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Abstract: The Kähler potentials of modular symmetry models receive unsuppressed

contributions which may be controlled by a flavor symmetry, where the combination of the

two symmetry types is referred to as eclectic flavor symmetry. After briefly reviewing the

consistency conditions of eclectic flavor symmetry models, including those with generalised

(g)CP, we perform a comprehensive bottom-up study of eclectic flavor symmetry models

based on Ω(1) ∼= ∆(27) ⋊ T ′, consisting of the flavor symmetry ∆(27) in a semi-direct

product with the modular symmetry T ′. The modular transformations of different ∆(27)

multiplets are given by solving the consistency condition. The eight nontrivial singlets

of ∆(27) are related by T ′ modular symmetry, and they have to be present or absent

simultaneously in any Ω(1) model. The most general forms of the superpotential and Kähler

potential invariant under Ω(1) are discussed, and the corresponding fermion mass matrices

are presented. Based on the eclectic flavor group Ω(1), two concrete lepton models which

can successfully describe the experimental data of lepton masses and mixing parameters

are constructed. For the two models without gCP, all six mixing parameters vary in small

regions. A nearly maximal atmospheric mixing angle θ23 and Dirac CP phase δCP are

obtained in the first model. After considering the compatible gCP symmetry and the
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assumption of ℜτ = 0 in the first model, the µ− τ reflection symmetry is preserved in the

charged lepton diagonal basis. As a consequence, the atmospheric mixing angle and Dirac

CP phase are predicted to be maximal, and two Majorana CP phases are predicted to be π.
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1 Introduction

The modular flavor symmetry is a promising approach to address the flavor puzzle of

the standard model (SM) [1]. The superpotential is strongly constrained by the modular

symmetry and all higher-dimensional operators are unambiguously fixed in the limit of

unbroken supersymmetry. In particular, the modular symmetry enforces the Yukawa

couplings and fermion mass matrices to be modular forms which are holomorphic functions

of the complex modulus τ . The modular flavor symmetry has been extensively studied from

the bottom-up approach, see the recent review [2] and references therein for more details.

The modular flavor symmetry allows one to construct quite predictive fermion mass models,

all the lepton masses and mixing parameters can be described only in terms of six real free
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parameters in the known minimal model [3]. It is remarkable that the modular invariant

models exhibit a universal behavior around the fixed points, and the scaling of fermion

masses and mixing parameters is independent of the details of the theory [4, 5]. However,

the Kähler potential is less constrained by modular symmetry, the most general Kähler

potential compatible with modular symmetry is of the following form [6, 7],

K = (−iτ + iτ̄)−kψ
(

ψ†ψ
)

1
+

∑

n,r1,r2

c(n,r1,r2)(−iτ + iτ̄)−kψ+n
(

ψ†Y (n)†
r1

Y (n)
r2

ψ
)

1
, (1.1)

where ψ stands for a generic matter field multiple with modular weight kψ, and Y
(n)

r is a

weight n 6= 0 modular form in the representation r of the finite modular group. Usually only

the first term of eq. (1.1) is taken, this is the so-called minimal Kähler potential. However,

we see that the Kähler potential generally has a lot of terms and the couplings c(n,r1,r2) are

not suppressed. Consequently these additional terms can be as important as the first term,

and thus the predictive power of modular flavor symmetry would be reduced [6].

On the other hand, the modular symmetry has been studied in the top-down approach

motivated by string theory, and models with modular symmetry have been constructed

in heterotic orbifolds [8, 9] and magnetized toroidal compactifications [10–16]. It is found

that the modular symmetry and traditional flavor symmetry appear together in top-down

constructions. This leads to the concept of eclectic flavor group [17, 18], and it has been

developed in a series of papers [8, 9, 17–20]. The eclectic flavor group is a maximal extension

of the traditional flavor group by finite modular group, and certain consistency conditions

have to be fulfilled in order to consistently combine modular symmetry with traditional

flavor symmetry. The scheme of eclectic flavor group is more predictive than the finite

modular group and the traditional flavor group alone, and it combines the advantages of

both approaches, in which the superpotential and the Kähler potential would be severely

restricted. In particular, the Kähler potential would be constrained to be the minimal

form plus higher order corrections suppressed by powers of 〈Φ〉/Λ, where Λ denotes the

cutoff scale and 〈Φ〉 represents the vacuum expectation value (VEV) of flavons breaking

the traditional flavor symmetry. It is known that Kähler potential is suppressed by powers

of 〈Φ〉/Λ in the traditional flavor symmetry models [21–25]. Flavon fields are necessary in

eclectic flavor models to break the traditional flavor symmetry, otherwise the unbroken flavor

group would constrain the fermion mixing matrix to be the unit matrix up to possible row

and column permutations. The eclectic flavor group considered here is a nontrivial product

of the modular symmetry and traditional flavor symmetry. The choices of such eclectic

symmetries are quite restrictive, with only three choices of flavor group Z3 × Z3, ∆(27)

and ∆(54) catalogued so far allowing for a non-trivial eclectic extension with a CP-like

transformation [17, 18]. This is unlike the quasi-eclectic flavor symmetry which is the direct

product of a finite modular symmetry and a traditional flavor symmetry [26], where the

modular and traditional flavor groups can be freely chosen, but the Kähler potential is

also under control due to the presence of traditional flavor symmetry. Moreover, the first

string-derived model based on the eclectic flavor group Ω(2) ∼= [1944, 3448] consisting of the

traditional flavor group ∆(54), the finite modular group T ′ and a Z
R
9 R-symmetry, has been

constructed, and it can give a successful fit of flavor in both the quark and lepton sectors [27].
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The eclectic flavor group opens a new approach to understand the flavor puzzle of

SM. In the present work, we shall study the eclectic flavor group Ω(1) ∼= [648, 533] in a

bottom-up way, here we adopt the naming scheme of GAP [28] and the group order of Ω(1)

is 648. The eclectic group Ω(1) is the semi-direct product of the traditional flavor group

∆(27) with the finite modular group Γ′
3

∼= T ′. If the generalized CP (gCP) symmetry is

included, the eclectic flavor group Ω(1) would be enlarged to [1296, 2891] [17]. The finite

modular group should be a subgroup of the automorphism group of the traditional flavor

group in the scheme of eclectic flavor symmetry. The outer automorphism group of ∆(27)

is GL(2, 3) which really contains the finite modular group T ′ as a subgroup. We find that

the eight nontrivial singlet representations of ∆(27) transform into each other under T ′

modular symmetry. Hence there must be seven other fields in the remaining nontrivial

singlet representations of ∆(27), if a Ω(1) eclectic flavor model contains a field which is

a nontrivial singlet of ∆(27). Consequently the Ω(1) eclectic flavor symmetry is more

restrictive than ∆(27) flavor symmetry alone and terms allowed by the modular group may

be forbidden by the traditional flavor group and vice versa. We shall give the most general

form of the superpotential and Kähler potential invariant under Ω(1). The deviations from

the canonical kinetic term are found to be suppressed by the VEVs of flavons. Furthermore,

we shall construct two concrete lepton models with Ω(1) eclectic flavor symmetry. The field

content, the modular weights and representations of the fields are assigned at will, while

they are derived from the underlying geometry in top-down models. Since there are three

generations of quarks and leptons, the matter fields can be assigned to triplets/anti-triplets

or trivial singlets of ∆(27), but nontrivial singlets would have to form a reducible octet, as

mentioned above, leading to too many families.

The rest of this paper is organized as follows: we review the formalism of eclectic

flavor group in section 2. The eclectic flavor group Ω(1) is discussed in section 3. The

modular transformation and flavor symmetry transformation are closely related through the

consistency condition in the eclectic flavor group, and the T ′ transformations of different

∆(27) multiplets are determined by solving the consistency condition. Moreover, the gCP

transformation matrices are fixed. In section 4 we present the most general form of the

Ω(1) invariant superpotential and Kähler potential for the fermion masses. Two concrete

example models are presented in section 5, in which the light neutrino masses are generated

by the Weinberg operator and type I seesaw mechanism, respectively. We summarize

our results and give the conclusion in section 6. The appendix A and appendix B are

for the group theory of ∆(27) and T ′ respectively, and we present the modular forms of

level 3 in appendix C. The superpotential for Majorana fermion mass is derived in an

alternative method by firstly considering T ′ modular symmetry, then ∆(27) flavor symmetry

in appendix D.

2 Formalism of eclectic flavor group

We shall recapitulate the scheme of eclectic flavor group in this section. The modular group

SL(2,Z) denoted as Γ is the group of two dimensional matrices with integer entries and
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unit determinant,

SL(2,Z) =











a b

c d





∣

∣

∣

∣

∣

ad− bc = 1, a, b, c, d ∈ Z







. (2.1)

The modular group is an infinite discrete group generated by the two elements S and T

with

S =





0 1

−1 0



 , T =





1 1

0 1



 , (2.2)

which satisfy the following relations

S4 = (ST )3 = 12, S2T = TS2 , (2.3)

where 12 denotes the 2-by-2 unit matrix. Under the action of a modular transformation,

the complex modulus τ and a generic matter field multiplet ψ transform as follow [1]

τ
γ−→ γτ ≡ aτ + b

cτ + d
, ψ

γ−→ (cτ + d)−kψρ(γ)ψ, γ =





a b

c d



 ∈ SL(2,Z) , (2.4)

where kψ is the modular weight of ψ and ρ is a unitary representation of the finite modular

group ΓN ≡ Γ/ ± Γ(N) or its double covering Γ′
N ≡ Γ/Γ(N), and Γ(N) is the so-called

principal congruence subgroup of level N . For N ≤ 5, the defining relations of ΓN and Γ′
N

are given by [1, 29]

ΓN =
{

S, T
∣

∣

∣S2 = (ST )3 = TN = 1
}

,

Γ′
N =

{

S, T
∣

∣

∣S4 = (ST )3 = TN = 1, S2T = TS2
}

. (2.5)

Additional relations are needed to render the group finite for N ≥ 6 [30]. Notice that the

representation matrices ρ(S) and ρ(T ) should also satisfy the defining relations of ΓN and

Γ′
N in eq. (2.5). Modular invariance constrains the Yukawa couplings to be modular forms

which are holomorphic functions of τ . The level N and integer (even) weight kY modular

forms Y (kY )(τ) can be arranged into multiplets of Γ′
N (ΓN ) [1, 29]:

Y (kY )(τ)
γ−→ Y (kY ) (γτ) = (cτ + d)kY ρY (γ)Y (kY )(τ) , (2.6)

where ρY (γ) is a unitary representation of Γ′
N (ΓN ).

The eclectic flavor group is a nontrivial product of modular group and the traditional

flavor group denoted as Gf . The modulus τ as well as modular form Y (kY )(τ) is invariant

under the flavor group Gf , and the flavor transformation of the matter multiplet ψ is

ψ
g−→ ρ(g)ψ, g ∈ Gf , (2.7)

where ρ(g) is a unitary representation of Gf . In order to consistently combine a finite

modular group with a traditional flavor group, certainly consistency condition has to be

fulfilled [17]. Let us first perform a modular transformation γ ∈ Γ, subsequently a traditional

flavor transformation g and last perform the inverse modular transformation γ−1. Since
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the modulus τ is invariant under this chain of transformations, the resulting transformation

should be another traditional flavor symmetry transformation g′ [17], i.e.

ρ(γ)ρ(g)ρ−1(γ) = ρ(g′), g, g′ ∈ Gf , γ ∈ Γ . (2.8)

This is the consistency condition between traditional flavor group and finite modular

group. Eq. (2.8) implies that the modular transformation γ maps the traditional group

element g into another element g′. Therefore eq. (2.8) defines a homomorphism of the

traditional flavor group Gf . Furthermore, the modular transformation is bijective. Hence

modular transformation is an automorphism of the traditional group Gf . Indeed the

possible representation matrices of the finite modular group Γ′
N form a representation of

the automorphism group Aut(Gf ) of the traditional flavor group Gf , i.e.

ρ(γ)ρ(g)ρ−1(γ) = ρ(uγ(g)) , ∀g ∈ Gf , (2.9)

where ρ(γ) represents the automorphism uγ : Gf → Gf . If uγ is the trivial identity

automorphism with uγ = 1 for any modular transformation γ so that uγ(g) = g, the modular

symmetry transformation would commute with the flavor symmetry transformation and

consequently the eclectic flavor group is the direct product Gf × ΓN or Gf × Γ′
N [17]. Hence

one can freely choose both ΓN , Γ′
N and Gf , the resulting flavor model would be more

complex than the traditional flavor symmetry models and modular models. If uγ is an

inner automorphism of Gf , the modular symmetry transformation ρ(γ) would coincide with

certain flavor symmetry transformation besides the automorphy factor (cτ + d)−kψ . Hence

uγ is required to be outer automorphism of Gf in the paradigm of eclectic flavor group [17].

As a consequence, the mathematical structure of the group comprising the traditional flavor

symmetry Gf and the finite modular group Γ′
N (ΓN ) is in general a semi-direct product

Gf ⋊ Γ′
N (Gf ⋊ ΓN ). Since the finite modular groups ΓN and Γ′

N can be generated by the

two generators S and T , it is sufficient to only discuss the two outer automorphisms uS
and uT and the consistency condition in eq. (2.9) reduces to

ρ(S) ρ(g) ρ−1(S) = ρ(uS(g)), ρ(T ) ρ(g) ρ−1(T ) = ρ(uT (g)) . (2.10)

Since ρ(S) and ρ(T ) are representation matrices of the finite modular group, the outer

automorphisms uS and uT should also satisfy the multiplication rules eq. (2.5) of the finite

modular group Γ′
N (ΓN ):

(uS)Ns = (uT )N = (uS ◦ uT )3 = 1, (uS)2 ◦ uT = uT ◦ (uS)2 , (2.11)

with Ns = 4 for Γ′
N and Ns = 2 for ΓN , additional relations are necessary for level N ≥ 6.

Therefore the finite modular group Γ′
N (ΓN ) must be a subgroup of the full automorphism

group of the traditional flavor group Gf .

2.1 Eclectic flavor group and gCP

The modular symmetry group Γ can be consistently combined with the gCP symmetry.

Then a new generator K∗ corresponding to gCP transformation could be introduced and

the modular group Γ ∼= SL(2,Z) is enhanced to Γ∗ ∼= GL(2,Z) [31]:

Γ∗ =
{

τ
S−→ −1/τ, τ

T−→ τ + 1, τ
K∗−→ −τ̄

}

, (2.12)
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where the action of the CP transformation K∗ on the modulus τ is represented by the matrix

K∗ =





1 0

0 −1



 . (2.13)

As a consequence, the action of Γ∗ on the complex modulus τ is given by





a b

c d



 ∈ Γ∗ :



















τ →
aτ + b

cτ + d
for ad− bc = 1 ,

τ →
aτ̄ + b

cτ̄ + d
for ad− bc = −1 .

(2.14)

On the other hand, the CP transformation acts on the matter field and the modular form

multiplets as

ψ(x)
K∗−→ ρ(K∗)[ψ†(t,−x)]T , Y (τ)

K∗−→ Y (−τ̄) = ρ(K∗)Y ∗(τ) , (2.15)

where the unitary matrix ρ(K∗) is the gCP transformation matrix of a generic matter field

ψ. Note that the obvious action of CP on the possible spinor indices has been suppressed

in eq. (2.15). As the CP transformation K∗ is order 2, then one can find

ρ(K∗) ρ∗(K∗) = 1 or equivalently ρ∗(K∗) = ρ−1(K∗) . (2.16)

The consistency between the modular symmetry and gCP symmetry requires the following

consistency condition has to be satisfied [31, 32]

ρ(K∗)ρ∗(γ)ρ−1(K∗) = ρ(u(γ)), γ ∈ Γ , (2.17)

where u(γ) denotes an outer automorphism of the modular group with

γ =





a b

c d



 → u(γ) = K∗γK
−1
∗ =





a −b
−c d



 . (2.18)

It is easy to check that u(S) = S−1 and u(T ) = T−1. It is sufficient to impose the consistency

condition in eq. (2.17) on the generators S and T of the modular group Γ, then one can

obtain [31–33]

ρ(K∗)ρ∗(S)ρ−1(K∗) = ρ−1(S), ρ(K∗)ρ∗(T )ρ−1(K∗) = ρ−1(T ) . (2.19)

If one works in the basis where both representation matrices ρ(S) and ρ(T ) are unitary and

symmetric, ρ(K∗) would reduce to the canonical CP transformation,

ρ(K∗) = 1 , (2.20)

where an arbitrary overall phase is omitted.

