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Exact solution for the quantum and private 
capacities of bosonic dephasing channels

Ludovico Lami    1,2,3,4   & Mark M. Wilde    5,6 

The capacities of noisy quantum channels capture the ultimate rates of 
information transmission across quantum communication lines, and 
the quantum capacity plays a key role in determining the overhead of 
fault-tolerant quantum computation platforms. Closed formulae for these 
capacities in bosonic systems were lacking for a key class of non-Gaussian 
channels, bosonic dephasing channels, which are used to model noise 
affecting superconducting circuits and fibre-optic communication channels. 
Here we provide an exact calculation of the quantum, private, two-way 
assisted quantum and secret-key-agreement capacities of all bosonic 
dephasing channels. We prove that they are equal to the relative entropy 
of the distribution underlying the channel with respect to the uniform 
distribution, solving a problem that was originally posed over a decade ago.

One of the great promises of quantum information science is that 
remarkable tasks can be achieved by encoding information into quan-
tum systems1. In principle, algorithms executed on quantum comput-
ers can factor large integers2, simulate complex physical dynamics3, 
solve unstructured search problems with proven speedups4 and per-
form linear-algebraic manipulations on large matrices encoded into 
quantum systems5,6. In addition, ordinary (‘classical’) information 
can be transmitted securely over quantum channels via quantum key  
distribution7.

However, all of these possibilities are hindered in practice because 
all quantum systems are subject to decoherence8. A very simple deco-
herence process takes a density operator ρ = ∑n,mρnm |n⟩ ⟨m|  to 

ρ′ = ∑n,mρnme
− γ

2
(n−m)2 |n⟩ ⟨m|, where γ ≥ 0 measures the extent to 

which the off-diagonal elements are reduced in magnitude. This 
process is also called dephasing, because it reduces or eliminates 
relative phases. Decoherence is a ubiquitous phenomenon that 
affects all quantum physical systems. In fact, in various platforms 
for quantum computation, experimentalists employ the T2 time as 
a phenomenological quantity that roughly measures the time that it 
takes for a coherent superposition to decohere to a probabilistic mix-
ture. Dephasing noise in some cases is considered to be the dominant 

source of errors affecting quantum information encoded into super-
conducting systems9, as well as other platforms10,11. If those systems 
are employed to carry out quantum computation, then the errors 
must be amended using error-correcting codes, which typically cause 
expensive overheads in the amount of physical qubits needed. Not only 
does dephasing affect quantum computers but it also affects quantum 
communication systems. Indeed, temperature fluctuations12 or Kerr 
nonlinearities13 in a fibre, imprecision in the path length of a fibre14 or 
the lack of a common phase reference between the sender and receiver15 
lead to decoherence as well, and this can affect quantum communica-
tion and key distribution schemes adversely.

Many of the aforementioned forms of decoherence can be uni-
fied under a single model, known as the bosonic dephasing channel 
(BDC)16,17. The action of such a channel on the density operator ρ of a 
single-mode bosonic system is given by

𝒩𝒩p(ρ) ∶= ∫
π

−π
dϕp(ϕ) e−ia†aϕρ eia†aϕ, (1)

where p is a probability density function on the interval [−π,π] and a†a 
is the photon number operator. Since each unitary operator e−ia†aϕ 
realizes a phase shift of the state ρ, the action of the channel 𝒩𝒩p is to 
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Results
In this paper, we completely solve all of the aforementioned eight 
capacities of the BDCs, finding that they all coincide and are given by 
the following simple expression:

𝒞𝒞(𝒩𝒩p) ∶= log2(2π) − h(p)

= Q(𝒩𝒩p) = P(𝒩𝒩p) = Q↔(𝒩𝒩p) = P↔(𝒩𝒩p)

