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The capacities of noisy quantum channels capture the ultimate rates of
information transmission across quantum communication lines, and
the quantum capacity plays akey role in determining the overhead of

fault-tolerant quantum computation platforms. Closed formulae for these
capacities in bosonic systems were lacking for a key class of non-Gaussian
channels, bosonic dephasing channels, which are used to model noise
affecting superconducting circuits and fibre-optic communication channels.
Here we provide an exact calculation of the quantum, private, two-way
assisted quantum and secret-key-agreement capacities of all bosonic
dephasing channels. We prove that they are equal to the relative entropy

of the distribution underlying the channel with respect to the uniform
distribution, solving a problem that was originally posed over a decade ago.

One of the great promises of quantum information science is that
remarkable tasks canbe achieved by encodinginformationinto quan-
tumsystems’. In principle, algorithms executed on quantum comput-
ers can factor large integers?, simulate complex physical dynamics?,
solve unstructured search problems with proven speedups* and per-
form linear-algebraic manipulations on large matrices encoded into
quantum systems>®. In addition, ordinary (‘classical’) information
can be transmitted securely over quantum channels via quantum key
distribution’.

However, all of these possibilities are hindered in practice because
all quantum systems are subject to decoherence®. A very simple deco-
herence process takes a density operator p = Zn,mpnm |ny{(m| to

Yy 2
p=y, mpnme‘i(""") |ny(m|, where y > 0 measures the extent to

which the off-diagonal elements are reduced in magnitude. This
process is also called dephasing, because it reduces or eliminates
relative phases. Decoherence is a ubiquitous phenomenon that
affects all quantum physical systems. In fact, in various platforms
for quantum computation, experimentalists employ the T2 time as
a phenomenological quantity that roughly measures the time that it
takes for acoherent superposition to decohere to a probabilistic mix-
ture. Dephasing noise in some casesis considered to be the dominant

source of errors affecting quantum information encoded into super-
conducting systems’, as well as other platforms'®". If those systems
are employed to carry out quantum computation, then the errors
must be amended using error-correcting codes, which typically cause
expensive overheads inthe amount of physical qubits needed. Not only
does dephasing affect quantum computers but it also affects quantum
communication systems. Indeed, temperature fluctuations™ or Kerr
nonlinearities” inafibre, imprecision in the path length of a fibre'* or
thelack of acommon phase reference between the sender and receiver®
lead to decoherence as well, and this can affect quantum communica-
tion and key distribution schemes adversely.

Many of the aforementioned forms of decoherence can be uni-
fied under a single model, known as the bosonic dephasing channel
(BDC)'". The action of such a channel on the density operator p of a
single-mode bosonic system s given by

No(p) 1= f dg p(¢) e@'29p eia'ad, o

where pisaprobability density function on the interval [-m,n] and a'a
is the photon number operator. Since each unitary operator e-ialag
realizes a phase shift of the state p, the action of the channel %, is to
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randomize the phase of this state according to the probability density
p-Representing p =3 ppm I0) (m|in the photon number basis, it is
astraightforward calculation to show that

J\/;;(p) = 2 pnm(Tp)nm Iy {m|, (2)

where T, is the infinite matrix with entries
T .
Ty 1= f dg p(¢) e=i9(n-m). 3)
-1

This channel thus generalizes the simple dephasing channel considered
above. Its action preserves diagonal elements of p but reduces the
magnitude of the off-diagonal elements, a key signature of decoher-
ence. As the name suggests, the BDC can be seen as a generalization
to bosonic systems of the qudit dephasing channel™®.