Furthermore, it is known that the following consistency condition has to be satisfied

when combining the traditional flavor Gf with the gCP symmetry [34–38]:

ρ(K∗)ρ∗(g)ρ−1(K∗) = ρ(uK∗(g)) , ∀g ∈ Gf , (2.21)

– 6 –
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where uK∗ is an automorphism of the traditional flavor group Gf . Furthermore, the CP

transformation ρ(K∗) with order 2 must be subject to the consistency condition in eq. (2.19).

Consequently, the automorphisms uK∗ , uS and uT of the traditional flavor group Gf should

satisfy the following multiplication rules

(uS)Ns = (uT )N = (uS ◦ uT )3 = 1, (uS)2 ◦ uT = uT ◦ (uS)2 ,

(uK∗)2 = 1, uK∗ ◦ uS ◦ uK∗ = u−1
S , uK∗ ◦ uT ◦ uK∗ = u−1

T , (2.22)

for N ≤ 5 and additional multiplication rules should be imposed for N > 6.

From the general formalism sketched above, one could find all possible corresponding

eclectic flavor groups and gCP for a given traditional flavor group Gf . It is necessary to

find out all outer automorphisms of the traditional flavor group Gf and determine whether

there exist particular outer automorphisms uS , uT and uK∗ satisfying the multiplication

rules in eq. (2.22). For a field multiplet transforming in the representation ρ(g) of the

traditional flavor group Gf , one cannot freely assign the modular transformation of the fields

as in modular symmetry alone. Nevertheless, the modular transformation matrices ρ(S),

ρ(T ) and the gCP transformation ρ(K∗) should be determined by solving the consistency

conditions in eqs. (2.10), (2.19) and (2.21). In general, the representation matrices ρ(S),

ρ(T ) span a reducible representation of the finite modular group Γ′
N (ΓN ). In the following,

we shall study the eclectic flavor group Ω(1) which is semi-direct product of the traditional

flavor group ∆(27) with the finite modular group T ′.

3 The eclectic flavor group Ω(1) ∼= ∆(27) ⋊ T ′

In the present work, we shall consider the eclectic flavor group Ω(1) which is the extension

of the traditional flavor symmetry ∆(27) by finite modular group T ′. The mathematical

structure of the group Ω(1) arising from the combination of the flavor symmetry ∆(27) and

the T ′ modular symmetry is a semi-direct product of the form Ω(1) ∼= ∆(27) ⋊ T ′. The

group theories of the traditional flavor group ∆(27) and the finite modular group T ′ are

given in appendix A and appendix B, respectively. The finite modular group compatible

with ∆(27) must be generated by the outer automorphisms of ∆(27). We find that the

outer automorphism group of ∆(27) is GL(2, 3):1

Out (∆(27)) ∼= Aut (∆(27)) /Inn (∆(27)) ∼= GL(2, 3) , (3.1)

where Aut (∆(27)) and Inn (∆(27)) represent the automorphism group and inner automor-

phism group of ∆(27), respectively. Their group ID in GAP system are Aut (∆(27)) ∼=
[432, 734] and Inn (∆(27)) ∼= Z3 × Z3

∼= [9, 2]. The group GL(2, 3) contains two finite

modular groups Γ2
∼= S3 and Γ′

3
∼= T ′ ∼= SL(2, 3) which can be generated by the outer

automorphisms. This implies that the traditional flavor group ∆(27) can be extended to

eclectic flavor group in two ways: ∆(27) ⋊ S3 or ∆(27) ⋊ T ′ [17]. In the present work, we

are concerned with the traditional flavor group ∆(27) and its eclectic extension by Γ′
3

∼= T ′,

and the scenarios with/without gCP will be studied.

1GL(2, 3) is the group of all 2 × 2 invertible matrices whose elements are from the three-member ring Z3.

– 7 –
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3.1 Finite modular group Γ′

3
∼= T ′ and gCP

The two outer automorphisms uS and uT can be taken to be [17]

uS(A) = B2A, uS(B) = B2A2, uT (A) = BA, uT (B) = B , (3.2)

where A and B are the generators of ∆(27), see the appendix A for the group theory

of ∆(27). One can check that the outer automorphisms uS and uT in eq. (3.2) satisfy

the multiplication rules in eq. (2.11) with Ns = 4 and N = 3. As a consequence, the

∆(27) flavor symmetry could be extended by the finite modular group is Γ′
3

∼= T ′ in the

paradigm of eclectic flavor group. If gCP symmetry is considered further, the corresponding

automorphism uK∗ should be included. The three automorphisms uS , uT and uK∗ should

satisfy the following multiplication rules

(uS)4 = (uT )3 = (uS ◦ uT )3 = 1, (uS)2 ◦ uT = uT ◦ (uS)2 ,

(uK∗)2 = 1, uK∗ ◦ uS ◦ uK∗ = u−1
S , uK∗ ◦ uT ◦ uK∗ = u−1

T , (3.3)

where the outer automorphism uK∗ acts on the generators A and B as follows

uK∗(A) = A2B, uK∗(B) = A2BA . (3.4)

Then the resulting eclectic flavor group is [1296, 2891], it has 1296 group elements. Moreover,

the gCP transformation matrix ρr(K∗) must satisfy eq. (2.16) and the consistency condition

in eq. (2.19). In our basis given in eq. (B.4), the group generators S and T are represented

by symmetric matrices for all irreducible representations of T ′. As a consequence, the

expressions of ρr(K∗) are identity matrices for all irreducible representations up to an

overall phase, i.e.

ρr(K∗) = 1r, r = 1, 1′, 1′′, 2, 2′, 2′′, 3 . (3.5)

The modular forms of level N = 3 up to weight 10 are given in appendix C. From the

discussion of appendix C, we find that the CP transformation acts on the modular form

multiplets Y
(k)

r (τ) as follow [31–33]

Y (kY )
r (τ)

K∗−→ Y (kY )
r (−τ̄) =

(

Y (kY )
r (τ)

)∗
, (3.6)

where Y
(kY )

r (τ) represents the weight kY and level 3 modular multiplets in the irreducible

representation r of the finite modular group T ′.

3.2 T ′ modular transformations of ∆(27) multiplets

Automorphisms are mappings from a group into itself, and they can be divided into inner

automorphisms and outer automorphisms. It is known that all inner automorphism maps

each conjugacy class into itself, while certain conjugacy classes are mapped into different

ones by the outer automorphisms. In order to determine the explicit form of the modular

transformations ρ(S), ρ(T ) and the gCP transformation ρ(K∗) corresponding to the outer

automorphisms uS , uT and uK∗ , one needs to know the actions of the three automorphisms

uS , uT and uK∗ on the conjugacy classes and representations of ∆(27). It is necessary to
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consider how these three automorphisms act on the character table of ∆(27), the results

are summarized in table 6.

Firstly, we discuss how the three automorphisms uS , uT and uK∗ act on the eleven

conjugacy classes of ∆(27). From eqs. (3.2) and (A.4), we see that the outer automorphism

uS : (A, B) → (B2A, B2A2) acts on the all conjugacy classes elements of ∆(27) as

uS : 3C
(3)
3 → 3C

(4)
3 → 3C

(6)
3 → 3C

(2)
3 → 3C

(3)
3 , 3C

(8)
3 → 3C

(1)
3 → 3C

(7)
3 → 3C

(5)
3 → 3C

(8)
3 ,

(3.7)

and the elements of the remaining three conjugacy classes are mapped to the elements of

the same conjugacy classes under the action of the automorphism uS . Now let us discuss

the action of the outer automorphism uT on the eleven conjugacy classes of ∆(27). From

eqs. (3.2) and (A.4) we find that the results of the outer automorphism uT acting on the

conjugacy classes of ∆(27) are given by

uT : 3C
(3)
3 → 3C

(5)
3 → 3C

(4)
3 → 3C

(3)
3 , 3C

(1)
3 → 3C

(2)
3 → 3C

(6)
3 → 3C

(1)
3 . (3.8)

Furthermore, the outer automorphism uT acting on the other five conjugacy classes of ∆(27)

will make them unchanged. If gCP symmetry is imposed, we need to consider the actions

of the outer automorphism uK∗ on the eleven conjugacy classes. We find that the outer

automorphism uK∗ acts on the conjugacy classes as

uK∗ : 1C
(1)
3 ↔ 1C

(2)
3 , 3C

(1)
3 ↔ 3C

(5)
3 , 3C

(2)
3 ↔ 3C

(3)
3 , 3C

(4)
3 ↔ 3C

(6)
3 , (3.9)

where the symbol “↔” denotes that the outer automorphism uK∗ interchanges the two

conjugacy classes on the two sides of it. The remaining three conjugacy classes of ∆(27)

are invariant under uK∗ .

Secondly, let us show how the two automorphisms uS and uT act on the eleven

irreducible representations of ∆(27). The consistency condition eq. (2.9) may be understood

as the action of an outer automorphism uγ on an irreducible representation ρ of traditional

flavor symmetry as follow

uγ : ρ → ρ′, with ρ′ = ρ ◦ uγ . (3.10)

Then we have

ρ′(u−1
γ (g)) = ρ(g) . (3.11)

This implies that automorphisms are symmetries of the character table. The action of the

automorphism on the group elements and irreducible representations is to exchange the

rows and columns of the character table. Eq. (3.10) indicates that a modular transformation

connects the irreducible representation ρ of traditional flavor symmetry to another irreducible

representation ρ′ = ρ ◦ uγ . If ρ′ 6= ρ, then ρ does not contain all representations that are

connected via the outer automorphism uγ , there is no modular transformation that fulfils the

consistency condition (2.9). To implement this modular transformation, the representation

ρ therefore has to be enlarged by the missing representations, i.e. we should extend the

irreducible representation ρ to a reducible representation which contains the irreducible

representations ρ and ρ′ at the same time. This is the reason why we have to define
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modular transformation on the reducible representation of ∆(27) sometimes, as shown in

the following. Now let us give the actions of outer automorphisms uS and uT on irreducible

representations of ∆(27) and show how to choose the representations in which modular

transformation fulfils the consistency conditions eq. (2.10). The outer automorphism uS
acts on the eight nontrivial singlet irreducible representations as

uS : 10,1 → 12,2 → 10,2 → 11,1 → 10,1 , 11,0 → 11,2 → 12,0 → 12,1 → 11,0 . (3.12)

In a similar way, we find that the outer automorphism uT acts on the eight nontrivial singlet

representations as

uT : 10,1 → 11,1 → 12,1 → 10,1, 10,2 → 12,2 → 11,2 → 10,2, 11,0 → 11,0, 12,0 → 12,0 .

(3.13)

The action of the automorphisms uS and uT on the character table of ∆(27) is shown in

table 6. The automorphisms uS and uT act on the character table by interchanging its the

columns and rows, such that the table keeps invariant, as an outer automorphism should

do.

In short, the eight nontrivial one-dimensional representations 1(r,s) of ∆(27) with

r, s 6= 0 are related by the T ′ modular symmetry, in order to fulfil the consistency con-

dition eq. (2.10) with uS and uT given by eq. (3.2), the eight nontrivial one-dimensional

representations must be extended to a eight-dimensional reducible representation

8 = 10,1 ⊕ 10,2 ⊕ 11,0 ⊕ 11,1 ⊕ 11,2 ⊕ 12,0 ⊕ 12,1 ⊕ 12,2. (3.14)

Without loss of generality, the eight-dimensional reducible representation matrices ρ8(A)

and ρ8(B) can take the following form

ρ8(A) = diag(ρ10,1(A), ρ10,2(A), ρ11,0(A), ρ11,1(A), ρ11,2(A), ρ12,0(A), ρ12,1(A), ρ12,2(A))

= diag(1, 1, ω, ω, ω, ω2, ω2, ω2) ,

ρ8(B) = diag(ρ10,1(B), ρ10,2(B), ρ11,0(B), ρ11,1(B), ρ11,2(B), ρ12,0(B), ρ12,1(B), ρ12,2(B))

= diag(ω, ω2, 1, ω, ω2, 1, ω, ω2) . (3.15)

Analogously the outer automorphisms uS and uT map the trivial singlet representation

10,0 to itself. Furthermore, the two three-dimensional representations 3 and 3̄ of ∆(27) are

invariant under the actions of uS and uT . Hence the three irreducible representations 10,0,

3 and 3̄ need not be enlarged to other reducible representations to implement the outer

automorphisms uS and uT . In order to obtain the solutions of the consistency conditions

in eq. (2.10) for the outer automorphisms in eq. (3.2), we should find the solutions of the

following equalities

ρr(S) ρr(A) ρ−1
r (S) = ρr(B2A), ρr(S) ρr(B) ρ−1

r (S) = ρr(B2A2) ,

ρr(T ) ρr(A) ρ−1
r (T ) = ρr(BA), ρr(T ) ρr(B) ρ−1

r (T ) = ρr(B) , (3.16)

where r can be the three irreducible representations 10,0, 3 and 3̄, and the reducible

eight-dimensional representation 8 in eq. (3.14) of ∆(27). As elements S and T are the
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generators of the finite modular group Γ′
3, then the solutions of ρr(S) and ρr(T ) must

satisfy the multiplication rules in eq. (B.1), i.e.

ρ4
r(S) = ρ3

r(T ) = [ρr(S)ρr(T )]3 = 1r, ρ2
r(S)ρr(T ) = ρr(T )ρ2

r(S) . (3.17)

For the trivial singlet r = 10,0, it is easy to see ρ10,0(S) = 1 and ρ10,0(T ) = 1 , ω orω2.

As a consequence, a field invariant under ∆(27) should be T ′ singlet 1, 1′ or 1′′. For the

reducible octet representation r = 8 of ∆(27), we find that three solutions for ρr(S) and

ρr(T ) which fulfill both the consistency conditions in eq. (3.16) and the multiplication rules

in eq. (3.17). In the basis of eq. (3.15), the three solutions of ρr(S) and ρr(T ) take the

following form:

ρ8k
(S) =







































0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0







































, ρ8k
(T ) = ωk







































0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0







































, (3.18)

with k = 0, 1, 2. For the three solutions, the eight-dimensional representation matrices

ρ8k
(S) and ρ8k

(T ) generate the finite modular group Γ′
3

∼= T ′ and the corresponding

eight-dimensional representations decompose into different irreducible representations of T ′

as follows:

8k = 1k ⊕ 2[k+1] ⊕ 2[k+2] ⊕ 3 , (3.19)

in notation of appendix B. The representation matrices of the reducible octet 8k can be

made block-diagonal by performing the similarity transformations Ω8k
ρ8k

(γ)Ω†
8k

with the

unitary matrices Ω8k
given by

Ω8k
=

Uk8
2
√

6







































√
3

√
3

√
3

√
3

√
3

√
3

√
3

√
3

2ω −2ω 0 2ω2 −2 0 2 −2ω2

−
√

2
√

2 −i
√

6 −
√

2
√

2 i
√

6 −
√

2
√

2

−
√

2ω
√

2ω i
√

6ω −
√

2ω
√

2ω −i
√

6ω −
√

2ω
√

2ω

−2 2 0 −2ω2 2ω 0 −2ω 2ω2

−ω2 −ω2 3ω2 −ω2 −ω2 3ω2 −ω2 −ω2

2ω 2ω 0 2 2ω2 0 2ω2 2

2 2 0 2ω 2ω2 0 2ω2 2ω







































, (3.20)

with

U8 =





15 0

0 P



 , (3.21)
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where the matrix P is given in eq. (B.8). Using these similarity transformation, we can

obtain the decomposition of the octet Φ8k
= (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8)T into one singlet,

two doublets and one triplet of the finite modular symmetry T ′















































































1k : 1
2
√

2
(φ1 + φ2 + φ3 + φ4 + φ5 + φ6 + φ7 + φ8) ,

2[k+1] : 1
2
√

3





√
2
[

ω(φ1 − φ2) + ω2(φ4 − φ8) − φ5 + φ7
]

−φ1 + φ2 − i
√

3φ3 − φ4 + φ5 + i
√

3φ6 − φ7 + φ8



 ,

2[k+2] : 1
2
√

3





ω
(

−φ1 + φ2 + i
√

3φ3 − φ4 + φ5 − i
√

3φ6 − φ7 + φ8

)

√
2
[−φ1 + φ2 − ω2(φ4 − φ8) + ω(φ5 − φ7)

]



 ,

3 : Pk

2
√

6











−ω2(φ1 + φ2 − 3φ3 + φ4 + φ5 − 3φ6 + φ7 + φ8)

2
[

ω(φ1 + φ2) + φ4 + φ8 + ω2(φ5 + φ7)
]

2
[

φ1 + φ2 + ω(φ4 + φ8) + ω2(φ5 + φ7)
]











.