= Q† (𝒩𝒩p) = P† (𝒩𝒩p) = Q†
↔(𝒩𝒩p) = P†↔(𝒩𝒩p),

(4)

where

h(p) ∶= −∫dϕp(ϕ)log2(p(ϕ)) (5)

is the differential entropy of the probability density p. Supplementary 
Section 3B contains a detailed derivation of the above result. We note 
here that the first expression in equation (4) can be written in terms 
of the relative entropy as

log2(2π) − h(p) = D(p‖u), (6)
where u is the uniform probability density on the interval [−π,π], and 
the relative entropy is defined as

D(r‖s) ∶= ∫dϕr(ϕ)log2 (
r(ϕ)
s(ϕ) ) (7)

randomize the phase of this state according to the probability density 
p. Representing ρ = ∑n,mρnm |n⟩ ⟨m| in the photon number basis, it is  
a straightforward calculation to show that

𝒩𝒩p(ρ) = ∑
n,m
ρnm(Tp)nm |n⟩ ⟨m| , (2)

where Tp is the infinite matrix with entries

(Tp)nm ∶= ∫
π

−π
dϕp(ϕ) e−iϕ(n−m). (3)

This channel thus generalizes the simple dephasing channel considered 
above. Its action preserves diagonal elements of ρ but reduces the 
magnitude of the off-diagonal elements, a key signature of decoher-
ence. As the name suggests, the BDC can be seen as a generalization 
to bosonic systems of the qudit dephasing channel18.

Of primary interest is understanding the information-processing 
capabilities of the BDC in equation (1). We can do so using the formal-
ism of quantum Shannon theory19,20, in which we assume that the 
channel acts many times to affect multiple quantum systems. Not 
only does this formalism model the dephasing that acts on quantum 
information encoded in a memory, as in superconducting systems, 
but also the dephasing that affects communication systems. Here, 
a key quantity of interest is the quantum capacity Q(𝒩𝒩p) of the BDC 
𝒩𝒩p, which is equal to the largest rate at which quantum information 
can be faithfully sustained in the presence of dephasing20. The quan-
tum capacity has been traditionally studied with applications to 
quantum communication in mind; however, recent evidence21 indi-
cates that it is also relevant for understanding the overhead of 
fault-tolerant quantum computation, that is, the fundamental ratio 
of physical to logical qubits to perform quantum computation indefi-
nitely with little chance of error. The private capacity P(𝒩𝒩p) is  
another operational quantity of interest20, being defined as the larg-
est rate at which private classical information can be faithfully trans-
mitted over many independent uses of the channel 𝒩𝒩p (Fig. 1). One 
can also consider both of these capacities in the scenario in which 
classical processing or classical communication is allowed for free 
between every channel use22,23, and here we denote the respective 
quantities by Q↔(𝒩𝒩p) and P↔(𝒩𝒩p) (Fig. 2). The secret-key-agreement 
capacity P↔(𝒩𝒩p) is directly related to the rate at which quantum key 
distribution is possible over the channel23, and as such it is a funda-
mental limit of experimental interest. One can also study strong 
converse capacities (see, for example, Equation (9.122) in ref. 19, 
Definition 9.15 in ref. 24 and ref. 25), which sharpen the above opera-
tional interpretations by considering decoding error probabilities 
between zero and one. If the usual capacity is equal to the strong 
converse capacity, then we say that the strong converse property 
holds for the channel under consideration, and the implication is 
that the capacity demarcates a very sharp dividing line between 
achievable and unachievable rates for communication. We let Q†(𝒩𝒩p), 
P†(𝒩𝒩p), Q†

↔(𝒩𝒩p)  and P†↔(𝒩𝒩p)  denote the various strong converse  
capacities for the communication scenarios mentioned above. 
Understanding all of the aforementioned capacities is essential for 
the forthcoming quantum internet26, which will consist of various 
nodes in a network exchanging quantum and private information 
using the principles of quantum information science.

We note here that, although the quantum capacity16,17 and the 
assisted quantum capacity27 of the BDC 𝒩𝒩p in equation (1) have been 
investigated, neither of them has been calculated so far. The determina-
tion of the quantum capacity of this channel in particular has been an 
open problem since the publication of ref. 16 in 2010. The main diffi-
culty is that 𝒩𝒩p is in general a non-Gaussian channel, which makes the 
techniques in refs. 28,29 inapplicable.

