Sap—am, ’7;2 g ® ’7:;; 4) is also optimal for
Fe m(Sap—aw, 7;1 g ® ’7;;; ) for large M. Moreover, for all M, Fg y(Sap—ap, ’7;2 g ® 7}; ) has the same unique optimal
state given by (52), which follows from Lemma 7. This implies the uniqueness of the optimal state for Fg(Sap—ap', 7;2 g ®
7;?% 4, in the given sense. ]
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2. Optimal input state for energy-constrained channel fidelity for & > 1 and arbitrary &

Proposition 9. The minimum of fy ,, ,y, subject to p,, , = 0 forall m,n € {0, ..., M}, and the equality constraints
M M
> pun=1. Y (m+n)pu.=2E, (B71)
m,n=0 m,n=0

is attained at the unique p = (pp.n ) o in RM +1given by

1-2E if m=n=0,
Pmn=132E—pg if m=0,n=1, (B72)
0 if m+n>2,

whenever £ > 1 and 2E < (7 — 1)/[€'(3¢’ — 1)]. In (B72), we have

(¢ -8&H1+8&)
£2(1+¢8)
E2(1+&)Y +(E -8

0 if 2F <

PE =1 2E if 2F <

(6 =&+ &)1 +&)+2EE%(1 +§)
20 —&)7+E5U+E)1+EY)

Proof. From (B24), and using the relations n = 1/(1 +&)and n’ = 1/(1 + &’), we get

otherwise.

M
1 —

P) 2 —F E mn P e T B74
uge(p) RE e D) oz ,,/:Qp nPmwde Lg (B74)

’m’+n3<1,

m'+n'<1

Simplify the right-hand side of (B74) usingn = 1/(1 +&)and ' = 1/(1 4+ &’) to get

Tuee(p) = 11'[Pg.o +2P0.0 Po.t + 1p10) + 201 poapro + (0 + A= 0))pgy + 0 + (L =)pi,].  (BTS)

Let us denote the right-hand side of (B75) by gy : RM+1" — R,
gt () =11 [PG .0 + 2P0.0(n' Po.y + 1p10) + 20 poapro + (% + (A —1))pg, + >+ A —=)P)pie].  (BT6)
‘We thus have

fM,n,n’(p) 2 gM,n,n’(p)~ (B77)

We will show that gy ,, ,y has a unique minimizer, and then show that it is also the minimizer of fy; ¢ ¢ . Differentiate gy, ,» with
respect to p,s for r + s > 2. We get

1 0 /
%%ﬂm = ((r )1 =) = Dpog = ((r+)(1 = 2021 = 1)+ 1)po.s +n((r + )1 =n) = Dpro.  (BT8)
Substitute the values of pg o and pg ; from (B29) and (B30) in (B78), and simplify to get
1 9 ,
—,M =T+ =n)—1=2E(1=7)20r+s)(1—-n)-1))
2nn 0Pr.s
+((r+ 90 =n") = 1)+ (r+ ) = 27)1A = n)]pio
M
+ Z [(A=n)Qr +s)(1—=n) = Dm~+n)+ (+s)(1 —=n)2(1 =n) =D+ 01pmws.  (BT9)
m,n=0
m+n>2

The coefficients of p,,, are positive which follows from the assumption ' = 1/(1 + &") < 1/2. The coefficient of p; is
nonnegative. Also, the remaining term of (B79) is nonnegative if

(r+s)(1—n)—1
S A=+ —-n)—1)

The right-hand side of Eq. (B80) is an increasing function of r + s > 2, which follows because its derivative with respect
to r + s is given by [1 —2(r + s)(1 — 7)]72 and thus is nonnegative for all r + s. Therefore, a sufficient condition on E for

(B80)
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08m.y.y(p)/dpys > 0 is obtained from (B80) by substituting r + s = 2 in the right-hand side. A sufficient condition is

< 20=n)—1 (B8 1)

A =)@ =n) -1
1-2n

=7 (B82)