Of primary interestis understanding the information-processing
capabilities of the BDCin equation (1). We can do so using the formal-
ism of quantum Shannon theory™?°, in which we assume that the
channel acts many times to affect multiple quantum systems. Not
only does this formalism model the dephasing that acts on quantum
information encoded inamemory, as in superconducting systems,
but also the dephasing that affects communication systems. Here,
akey quantity of interest is the quantum capacity Q(\;) of the BDC
N, which is equal to the largest rate at which quantum information
can be faithfully sustained in the presence of dephasing®. The quan-
tum capacity has been traditionally studied with applications to
quantum communication in mind; however, recent evidence” indi-
cates that it is also relevant for understanding the overhead of
fault-tolerant quantum computation, that is, the fundamental ratio
of physical to logical qubits to perform quantum computation indefi-
nitely with little chance of error. The private capacity P(%,) is
another operational quantity of interest®’, being defined as the larg-
estrate at which private classicalinformation can be faithfully trans-
mitted over many independent uses of the channel %, (Fig. 1). One
can also consider both of these capacities in the scenario in which
classical processing or classical communication is allowed for free
between every channel use?>”, and here we denote the respective
quantities by Q.. (%) and P_(N;) (Fig. 2). The secret-key-agreement
capacity P_(2,)is directly related to the rate at which quantum key
distribution is possible over the channel®, and as suchiit is a funda-
mental limit of experimental interest. One can also study strong
converse capacities (see, for example, Equation (9.122) in ref. 19,
Definition 9.15inref. 24 and ref. 25), which sharpen the above opera-
tional interpretations by considering decoding error probabilities
between zero and one. If the usual capacity is equal to the strong
converse capacity, then we say that the strong converse property
holds for the channel under consideration, and the implication is
that the capacity demarcates a very sharp dividing line between
achievable and unachievable rates for communication. We let Q*(J\g,),
PT(J\Q,), QL(J\/,‘,) and PL(J\{,) denote the various strong converse
capacities for the communication scenarios mentioned above.
Understanding all of the aforementioned capacities is essential for
the forthcoming quantum internet®®, which will consist of various
nodes in a network exchanging quantum and private information
using the principles of quantum information science.

We note here that, although the quantum capacity'®" and the
assisted quantum capacity”” of the BDC , in equation (1) have been
investigated, neither of them hasbeen calculated so far. The determina-
tion of the quantum capacity of this channelin particular has beenan
open problem since the publication of ref. 16 in 2010. The main diffi-
culty is that 2V is in general a non-Gaussian channel, which makes the
techniquesinrefs. 28,29 inapplicable.

R 4

Ten

S
Y
[ X X J

——AN

Fig.1| A depiction of a quantum communication protocol that

uses the channel V' a total of n times to send a quantum system M

reliably. The initial state of the protocol is W, and the final state is

Ngy 2= (idg @ (Dy 0 N® 0 £,),,) (Wrn), Whereiid, denotes the identity channel
acting on R. The encoding and decoding channels £,and D,are operated

by the sender Alice and the receiver Bob, respectively. The system M, initially
entangled with areference system R, is encoded via a suitable encoding map &,
transmitted via n parallel uses of the channel v, and decoded at the receiving
end by adecoding map D,. The error associated with the transmission is

€ 1= supy, (1 — (Wrm|ngrm|Wrm)) and the number of transmitted qubitsislog, |M|,
where |[M|is the dimension of M. Thus, the rate of transmitted qubits with n uses
of W and error gis given by supg, p,(l0g, M|)/n =: %QS(N‘X’" ), withthe
maximization being over all encoding and decoding operations achieving error
atmost . The quantum capacity is then obtained by taking the limit n > < and
requiring that e vanishes in this limit, thatis, Q(V) : = inf.(o ;) liminf, iQS(N®").
The strong converse quantum capacity, instead, is constructed by

allowing a non-zero error g also asymptotically, with the only requirement

thatit stays bounded away from its maximum value of 1: in formula the

Qf(W) := SUPe(0,1) limsup,, iQS(N®" ). The private capacity P(V")and the
associated strong converse capacity PT (V) are defined analogously, with the main
differences being that (1) the transmitted message Mis classical, (2) an eavesdropper
Eveis granted access to all environment systems interacting with the input signals of
2V and (3) the main goal of the protocol is to transmit the message reliably insuch a
way that Eve does notlearn about it. See ref. 24 for further expositions.

Results

In this paper, we completely solve all of the aforementioned eight
capacities of the BDCs, finding that they all coincide and are given by
the following simple expression:

C(N,) :=log,(2m) — h(p)
= Q) = POV) = QW) = P(3%) )
= Q' (%) = PF (W) = QL(0%) = PLL(0%),

where

h(p) = f do p(@)log, () (s)

is the differential entropy of the probability density p. Supplementary
Section 3B contains a detailed derivation of the above result. We note
here that the first expression in equation (4) can be written in terms
of therelative entropy as

log,(2m) — h(p) = D(p|\u), (6)
where uis the uniform probability density on the interval [-m, 1], and
therelative entropy is defined as