Fig. 1 | A depiction of a quantum communication protocol that  
uses the channel 𝒩𝒩 a total of n times to send a quantum system M  
reliably. The initial state of the protocol is ΨRM and the final state is 
ηRM ∶= (idR ⊗ (𝒟𝒟n ∘𝒩𝒩⊗n ∘ ℰn)M) (ΨRM), where idR denotes the identity channel 
acting on R. The encoding and decoding channels ℰn and 𝒟𝒟n are operated  
by the sender Alice and the receiver Bob, respectively. The system M, initially 
entangled with a reference system R, is encoded via a suitable encoding map ℰn, 
transmitted via n parallel uses of the channel 𝒩𝒩, and decoded at the receiving 
end by a decoding map 𝒟𝒟n. The error associated with the transmission is 
ε ∶= sup|Ψ⟩ (1− ⟨ΨRM|ηRM|ΨRM⟩) and the number of transmitted qubits is log2 ∣M∣, 
where ∣M∣ is the dimension of M. Thus, the rate of transmitted qubits with n uses 
of 𝒩𝒩 and error ε is given by supℰn ,𝒟𝒟n (log2|M|)/n =∶

1
n
Qε(𝒩𝒩⊗n), with the 

maximization being over all encoding and decoding operations achieving error 
at most ε. The quantum capacity is then obtained by taking the limit n → ∞ and 
requiring that ε vanishes in this limit, that is, Q(𝒩𝒩) ∶= infε∈(0,1) lim infn

1
n
Qε(𝒩𝒩⊗n).  

The strong converse quantum capacity, instead, is constructed by  
allowing a non-zero error ε also asymptotically, with the only requirement  
that it stays bounded away from its maximum value of 1: in formula the 
Q†(𝒩𝒩) ∶= supε∈(0,1) lim supn

1
n
Qε(𝒩𝒩⊗n). The private capacity P(𝒩𝒩) and the 

associated strong converse capacity P†(𝒩𝒩) are defined analogously, with the main 
differences being that (1) the transmitted message M is classical, (2) an eavesdropper 
Eve is granted access to all environment systems interacting with the input signals of 
𝒩𝒩 and (3) the main goal of the protocol is to transmit the message reliably in such a 
way that Eve does not learn about it. See ref. 24 for further expositions.

http://www.nature.com/naturephotonics
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for general probability densities r and s. By invoking basic properties of 
the relative entropy30, this rewriting indicates that all of the capacities 
are strictly positive unless the density p is uniform, which represents 
a complete dephasing of the channel input state.

As indicated in equation (4), there is a remarkable simplification 
of the capacities for BDCs. The ultimate rate of private communication 
over these channels is no larger than the ultimate rate for quantum 
communication. Furthermore, unlimited classical communication 
between the sender and receiver does not enhance the capacities. 
Finally, the strong converse property holds, meaning that the rate 
D(p∥u) represents a very sharp dividing line between possible and 
impossible communication rates. As mentioned in the introduction, 
since dephasing is a prominent source of noise in both quantum com-
munication and computation, we expect our finding to have practical 
relevance in both scenarios. Based on the recent findings of ref. 21, 
we expect that [D(p∥u)]−1 can be related to the ultimate overhead (the 
ratio of physical systems to logical qubits) of fault-tolerant quantum 
computation with superconducting systems, although further work 
is needed to demonstrate this definitively.

Our results can be extended to all multimode BDCs that act simul-
taneously on a collection of m bosonic modes with photon number 
operators a†

j
aj as

𝒩𝒩(m)
p (ρ) ∶= ∫

[−π,π]m
dmϕp(ϕ) e−i∑ja

†
j
ajϕjρ ei∑ja

†
j
ajϕj , (8)

where ϕ ∶= (ϕ1,…, ϕm) and p is a probability density function on the 
hypercube [−π,π]m. The eight capacities listed in equation (4) are all 
equal also for the channel 𝒩𝒩(m)

p , and we denote them using 𝒞𝒞 (𝒩𝒩(m)
p ). 