(I =13 —4n)
2 _

__& -1 (B83)

§'3§ -1

which holds by hypothesis. So, g, is a strictly increasing function of p, for all r, s with r + s > 2. Therefore, a necessary
condition for any of its minimizer p € R+ is p, . = Oforall r, s with r + 5 > 2. Also, we know by (B24) that fues = 8y
at such points. Therefore, it follows by (B77) that the minimum value of fy, , , is obtained at a point p for which p, ; = 0 for all
r,s with r + s > 2. Let g be such a point in the feasible region. From (B25) we have go o = 1 — 2E, gqo,1 = 2E — q1.0. Note that
q1.0 € [0, 2E]. This gives

Imee(q) = 8mny(q) (B84)
= (1 —2E)* +2(1 = 2E)( QE — q1.0) + 1q1.0) + 200 QE — q1.0)q1.0
+ %+ (1= 1)CE — q107 + > + (1 — n))qi (B85)

— (1 —2E)(1 —2E + 47'E) + 4E2(* + (1 — ')
+[2(1 =2E)(0 — ) +4nm'E —4E("”* + (1 = n"))]qi0 + 2[(n — 1> + A — A — n)lg; . (B86)

It is a quadratic polynomial in g, and the coefficient of ‘Z%,o is positive. The global minimum of a quadratic polynomial

¢ + bx + ax? with a > 0 is attained by x = —b/(2a). Also, the polynomial is a decreasing function of x < —b/(2a) and an
increasing function of x > —b/(2a). So, the minimum of ¢ + bx + ax® over [0, 2E] occurs at
0 if —b/2a <0,

2E if —b/2a > 2E, (B87)

X =

——  otherwise.
a

By comparing the quadratic polynomial (B86) with ¢ + bx +ax?, and from (B87), the minimizer of fi s ¢ is given
by (B72). ]

Lemma 10. The M-truncated energy-constrained channel fidelity (50) has the unique solution given by (53), whenever &’ > 1
and 2E < min{(£” — 1)/[£'(3&' — 1)], (1 + £)/(2&)}. Also, the energy-constrained channel fidelity is

’ ’ 2 ’ ’
1—4( 5 )E+8< d )E2 if 2E<—(s_§)(1+5),
L+¢& L+¢& E2(1+8)
2 / ’
Feu(S _)/,,Ti,(g)Ti, = _ ( § ) ( § ) 2 E" -85 +86)(1+E) (B88)
EM( AB—BA's 1o, p B A) 1-4 —1+$ E+8 _1+§ E if 2E<$2(1+5/)2+(€_§/)2,
4ac — b? .
_ otherwise,
4a
where
28 — &) 23

a= + , B89
I+ +&)»  (A+86€)0+8&) (B8
2(¢" — 48'(6(1 — &) —2¢")E
_ ¢ -9 + §'¢E0 -8 Ez) 7 (BYO)
(1+&)1+¢) 1+85)0+8)
4¢'E 8(£'E)?
c=1- % — + G ,)2. (B91)
a+¢&) (d+8&)
In particular, the the right-hand side of (B88) is independent of the truncation parameter M.
Proof. Let ¢rap be any pure state given by |¢p)rap = Z%nzo JGmnlm, n)g|lm, n)sp, where g = (Clm,n)%,mo is a probability

vector such that ZHMMZO(m + n)qmn = 2Ey < 2E, and let ygap be the pure state given in (53). We know from (B17) that

F(Saan (Pran)s Tip ® Ti o ($ra8)) = fire.e () (B92)

By Proposition 9, we thus get
F(Sapoons ($rap). Ty ® Ty a(@ran) = 1 (h2(Eo) + hi(Eo)pE, + ho(Eo)py,). (B93)
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where n = 1/(1+ &), n' =1/(1+ &), pg, is given by (B73), and hy, h;, h, are polynomial functions defined by

ho(x) = 2((n — ') + (1 — n)(1 — ")), (B94)
hi(x) =2(n —n') + 41 —nH2n" =1 —nx, (B95)
ha(x)=1—4(1 —n')x 4+ 8(1 — n')*x°. (B96)