(3.22)

Furthermore, for the three-dimensional representation 3 of ∆(27) in eq. (A.5), the modular

transformation ρr(S) and ρr(T ) which must fulfil the consistency conditions in eq. (3.16)

and the multiplication rules in eq. (3.17) are determined to be

ρ3k
(S) =

i√
3











ω2 ω ω

ω ω2 ω

ω2 ω2 1











, ρ3k
(T ) = ωk











ω 0 0

0 ω 0

0 0 1











, (3.23)

for k = 0, 1, 2. The three dimensional representation ρ3k
(S) and ρ3k

(T ) generate the finite

modular group Γ′
3

∼= T ′, and it can be reduced to the direct sum of a one-dimensional and

a two-dimensional irreducible representations of T ′,

3k = 1[k+1] ⊕ 2[k+2] . (3.24)

The reducible triplets Φ3k
= (φ1, φ2, φ3) transforming as ρ3k

under T ′ will decompose to one

singlet and one doublet of T ′, which can be obtained by performing the following similarity

transformation

Ω3k
=

1√
2











1 −1 0

0 0
√

2ω

1 1 0











. (3.25)

Then the corresponding irreducible singlet and doublet are given by

1[k+1] :
1√
2

(φ1 − φ2), and 2[k+2] :
1√
2





√
2ωφ3

φ1 + φ2



 . (3.26)

For the 3̄ representation, the compatible modular transformations ρr(S) and ρr(T ) are

denoted as ρ3̄k
(S) and ρ3̄k

(T ) which are the complex conjugate of ρ3k
(S) and ρ3k

(T ) in

eq. (3.23), respectively. The three reducible three-dimensional representations of T ′ are

labelled as 3̄k and we find the following decompositions

3̄k = 1[2−k] ⊕ 2[1−k] . (3.27)
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The corresponding irreducible singlet and doublet for the three reducible triplets 3̄k are all

given by the linear combinations

1[2−k] :
1√
2

(φ1 − φ2), and 2[1−k] :
1√
2





φ1 + φ2

−
√

2ω2φ3



 . (3.28)

Finally, we shall consider the action of the automorphism uK∗ on the eleven representations

of ∆(27). Note that the consistency condition eq. (2.21) may be read as a similarity

transformation between the representations ρ∗ and ρ◦uK∗ . Similar to the two automorphisms

uS and uT , we define the action of the outer automorphism uK∗ on representation as

uK∗ : ρ → ρ ◦ uK∗ . Following the discussion above, we find that the automorphism uK∗ in

eq. (3.4) acts on the irreducible representations of ∆(27) as

uK∗ : 10,1 ↔ 11,1, 10,2 ↔ 12,2, 11,0 ↔ 12,0, 3 ↔ 3̄ , (3.29)

and the other irreducible representations are invariant under the action of the outer

automorphism uK∗ . The action of the automorphism uK∗ on the conjugacy classes and

the representations of ∆(27) is shown in the table 6, and the character table of ∆(27) is

invariant under uK∗ . In order to obtain the solution of the gCP transformation ρ(K∗), one

should solve the following consistency conditions

ρr(K∗)ρ∗
r(S)ρ−1

r (K∗) = ρ−1
r (S), ρr(K∗)ρ∗

r(T )ρ−1
r (K∗) = ρ−1

r (T ), ρ∗
r(K∗) = ρ−1

r (K∗) ,

ρr(K∗)ρ∗
r(A)ρ−1

r (K∗) = ρr(A2B) , ρr(K∗)ρ∗
r(B)ρ−1

r (K∗) = ρr(A2BA) . (3.30)

The automorphism uK∗ in combination with the automorphism uS and uT implies that the

solutions of ρr(S), ρr(T ) and ρr(K∗) in the consistency conditions eq. (3.16) and eq. (3.30)

can be obtained in the representations 10,0, 3, 3̄ and 8 of ∆(27). The possible gCP

transformation acting on the fields Φ8k
which is the reducible octet representation 8 of

∆(27) is found to be of the following form

ρ8k
(K∗) =

















0 0 0 1

0 P ′
0 0

0 0 P ′ 0

1 0 0 0

















, with P ′ =











0 0 1

0 1 0

1 0 0











, (3.31)

up to an overall phase. For the representations 3k, the expressions of ρ3k
(K∗) are given by

ρ3k
(K∗) =











0 1 0

1 0 0

0 0 ω











. (3.32)

For the 3̄k representations, the CP transformation ρ3̄k
(K∗) takes the complex conjugate of

ρ3k
(K∗) in eq. (3.32). We see that the gCP transformation matrix ρ8k

(K∗) and ρ3k
(K∗) are

not diagonal, and the different nontrivial singlets of ∆(27) are related by gCP symmetry.
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4 Effective action invariant under Ω(1) eclectic flavor symmetry

As shown in eqs. (3.12), (3.13), the eight nontrivial singlets of ∆(27) are related by the T ′

modular symmetry. As a consequence, all the eight nontrivial singlets carrying the same

SM quantum numbers must be present or absent in a Ω(1) eclectic model. In other words,

if a field is assigned to a nontrivial singlet representation of ∆(27), then the Ω(1) eclectic

model has to contain other seven fields in the remaining nontrivial singlets of ∆(27) while

transforming in the same way under SM gauge group. Consequently the three generations

of quarks and leptons fields can only be assigned to triplets 3, 3̄ or trivial singlet 10,0

of ∆(27), and the Higgs fields can only be in 10,0 if no more Higgs fields are introduced.

Nevertheless, the flavons can be trivial singlet, triplet and reducible octet 8 of the traditional

flavor symmetry ∆(27). The left-handed (LH) quark/lepton doublet, the right-handed (RH)

quark/lepton fields and the flavon field are denoted as ψ, ψc and Φ, respectively. For

illustration, we assume that both ψ and ψc transform as 3 under ∆(27) while the Higgs Hu

and Hd are invariant under ∆(27). As shown in eqs. (3.23), (3.24), the T ′ transformation

of both ψ and ψc would be the reducible triplet 30, 31 or 32, in the following 30 is chosen

as an example. The results for other assignments of matter fields can be fixed analogously.

In the following, we shall preform a general analysis for the superpotential W and the

Kähler potential K invariant under the eclectic flavor group Ω(1) ∼= ∆(27) ⋊ T ′, and the

framework of N = 1 global supersymmetry is adopted. We assume that the level 3 modular

form multiplets at weight kY comprise all possible irreducible multiplets of T ′, i.e.

Y
(kY )

1 (τ) = Y1, Y
(kY )

1′ (τ) = Y2, Y
(kY )

1′′ (τ) = Y3 , (4.1)

Y
(kY )

2 (τ) =





Y4

Y5



 , Y
(kY )

2′ (τ) =





Y6

Y7



 , Y
(kY )

2′′ (τ) =





Y8

Y9



 , Y
(kY )

3 (τ) =











Y10

Y11

Y12











.

If certain modular multiplets are absent, one can set the corresponding modular forms Yi
to be zero. If there are several linearly independent modular form multiplets at a given

weight, their contributions to the effective action are of similar form and they can be

straightforwardly read out from the general results in the following subsections. We shall

firstly give the general form of the superpotential which is a holomorphic function of the

matter fields and flavons and the couplings are generally expressed in terms of modular

forms. Then we shall perform a detailed analysis of the Kähler potential.

4.1 Superpotential

Given the assignment ψ,ψc ∼ (3,30),2 from the Kronecker products of ∆(27) in eq. (A.6),

we find that the flavon Φ ≡ (φ1, φ2, φ3)T transforming as 3 under ∆(27) must be introduced

to obtain Ω(1) invariant Yukawa superpotential, and it should form a T ′ reducible triplet

3k. The modular transformation of Φ is taken to be 30 for example. Here the flavon Φ with

2In the notation (r, r′), the two representations r and r′ refer to the transformations under ∆(27) and

T ′, respectively. For any ∆(27) representation r, the consistency condition of eq. (3.16) allows to fix the

modular transformation in the representation r′, as discussed in section 3.
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modular weight kΦ can be understood as a single flavon or combination of several flavons.

Then the superpotential for the charged lepton/quark field ψ can be written as

WD =
1

Λ

∑

r,s

cr,s

(

Y (kY )
r Φψcψ

)

(10,0,1),s
Hu/d , (4.2)

where kY = kψ + kψc + kΦ, the subscripts 10,0 and 1 refer to trivial singlet of ∆(27)

and T ′ respectively, and one has to sum over all modular multiplets at weight kY and

all independent singlet contractions s. Invariance under the action of ∆(27) requires WD

should be of the following form

WD =
1

Λ

∑

r

(

Y (kY )
r

[

cr,1(ψc1ψ1φ1 + ψc2ψ2φ2 + ψc3ψ3φ3)

+ cr,2(ψc1ψ2φ3 + ψc1ψ3φ2 + ψc2ψ3φ1 + ψc2ψ1φ3 + ψc3ψ1φ2 + ψc3ψ2φ1)

+ cr,3(ψc1ψ2φ3 − ψc1ψ3φ2 + ψc2ψ3φ1 − ψc2ψ1φ3 + ψc3ψ1φ2 − ψc3ψ2φ1)
]

)

1
Hu,d . (4.3)

We denote the above three ∆(27) invariant contractions as I1, I2 and I3 with

I1 =ψc1ψ1φ1 +ψc2ψ2φ2 +ψc3ψ3φ3 =
(

(ψcψ)3̄S,1
Φ
)

10,0

,

I2 =ψc1ψ2φ3 +ψc1ψ3φ2 +ψc2ψ3φ1 +ψc2ψ1φ3 +ψc3ψ1φ2 +ψc3ψ2φ1 =
(

(ψcψ)3̄S,2
Φ
)

10,0

,

I3 =ψc1ψ2φ3 −ψc1ψ3φ2 +ψc2ψ3φ1 −ψc2ψ1φ3 +ψc3ψ1φ2 −ψc3ψ2φ1 =
(

(ψcψ)3̄A
Φ
)

10,0

. (4.4)

Since all the three fields ψ ≡ (ψ1, ψ2, ψ3)T , ψc = (ψc1, ψ
c
2, ψ

c
3)T , Φ ≡ (φ1, φ2, φ3)T are T ′

reducible triplet 30, we find that the modular transformations of I1,2,3 under S and T are

given by

I1
S−→ − i√

3
I1 − i√

3
ωI2, I1

T−→ I1 ,

I2
S−→ − 2i√

3
ω2I1 +

i√
3

I2, I2
T−→ ω2I2 ,

I3
S−→ I3, I3

T−→ ω2I3 . (4.5)

Hence the combination I3 transforms as the singlet 1′′ under T ′, I1 and I2 span a two-

dimensional representation space and they can be arranged into T ′ doublet 2′, i.e.




I2

−
√

2ω2I1



 ∼ 2′, I3 ∼ 1′′ . (4.6)

Therefore only the modular form multiplets Y
(kY )

1′ = Y2 and Y
(kY )

2′′ = (Y8, Y9)T can contract

with I1,2,3 to form modular invariant combinations under the finite modular group T ′. Thus

the eclectic symmetry group Ω(1) severely constrains the superpotential to be

WD =
1

Λ

[

iωα1Y2(ψc1ψ2φ3 − ψc1ψ3φ2 + ψc2ψ3φ1 − ψc2ψ1φ3 + ψc3ψ1φ2 − ψc3ψ2φ1)

+
√

2α2Y8(ψc1ψ1φ1 + ψc2ψ2φ2 + ψc3ψ3φ3)

+ ωα2Y9(ψc1ψ2φ3 + ψc1ψ3φ2 + ψc2ψ3φ1 + ψc2ψ1φ3 + ψc3ψ1φ2 + ψc3ψ2φ1)
]

Hu,d , (4.7)
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where c2′′,1 = −
√

2ω2c2′′,2 = −
√

2α2 and c1′,3 = iωα1. With the above convention for

coupling constants, both α1 and α2 would be enforced to be real by the gCP transformation

K∗, see eq. (4.12). After the electroweak symmetry breaking, one can read off the mass

matrix of the fermion ψ as

Mψ =
vu,d
Λ











iωα1Y2











0 φ3 −φ2

−φ3 0 φ1

φ2 −φ1 0











+ α2











√
2φ1Y8 ωφ3Y9 ωφ2Y9

ωφ3Y9

√
2φ2Y8 ωφ1Y9

ωφ2Y9 ωφ1Y9

√
2φ3Y8





















, (4.8)

where the mass matrix Mψ is given in the convention ψcMψψ. Note that the first term

proportional to α1 arises from the coupling with Y
(kY )

1′ and kY should be even, and the

second term proportional to α2 arises from the coupling with Y
(kY )

2′′ for odd kY .

When the gCP transformation K∗ is included in the theory, the transformation prop-

erties of modular multiplets, matter fields and flavons can be obtained from eqs. (3.6)

and (3.32), i.e.