D(rfs) := f dg r(p)log, (%) @)
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Fig.2| An LOCC-assisted protocol that involves n uses of the quantum
channel JV, assumed to connect two spatially separated laboratories
belonging to Alice and Bob. The upper arrows correspond to quantum registers
of Alice and the lower arrows to quantum registers of Bob. Between each channel
use and the next, Alice and Bob canimplement an arbitrary protocol composed of
local operations assisted by classical communication (LOCC). The final output of
the protocol is a state n, that should resemble a maximally entangled state ®, of
local dimension K. The associated erroris € :=1- (®,In,|®y) and the rate of
entanglement generation with nusesis given by sup(log,K)/n =: Q. p (),
with the maximization being over all sequences of LOCC protocols. The assisted
quantum capacity of V' is then defined by taking the limit n > « as

Q. (V) :=infee(op liminf, Q. , (), with the associated strong converse
capacity being Q1. (W) := SUP,¢(o,1) liMsup, Q.. n,:(V). The assisted private
capacity P_ (NV)and its strong converse capacity Pt (V) are constructed
similarly, with the difference that the target state is a private state instead of a
maximally entangled state.

Loc

for general probability densities rands. By invoking basic properties of
the relative entropy®, this rewriting indicates that all of the capacities
are strictly positive unless the density p is uniform, which represents
acomplete dephasing of the channel input state.

Asindicated in equation (4), there is a remarkable simplification
ofthe capacities for BDCs. The ultimate rate of private communication
over these channels is no larger than the ultimate rate for quantum
communication. Furthermore, unlimited classical communication
between the sender and receiver does not enhance the capacities.
Finally, the strong converse property holds, meaning that the rate
D(p||u) represents a very sharp dividing line between possible and
impossible communication rates. As mentioned in the introduction,
since dephasingisaprominent source of noise inboth quantum com-
munication and computation, we expect our finding to have practical
relevance in both scenarios. Based on the recent findings of ref. 21,
we expect that [D(p||u)] ™" can be related to the ultimate overhead (the
ratio of physical systems to logical qubits) of fault-tolerant quantum
computation with superconducting systems, although further work
isneeded to demonstrate this definitively.

Our results can be extended to all multimode BDCs that act simul-
taneously on a collection of m bosonic modes with photon number
operators a/ a;as

%"(p) 1= f dmpp(@)e BTpe I, (3)

[-Tm]

where @ :=(¢,,..., ¢,,) and p is a probability density function on the
hypercube [-11,i1]™. The eight capacities listed in equation (4) are all
equal also for the channel M,('"), and we denote them using € (M,('")).
They are given by the formula

e (M,(’")) = mlog,(2m) — h(p), )
where

== aep@onp®). (10)

constituting astraightforward generalization of equation (4). As aspe-
cial case of equation (8), whenpis concentrated ontheline @ = (¢,...,¢)
and ¢ € [-m, 1] is uniformly distributed, one obtains the completely
dephasing channel considered inrefs. 31,32.

The most paradigmatic example of a BDC is that corresponding
to a normal distribution p,(¢) = @ny)2e=9/@ of ¢ over the
whole real line. This is the main example studied inrefs. 16,17 and it is
based on a physical model discussed in those works. Here, y > O para-
metrizes the uncertainty of the rotation angle in equation (1): the larger
y, the stronger the dephasing. Since values of ¢ that differ modulo 21t
canbeidentified, we obtainas an effective distribution p on [-11,1t] the
wrapped normal distribution (p,):
+2°:° e—zly(¢+2nk)2' an

1
@) = —
py(@ 2 2

The matrix probtained by plugging this distributioninto equation (3)

Y (n—m)?

hasentries (7, )nm =e 2 ,and therefore the corresponding BDC

is the one discussed in the introduction. We find that

5, (1)l h0e

e,) = log,p(e™) + 2 >,

, 12
25 k(1-eh) .

where ¢(q) := H,Zl (1 - g*) is the Euler function. See Supplementary
Section 4A for details. In the physically relevant limity $1, p,and p,
areboth concentrated around 0, and their entropies are nearly identi-
cal.Inthisregime

G(ng,y) ~ %logzz—:
13)
~ (0.604 + %Iogzi) bits/channel use,

which demarcates the ultimate limitations on quantum and private
communicationinthe presence of small dephasing noise. In the oppo-
site case y > 1we obtain that

eV
G(J\/[;y) ~ n2 (14)

The above formulageneralizes and makes quantitative the claim found
inSection Vlofref.17, that the quantum capacityofJ\g,yvanishesexpo-
nentially for large y. In Fig. 3, we plot the capacity formula (equation
(12)) as a function of y, comparing it with the capacities ¢(V;)
obtained for otherimportant probability distributions p onthecircle.