The polynomials Ay(x), 1 (x), hy(x) are decreasing functions of x for x < 1/[4(1 — n’)]. From the given hypothesis, and the
relation &' = (1 — n’)/n’, we have

5/2 -1
EL —— BI7)
25’38 — 1)
S e (B98)
C 201 =3 —4)
1 2(1 -7
= 2= (B99)
2(1 —n") 3 -4y
1 2(1 —n'
- g 2= (B100)
2(1 —1n") 4 — 4y
1
= — (B101)
41 =n")
This implies #;(Ep) = h;(E) for i € {0, 1, 2}.
Our proof is divided into three cases, based on the conditions in (B88). We use Proposition 9 in each case.
Case 1. Suppose 2E < (§ —&")(1 + &) /[E*(1 + &)].
The minimum value of the right-hand side term of (B93) occurs at p; o = 0. We thus get
F(Suponn Gran) Ty ® Ty (dran)) = nn'ha(Eo) (B102)
> nn'hy(E) (B103)
= F(Sap—as(Yran), T, A%B/ ® BHA/(WRAB)) (B104)

Case 2. Suppose 2E < (§' —£)(1 + £)(1 +&)/[E°(1 + &) + (6 — §)*].
The minimum value of the right-hand side term of (B93) occurs at p; o = 2E. By substituting p; o = 2Ej in (B93) and then
by simplifying, we get

F(Saponn (Dran) Ty © Tpo 4 (Pran)) = nn'(1 — 4Ep(1 — 1) + 8(1 — 1)’ Ey). (B1053)

The polynomial 1 —4(1 —n)x + 8(1 —n)%x?% is decreasing for x < 1/[4(1 —n)]. Since we have E < (1+£&)/(4§) =
1/[4(1 — n)], by (B105) we get

F(Saoan (Pran)s Tip ® T o ($ran)) = 1’ (1 — 4(1 — nE + 8(1 — n)*E?) (B106)
= F(Sap—as (Yran), T, A»B ® BHA/(I,&RAB)) (B107)

Case 3. In this case we have

2E > max { E-&H(1+ E/)’ E -5H0+8)1+8)H } (B108)
E2(14&) "E(A+E12+(E-¢E)
Now, for all x > 0, we have
ha(Eo) + hi(Ep)x + ho(Ep)x* = hy(E) + hy(E)x + ho(E)x* (B109)
> ho(E) + hy(E)pg + ho(E)p. (B110)

In (B109), we used the fact that h;(Ey) = h;(E) for all i € {0, 1,2}; (B110) follows because the global minimum of the
polynomial /i (E) + hy (E)x + ho(E)x? is attained at x = pz. We thus have

hy(Eo) + hi(Eo)pe, + ho(Eo)py, = ha(E) + hi(E)pg + ho(E)py. (B111)
From (B93) and (B111), we thus get
F(Sa—a (Pran). T, A_> g ® B_>A/(¢RAB)) F (Sap—an (Yrap), 7:5_) p® 7}5_) 2 (Wrap)). (B112)
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In all the cases, we proved that

F(Sap—ap (Pran). Ty p ® Ty B%A (¢RAB))

F(Sag—ap (Vran), T, A%B, ® B*)Ar(wRAB)) (B113)

This means that the state in (53) is optimal. Also, the value of the energy-constrained channel fidelity (B88) can be obtained by

direct substitution of the minimizer pg from (B73).

Theorem 11. An optimal state for the energy-constrained channel fidelity (49) is given by (53), whenever &’

min{(§” — 1)/[£'(3¢’

|
> 1land 2E <

— D], (1 +£&)/(2¢)}. Moreover, the optimal state is unique in the sense that there is no other optimal finite

entangled superposition of twin-Fock states. The value of the energy-constrained channel fidelity Fg(Sap—ap', 7;_) g ® 7;_) )
is the same as the value of any of its M-truncated counterpart given in (B88).
Proof. The proof follows similar arguments as given in the proof of Theorem 8, and using Lemma 10. ]
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