K∗ :Y
(kY )

1′ →
(

Y
(kY )

1′

)†
, Y

(kY )
2′′ →

(

Y
(kY )

2′′

)†T
,











ψ1

ψ2

ψ3











→











ψ†
2

ψ†
1

ωψ†
3











,











ψc1

ψc2

ψc3











→











ψc†2

ψc†1

ωψc†3











,











φ1

φ2

φ3











→











φ†
2

φ†
1

ωφ†
3











. (4.9)

Consequently under the action of K∗ the superpotential WD transforms into

WD
K∗−→ 1

Λ

{

iω2α1Y
†

2

[

ψc†2 ψ
∗
1φ

∗
3 − ψc†2 ψ

∗
3φ

†
1 + ψc†1 ψ

†
3φ

†
2 − ψc†1 ψ

†
2φ

†
3 + ψc†3 ψ

†
2φ

†
1 − ψc†3 ψ

†
1φ

†
2

]

+
√

2α2Y
†

8

[

ψc†2 ψ
†
2φ

†
2 + ψc†1 ψ

†
1φ

†
1 + ψc†3 ψ

†
3φ

†
3

]

+ ω2α2Y
†

9

[

ψc†2 ψ
†
1φ

†
3 + ψc†2 ψ

†
3φ

†
1

+ψc†1 ψ
†
3φ

†
2 + ψc†1 ψ

†
2φ

†
3 + ψc†3 ψ

†
2φ

†
1 + ψc†3 ψ

†
1φ

†
2

] }

H†
u,d , (4.10)

which must be equal to W†
D due to gCP invariance. As a result, the couplings α1 and α2

should fulfill

α1 = α∗
1, α2 = α∗

2 . (4.11)

Consequently both α1 and α2 are real, i.e.

arg(α1) = 0 (mod π), arg(α2) = 0 (mod π) . (4.12)

In the same fashion, we can write out the Ω(1) invariant superpotential and subsequently

read off the mass matrix for other assignments of matter fields and flavons. For instance,

when the flavon fields are nontrivial singlets of ∆(27) with ψ ∼ (3, 30), ψc ∼
(

3̄, 3̄0

)

and
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Φ ∼ (8, 80) under Ω(1), the fermion mass matrix is determined to be

M
′
ψ =

vu,d

Λ











iα1Y1











ω (φ3+ωφ6) φ2+φ5+φ8 φ1+ω2φ4+ωφ7

φ1+φ4+φ7 ω2φ3+ωφ6 φ2+ωφ5+ω2φ8

φ2+ω2φ5+ωφ8 φ1+ωφ4+ω2φ7 φ3+φ6











+ω2
α2











−3Y10

(

φ6+ω2φ3

)

ωY10φ258−2Y11φ
′
852−2Y12φ

′
258 Y10φ

′
417−2ω2Y11φ147−2Y12φ

′
147

ωY10φ147−2Y11φ
′
471−2Y12φ

′
174 −3Y10

(

φ3+ω2φ6

)

Y10φ
′
825−2ω2Y11φ258−2Y12φ

′
285

Y10φ
′
528−2Y11φ

′
582−2Y12φ258 Y10φ

′
714−2Y11φ

′
741−2Y12φ147 −3ωY10(φ3+φ6)





















,

(4.13)

for even kY = kψ + kψc + kΦ and

M ′′
ψ =

vu,d
Λ











iα1











√
3 iωY7 (−φ3 + ωφ6) −Y7φ258 +

√
2Y6φ

′
582 −

√
2Y6φ

′
471 + Y7φ

′
174

Y7φ147 −
√

2Y6φ
′
741

√
3 iωY7 (−ωφ3 + φ6)

√
2Y6φ

′
852 − Y7φ

′
258√

2ω2Y6φ258 − Y7φ
′
285 −

√
2ω2Y6φ147 + Y7φ

′
147

√
3 iY7(−φ3 + φ6)











+iωα2











√
3 iY8 (φ3 − ωφ6) −ω2Y8φ258 −

√
2Y9φ

′
285

√
2Y9φ147 + Y8φ

′
741

ω2Y8φ147 +
√

2Y9φ
′
147

√
3 iY8 (ωφ3 − φ6) −Y8φ

′
582 −

√
2Y9φ258

−Y8φ
′
852 −

√
2Y9φ

′
258 Y8φ

′
471 +

√
2Y9φ

′
174

√
3 iω2Y8(φ3 − φ6)





















,

(4.14)

for odd kY = kψ + kψc + kΦ. Here the functions φijk and φ′
ijk are defined as

φijk = φi + φj + φk , φ′
ijk = φi + ωφj + ω2φk . (4.15)

Furthermore, we summarize the fermion mass matrices for all independent assignments of

quarks/leptons and flavons in table 1. The mass matrix would become its transpose, if the

transformation properties of ψ and ψc are exchanged.

4.1.1 The superpotential of Majorana mass terms

The Majorana mass term for the fermion field ψc (e.g., the right-handed neutrinos) can be

generally written as

WM =
∑

r,s

dr,s

(

Y (kY )
r ψcψcΦ

)

(10,0,1),s
, (4.16)

where kY = 2kψc + kΦ, and Φ can be interpreted as one/several flavons or as combination

of Higgs fields with flavons.3 For illustration, we consider the case that both ψc and Φ

transform as (3,30) under the eclectic symmetry group Ω(1).

From the tensor product 3 ⊗ 3 = 3̄S,1 ⊕ 3̄S,2 ⊕ 3̄A of ∆(27) in appendix A, we know

the contraction of ψcψc gives rise to two symmetric triplets:

(ψcψc)3̄S,1
=











(ψc1)2

(ψc2)2

(ψc3)2











, (ψcψc)3̄S,2
=











ψc2ψ
c
3

ψc1ψ
c
3

ψc1ψ
c
2











. (4.17)

3For example, Φ is the combination of two Higgs fields and flavon in the Weinberg operator, ψc would be

the LH lepton doublet.
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W (∆(27), T ′) Y
(kY )

r Mψ

WD1

ψ ∼ (3,30), Φ ∼ (3̄, 3̄0)
Y

(kY )

1k

vu,dYk
Λ











α1φ1 α1φ2 α1φ3

α2φ1 α2φ2 α2φ3

α3φ1 α3φ2 α3φ3









(ψc1, ψ
c
2, ψ

c
3) ∼ (1(0,0),1

[3−k])

WD2

ψ ∼ (3,30), Y
(kY )

1
vu,d

Λ P k











α1Y1φ1 α1Y1φ2 α1Y1φ3

α2Y3φ1 α2Y3φ2 α2Y3φ3

α3Y2φ1 α3Y2φ2 α3Y2φ3











ψcm ∼ (1(0,0),1
m−1), Y

(kY )
1′

Φ ∼ (3̄, 3̄k) Y
(kY )

1′′

WD3 ψ, ψc ∼ (3,30), Φ ∼ (3,30) Y
(kY )

1′ , Y
(kY )

2′′ Mψ in eq. (4.8)

WD4 ψ, ψc ∼ (3,30), Φ ∼ (3,31) Y
(kY )

1 , Y
(kY )

2′ Mψ (Y2 → Y1, Y8 → Y6, Y9 → Y7)

WD5 ψ, ψc ∼ (3,30), Φ ∼ (3,32) Y
(kY )

1′′ , Y
(kY )

2 Mψ (Y2 → Y3, Y8 → Y4, Y9 → Y5)

WD6 ψ, ψc ∼ (3̄, 3̄0), Φ ∼ (3̄, 3̄0) Y
(kY )

1′′ , Y
(kY )

2′ Mψ (Y2 → ωY3, Y8 → Y7, Y9 → −ωY6)

WD7 ψ, ψc ∼ (3̄, 3̄0), Φ ∼ (3̄, 3̄1) Y
(kY )

1 , Y
(kY )

2′′ Mψ (Y2 → ωY1, Y8 → Y9, Y9 → −ωY8)

WD8 ψ, ψc ∼ (3̄, 3̄0), Φ ∼ (3̄, 3̄2) Y
(kY )

1′ , Y
(kY )

2 Mψ (Y2 → ωY2, Y8 → Y5, Y9 → −ωY4)

WD9
ψ ∼ (3,30), ψc ∼ (3̄, 3̄0), Y

(kY )
1 , Y

(kY )
3 M ′

ψ in eq. (4.13) for even kY

Φ ∼ (8,80) Y
(kY )

2′ , Y
(kY )

2′′ M ′′
ψ in eq. (4.14) for odd kY

WD10
ψ ∼ (3,30), ψc ∼ (3̄, 3̄0), Y

(kY )
1′′ , Y

(kY )
3 M ′

ψ

(

Y1 → Y3, Y
(kY )

3 → PY
(kY )

3

)

Φ ∼ (8,81) Y
(kY )

2 , Y
(kY )

2′ M ′′
ψ

(

Y
(kY )

2′ → Y
(kY )

2 , Y
(kY )

2′′ → Y
(kY )

2′

)

WD11
ψ ∼ (3,30), ψc ∼ (3̄, 3̄0), Y

(kY )
1′ , Y

(kY )
3 M ′

ψ

(

Y1 → Y2, Y
(kY )

3 → P 2Y
(kY )

3

)

Φ ∼ (8,82) Y
(kY )

2 , Y
(kY )

2′′ M ′′
ψ

(

Y
(kY )

2′ → ωY
(kY )

2′′ , Y
(kY )

2′′ → ω2Y
(kY )

2

)

Table 1. The mass matrices of the charged leptons/quarks ψ for all independent assignments

of ψ, ψc and Φ under the eclectic symmetry group Ω(1) ≡ ∆(27) ⋊ T ′, where P is permutation

matrix given in eq. (B.8). In the third column, we list the modular form multiplets which give

nonzero contributions. In our convention, all couplings in Mψ are fixed to be real by the gCP

transformation K∗.

Consequently there are only two ∆(27) invariant contractions for the Majorana mass

term ψcψcΦ,
(

(ψcψc)3̄S,1
Φ
)

10,0

= (ψc1)2φ1 + (ψc2)2φ2 + (ψc3)2φ3 ,
(

(ψcψc)3̄S,2
Φ
)

10,0

= ψc1ψ
c
2φ3 + ψc1ψ

c
3φ2 + ψc2ψ

c
3φ1 . (4.18)

The modulus and modular forms are invariant under ∆(27) flavor symmetry, thus ∆(27)

invariance constrains the superpotential WM to be

WM =
∑

r

(

Y (kY )
r

[

dr,1

(

(ψc1)2φ1+(ψc2)2φ2+(ψc3)2φ3

)

+dr,2(ψc1ψ
c
2φ3+ψc1ψ

c
3φ2+ψc2ψ

c
3φ1)

])

1
.

(4.19)

The two ∆(27) singlet contractions in eq. (4.18) can be arranged into a T ′ doublet 2′:




ψc1ψ
c
2φ3 + ψc1ψ

c
3φ2 + ψc2ψ

c
3φ1

−ω2
(

(ψc1)2φ1 + (ψc2)2φ2 + (ψc3)2φ3
)

/
√

2



 ∼ 2′ . (4.20)
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W (∆(27), T ′) Y
(kY )

r Mψc

WM1 ψc ∼ (3,30), Φ ∼ (3,30) Y
(kY )

2′′ Mψc in eq. (4.22)

WM2 ψc ∼ (3,30), Φ ∼ (3,31) Y
(kY )

2′ Mψc (Y8 → Y6, Y9 → Y7)

WM3 ψc ∼ (3,30), Φ ∼ (3,32) Y
(kY )

2 Mψc (Y8 → Y4, Y9 → Y5)

WM4 ψc ∼ (3̄, 3̄0), Φ ∼ (3̄, 3̄0) Y
(kY )

2′ Mψc (Y8 → Y7, Y9 → −ωY6)

WM5 ψc ∼ (3̄, 3̄0), Φ ∼ (3̄, 3̄1) Y
(kY )

2′′ Mψc (Y8 → Y9, Y9 → −ωY8)

WM6 ψc ∼ (3̄, 3̄0), Φ ∼ (3̄, 3̄2) Y
(kY )

2 Mψc (Y8 → Y5, Y9 → −ωY4)

Table 2. The mass matrices of the Majorana fermion ψc for possible independent assignments of

ψc and Φ under the eclectic symmetry group Ω(1) ≡ ∆(27) ⋊ T ′. The singlet assignments of ψc

and Φ are omitted, as Ω(1) would play less rule. In the third column, we list the modular form

multiplets giving nonzero contributions. In our convention, all couplings in Mψc are fixed to be real

by the gCP transformation K∗.

Consequently modular invariance of WM requires d2′′,2 = −
√

2ωd2′′,1 and only the modular

multiplet Y
(kY )

2′′ (τ) = (Y8, Y9)T is relevant. Thus the eclectic flavor symmetry Ω(1) fixes the

superpotential WM to be

WM = α
{√

2Y8

[

(ψc1)2φ1 + (ψc2)2φ2 + (ψc3)2φ3

]

+ 2ωY9(ψc1ψ
c
2φ3 + ψc1ψ

c
3φ2 + ψc2ψ

c
3φ1)

}

,

(4.21)

where α = ω2d2′′,2/2 is a general complex number. Thus we can read out the Majorana

mass matrix of ψc as follow

Mψc = α











√
2Y8φ1 ωY9φ3 ωY9φ2

ωY9φ3

√
2Y8φ2 ωY9φ1

ωY9φ2 ωY9φ1

√
2Y8φ3











. (4.22)

If the gCP transformation K∗ is considered, the superpotential WM transforms as

WM
K∗−→α

{√
2Y †

8

[

(ψc†2 )2φ†
2+(ψc†1 )2φ†

1+(ψc†3 )2φ†
3

]

+2ω2Y †
9 (ψc†2 ψ

c†
1 φ

†
3+ψc†2 ψ

c†
3 φ

†
1+ψc†1 ψ

c†
3 φ

†
2)
}

,

(4.23)

which must equal to W†
M . Then we have α∗ = α and consequently

arg(α) = 0 (mod π) . (4.24)

For other assignments of ψc and Φ, the corresponding predictions for the mass matrix of ψc

are listed in table 2.

4.2 Kähler potential

The Kähler potential is a hermitian function of the modulus τ , the chiral superfields of

quarks/leptons ψ, ψc and the flavon superfield Φ as well as their complex conjugates τ †,

ψ†, ψc† and Φ†. As shown in eq. (1.1), many terms on the same footing as the minimal

Kähler potential are compatible with modular symmetry [6]. They can affect the fermion
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masses and mixing parameters significantly, see refs. [6, 7] for explicit examples. In the

paradigm of eclectic flavor symmetry, the Kähler potential has to be invariant under both

modular symmetry and the traditional flavor symmetry transformations. In particular, the

traditional flavor symmetry can impose severe constraints on the Kähler potential so that

it can be expanded in power of 〈Φ〉/Λ, where Φ denotes the VEVs of the flavon fields. As

explained in previous section, the matter fields ψ and ψc can only be singlet 10,0 or triplets

3 and 3̄ of ∆(27). As an example, we assume that both ψ and ψc transform as (3,30)

under Ω(1) eclectic flavor group in this section. Since the Kähler potential of ψ has a very

similar form to that of ψc, consequently we shall focus on ψ in the following.

At leading order, the Kähler potential for the matter fields ψ can be written as4

KLO =
∑

n,r1,r2,s

(−iτ + iτ̄)−kψ+n
(

Y (n)†
r1

Y (n)
r2

ψ†ψ
)

(10,0,1),s
, (4.25)

where the couplings of each independent term are dropped, and we should sum over the

weights n ∈ ◆ and representation r of all linearly independent modular multiplets Y
(n)

r (τ)

and all Ω(1) singlet contractions labelled by the index s. The modular form with weight

zero is a constant and it is taken to be Y
(0)

r = 1 without loss of generality. The minimal

Kähler potential corresponds to the term of n = 0. Because the modular forms are invariant

under ∆(27) flavor symmetry, ψ†ψ has to be a ∆(27) trivial singlet, i.e.
(

ψ†ψ
)

10,0

= ψ†
1ψ1 + ψ†

2ψ2 + ψ†
3ψ3 =

(

ψ†ψ
)

(10,0,1)
, (4.26)

which is also an invariant singlet 1 of the T ′ modular symmetry. Hence the invariance of K
under ∆(27) requires the leading order Kähler potential in eq. (4.25) to be of the following

form

KLO =
∑

n,r1,r2

(−iτ + iτ̄)−kψ+n
(

Y (n)†
r1

Y (n)
r2

)

(10,0,1)

(

ψ†ψ
)

(10,0,1)
. (4.27)

Note that the non-vanishing contraction
(

Y
(n)†

r1 Y
(n)

r2

)

(10,0,1)
requires that r1 and r2 should

be the same representation r1 = r2 = r of T ′. Moreover, from the Kronecker products and

Clebsch-Gordon (CG) coefficients of T ′ in appendix B, we see that there is only a unique

singlet contraction
(

Y
(n)†

r Y
(n)

r

)

(10,0,1)
for any irreducible representation of T ′, i.e.

(

Y (n)†
r Y (n)

r

)

(10,0,1)
= Y

(n)†
r,1 Y

(n)
r,1 + Y

(n)†
r,2 Y

(n)
r,2 + . . . . (4.28)

Then the most general leading order Kähler potential invariant under Ω(1) for ψ takes the

form

KLO =
∑

n,r

(−iτ + iτ̄)−kψ+n
(

Y (n)†
r Y (n)

r

)

(10,0,1)

(

ψ†ψ
)

(10,0,1)

=
∑

n,r

(−iτ + iτ̄)−kψ+n
(

Y (n)†
r Y (n)

r

)

(10,0,1)

(

ψ†
1ψ1 + ψ†

2ψ2 + ψ†
3ψ3

)

. (4.29)

4The modular transformation of −iτ + iτ̄ is

−iτ + iτ̄
γ

−→ |c τ + d|−2(−iτ + iτ̄) .
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Hence the Kähler metric is diagonal and it is proportional to a unit matrix at leading

order. In order to get canonical kinetic terms, we have to rescale the matter fields ψ. The

effect of such rescaling on fermion masses can be absorbed into the parameters of the

superpotential. Thus leading order Kähler potential invariant under Ω(1) does not introduce

any corrections to the flavor observables due to the traditional flavor symmetry ∆(27). If

the three generations of matter fields ψ transform as (10,0,1
k) under the eclectic flavor

group ∆(27) ⋊ T ′, they are generally distinguished by the different charges under auxiliary

abelian symmetry, so that the Kähler potential would be still diagonal.