They are given by the formula

𝒞𝒞 (𝒩𝒩(m)
p ) = mlog2(2π) − h(p) , (9)

where

h(p) = −∫
[−π,π]m

dmϕp(ϕ)log2(p(ϕ)), (10)

constituting a straightforward generalization of equation (4). As a spe-
cial case of equation (8), when p is concentrated on the line ϕ = (ϕ,…,ϕ) 
and ϕ ∈ [−π,π] is uniformly distributed, one obtains the completely 
dephasing channel considered in refs. 31,32.

The most paradigmatic example of a BDC is that corresponding 
to a normal distribution p̃γ(ϕ) ≔ (2πγ)−1/2e−ϕ2/(2γ)  of ϕ over the  
whole real line. This is the main example studied in refs. 16,17 and it is 
based on a physical model discussed in those works. Here, γ > 0 para-
metrizes the uncertainty of the rotation angle in equation (1): the larger 
γ, the stronger the dephasing. Since values of ϕ that differ modulo 2π 
can be identified, we obtain as an effective distribution p on [−π,π] the 
wrapped normal distribution (pγ):

pγ(ϕ) ∶=
1

√2πγ

+∞
∑

k=−∞
e−

1
2γ
(ϕ+2πk)2 . (11)

The matrix Tpγ obtained by plugging this distribution into equation (3) 

has entries (Tpγ )nm = e−
γ

2
(n−m)2, and therefore the corresponding BDC 

is the one discussed in the introduction. We find that

𝒞𝒞(𝒩𝒩pγ ) = log2φ(e−γ) +
2

ln 2

∞
∑
k=1

(−1)k−1e−
γ

2
(k2+k)

k (1 − e−kγ)
, (12)

where φ(q) ∶= ∏∞
k=1 (1 − qk) is the Euler function. See Supplementary 

Section 4A for details. In the physically relevant limit γ ≲ 1, pγ and p̃γ 
are both concentrated around 0, and their entropies are nearly identi-
cal. In this regime

𝒞𝒞(𝒩𝒩pγ ) ≈
1
2
log2

2π
eγ

≈ (0.604 + 1
2
log2

1
γ
) bits/channel use,

(13)

which demarcates the ultimate limitations on quantum and private 
communication in the presence of small dephasing noise. In the oppo-
site case γ ≫ 1 we obtain that

𝒞𝒞(𝒩𝒩pγ ) ≈
e−γ
ln 2

. (14)

The above formula generalizes and makes quantitative the claim found 
in Section VI of ref. 17, that the quantum capacity of 𝒩𝒩pγ vanishes expo-
nentially for large γ. In Fig. 3, we plot the capacity formula (equation 
(12)) as a function of γ, comparing it with the capacities 𝒞𝒞(𝒩𝒩p)  
obtained for other important probability distributions p on the circle.

Discussion
Our main result represents important progress for quantum infor-
mation theory, solving the capacities of a physically relevant class 
of non-Gaussian bosonic channels. Although many capacities of 
bosonic Gaussian channels have been solved in earlier work25,28,29,33–36, 
we are not aware of any other class of non-Gaussian channels that 
represent relevant models of noise in bosonic systems and whose 
capacity can be computed to yield a non-trivial value (neither zero 
nor infinite).

Our findings have non-trivial implications for the design of quan-
tum error-correcting codes37,38 that encode and protect quantum 
information against the deleterious effects of BDCs. In particular, there 
is no superadditivity effect that occurs, as is the case with other quan-
tum channels such as the depolarizing and dephrasure channels39–41. 
Thus, we now know that the random selection schemes of ref. 42,43  
are optimal designs for BDCs. It would be interesting to design quan-
tum polar codes tailored to BDCs, as these codes are known to be 
capacity-achieving for certain kinds of finite-dimensional channels44,45. 
As stated previously, another implication of our findings is that classi-
cal communication between the sender and receiver does not increase 
the quantum and private capacities of BDCs.