Discussion

Our main result represents important progress for quantum infor-
mation theory, solving the capacities of a physically relevant class
of non-Gaussian bosonic channels. Although many capacities of
bosonic Gaussian channels have been solved in earlier work??2%2%3373¢,
we are not aware of any other class of non-Gaussian channels that
represent relevant models of noise in bosonic systems and whose
capacity can be computed to yield a non-trivial value (neither zero
nor infinite).

Our findings have non-trivial implications for the design of quan-
tum error-correcting codes**® that encode and protect quantum
information against the deleterious effects of BDCs. In particular, there
isnosuperadditivity effect that occurs, asis the case with other quan-
tum channels such as the depolarizing and dephrasure channels® .
Thus, we now know that the random selection schemes of ref. 42,43
are optimal designs for BDCs. It would be interesting to design quan-
tum polar codes tailored to BDCs, as these codes are known to be
capacity-achieving for certain kinds of finite-dimensional channels***,
Asstated previously, another implication of our findings is that classi-
cal communication between the sender and receiver does notincrease
the quantum and private capacities of BDCs.
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Fig. 3| The capacities of the BDCs associated with the wrapped normal
distribution (p,), the von Mises distribution (p,) and the wrapped Cauchy
distribution (p,). The units of the vertical axis are qubits or private bits per
channel use, and the horizontal axis features the main parameter governing the
various distributions. The wrapped normal distribution is given by equation (11),

2
which gives a Gaussian-modulated dephasing (T,,) = e Y(n=m)"/2 and the
nm

capacity of the associated BDC Npy isgiven by equation (12). The von Mises

distribution p,is abetter analogue of the normal distribution in the case of a
ecos(¢)/A
2l (1/2)
toyabove and /. is amodified Bessel function of the first kind. The obtained

I (1A
dephasing matrix has entries (T}, )nm = '"I '(’;'/;) )
o

— log,lo(1/A).Finally, the

circle.Itisgivenby p,(¢) := ,whereA>Qisascale parameter analogous

,and the capacities of the BDC

Np,canbeexpressedas C(V), ) = ﬁ %
0

wrapped Cauchy distribution defined by p,(¢) : = L _sinhyk

corresponds
21 cosh+/k—cos ¢ P

toadephasing matrix (7}, Dom = e~V¥in-m yielding a capacity equal to
C(IN,) = —log, (1- e2),

Our formula can be seen as a natural generalization to bosonic
systems of that given in refs. 18,36,46 for the quantum and private
capacities of the qudit dephasing channel. However, the similarity of
the final formula should not obscure the fact that the techniques used
forits derivation are quite different. In particular, a key technical tool
employed hereis the Szegé theorem from asymptotic linear algebra***,
inaddition toateleportation*’ simulation argument that is rather dif-
ferent from those presented previously?>>>2%3635051,

The collapse that occurs in equation (4), where eight different
capacitiesare shownto coincide, also occurs for the quantum-limited
bosonic amplifier channel, as a consequence of the findings of
refs. 25,29,36,52. It would be interesting to determine other channels
of physicalinterest for which this collapse occurs. Itis known that this
kind of collapse does not occur for the quantum erasure and pure-loss
bosonic channels, because classical feedback from receiver to sender
canincrease the quantumand private capacities of these channels®****,
Such anincrease has long been known to have practical implications
for the design of quantum key distribution protocols, as discussed in
refs.36,54.

Goingforward from here, it is of interest to address the capacities
of bosoniclossy dephasing channelsinwhichboth loss and dephasing
actat the same time. Such channels are modelled as the serial concat-
enation £, o N, where £, is a pure-loss channel of transmissivity
n €1[0,1]; they provide realistic noise models for communication and
computation, given that both kinds of noise are relevant in these sys-
tems”. Our result here, combined with the main result of ref.29 and a
data-processing bottlenecking argument, leads to the following upper
bound on the quantum and private capacities of the bosonic lossy
dephasing channel:

QLyoNy) < PLyoNy)
< min{P(£,), PN}
= min {(log,(n/(1 - ), DI},

s

where x, : =max{x,0}. By the same argument, but invoking the results
of refs. 25,36, the following upper bounds hold for the quantum and
private capacities assisted by classical communication:

Q.(Ly o) < QL(L, 0 N, PL(L, 0 ;)

<PL(Lyo M) (16)

< min{log,(1/(1 - n)), D(pl|u)}.