Then we proceed to consider the next-to-leading-order (NLO) corrections to the Kähler

potential of ψ. It involve only one flavon Φ and its most general form is given by

KNLO =
∑

m,n,r1,r2,s

(−iτ + iτ̄)−kψ+m
(

Y (m)†
r1

Y (n)
r2

ψ†ψΦ
)

(10,0,1),s
+ h.c. , (4.30)

where the modular weight kΦ of the flavon Φ should fulfill

kΦ = n−m. (4.31)

If some auxiliary symmetry is imposed, obviously the flavon Φ should be chargeless under

the auxiliary group. From the ∆(27) tensor product 3̄ ⊗ 3 =
∑2
r,s=0 1r,s in eq. (A.6), we

know the contractions of ψ†ψ are

(

ψ†ψ
)

(10,0,1)
= ψ†

1ψ1 + ψ†
2ψ2 + ψ†

3ψ3 ,

(

ψ†ψ
)

(8,80)
=







































ψ†
1ψ2 + ψ†

2ψ3 + ψ†
3ψ1

ψ†
1ψ3 + ψ†

2ψ1 + ψ†
3ψ2

ψ†
1ψ1 + ω2ψ†

2ψ2 + ωψ†
3ψ3

ω2ψ†
1ψ2 + ωψ†

2ψ3 + ψ†
3ψ1

ωψ†
1ψ3 + ψ†

2ψ1 + ω2ψ†
3ψ2

ψ†
1ψ1 + ωψ†

2ψ2 + ω2ψ†
3ψ3

ωψ†
1ψ2 + ω2ψ†

2ψ3 + ψ†
3ψ1

ω2ψ†
1ψ3 + ψ†

2ψ1 + ωψ†
3ψ2







































. (4.32)

Invariance under ∆(27) require ψ†ψΦ should be a trivial singlet of ∆(27), so that the flavon

Φi must transform as 10,0 or 8 under ∆(27). In the case of Φ ∼ (10,0,1
k), we find

(

ψ†ψΦ
)

(10,0,1k)
=
(

ψ†ψ
)

(10,0,1)
Φ =

(

ψ†
1ψ1 + ψ†

2ψ2 + ψ†
3ψ3

)

Φ ,
(

Y (m)†
r1

Y (n)
r2

ψ†ψΦ
)

(10,0,1)
=
(

Y (m)†
r1

Y (n)
r2

)

(10,0,1[3−k])

(

ψ†ψ
)

(10,0,1)
Φ , (4.33)

which is proportional to ψ†
1ψ1 + ψ†

2ψ2 + ψ†
3ψ3. As a result, the corresponding contribution

can be absorbed into the LO Kähler potential in eq. (4.29), and it yields no corrections

to the observable fermion masses and mixing. If the flavon transform as Φ ∼ (8,8k), the

NLO Kähler potential KNLO invariant under the eclectic flavor group Ω(1) would be of the
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following form

KNLO =
∑

m,n,r1,r2

(−iτ + iτ̄)−kψ+m
(

Y (m)†
r1

Y (n)
r2

)

(10,0,1[3−k])

(

(

ψ†ψ
)

(8,80)
Φ

)

(10,0,1[k])

+
∑

m,n,r1,r2

(−iτ + iτ̄)−kψ+m

(

(

Y (m)†
r1

Y (n)
r2

)

(10,0,2[2−k])

(

(

ψ†ψ
)

(8,80)
Φ

)

(10,0,2[1+k])

)

(10,0,1)

+
∑

m,n,r1,r2

(−iτ + iτ̄)−kψ+m

(

(

Y (m)†
r1

Y (n)
r2

)

(10,0,2[1−k])

(

(

ψ†ψ
)

(8,80)
Φ

)

(10,0,2[2+k])

)

(10,0,1)

+
∑

m,n,r1,r2

(−iτ + iτ̄)−kψ+m

(

(

Y (m)†
r1

Y (n)
r2

)

(10,0,3)

(

(

ψ†ψ
)

(8,80)
Φ

)

(10,0,3)

)

(10,0,1)

+ h.c. .

(4.34)

The general formulas for the ∆(27) trivial singlet contractions of two octets χ ∼ (8,8k) and

ϕ ∼ (8,8k′) are given by:

(χϕ)(10,0,1[k+k′]) = χ1ϕ2 +χ2ϕ1 +χ3ϕ6 +χ4ϕ8 +χ5ϕ7 +χ6ϕ3 +χ7ϕ5 +χ8ϕ4 ,

(χϕ)(10,0,2[k+k′+1]) =





√
2
(

ωχ1ϕ2 −ωχ2ϕ1 +ω2χ4ϕ8 −χ5ϕ7 +χ7ϕ5 −ω2χ8ϕ4

)

−χ1ϕ2 +χ2ϕ1 − i
√

3χ3ϕ6 −χ4ϕ8 +χ5ϕ7 + i
√

3χ6ϕ3 −χ7ϕ5 +χ8ϕ4



 ,

(χϕ)(10,0,2[k+k′+2]) =





χ1ϕ2 −χ2ϕ1 − i
√

3χ3ϕ6 +χ4ϕ8 −χ5ϕ7 + i
√

3χ6ϕ3 +χ7ϕ5 −χ8ϕ4√
2
(

ω2χ1ϕ2 −ω2χ2ϕ1 +ωχ4ϕ8 −χ5ϕ7 +χ7ϕ5 −ωχ8ϕ4

)



 ,

(χϕ)(10,0,3) = P k+k′











χ1ϕ2 +χ2ϕ1 −3χ3ϕ6 +χ4ϕ8 +χ5ϕ7 −3χ6ϕ3 +χ7ϕ5 +χ8ϕ4

−2(ω2χ1ϕ2 +ω2χ2ϕ1 +ωχ4ϕ8 +χ5ϕ7 +χ7ϕ5 +ωχ8ϕ4)

−2(ωχ1ϕ2 +ωχ2ϕ1 +ω2χ4ϕ8 +χ5ϕ7 +χ7ϕ5 +ω2χ8ϕ4)











,

(4.35)

with the permutation matrix P given in eq. (B.8). Using the contraction rules in eq. (4.35),

we can write out the explicit expression of KNLO, yet it is too lengthy to show here. We

find that KNLO will give rise to off-diagonal elements of the Kähler metric and they are

suppressed by 〈Φ〉/Λ in comparison with KLO.

If the Ω(1) eclectic model does not contain a flavon Φ transforming as (8,8k) under

∆(27) ⋊ T ′, the off-diagonal contributions to the Kähler metric of the matter field ψ could

arise from the next-to-next-to-leading order (NNLO) terms which can be written as:5

KNNLO =
∑

m,n,r1,r2,s

(−iτ + iτ̄)−kψ−kΘ+m
(

Y (m)†
r1

Y (n)
r2

ψ†ψΘ†Φ
)

(10,0,1),s
+ h.c. . (4.36)

We see that two generic flavons Φ and Θ are involved and they could be identical with

Φ = Θ. The total modular weight of each term should be vanishing and consequently the

5Depending on the transformation properties of the matter fields and flavons under Ω(1), KNNLO can

possibly admit the terms of form
∑

m,n,r1,r2,s
(−iτ + iτ̄)−kψ−kΘ+m

(

Y
(m)†

r1 Y
(n)

r2 ψ†ψΘΦ
)

(10,0,1),s
+ h.c.,

which can be analyzed in a similar way.
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modular weight should fulfill the following relation

m− n = kΘ − kΦ . (4.37)

The traditional flavor symmetry ∆(27) requires the combination ψ†ψΘ†Φ be a ∆(27) singlet

10,0, thus we have the contractions

(

ψ†ψΘ†Φ
)

(10,0,r)
=
(

ψ†ψ
)

(10,0,1)

(

Θ†Φ
)

(10,0,r)
or

[

(

ψ†ψ
)

(8,80)

(

Θ†Φ
)

(8,8k)

]

(10,0,r)
,

(4.38)

which contracts with the modular form Y
(m)†

r1 Y
(n)

r2 to form T ′ invariants, here r are certain

representations of T ′ modular group. As can be seen from the expressions of
(

ψ†ψ
)

(10,0,1)

and
(

ψ†ψ
)

(8,80)
in eq. (4.32), the first contraction

(

ψ†ψ
)

(10,0,1)

(

Θ†Φ
)

(10,0,r)
leads to a

diagonal Kähler metric and its contribution can be absorbed in the overall normalization

while the second contraction

[

(

ψ†ψ
)

(8,80)

(

Θ†Φ
)

(8,8k)

]

(10,0,r)
gives rise to an off-diagonal

Kähler metric. Moreover, we see that Θ†Φ should be the invariant singlet 10,0 or the

reducible octet 8 of the ∆(27) flavor symmetry. The flavons Θ and Φ can transform as 10,0,

3, 3̄ or 8 under ∆(27), and they can contribute to the Kähler potential KNNLO only for the

following assignments.

i) Θ ∼ 10,0, Φ ∼ 10,0

In this case, only the first contraction in eq. (4.38) is allowed, and the resulting Kähler

potential is of the same form as the minimal Kähler potential.

ii) Θ,Φ ∼ 3 or Θ,Φ ∼ 3̄

In terms of the components of the two ∆(27) triplets Θ = (ϑ1, ϑ2, ϑ3)T , Φ =

(φ1, φ2, φ3)T , we have

(

Θ†Φ
)

(10,0,1k)
= ϑ†

1φ1 + ϑ†
2φ2 + ϑ†

3φ3 ,

(

Θ†Φ
)

(8,8k)
=







































ϑ†
1φ2 + ϑ†

2ψ3 + ϑ†
3φ1

ϑ†
1φ3 + ϑ†

2φ1 + ϑ†
3φ2

ϑ†
1φ1 + ω2ϑ†

2φ2 + ωϑ†
3φ3

ω2ϑ†
1φ2 + ωϑ†

2φ3 + ϑ†
3φ1

ωϑ†
1φ3 + ϑ†

2φ1 + ω2ϑ†
3φ2

ϑ†
1φ1 + ωϑ†

2φ2 + ω2ϑ†
3φ3

ωϑ†
1φ2 + ω2ϑ†

2φ3 + ϑ†
3φ1

ω2ϑ†
1φ3 + ϑ†

2φ1 + ωϑ†
3φ2







































for Θ,Φ ∼ 3 ,
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(

Θ†Φ
)

(8,8k)
=







































ϑ†
1φ3 + ϑ†

2φ1 + ϑ†
3φ2

ϑ†
1φ2 + ϑ†

2φ3 + ϑ†
3φ1

ϑ†
1φ1 + ω2ϑ†

2φ2 + ωϑ†
3φ3

ϑ†
1φ3 + ω2ϑ†

2φ1 + ωϑ†
3φ2

ϑ†
1φ2 + ω2ϑ†

2φ3 + ωϑ†
3φ1

ϑ†
1φ1 + ωϑ†

2φ2 + ω2ϑ†
3φ3

ϑ†
1φ3 + ωϑ†

2φ1 + ω2ϑ†
3φ2

ϑ†
1φ2 + ωϑ†

2φ3 + ω2ϑ†
3φ1







































for Θ,Φ ∼ 3̄ . (4.39)

Then both singlet and octet contractions in eq. (4.38) are allowed, and the explicit

expressions can be obtained from eqs. (4.32), (4.35), (4.39). Obviously these contribu-

tions depend on the flavon VEVs and are suppressed by 〈Φ〉2/Λ2 with respect to the

leading order term KLO.

iii) Θ ∼ 10,0,Φ ∼ 8 or Θ ∼ 8,Φ ∼ 10,0

Only the octet contractions in eq. (4.38) is allowed in this case, and it leads to

off-diagonal Kähler metric of the matter fields.

iv) Θ ∼ 8 and Φ ∼ 8

For this assignment, eight independent singlet contractions
(

Θ†Φ
)

(10,0,1k)
and seven

independent octet contractions
(

Θ†Φ
)

(8,8k)
can be built. They generally induce

corrections to the canonical kinetic terms of matter fields.

In short, generally the Kähler potential KNNLO can yield deviations from canonical

kinetic terms of quark/lepton fields after the flavons develop VEVs, unless all the flavons Θ

and Φ are invariant singlet of ∆(27). However, the induced corrections to the quark/lepton

mixing parameters are suppressed by 〈Φ〉2/Λ2 which are usually small enough to be negligible.

In the following example models, we do not introduce a flavon transforming as (8,8k) under

∆(27) ⋊ T ′. Hence the corrections to the minimal Kähler potential arise from KNNLO.

5 Ω(1) ∼= ∆(27) ⋊ T ′ eclectic models of lepton mass and mixing

In this section, we shall construct two concrete lepton models based on the eclectic flavor

group Ω(1) ∼= ∆(27) ⋊ T ′ in the framework of rigid N = 1 global supersymmetry. Then

modular invariance requires that the modular weight of each term in the Lagrangian should

be vanishing. In the two example models, the neutrinos are assumed to be Majorana

particles and their masses are generated through the Weinberg operator and the type I

seesaw mechanism, respectively. The model construction is guided by the principle of

minimality and simplicity, and consequently we shall introduce as few flavon fields as

possible besides the complex modulus τ . The VEVs of flavons spontaneously break the

∆(27) flavor symmetry, and the breaking of T ′ modular symmetry can arise from the VEVs

of both flavons and modulus τ . Without loss of generality, the VEV of τ is limited in the
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Zg3 Res. CP 〈φ3〉/vφ 〈φ3̄〉/vφ 〈φ8〉/vφ
ZA3 — (1, 1, 1)T (1, 1, 1)T v81 = (1, x, 0, 0, 0, 0, 0, 0)T

ZB3

A (1, 0, 0)T (1, 0, 0)T v82 = (0, 0, ω2, 0, 0,−ωx, 0, 0)T

AB (ω2, 0, 0)T (ω, 0, 0)T v82

BAB2 (ω, 0, 0)T (ω2, 0, 0)T v82

ZAB3

BAB2A2 (1, ω2, 1)T (1, ω, 1)T v83 = (0, 0, 0, 0, 1 − ix, 0, 1 + ix, 0)T

ABA2B2 ω(1, ω2, 1)T ω2(1, ω, 1)T v83

AB ω2(1, ω2, 1)T ω(1, ω, 1)T v83

ZBA3

BAB2A2 ω(1, 1, ω2)T ω2(1, 1, ω)T v83

ABA2B2 ω2(1, 1, ω2)T ω(1, 1, ω)T v83

BA (1, 1, ω2)T (1, 1, ω)T v83

ZABA3 — (1, ω2, ω2)T (1, ω, ω)T v84 = (0, 0, 0, 1, 0, 0, 0, x)T

ZA
2B

3 — (1, 1, ω)T (1, 1, ω2)T v84

ZBA
2

3 — (1, ω, 1)T (1, ω2, 1)T v84

ZBAB
2

3 — (1, ω, ω2)T (1, ω2, ω)T v81

ZB
2AB

3 — (1, ω2, ω)T (1, ω, ω2)T v81

ZA
2BA

3

A2 (0, 1, 0)T (0, 1, 0)T v∗
82

B2A2B ω(0, 1, 0)T ω2(0, 1, 0)T v∗
82

BA2B2 ω2(0, 1, 0)T ω(0, 1, 0)T v∗
82

ZABA
2

3

BAB2A2 (0, 0, 1)T (0, 0, 1)T v85 = (0, 0, 1, 0, 0, x, 0, 0)T

ABA2B2 ω(0, 0, 1)T ω2(0, 0, 1)T v85

AB2A2 ω2(0, 0, 1)T ω(0, 0, 1)T v85

ZA
2BA2

3

BAB2A2 (ω2, 1, 1)T (ω, 1, 1)T v83

ABA2B2 ω(ω2, 1, 1)T ω2(ω, 1, 1)T v83

A2BA2 ω2(ω2, 1, 1)T ω(ω, 1, 1)T v83

ZBAB
2A2

3 — — — general 8-D vector

Table 3. The most general vacuum alignment invariants under the Z3 subgroups of ∆(27) and

residual CP symmetry, where φ3, φ
3̄

and φ8 denote the flavons which transform as 3, 3̄ and reducible

8 respectively under ∆(27), and x is a real free parameter. The residual CP symmetry in the second

column refers to ρ(g)ρ(K∗) with g ∈ ∆(27), and we only present the element g for simplicity. The

overall VEV vφ is constrained to be real by the residual CP symmetry.
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fundamental domain D of SL(2,Z):