Fig. 2 | An LOCC-assisted protocol that involves n uses of the quantum 
channel 𝒩𝒩, assumed to connect two spatially separated laboratories 
belonging to Alice and Bob. The upper arrows correspond to quantum registers 
of Alice and the lower arrows to quantum registers of Bob. Between each channel 
use and the next, Alice and Bob can implement an arbitrary protocol composed of 
local operations assisted by classical communication (LOCC). The final output of 
the protocol is a state ηn that should resemble a maximally entangled state ΦK of 
local dimension K. The associated error is ε := 1 − 〈ΦK|ηn|ΦK〉 and the rate of 
entanglement generation with n uses is given by sup(log2K)/n =∶ Q↔,n,ε(𝒩𝒩𝒩, 
with the maximization being over all sequences of LOCC protocols. The assisted 
quantum capacity of 𝒩𝒩 is then defined by taking the limit n → ∞ as 
Q↔(𝒩𝒩) ∶= infε∈(0,1) lim infnQ↔,n,ε(𝒩𝒩), with the associated strong converse 
capacity being Q†

↔(𝒩𝒩) ∶= supε∈(0,1) lim supnQ↔,n,ε(𝒩𝒩). The assisted private 
capacity P↔(𝒩𝒩) and its strong converse capacity P†↔(𝒩𝒩) are constructed 
similarly, with the difference that the target state is a private state instead of a 
maximally entangled state.

http://www.nature.com/naturephotonics
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Our formula can be seen as a natural generalization to bosonic 
systems of that given in refs. 18,36,46 for the quantum and private 
capacities of the qudit dephasing channel. However, the similarity of 
the final formula should not obscure the fact that the techniques used 
for its derivation are quite different. In particular, a key technical tool 
employed here is the Szegő theorem from asymptotic linear algebra47,48, 
in addition to a teleportation49 simulation argument that is rather dif-
ferent from those presented previously22,25,29,36,50,51.

The collapse that occurs in equation (4), where eight different 
capacities are shown to coincide, also occurs for the quantum-limited 
bosonic amplifier channel, as a consequence of the findings of  
refs. 25,29,36,52. It would be interesting to determine other channels 
of physical interest for which this collapse occurs. It is known that this 
kind of collapse does not occur for the quantum erasure and pure-loss 
bosonic channels, because classical feedback from receiver to sender 
can increase the quantum and private capacities of these channels36,53,54. 
Such an increase has long been known to have practical implications 
for the design of quantum key distribution protocols, as discussed in 
refs. 36,54.

Going forward from here, it is of interest to address the capacities 
of bosonic lossy dephasing channels in which both loss and dephasing 
act at the same time. Such channels are modelled as the serial concat-
enation ℒη ∘ 𝒩𝒩p, where ℒη is a pure-loss channel of transmissivity 
η ∈ [0,1]; they provide realistic noise models for communication and 
computation, given that both kinds of noise are relevant in these sys-
tems55. Our result here, combined with the main result of ref. 29 and a 
data-processing bottlenecking argument, leads to the following upper 
bound on the quantum and private capacities of the bosonic lossy 
dephasing channel:

Q(ℒη ∘ 𝒩𝒩p) ≤ P(ℒη ∘ 𝒩𝒩p)

≤ min{P(ℒη),P(𝒩𝒩p)}

= min {(log2(η/(1 − η)))+, D(p‖u)} ,

(15)

where x+ ∶= max{x,0}. By the same argument, but invoking the results 
of refs. 25,36, the following upper bounds hold for the quantum and 
private capacities assisted by classical communication:

Q↔(ℒη ∘ 𝒩𝒩p) ≤ Q†
↔(ℒη ∘ 𝒩𝒩p),P↔(ℒη ∘ 𝒩𝒩p)

≤ P†↔(ℒη ∘ 𝒩𝒩p)

≤ min{log2(1/(1 − η)),D(p‖u)}.