The same data-processing argument can be employed for BDCs com-
posed with other common bosonic Gaussian channels to obtain upper
bounds onthe composed channels’ capacities, while usingknownupper
bounds from earlier work>?¢-%%,

It also remains open to determine the energy-constrained quan-
tum and private capacities of BDCs, as well as their classical-
communication-assisted counterparts'””. Note that the lower bound
inequation (23) isalegitimate lower bound onthe energy-constrained
quantum capacity of N, when the mean photon number of the
channel input cannot exceed (d —1)/2. In addition, it is clear that the
energy-constrained classical capacity of ; is equal to g(E) := (E+1)
log,(E +1) - Elog,E, where E is the energy constraint. This identity
depends essentially onthe fact that Fock states can be perfectly trans-
mitted through any BDC (see Section 3.1 of ref. 31). Finally, itisan open
questionto determine the energy-constrained entanglement-assisted
classical capacity of BDCs®°.

In conclusion, in this work we have found an analytic expression
for the quantum and private, assisted and unassisted, weak and strong
converse capacities of allmultimode bosonic dephasing channels, solv-
ingaproblemthat has been open for over adecade.BDCs areamongthe
first non-Gaussian channels for which these capacities are calculated.
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Methods
In this section, we provide a short overview of the techniques used to
prove our main result (equation (4)). We establish the following two
inequalities:

Q) = D(pllu), (17)

PL(0) < D(p|u). 18)

Note that equations (17) and (18) together imply the main result,
because Q(V;) is the smallest among all of the capacities listed and
PL.(;)is the largest. For a precise ordering of the various capacities,
see Equations (5.6)-(5.13) of ref. 25.

To prove equation (17), letusrecall that the coherent information
of a quantum channel is a lower bound on its quantum capacity®.
Specifically, the following inequality holds for a general channel »v:

QW) = sup {HOV(p)) — H((id ® M@}, 19
p

where the von Neumann entropy of a state o is defined as H(0) :=—
Tr[olog,0], the optimizationis over every state p that canbe transmitted
intothe channel v, and ¢”is a purification of p (such that one recovers
p after a partial trace). We can apply this lower bound to the BDC »;.
For a fixed photon number d -1, let us choose p to be the maximally
mixed state of dimensiond, thatis, p = 7 := = ¥4 |n)(n). This stateis

purified by themaximally entangled state ®, : = Lli ZZ’::O |ny(m| ® |n){m.

Toevaluate the first termin equation (19), consider fromequations (2)
and (3) that the output state is maximally mixed, that is, N, (zy) = 74,
because theinput state r,has no off-diagonal elements and the diagonal
elements of the matrix T,,in equation (3) are all equal to one. Thus, we
find that H(NV, (1)) = log,d . For the second term in equation (19), we
againapply equations (2) and (3) to determine that

Wpg t = (1d@N)(Dg)
(20

1 d-1
FOROMCICEICIE

As the entropy is invariant under the action of an isometry, and the
isometry |n) — |n)|n)takes the state

pd> 1 &
4 T4 "YmZ:O (Tp) e 1) (1| (21)
to w, 4, we find that the entropy H(w, ;) reduces to
H(@pq) = H(TS"/d). 22
By astraightforward calculation, we then find that
H(N (1)) — H@p,a) = log,d — H(T5/d) )

= iTr[Tf,")logzﬁd)].

This establishes the value in equation (23) to be an achievable rate for
quantum communication over ;. Since this lower bound holds for
every photon number d -1 € N, we can then take the limit d > « and
apply the Szeg6 theorem*** to conclude that the following value is also
anachievable rate:

tim 41v[757108,7]
= - /" dg 21p(9) log, 2np(9) 24)

= D(p||u).
Thus, this establishes the lower bound in equation (17).

To prove the upper bound in equation (18), we apply a modified
teleportation simulation argument. This kind of argument was intro-
duced in Section 5 of ref. 22 for the specific purpose of finding upper
bounds onthe quantum capacity assisted by classical communication,
and it has been employed in a number of studies since then?>?¢°%1,
Since we are interested in bounding the strong converse
secret-key-agreement capacity PL. (%), we apply reasoning similar to
thatgiveninref. 25 (hereseealsorefs. 61,62). However, there are some
critical differences in our approach here.