D =
{

τ
∣

∣ |ℜτ | ≤ 1/2 , ℑτ > 0 , |τ | ≥ 1
}

. (5.1)

Other values of τ are related by modular transformations to those in D. In both example

models, the Higgs doublets Hu,d are invariant under both ∆(27) and T ′ with vanishing

modular weights. The flavon fields transform as trivial singlet 10,0 or triplet 3, 3̄ under

∆(27), and we don’t introduce any flavon in nontrivial singlet representation of ∆(27)

otherwise there would be a flavon octant, as explained in section 3. Extensive studies of

the discrete flavor symmetry approach to the flavor problem have revealed that the flavon

fields have to develop a set of particularly VEVs [1]. Hence we will consider the vacuum

configuration of flavon which preserve certain subgroup of ∆(27) and the most general

invariant VEVs of all Z3 subgroups of ∆(27) are given in table 3. It is known that rather

elaborate scalar potentials of flavons should be designed to get the correct vacuum alignment

in traditional discrete flavor symmetry approach. On the other hand, it is still an open

question to determine the VEV of τ from first principles in modular flavor symmetry, this

is the so-called modulus stabilisation problem [39, 40]. The presence of both flavons and

complex modulus in eclectic flavor symmetry exacerbates the vacuum selection problem

mentioned above. Hence we will not attempt to build the most general supersymmetric

and eclectic symmetry invariant scalar potential for the modulus τ and flavons. Both τ and

flavons will be treated as spurions, and the VEV of τ is freely varied in the fundamental

domain to adjust the agreement with the data.

In previous section, we have performed a general analysis for the Ω(1) invariant

superpotential and Kähler potential. Given the representation assignments of the lepton

fields and flavons in the two example models, we find that the nontrivial corrections to

the minimal Kähler potential arise at the NNLO. The corresponding contributions to

the lepton masses and mixing parameters are suppressed by 〈Φ〉2/Λ2 such that they are

negligible. We shall present the two example models based on the eclectic flavor symmetry

Ω(1) ∼= ∆(27) ⋊ T ′ in the following.

5.1 Example model 1

The light neutrino masses are generated by the Weinberg operator in this model. All the

fields and their classifications under the traditional flavor group ∆(27) and the finite modular

group T ′ are summarized in table 4. The LH leptons L, RH charged leptons Ec, the flavon

φ in the charged lepton sector and the flavons ϕ and χ in the neutrino sector are all assumed

to be triplet 3 of ∆(27). Then these fields must transform as reducible three-dimensional

representations 30, 31 or 32, and the corresponding representation matrices of generators S

and T are given in eq. (3.23). Furthermore, one ∆(27) trivial singlet flavon ξ is introduced

in the model. In order to eliminate the unwanted operators, we introduce the auxiliary

symmetry Z2 × Z3 in the model. Then we can read out the superpotential for the charged

lepton and neutrino masses, which is invariant under the symmetry of the model,

W =
α

Λ

(

EcLφY
(5)

2′

)

(10,0,1)
Hd +

β

Λ2

(

EcLξφY
(4)

1

)

(10,0,1)
Hd

+
g1

2Λ2

(

LLϕY
(5)

2′′

)

(10,0,1)
HuHu +

g2

2Λ2

(

LLχY
(7)

2′

)

(10,0,1)
HuHu . (5.2)
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Fields L Ec Hu Hd φ ϕ χ ξ Y
(kY )

r

SU(2)L × U(1)Y (2,−1
2) (1, 1) (2, 1

2) (2,−1
2) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)

∆(27) 3 3 10,0 10,0 3 3 3 10,0 10,0

Γ′
3

∼= T ′ 30 30 1 1 31 30 31 1 r

modular weight 0 0 0 0 5 5 7 −1 kY

Z2 1 −1 1 1 −1 1 1 1 1

Z3 ω ω2 1 1 1 ω ω 1 1

Table 4. The matter fields, flavon fields of the example model 1 and their transformation properties

under ∆(27) and T ′, where Y
(kY )

r refers to the level 3 and weight kY modular multiplet in the

irreducible representation r of T ′.

The first and second rows of eq. (5.2) are the mass terms of charged leptons and neutrinos,

respectively. The charged lepton superpotential is the case of WD4 in table 1, and the two

neutrino mass terms correspond to WM1 and WM2 in table 2, respectively. Notice that the

second term contains two flavons and it is suppressed by 〈ξ〉/Λ with respect to the first

term. We assume that the traditional flavor symmetry ∆(27) is broken down to ZA
2BA2

3 in

the charged lepton sector by the VEV of φ, and the VEVs of the flavons ϕ and χ entering

in neutrino sector are invariant under ZABA
2

3 and ZB3 , respectively. As a consequence, the

residual traditional flavor symmetry ZA
2BA2

3 is preserved in the charged lepton sector after

symmetry breaking, while the ∆(27) flavor symmetry is completely broken in the neutrino

sector.6 As shown in table 3, the assumed residual symmetry allows us to fix VEVs of

flavons ξ, φ, ϕ and χ as follows,

〈ξ〉 = vξ, 〈φ〉 = (ω2, 1, 1)T vφ, 〈ϕ〉 = (0, 0, 1)T vϕ, 〈χ〉 = (1, 0, 0)T vχ , (5.3)

where vξ, vφ, vϕ and vχ are undetermined and generally complex. After the electroweak

and flavor symmetry breaking in the way of eq. (5.3), we obtain the charged lepton mass

matrix and the light neutrino mass matrix as follows

ml =
αvφvd

Λ











√
2ω2Y

(5)
2′,1 ωY

(5)
2′,2 ωY

(5)
2′,2

ωY
(5)

2′,2

√
2Y

(5)
2′,1 Y

(5)
2′,2

ωY
(5)

2′,2 Y
(5)

2′,2

√
2Y

(5)
2′,1











+
iβY

(4)
1 vξvφvd

Λ2











0 ω −ω
−ω 0 1

ω −1 0











,

mν =
g1vϕv

2
u

Λ2











0 ωY
(5)

2′′,2 0

ωY
(5)

2′′,2 0 0

0 0
√

2Y
(5)

2′′,1











+
g2vχv

2
u

Λ2











√
2Y

(7)
2′,1 0 0

0 0 ωY
(7)

2′,2

0 ωY
(7)

2′,2 0











, (5.4)

where we use Y
(kY )

r,i to represent the ith component of modular multiple Y
(kY )

r . Obviously we

have ρ†
3(A2BA2)m†

lmlρ3(A2BA2) = m†
lml which implies that the charged lepton mass ma-

6The residual symmetry of the Majorana neutrino mass matrix can only be Z2 or K4 for three nonvanishing

light neutrino masses [41, 42]. Since the ∆(27) flavor group does not have Z2 and K4 subgroups, no residual

flavor symmetry should be preserved in the neutrino sector.
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trix is invariant under the residual flavor symmetry ZA
2BA2

3 . Therefore the unitary transfor-

mation Ul diagonalizing the hermitian combination m†
lml via U †

l m
†
lmlUl = diag(m2

e,m
2
µ,m

2
τ )

is of the form:

Ul =
1√
3











1 ω2 ω

ω2 ω2 ω2

1 ω ω2











. (5.5)

The charged lepton masses are given by

me =

∣

∣

∣

∣

∣

√
2Y

(5)
2′,1 − Y

(5)
2′,2 −

√
6βvξY

(4)
1

αΛ

∣

∣

∣

∣

∣

αvφvd
Λ

,

mµ =

∣

∣

∣

∣

∣

√
2Y

(5)
2′,1 − Y

(5)
2′,2 +

√
6βvξY

(4)
1

αΛ

∣

∣

∣

∣

∣

αvφvd
Λ

,

mτ =
∣

∣

∣

√
2Y

(5)
2′,1 + 2Y

(5)
2′,2

∣

∣

∣

αvφvd
Λ

. (5.6)

Since L and Ec are assigned to be triplet of ∆(27), both couplings α and β are relevant

to the three charged lepton masses. Consequently some fine-tuning in the values of τ and

βvξ/(αΛ) is necessary to accommodate charged lepton mass hierarchies. We transfer to the

charged lepton diagonal basis by redefining the LH lepton fields L → UlL, then the light

neutrino mass matrix is given by

m′
ν =UTl mνUl

=
g1vϕv

2
u

Λ2











√
2Y

(5)
2′′,1 +2Y

(5)
2′′,2 ω

(√
2Y

(5)
2′′,1 −Y

(5)
2′′,2

)

ω2
(√

2Y
(5)

2′′,1 −Y
(5)

2′′,2

)

ω
(√

2Y
(5)

2′′,1 −Y
(5)

2′′,2

)

ω2
(√

2Y
(5)

2′′,1 +2Y
(5)

2′′,2

) √
2Y

(5)
2′′,1 −Y

(5)
2′′,2

ω2
(√

2Y
(5)

2′′,1 −Y
(5)

2′′,2

) √
2Y

(5)
2′′,1 −Y

(5)
2′′,2 ω

(√
2Y

(5)
2′′,1 +2Y

(5)
2′′,2

)











+
g2vχv

2
u

Λ2











√
2Y

(7)
2′,1 +2Y

(7)
2′,2 ω2

(√
2Y

(7)
2′,1 −Y

(7)
2′,2

)

ω
(√

2Y
(7)

2′,1 −Y
(7)

2′,2

)

ω2
(√

2Y
(7)

2′,1 −Y
(7)

2′,2

)

ω
(√

2Y
(7)

2′,1 +2Y
(7)

2′,2

) √
2Y

(7)
2′,1 −Y

(7)
2′,2

ω
(√

2Y
(7)

2′,1 −Y
(7)

2′,2

) √
2Y

(7)
2′,1 −Y

(7)
2′,2 ω2

(√
2Y

(7)
2′,1 +2Y

(7)
2′,2

)











. (5.7)

Let us proceed to perform a numerical analysis for the model. We first consider the scenario

without gCP. This model involves 6 real free parameters besides the complex modulus τ .

All the six lepton masses, three lepton mixing angles and three CP violation phases rely on

the following six dimensionless real parameters

ℜτ, ℑτ, |βvξ/(αΛ)|, arg(βvξ/(αΛ)) , |g2vχ/(g1vϕ)|, arg(g2vχ/(g1vϕ)) , (5.8)

and two overall scales αvdvφ/Λ and g1v
2
uvϕ/Λ

2 which can be taken to real. In order to

quantitatively estimate how well the model can describe the experimental data on the

following seven dimensionless observable quantities

me/mµ, mµ/mτ , sin2 θ12, sin2 θ13, sin2 θ23, δCP , ∆m2
21/∆m

2
31 , (5.9)

which only depend on the six dimensionless real parameters in eq. (5.8), we perform a

conventional χ2 analysis to determine the best fit values of the free parameters as well
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as the corresponding predictions for the flavor observables. We adopt the following the

experimental data and errors to build the χ2 function:

me

mµ

∣

∣

∣

bf+1σ
= 0.004737+0.00004

−0.00004 ,
mµ

mτ

∣

∣

∣

bf+1σ
0.05876+0.000465

−0.000465 , sin2 θ12|bf+1σ = 0.303+0.012
−0.012 ,

sin2 θ13|bf+1σ = 0.02225+0.00056
−0.00059 , sin2 θ23|bf+1σ = 0.451+0.019

−0.016 ,

δCP
π

∣

∣

∣

bf+1σ
= 1.289+0.20

−0.14 ,
∆m2

21

∆m2
31

∣

∣

∣

bf+1σ
= 0.0294+0.00088

−0.00088 , (5.10)

where the data of the lepton mixing angles and CP phase δCP is taken from NuFIT5.2 [43],

the charged lepton mass ratios are taken from [44] with MSUSY = 10 TeV and tan β = 5. We

notice that this model yields a successful fit to current experimental data for certain values

of the input parameters. We find the minimum value of the χ2 function is χ2
min = 10.68,

and the best fit values of the free parameters are

ℜ〈τ〉 = 0.00157, ℑ〈τ〉 = 1.120, |βvξ/(αΛ)| = 0.0478, arg(βvξ/(αΛ)) = 1.036π,

|g2vχ/(g1vϕ)| = 0.9786, arg(g2vχ/(g1vϕ)) = 1.005π,

αvξvφvd/Λ
2 = 267.2 MeV , g1vϕv

2
u/Λ

2 = 5.40 meV . (5.11)

The overall scales αvdvφ/Λ and g1v
2
uvϕ/Λ

2 are fixed by the measured electron mass and the

solar neutrino mass square difference ∆m2
21. We see that the real part of modulus ℜ〈τ〉 is

quite small, and both phases arg(βvξ/(αΛ)) and arg(g2vχ/(g1vϕ)) are very close to π. At

the best fit point, the lepton masses and mixing parameters are determined to be

sin2 θ13 = 0.02252, sin2 θ12 = 0.3283, sin2 θ23 = 0.4954, δCP = 1.435π ,

α21 = 0.961π, α31 = 0.927π, m1 = 15.12 meV, m2 = 17.40 meV ,

m3 = 52.30 meV,
3
∑

i=1

mi = 84.82 meV, mββ = 5.617 meV ,

me = 0.511 MeV, mµ = 107.9 MeV, mτ = 1.836 GeV , (5.12)

where mi (i = 1, 2, 3), mj (j = e, µ, τ) and mββ refers to the absolute masses of the

three light neutrinos, the masses of the three charged leptons and the effective mass in

neutrinoless double beta decay, respectively. The effective Majorana mass is determined to

be mββ = 5.617 meV which is much below the current most stringent limit mββ < 36 − 156

meV from KamLAND-Zen [45]. The next generation neutrinoless double decay experiments

of ton-scale can improve the sensitivity to mββ considerably. For example, the SNO+ Phase

II could probe the effective mass mββ in the range of 19 − 46 meV [46]. The LEGEND

experiment is expected to reach the sensitivity of (15–50) meV by operating 1000 kg of

detectors for 10 years [47]. The experiment nEXO will be able to probe mββ down to

5.7 − 17.7 meV after 10 years of data taking [48]. Thus our prediction for mββ is a bit below

but close to the future sensitivity. Moreover, the three neutrino mass sum is predicted to

be 84.82 meV which is compatible with the upper bound
∑3
i=1mi < 120 meV on neutrino

mass sum from Planck [49].
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If the gCP symmetry is imposed on the model, all the couplings would be enforced to be

real, as discussed in section 4. Moreover, certain residual CP symmetry require the flavons

vacuum parameters vξ, vφ, vϕ and vχ in eq. (5.3) be real, as shown in table 3. Thus the two

phase parameters arg(βvξ/(αΛ)) and arg(g2vχ/(g1vϕ)) in eq. (5.8) are 0 or π because of

the gCP symmetry. Furthermore, if the modulus τ lies on the imaginary axis with ℜτ = 0,

the VEV of τ preserves the gCP symmetry K∗, and q = e2πiτ as well as the modular forms