(16)

The same data-processing argument can be employed for BDCs com-
posed with other common bosonic Gaussian channels to obtain upper 
bounds on the composed channels’ capacities, while using known upper 
bounds from earlier work25,36,56–59.

It also remains open to determine the energy-constrained quan-
tum and private capacities of BDCs, as well as their classical- 
communication-assisted counterparts17,27. Note that the lower bound 
in equation (23) is a legitimate lower bound on the energy-constrained 
quantum capacity of 𝒩𝒩p when the mean photon number of the  
channel input cannot exceed (d − 1)/2. In addition, it is clear that the 
energy-constrained classical capacity of 𝒩𝒩p is equal to g(E) ∶= (E + 1)
log2(E + 1) − Elog2E, where E is the energy constraint. This identity 
depends essentially on the fact that Fock states can be perfectly trans-
mitted through any BDC (see Section 3.1 of ref. 31). Finally, it is an open 
question to determine the energy-constrained entanglement-assisted 
classical capacity of BDCs60.

In conclusion, in this work we have found an analytic expression 
for the quantum and private, assisted and unassisted, weak and strong 
converse capacities of all multimode bosonic dephasing channels, solv-
ing a problem that has been open for over a decade. BDCs are among the 
first non-Gaussian channels for which these capacities are calculated.
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Methods
In this section, we provide a short overview of the techniques used to 
prove our main result (equation (4)). We establish the following two 
inequalities:

Q(𝒩𝒩p) ≥ D(p‖u), (17)

P†↔(𝒩𝒩p) ≤ D(p‖u). (18)

Note that equations (17) and (18) together imply the main result, 
because Q(𝒩𝒩p) is the smallest among all of the capacities listed and 
P†↔(𝒩𝒩p) is the largest. For a precise ordering of the various capacities, 
see Equations (5.6)–(5.13) of ref. 25.

To prove equation (17), let us recall that the coherent information 
of a quantum channel is a lower bound on its quantum capacity20. 
Specifically, the following inequality holds for a general channel 𝒩𝒩:

Q(𝒩𝒩) ≥ sup
ρ
{H(𝒩𝒩𝒩ρ)) − H((id⊗𝒩𝒩)𝒩ψρ))} , (19)

where the von Neumann entropy of a state σ is defined as H(σ) ∶= −
Tr[σlog2σ], the optimization is over every state ρ that can be transmitted 
into the channel 𝒩𝒩, and ψρ is a purification of ρ (such that one recovers 
ρ after a partial trace). We can apply this lower bound to the BDC 𝒩𝒩p. 
For a fixed photon number d − 1, let us choose ρ to be the maximally 
mixed state of dimension d, that is, ρ = τd ∶=

1
d
∑d−1
n=0 |n⟩ ⟨n|. This state is 

purified by the maximally entangled state Φd ∶=
1
d
∑d−1
n,m=0 |n⟩ ⟨m| ⊗ |n⟩ ⟨m|. 

To evaluate the first term in equation (19), consider from equations (2) 
and (3) that the output state is maximally mixed, that is, 𝒩𝒩p(τd) = τd, 
because the input state τd has no off-diagonal elements and the diagonal 
elements of the matrix Tp in equation (3) are all equal to one. Thus, we 
find that H(𝒩𝒩p(τd)) = log2d . For the second term in equation (19), we 
again apply equations (2) and (3) to determine that

ωp,d ∶ = (id⊗𝒩𝒩p)(Φd)

= 1
d

d−1
∑

n,m=0
(Tp)nm |n⟩ ⟨m| ⊗ |n⟩ ⟨m| .

(20)

As the entropy is invariant under the action of an isometry, and the 
isometry |n⟩ → |n⟩ |n⟩ takes the state

T(d)p

d
∶= 1

d

d−1
∑

n,m=0
(Tp)nm |n⟩ ⟨m| (21)

to ωp,d, we find that the entropy H(ωp,d) reduces to

H(ωp,d) = H (T(d)p /d) . (22)

By a straightforward calculation, we then find that

H (𝒩𝒩p(τd)) − H(ωp,d) = log2d − H (T
(d)
p /d)

= 1
d
Tr [T(d)p log2T

(d)
p ] .