To begin, let us again consider the state in equation (20). As we
show in Supplementary Section 3B, by performing the standard tele-
portation protocol*’ with the state in equation (20) as the entangled
resource state, rather than the maximally entangled state, we can
simulate the action of the channel ; on afixed input state, up to an
error thatvanishesin the limitas d > «. This key insight demonstrates
that the state in equation (20) is approximately equivalent in a
resource-theoretic sense to the channel »;. In more detail, we can
express this observation in terms of the following equality: for every
state p, it holds that

lim [id ® %)) - (id @ %), =O. 25)

where N, 4(0) :=7(0Q®w,4) is the channel resulting from the
teleportation simulation. That is, the simulating channel »; 4 is
realized by sending one subsystem of the maximally entangled state
®,through N, which generates w, 4, and thenacting onthe input state
oandtheresource state w, ,with the standard teleportation protocol
7.Byinvoking the maininsight fromrefs. 61,62 (asused laterinref.23),
we next note that a protocol for secret-key agreement over the channel
is equivalent to one for which the goal is to distill a bipartite private
state. Such a protocol involves only two parties, and thus the tools of
entanglement theory come into play®-®*

Now let 2, . denote a general, fixed protocol for secret-key agree-
ment, involving n uses of the channel v, and achieving an error ¢ for
generating a bipartite private state of rate R, (where the units of R,
are secret-key bits per channel use). Using the two aforementioned
tools, teleportation simulation and the reduction from secret-key
agreement to bipartite private distillation, the protocol . can be
approximately simulated by the action of a single LOCC channel onn
copies of the resource state w,, 4. Associated with this simulation are
two trace norm errors € and &, the first of which is the error of the
original protocol 2, in producing the desired bipartite private state
and the second of whichis the error of the simulation. We then invoke
Equation (5.37) of ref. 25 to establish the following inequality, which,
for the fixed protocol 2, , relates the rate R, at which the secret key
can be distilled to the aforementioned errors and an entanglement
measure called the sandwiched Rényi relative entropy of
entanglement:

(26)

- 2a 1
Rn,s < ER,a(wp,d) + n(a — 1) ]ng <1 — 6d — 8) 5

where a >1and the sandwiched Rényirelative entropy of entanglement
of ageneral bipartite state p is defined as®

Era(p) := inf 2_“110g2||p1/20(1—a)/2a” @7

0€eSEP (X — 2a

with SEP denoting the set of separable (unentangled) states.
By choosing the separable state to be (id ®3\§,)(5‘,), where
D=1 978 Iny(n| ® In) (n], we find that

Epa(@pq) < ﬁlog2 éTr [(7211))‘1] - 28)
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We refer the reader to Supplementary Section 3B for a detailed deriva-
tion. Thus, we find that the following rate upper bound holds for the
secret-key-agreement protocol %, . forall d € N:

Rpe < ﬁlogziTr[@ff))‘x] lo gz(1 pr )

Since thisbound holdsforall d e N\, we cantake the limitd > «.and then
arrive at the following upper bound:
PSP ( 1 ))
na-1 N\1-6,-¢

(30)

n(a 1) (29)

o < lim inf (1 tog, 57 [(75”)']

2a 1
= Dl + s loga 175 ).

Intheabove, we again applied the Szeg6 theorem**®to conclude that

lim —logzéTr [(7?1))“] =

d-oo O

Do(pllu). (€1)]

We also used the fact that llm 64 = 0, which is a consequence of equa-
tion (25). Thebound in the Tast line only depends on the error e of the
original protocol . and the Rényi relative entropy

Dple) i= 2108, [ dop(@ute)™ G2

As such, it is a uniform upper bound, applying to all n-round
secret-key-agreement protocols that generate a private state of rate
R, .and with error . Now noting that the n-shot secret-key-agreement
capacity P_ (N, n,¢) is defined as the largest rate R, that can be
achieved using the channel ; a total of n times along with classical
communication for free, while allowing for e error, it follows from the
uniformbound in equation (30) that

P.(m8) < Dy(ple) + 22 logy (11 ), (33)

holding for all « >1. Remembering that the strong converse
secret-key-agreement capacity is defined as

PL(N,) := sup lim sup P.(N,,n,é) (34)
£€(0,1) n—oo
we take the limit n > e to find that
1
PLv,) < sup limsu { u)+ ———lo, ( )}
M) ge((f’u m sup «(Pllu) n(a D o8\ 1 55
= Dy(pl|w).

This upper bound holds for all & > 1. Thus, we can finally take thea > 1

limitand use abasic property of the Rényi relative entropy* to conclude
the desired upper bound:
PL(V) < lim Do (pllu) = D(plw)- (36)

This concludes the proof of the capacity formula (equation (4)) for the
BDC. The argument required to establish its multimode generaliza-
tion (equation (9)) is very similar, with the only substantial technical
difference being the application of the multi-index Szeg6 theorem*®
(see Supplementary Section 3C for details).
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