Y1(τ) and Y2(τ) in eq. (C.9) would be real. Hence all the integer weight modular forms of

level 3 are real for pure imaginary τ , as can be seen from appendix C. As a consequence,

the neutrino mass matrix m′
ν in the charged lepton diagonal basis in eq. (5.7) satisfies

(m′
ν)ee = (m′

ν)
∗
ee, (m′

ν)µτ = (m′
ν)

∗
µτ , (m′

ν)eτ = (m′
ν)

∗
eµ, (m′

ν)µµ = (m′
ν)

∗
ττ , (5.13)

which is exactly the requirement of a theory invariant under µ− τ reflection symmetry [50–

52]. In other words, the neutrino mass matrix m′
ν in eq. (5.7) really fulfills the µ − τ

reflection symmetry

P Tντ m
′
ν Pντ = (m′

ν)
∗ , (5.14)

with

Pντ =











1 0 0

0 0 1

0 1 0











. (5.15)

It is known that the µ−τ reflection symmetry leads to maximal atmospheric angle, maximal

Dirac CP phase and trivial Majorana CP phases: θ23 = π/4, δCP = ±π/2, α21, α31 =

0, π [50–52] After imposing the gCP symmetry and the assumption of ℜτ = 0, we find

that all the seven dimensionless flavor observables in eq. (5.9) would only depend on three

dimensionless real parameters in the model,

ℑτ, βvξ/(αΛ), g2vχ/(g1vϕ) . (5.16)

Analogously performing a numerical analysis, we find that the minimum value of χ2 function

is χ2
min = 11.75 when the free parameters take the following values

〈τ〉 = 1.120i, βvξ/(αΛ) = −0.0482, g2vχ/(g1vϕ) = −0.9804,

αvdvξvφ/Λ
2 = 267.3 MeV , g1v

2
uvϕ/Λ

2 = 5.409 meV . (5.17)

Accordingly the lepton masses and mixing parameters are determined to be

sin2 θ13 = 0.02239, sin2 θ12 = 0.3266, sin2 θ23 = 0.5, δCP = 1.5π ,

α21 = π, α31 = π, m1 = 15.17 meV, m2 = 17.44 meV ,

m3 = 52.42 meV,
∑

i

mi = 85.03 meV, mββ = 5.595 meV ,

me = 0.511MeV, mµ = 107.9MeV, mτ = 1.836GeV . (5.18)

In order to show the viability and predictions of this model with/without gCP, we scan

over the parameter space of the model, the six (three) dimensionless real parameters in
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Fields L Ec N c Hu Hd φ ϕ ξ Y
(kY )

r

SU(2)L × U(1)Y (2,−1
2) (1, 1) (1, 0) (2, 1

2) (2,−1
2) (1, 0) (1, 0) (1, 0) (1, 0)

∆(27) 3̄ 3̄ 3̄ 10,0 10,0 3̄ 3̄ 10,0 10,0

Γ′
3

∼= T ′ 3̄0 3̄0 3̄0 1 1 3̄0 3̄1 1′′ r

modular weight 0 0 1 0 0 3 −1 7 kY

Z2 1 1 −1 1 1 1 −1 1 1

Z3 ω ω ω 1 1 ω ω 1 1

Table 5. The matter fields, flavon fields of example model 2 and their transformation properties

under the eclectic flavor symmetry ∆(27) ⋊ T ′ and the auxiliary symmetry Z2 × Z3.

for the case without gCP, and

sin2 θ23 = 0.5, δCP = 1.5π, α21 = α31 = π ,

sin2 θ13 ∈ [0.02172, 0.02282], sin2 θ12 ∈ [0.324, 0.331], mββ ∈ [5.328 meV, 5.776 meV] ,

(5.20)

for the case with gCP plus ℜτ = 0. Furthermore, this model predicts a nearly maximal

atmospheric mixing angle θ23 and a nearly maximal Dirac CP phase δCP when gCP is

not imposed. Notice that the model predicts a nearly maximal atmospheric mixing angle

θ23 even if gCP isn’t imposed. It is remarkable that the variation region of the effective

Majorana neutrino mass mββ is very small because of the linear correlation between α21

and α31 shown in figure 1.

The NLO correction to the minimal Kähler potential is of the form

KNLO =
∑

n,r

1

Λ
(−iτ + iτ̄)n

[

Y (n)†
r (τ)Y (n−1)

r (τ)L†Lξ
]

(10,0,1)

+
1

Λ
(−iτ + iτ̄)n

[

Y (n)†
r (τ)Y (n−1)

r (τ)Ec†Ecξ
]

(10,0,1)
. (5.21)

The corresponding Kähler metric for both LH lepton doublet L and RH charged leptons Ec

is a unit matrix so that its contribution can be absorbed into the minimal Kähler potential.

Hence the non-diagonal contributions of Kähler metric come from NNLO corrections and

they are suppressed by 〈Φ〉2/Λ2. Therefore the contributions of Kähler potential to the

lepton mixing parameters and masses are suppressed by 〈Φ〉2/Λ2 and can be neglected.

5.2 Example model 2

In the second model, the neutrino masses are described by the type I seesaw mechanism

with three RH neutrinos. This model is also based on the eclectic flavor group Ω(1) with

the extra symmetry Z2 × Z3 to eliminate undesired operators. The three generations of LH

doublet leptons L, the RH charged leptons Ec and the RH neutrinos N c are all embedded

into the triplet 3̄ of ∆(27), and we introduce three flavons φ, ϕ and ξ which transform as 3̄,

3̄ and 10,0 under ∆(27) respectively.7 The fields content and their classification under the

7Similar results can be obtained if the representation 3 instead of 3̄ is used.
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eclectic flavor group Ω(1) and the auxiliary symmetry Z2 × Z3 are listed in table 5. The

superpotential for the leptons can be written as

W =
α

Λ

(

EcLφY
(3)

2′

)

(10,0,1)
Hd +

β

Λ2

(

EcLφξY
(10)

1

)

(10,0,1)
Hd +

g1

Λ
(N cLϕ)(10,0,1)Hu

+
g2

Λ2

(

N cLϕξY
(7)

2

)

(10,0,1)
Hu +

h

2

(

N cN cφY
(5)

2′

)

(10,0,1)
. (5.22)

In this model we assume that the VEV of flavon φ breaks the traditional flavor symmetry

∆(27) down to ZA
2B

3 while the subgroup ZA3 is preserved by vacuum of flavon ϕ. Hence the

VEVs of flavons ξ, φ and ϕ take the following form:

〈ξ〉 = vξ, 〈φ〉 = (1, 1, ω2)T vφ, 〈ϕ〉 = (1, 1, 1)T vϕ . (5.23)

From table 3, we see that no nontrivial residual CP transformation is consistent with the

residual flavor symmetries ZA
2B

3 and ZA3 . Therefore we do not consider gCP symmetry

in this model, thus all coupling constants and the VEVs vξ, vφ, vϕ are generally complex.

After flavor symmetry and electroweak symmetry breaking, we can straightforwardly read

out the charged lepton mass matrix, the Dirac neutrino mass matrix and the Majorana

neutrino mass matrix,

ml =
αvdvφ

Λ











√
2Y

(3)
2′,2 −ωY (3)

2′,1 −ω2Y
(3)

2′,1

−ωY (3)
2′,1

√
2Y

(3)
2′,2 −ω2Y

(3)
2′,1

−ω2Y
(3)

2′,1 −ω2Y
(3)

2′,1

√
2ω2Y

(3)
2′,2











+
iβY

(10)
1 vξvdvφ

Λ











0 ω −ω2

−ω 0 ω2

ω2 −ω2 0











,

mD =
iω2g1vuvϕ

Λ











0 1 −1

−1 0 1

1 −1 0











+
g2vuvξvϕ

Λ2











√
2Y

(7)
2,2 −ω2Y

(7)
2,1 −ω2Y

(7)
2,1

−ω2Y
(7)

2,1

√
2Y

(7)
2,2 −ω2Y

(7)
2,1

−ω2Y
(7)

2,1 −ω2Y
(7)

2,1

√
2Y

(7)
2,2











,

mN = hvφ











√
2Y

(5)
2′,2 −ωY (5)

2′,1 −ω2Y
(5)

2′,1

−ωY (5)
2′,1

√
2Y

(5)
2′,2 −ω2Y

(5)
2′,1

−ω2Y
(5)

2′,1 −ω2Y
(5)

2′,1

√
2ω2Y

(5)
2′,2











. (5.24)

The light neutrino mass matrix is then given by the seesaw relation:

mν = −mT
Dm

−1
N mD . (5.25)

Since both flavons φ and ϕ enter into the neutrino mass terms and their VEVs preserve

different Z3 subgroups of ∆(27), the traditional flavor group ∆(27) is completely broken in

the neutrino sector. One can easily check that the hermitian combination m†
lml is invariant

under the action of ρ3̄(A2B). It implies that the residual flavor symmetry is ZA
2B

3 in the

charged lepton sector. We find that the experimental data can be accommodated rather

well for certain values of the input parameters. The best fit point is found to be given by

ℜ〈τ〉 = 0.256, ℑ〈τ〉 = 0.987, |βvξ/(αΛ)| = 0.127, arg(βvξ/(αΛ)) = 0.459π,

|g2vξ/(g1Λ)| = 0.0416, arg(g2vξ/(g1Λ)) = 0.552π,

αvdvξvφ/Λ
2 = 226.1 MeV , g1v

2
uvϕ/Λ

2 = 29.25 meV , (5.26)
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with the finite modular group in the bottom-up approach. The concept of eclectic flavor

group originated in top-down model building motivated by string theory. In the scheme of

eclectic flavor groups, which allows us to combine the advantages of modular symmetries

and traditional flavor symmetries while avoiding their limitations, the superpotential and

the Kähler potential are both severely restricted at the same time. However, there are

no remaining exact flavor symmetries in nature, flavon fields should be introduced in this

kind of models, and their VEVs break the flavor symmetries. It turns out that the choices

for such eclectic symmetries are quite restrictive, with only three choices of flavor group

Z3 × Z3, ∆(27) and ∆(54) catalogued so far allowing for a non-trivial eclectic extension

with a CP-like transformation [17, 18].

We perform a comprehensive analysis of the superpotential and Kähler potential of

models based on the eclectic flavor group Ω(1) which is semi-direct product of the traditional

flavor group ∆(27) with the finite modular group T ′, and find three generations of quarks

and leptons can only be assigned to triplet, antitriplet or trivial singlet of ∆(27). From the

discussion in section 4, the general form of fermion mass matrices can be obtained for any

modular weight and any number of flavons. If a ∆(27) octet flavon which is invariant under

auxiliary cyclic symmetries is imposed in a model, we find that the contributions to the

fermion masses and fermion mixings from higher order corrections of Kähler potential are

suppressed by powers of 〈Φ〉/Λ, or they will be suppressed by 〈Φ〉2/Λ2.

In order to extract general lessons from the eclectic flavor symmetry scheme, we construct

two concrete lepton models invariant under the eclectic flavor group Ω(1) ∼= ∆(27) ⋊ T ′

in the framework of N = 1 global supersymmetry. In the two models, all lepton fields

are assigned to ∆(27) triplet and the three light neutrino masses are generated by the

Weinberg operator and the type I seesaw mechanism, respectively. To break the traditional

flavor group ∆(27), three (two) triplet flavons and a trivial singlet flavon are introduced in

the first (second) model. Then the higher order corrections from Kähler potential to the

lepton mixing parameters and masses are suppressed by 〈Φ〉2/Λ2 and can be neglected. For

the first model, we assume that the traditional flavor group ∆(27) is broken down to the

subgroup ZA
2BA2

3 in the charged lepton sector and is broken completely in the neutrino

sector. For the second model, the subgroup ZA
2B

3 is preserved by the VEVs of the flavon in

the charged lepton mass terms and neutrino Majorana mass term, while the subgroup ZA3 is

preserved by vacuum of flavon in the neutrino Dirac mass terms. Furthermore, we perform

a comprehensive analysis of the two models for lepton masses and mixing parameters. In

both of the two models, the six lepton masses and six lepton mixing parameters depend on

two complex coupling constants, two real coupling constants and the complex modulus τ in

the case of without gCP. From the numerical scan of the parameter space, we find that

all six mixing parameters vary in very small regions, and a nearly maximal atmospheric

mixing angle θ23 and Dirac CP phase δCP are obtained in the first model. When the

conditions gCP and ℜτ = 0 are imposed in the first model, the experimental data of

lepton masses and mixing parameters can be successfully described in terms of five real

parameters, and the µ− τ reflection symmetry is preserved in the charged lepton diagonal

basis. Then atmospheric mixing angle and Dirac CP phase are predicted to be maximal,

and two Majorana CP phases are predicted to be π. Furthermore, the predictions for the

effective mass in neutrinoless double beta decay are obtained in both of the two models.
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All the predictions of the two models are compatible with the experimental data and could

be tested at forthcoming long baseline neutrino experiments and neutrinoless double beta

decay experiments.

In general, the main advantage of eclectic flavor symmetry is that it leads to predictive

lepton mass and mixing models with the Kähler potential under control. Also, the represen-

tation of the matter fields under the flavor symmetry is constrained by the eclectic flavor

symmetry. For example, in the considered models, this means that non-trivial singlet repre-

sentations are not permitted since they would have to form a reducible octet, which is not

phenomenologically possible. Also, we have seen that the modular symmetry transformation

is determined by the flavor symmetry transformation through the consistency condition.

Looking ahead, it would be interesting to explore how to implement top-down ingredi-

ents, such as the constrained choice of modular weights, in the future bottom-up eclectic

models. Also, the problem of modulus stabilisation in theory based on modular symmetry

still persists, and the presence of flavons only exacerbates the problem. Such problems are

left for future work. In the present paper, we have developed the formalism of eclectic flavor

symmetry from the bottom-up point of view, focusing on an attractive class of models

based on Ω(1), where the imposition of gCP symmetry leads to a predictive model with

µ− τ reflection symmetry.
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A Traditional flavor group ∆(27)

The ∆(27) group as flavor symmetry has been studied in the literature, see [55–58] and

references therein. It is a non-Abelian group of order 27 with GAP ID [27, 3] [59], and the

group structure of ∆(27) is ∆(27) ∼= (Z3 × Z3) ⋊ Z3. In detail, ∆(27) can be generated by

two generators A and B which satisfy the multiplication rules

A3 = B3 = (AB)3 = (AB2)3 = 1 . (A.1)

The multiplication rules of ∆(27) in refs. [58, 59] are given by:

a3 = a′3 = b3 = 1, aa′ = a′a , bab−1 = a−1a′−1, ba′b−1 = a . (A.2)
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Note that the chosen generators A and B in the present work are related to the generators

a, a′ and b of refs. [58, 59] via

a = BAB2, a′ = A, b = B . (A.3)

The traditional flavor group ∆(27) has eleven conjugacy classes and they are

1C1 = {1} , 3C
(1)
3 =

{

A2B2, B2A2, AB2A
}

,

3C
(2)
3 =

{

A2B,ABA,BA2
}

, 3C
(3)
3 =

{

A,BAB2, B2AB
}

,

3C
(4)
3 =

{

AB2, BAB,B2A
}

, 3C
(5)
3 =

{

AB,BA,A2BA2
}

,

3C
(6)
3 =

{

A2, B2A2B,BA2B2
}

, 3C
(7)
3 =

{

B2, AB2A2, A2B2A
}

,

3C
(8)
3 =

{

B,A2BA,ABA2
}

, 1C
(1)
3 =

{

BAB2A2
}

, 1C
(2)
3 =

{

ABA2B2
}

,

(A.4)

where kCn denotes a conjugacy class which contains k elements with order n. Group ∆(27)

contains seventeen nontrivial abelian subgroups in total: thirteen Z3 subgroups and four

Z3 ×Z3 subgroups. In terms of the generators A and B, the concrete forms of these abelian

subgroups are as follows

• Z3 subgroups

ZA3 = {1, A,A2}, ZBAB
2

3 = {1, BAB2, BA2B2}, ZB
2AB

3 = {1, B2AB,B2A2B},
ZB3 = {1, B,B2}, ZA

2BA
3 = {1, A2BA,A2B2A}, ZABA

2

3 = {1, ABA2, AB2A2},
ZAB3 = {1, AB,B2A2}, ZBA3 = {1, BA,A2B2}, ZAB

2A
3 = {1, AB2A,A2BA2}

ZA
2B

3 = {1, A2B,B2A}, ZAB
2

3 = {1, AB2, BA2}, ZABA3 = {1, ABA,BAB}
ZBAB

2A2

3 = {1, BAB2A2, ABA2B2} .