(23)

This establishes the value in equation (23) to be an achievable rate for 
quantum communication over 𝒩𝒩p. Since this lower bound holds for 
every photon number d − 1 ∈ ℕ, we can then take the limit d → ∞ and 
apply the Szegő theorem47,48 to conclude that the following value is also 
an achievable rate:

lim
d→∞

1
d
Tr [T(d)p log2T

(d)
p ]

= 1
2π
∫π
−π dϕ 2πp(ϕ) log2(2πp(ϕ))

= D(p‖u).

(24)

Thus, this establishes the lower bound in equation (17).

To prove the upper bound in equation (18), we apply a modified 
teleportation simulation argument. This kind of argument was intro-
duced in Section 5 of ref. 22 for the specific purpose of finding upper 
bounds on the quantum capacity assisted by classical communication, 
and it has been employed in a number of studies since then25,29,36,50,51. 
Since we are interested in bounding the strong converse 
secret-key-agreement capacity P†↔(𝒩𝒩p), we apply reasoning similar to 
that given in ref. 25 (here see also refs. 61,62). However, there are some 
critical differences in our approach here.

To begin, let us again consider the state in equation (20). As we 
show in Supplementary Section 3B, by performing the standard tele-
portation protocol49 with the state in equation (20) as the entangled 
resource state, rather than the maximally entangled state, we can 
simulate the action of the channel 𝒩𝒩p on a fixed input state, up to an 
error that vanishes in the limit as d → ∞. This key insight demonstrates 
that the state in equation (20) is approximately equivalent in a 
resource-theoretic sense to the channel 𝒩𝒩p. In more detail, we can 
express this observation in terms of the following equality: for every 
state ρ, it holds that

lim
d→∞

‖
‖(id⊗𝒩𝒩p)(ρ) − (id⊗𝒩𝒩p,d)(ρ)‖‖1 = 0, (25)

where 𝒩𝒩p,d(σ) ∶= 𝒯𝒯𝒯σ⊗ ωp,d)  is the channel resulting from the  
teleportation simulation. That is, the simulating channel 𝒩𝒩p,d  is  
realized by sending one subsystem of the maximally entangled state 
Φd through 𝒩𝒩p, which generates ωp,d, and then acting on the input state 
σ and the resource state ωp,d with the standard teleportation protocol 
𝒯𝒯. By invoking the main insight from refs. 61,62 (as used later in ref. 23), 
we next note that a protocol for secret-key agreement over the channel 
is equivalent to one for which the goal is to distill a bipartite private 
state. Such a protocol involves only two parties, and thus the tools of 
entanglement theory come into play61,62.

Now let 𝒫𝒫n,ε denote a general, fixed protocol for secret-key agree-
ment, involving n uses of the channel 𝒩𝒩p and achieving an error ε for 
generating a bipartite private state of rate Rn,ε (where the units of Rn,ε 
are secret-key bits per channel use). Using the two aforementioned 
tools, teleportation simulation and the reduction from secret-key 
agreement to bipartite private distillation, the protocol 𝒫𝒫n,ε can be 
approximately simulated by the action of a single LOCC channel on n 
copies of the resource state ωp,d. Associated with this simulation are 
two trace norm errors ε and δd, the first of which is the error of the 
original protocol 𝒫𝒫n,ε in producing the desired bipartite private state 
and the second of which is the error of the simulation. We then invoke 
Equation (5.37) of ref. 25 to establish the following inequality, which, 
for the fixed protocol 𝒫𝒫n,ε, relates the rate Rn,ε at which the secret key 
can be distilled to the aforementioned errors and an entanglement 
measure called the sandwiched Rényi relative entropy of 
entanglement:

Rn,ε ≤ ẼR,α(ωp,d) +
2α

n(α − 1) log2 (
1

1 − δd − ε
) , (26)

where α > 1 and the sandwiched Rényi relative entropy of entanglement 
of a general bipartite state ρ is defined as25

ẼR,α(ρ) ∶= inf
σ∈SEP

2α
α − 1 log2

‖
‖ρ

1/2σ(1−α)/2α‖‖2α, (27)

with SEP denoting the set of separable (unentangled) states.  
By choosing the separable state to be (id⊗𝒩𝒩p) (Φd) , where 
Φd ∶=

1
d
∑d−1
n=0 |n⟩ ⟨n| ⊗ |n⟩ ⟨n|, we find that

ẼR,α(ωp,d) ≤
1

α − 1 log2
1
d
Tr [(T(d)p )

α
] . (28)

http://www.nature.com/naturephotonics


Nature Photonics

Article https://doi.org/10.1038/s41566-023-01190-4

We refer the reader to Supplementary Section 3B for a detailed deriva-
tion. Thus, we find that the following rate upper bound holds for the 
secret-key-agreement protocol 𝒫𝒫n,ε for all d ∈ ℕ:

Rn,ε ≤
1
α−1

log2
1
d
Tr [(T(d)p )

α
] + 2α

n(α−1)
log2 (

1
1−δd−ε

) . (29)

Since this bound holds for all d ∈ ℕ, we can take the limit d → ∞ and then 
arrive at the following upper bound:

Rn,ε ≤ lim inf
d→∞

( 1
α − 1 log2

1
d
Tr [(T(d)p )

α
] + 2α

n(α − 1) log2(
1

1 − δd − ε
))

= Dα(p‖u) +
2α

n(α − 1) log2(
1

1 − ε ) .
(30)

In the above, we again applied the Szegő theorem47,48 to conclude that

lim
d→∞

1
α − 1 log2

1
d
Tr [(T(d)p )

α
] = Dα(p‖u). (31)

We also used the fact that lim
d→∞

δd = 0, which is a consequence of equa-
tion (25). The bound in the last line only depends on the error ε of the 
original protocol 𝒫𝒫n,ε and the Rényi relative entropy

Dα(p‖u) ∶=
1

α − 1 log2∫
π

−π
dϕp(ϕ)αu(ϕ)1−α. (32)

As such, it is a uniform upper bound, applying to all n-round 
secret-key-agreement protocols that generate a private state of rate 
Rn,ε and with error ε. Now noting that the n-shot secret-key-agreement 
capacity P↔(𝒩𝒩p,n, ε)  is defined as the largest rate Rn,ε that can be  
achieved using the channel 𝒩𝒩p a total of n times along with classical 
communication for free, while allowing for ε error, it follows from the 
uniform bound in equation (30) that

P↔(𝒩𝒩p,n, ε) ≤ Dα(p‖u) +
2α

n(α − 1) log2 (
1

1 − ε ) , (33)

holding for all α > 1. Remembering that the strong converse 
secret-key-agreement capacity is defined as

P†↔(𝒩𝒩p) ∶= sup
ε∈(0,1)

lim sup
n→∞

P↔(𝒩𝒩p,n, ε) (34)

we take the limit n → ∞ to find that

P†↔(𝒩𝒩p) ≤ sup
ε∈(0,1)

lim sup
n→∞

{Dα(p‖u) +
2α

n(α − 1) log2(
1

1 − ε )}

= Dα(p‖u).

(35)

This upper bound holds for all α > 1. Thus, we can finally take the α → 1 
limit and use a basic property of the Rényi relative entropy30 to conclude 
the desired upper bound:

P†↔(𝒩𝒩p) ≤ lim
α→1

Dα(p‖u) = D(p‖u). (36)

This concludes the proof of the capacity formula (equation (4)) for the 
BDC. The argument required to establish its multimode generaliza-
tion (equation (9)) is very similar, with the only substantial technical 
difference being the application of the multi-index Szegő theorem48 
(see Supplementary Section 3C for details).
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