The thirteen Z3 subgroups in each line above are related with each other by group

conjugation.

• Z3 × Z3 subgroups

ZA3 × ZBAB
2

3 = {1, A,BAB2A2, A2, BAB2, ABA2B2, B2A2B,B2AB,BA2B2},
ZB3 × ZABA

2

3 = {1, B,BAB2A2, B2, A2BA,ABA2B2, AB2A2, ABA2, A2B2A},
ZBA3 × ZB

2A2

3 = {1, BAB2A2, AB,ABA2B2, BA,A2B2, A2BA2, B2A2, AB2A},
ZBA

2

3 × ZB
2A

3 = {1, BAB2A2, ABA2B2, A2B,AB2, ABA,BAB,BA2, B2A} .

All the four Z3 × Z3 subgroups are related with each other by group conjugation.

As the number of irreducible representation is equal to the number of conjugacy class, the

traditional flavor group ∆(27) has eleven inequivalent irreducible representations with nine

singlets labelled as 1(r,s) (r, s = 0, 1, 2) and two triplets labelled as 3 and 3̄. The character
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E A2B2 A2B A AB2 AB A2 B2 B BAB2A2 ABA2B2

1C1 3C
(1)
3 3C

(2)
3 3C

(3)
3 3C

(4)
3 3C

(5)
3 3C

(6)
3 3C

(7)
3 3C

(8)
3 1C

(1)
3 1C

(2)
3

10,0 1 1 1 1 1 1 1 1 1 1 1

10,1 1 ω2 ω 1 ω2 ω 1 ω2 ω 1 1

10,2 1 ω ω2 1 ω ω2 1 ω ω2 1 1

11,0 1 ω2 ω2 ω ω ω ω2 1 1 1 1

11,1 1 ω 1 ω 1 ω2 ω2 ω2 ω 1 1

11,2 1 1 ω ω ω2 1 ω2 ω ω2 1 1

12,0 1 ω ω ω2 ω2 ω2 ω 1 1 1 1

12,1 1 1 ω2 ω2 ω 1 ω ω2 ω 1 1

12,2 1 ω2 1 ω2 1 ω ω ω ω2 1 1

3 3 0 0 0 0 0 0 0 0 3ω 3ω2

3̄ 3 0 0 0 0 0 0 0 0 3ω2 3ω

Table 6. The character table of ∆(27), where ω is the cube root of unity ω = e2πi/3. The arrowed

lines show the transformation of the irreducible representations and conjugacy classes of ∆(27) under

the actions of the outer automorphisms uS(blue), uT (red) and uK∗
(green).

table of ∆(27) is shown in table 6. The first line of table 6 indicates representatives of the

eleven conjugacy classes in the second line. In our working basis, the eleven irreducible

representations of ∆(27) are taken to be

1r,s : ρ1r,s(A) = ωr, ρ1r,s(B) = ωs , with r, s = 0, 1, 2 ,

3 : ρ3(A) =











0 1 0

0 0 1

1 0 0











, ρ3(B) =











1 0 0

0 ω 0

0 0 ω2











,

3̄ : ρ3̄(A) =











0 1 0

0 0 1

1 0 0











, ρ3̄(B) =











1 0 0

0 ω2 0

0 0 ω











. (A.5)

From the character table, it is easy to calculate the Kronecker products of two different

irreducible representations of ∆(27) as

1r,s ⊗ 1r′,s′ = 1[r+r′], [s+s′], 1r,s ⊗ 3 = 3, 1r,s ⊗ 3̄ = 3̄ ,

3 ⊗ 3 = 3̄S,1 ⊗ 3̄S,2 ⊗ 3̄A , 3̄ ⊗ 3̄ = 3S,1 ⊗ 3S,2 ⊗ 3A , 3 ⊗ 3̄ =
2
∑

r,s=0

1r,s ,

(A.6)

where r, s, r′, s′ = 0, 1, 2, the integer [n] ≡ n (mod 3), and the subscript S (A) denotes

symmetric (antisymmetric) combination. In the following, all CG coefficients are presented

in the form α⊗ β, where αi denotes the elements of the first representation and βj stands
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for the elements of the second representation of the tensor product. In the following, we

shall adopt the convention β[3] = β0 ≡ β3.

1r,s ⊗ 1r′,s′ = 1[r+r′],[s+s′] 1r,s ⊗ 3 = 3 1r,s ⊗ 3 = 3

1[r+r′],[s+s′] : α1β1 3 : α1











β[1−s]

ωrβ[2−s]

ω2rβ[3−s]











3̄ : α1











β[1+s]

ωrβ[2+s]

ω2rα1β[3+s]











3 ⊗ 3 =
∑2
k,r=0 1k,r 3 ⊗ 3 = 3S1 ⊕ 3S2 ⊕ 3A 3 ⊗ 3 = 3S1 ⊕ 3S2 ⊕ 3A

10,0 : α1β1 + α2β2 + α3β3

10,1 : α1β3 + α2β1 + α3β2 3S1 :











α1β1

α2β2

α3β3











3S1 :











α1β1

α2β2

α3β3











10,2 : α1β2 + α2β3 + α3β1

11,0 : α1β1 + ω2α2β2 + ωα3β3

11,1 : α1β3 + ω2α2β1 + ωα3β2 3S2 :











α2β3 + α3β2

α3β1 + α1β3

α1β2 + α2β1











3S2 :











α2β3 + α3β2

α3β1 + α1β3

α1β2 + α2β1











11,2 : α1β2 + ω2α2β3 + ωα3β1

12,0 : α1β1 + ωα2β2 + ω2α3β3

12,1 : α1β3 + ωα2β1 + ω2α3β2 3A :











α2β3 − α3β2

α3β1 − α1β3

α1β2 − α2β1











3A :











α2β3 − α3β2

α3β1 − α1β3

α1β2 − α2β1











12,2 : α1β2 + ωα2β3 + ω2α3β1

B The finite modular group Γ′

3
∼= T ′

The finite modular group Γ′
3

∼= T ′ contains 24 elements and it can be generated by two

generators S and T with [7, 29, 60, 61]

S4 = T 3 = (ST )3 = 1, S2T = TS2 . (B.1)

The 24 elements of T ′ can be divided into the seven conjugacy classes as follows,

1C1 = {1} , 1C2 = {S2}, 6C4 = {S, T 2ST, TST 2, T 2S3T, TS3T 2, S3} ,
4C

(1)
3 = {T 2, S3T 2, T 2S3, TS3T} , 4C

(2)
3 = {T, TS, ST, T 2ST 2} ,

4C
(1)
6 = {TS2, TS3, S3T, T 2S3T 2} , 4C

(2)
6 = {ST 2, T 2S, TST, T 2S2} , (B.2)

where the conjugacy class is denoted by nCk with n elements and the subscript k is the

order of the elements. The finite modular group T ′ has three singlet representations 1, 1′

and 1′′, three doublet representations 2, 2′ and 2′′, and one triplet representation 3. The

character table of T ′ group is given in table 7. The Kronecker products between different

irreducible representations can be obtained from the character table

1a ⊗ 1b = 1[a+b], 1a ⊗ 2b = 2[a+b], 1a ⊗ 3 = 3, 2a ⊗ 2b = 1[a+b] ⊕ 3,

2a ⊗ 3 = 2 ⊕ 2′ ⊕ 2′′, 3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3S ⊕ 3A , (B.3)
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Classes 1C1 1C2 4C
(1)
3 4C

(2)
3 6C4 4C

(1)
6 4C

(2)
6

1 1 1 1 1 1 1 1

1′ 1 1 ω2 ω 1 ω ω2

1′′ 1 1 ω ω2 1 ω2 ω

2 2 −2 −1 −1 0 1 1

2′ 2 −2 −ω2 −ω 0 ω ω2

2′′ 2 −2 −ω −ω2 0 ω2 ω

3 3 3 0 0 −1 0 0

Table 7. Character table of the finite modular group T ′.

where a, b = 0, 1, 2 and we denote 10 ≡ 1, 11 ≡ 1′, 12 ≡ 1′′ and similarly for the doublet

representations. On the right-hand-side [a+ b] is defined as a+ b modulo 3. In the present

work, the seven irreducible representations are taken to be

1a : ρ1a(S) = 1, ρ1a(T ) = ωa ,

2a : ρ2a(S) =
i√
3





1
√

2
√

2 − 1



 , ρ2a(T ) = ωa+1





1 0

0 ω



 ,

3 : ρ3(S) =
1

3











−1 2 2

2 − 1 2

2 2 − 1











, ρ3(T ) =











1 0 0

0 ω 0

0 0 ω2











, (B.4)

with a = 0, 1, 2. From the irreducible representation matrices of T ′ in eq. (B.4), one can

easy to check that

ρ∗
2(T ) = U †

2ρ2(T )U2, ρ∗
2(S) = U †

2ρ2(S)U2 ,

ρ∗
2′(T ) = U †

2ρ2′′(T )U2, ρ∗
2′(S) = U †

2ρ2′′(S)U2 ,

ρ∗
3(T ) = U †

3ρ3(T )U3, ρ∗
3(S) = U †

3ρ3(S)U3 ,

(B.5)

with

U2 =





0 −1

1 0



 , U3 =











1 0 0

0 0 1

0 1 0











. (B.6)

It implies that the irreducible representations 2′ and 2′′ are complex conjugated to each

other by a unitary transformation U2, and the irreducible representations 2 and 3 are real

representation. Thus we have

α = (α1, α2)T ∼ 2, → (−α∗
2, α

∗
1)T ∼ 2 ,

α = (α1, α2)T ∼ 2′, → (−α∗
2, α

∗
1)T ∼ 2′′ ,

α = (α1, α2)T ∼ 2′′, → (−α∗
2, α

∗
1)T ∼ 2′ ,

α = (α1, α2, α3)T ∼ 3, → (α∗
1, α

∗
3, α

∗
2)T ∼ 3 .

(B.7)
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In the end, we present the CG coefficients of T ′ in the chosen basis. As the same as the

CG coefficients of ∆(27), we use the notation αi (βi) to denote the elements of the first

(second) representation. Furthermore, we shall adopt the following notation to facilitate

the expressions of CG coefficients

P =











0 0 1

1 0 0

0 1 0











. (B.8)

Then all the CG coefficients of T ′ for the decomposition of product representations can be

written as

1a ⊗ 2b = 2[a+b] 1a ⊗ 3 = 3 2a ⊗ 2b = 1[a+b] ⊕ 3

1[a+b] : α1β2 − α2β1

2[a+b] : α1





β1

β2



 3 : α1P
a











β1

β2

β3









 3 : P [a+b]











α1β2 + α2β1√
2α2β2

−
√

2α1β1











3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3S ⊕ 3A 2a ⊗ 3 = 2 ⊕ 2′ ⊕ 2′′

1 : α1β1 + α2β3 + α3β2

1′ : α1β2 + α2β1 + α3β3 2a :





√
2α2β3 + α1β1√
2α1β2 − α2β1





1′′ : α1β3 + α2β2 + α3β1

3S :











2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1











2[1+a] :





√
2α2β1 + α1β2√
2α1β3 − α2β2





3A :











α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3











2[2+a] :





√
2α2β2 + α1β3√
2α1β1 − α2β3





C Modular forms of level N = 3

The modular forms of weight k and level 3 are holomorphic functions of the complex

modulus τ and they span a linear space Mk(Γ(3)) with dimension

dimMk(Γ(3)) = k + 1, k ≥ 1 , (C.1)

where the modular weight k is a generic non-negative integer. Each modular form f
(k)
i (τ)

of weight k and level 3 is invariant under the traditional flavor symmetry and transforms

under the action of Γ(3) in the following way

f
(k)
i (τ) → f

(k)
i (γτ) = (cτ + d)kf

(k)
i (τ), ∀ γ =





a b

c d



 ∈ Γ(3) . (C.2)
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Furthermore, the modular forms f
(k)
i (τ) can be arranged into some modular multiplets

Y
(k)

r (τ) ≡ (f1(τ), f2(τ), · · · )T which transform as certain irreducible representation r of the

finite modular group T ′ [1, 29]

Y (k)
r (γτ) = (cτ + d)kρr(γ)Y (k)

r (τ), ∀ γ ∈ Γ , (C.3)

where γ is the representative element of the coset γΓ(N) in T ′, and ρr(γ) is the representation

matrix of γ in the irreducible representation r of T ′.

The modular forms of level 3 can be generated by the products of Dedekind function

η(τ), and there are only two linearly independent weight 1 and level 3 modular forms which

can be taken to be [29]:

ê1(τ) =
η3(3τ)

η(τ)
, ê2(τ) =

η3(τ/3)

η(τ)
, (C.4)

where the Dedekind function η(τ) is defined as

η(τ) = q1/24
∞
∏

n=1

(1 − qn) , q ≡ e2πiτ . (C.5)

Under the actions of the two generators S and T of Γ, η(τ) transforms as

η(τ)
S−→ η(−1/τ) =

√
−iτ η(τ) , η(τ)

T−→ η(τ + 1) = eiπ/12η(τ) , (C.6)

which lead to the following transformation properties [29]

ê1(τ)
S−→ 3−3/2(−iτ)ê2(τ), ê2(τ)

S−→ 33/2(−iτ)ê1(τ) .

ê1(τ)
T−→ ωê1(τ), ê2(τ)

T−→ 3(1 − ω)ê1 + ê2 .
(C.7)

The two independent weight 1 modular forms of level 3 can be arranged into a doublet 2′′

of T ′ in our basis given in appendix B and the corresponding modular multiplet Y
(1)

2′′ (τ) is

defined as

Y
(1)

2′′ (τ) ≡




Y1(τ)

Y2(τ)



 =





3ê1(τ) + ê2(τ)

3
√

2ê1(τ)



 . (C.8)

The expressions of the q-expansions of Yi(τ) are given by

Y1(τ) = 1 + 6q + 6q3 + 6q4 + 12q7 + 6q9 ,

Y2(τ) = 3
√

2q1/3(1 + q + 2q2 + 2q4 + q5 + 2q6 + q8 + 2q9) . (C.9)

The higher weight modular multiplets can be constructed by the tensor products of lower

weight modular multiplets. One can find the modular multiplets of any integral weight by

using the weight 1 modular multiplet Y
(1)

2′′ (τ) and the CG coefficients of T ′ in appendix B.

We summarize the modular multiplets of level N = 3 up to weight 10 in table 8. Their
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weight Modular form Y
(k)

r weight Modular form Y
(k)

r

k = 1 Y
(1)

2′′ k = 2 Y
(2)

3

k = 3 Y
(3)

2′ , Y
(3)

2′′ k = 4 Y
(4)

1 , Y
(4)

1′ , Y
(4)

3

k = 5 Y
(5)

2 , Y
(5)

2′ , Y
(5)

2′′ k = 6 Y
(6)

1 , Y
(6)

3i , Y
(6)

3ii

k = 7 Y
(7)

2 , Y
(7)

2′ , Y
(7)

2′′i, Y
(7)

2′′ii k = 8 Y
(8)

1 , Y
(8)

1′ , Y
(8)

1′′ , Y
(8)

3i , Y
(8)

3ii

k = 9 Y
(9)

2 , Y
(9)

2′i , Y
(9)

2′ii, Y
(9)

2′′i, Y
(9)

2′′ii k = 10 Y
(10)

1 , Y
(10)

1′ , Y
(10)

3i , Y
(10)

3ii , Y
(10)

3iii

Table 8. The higher integral weight modular multiplets of level 3 up to weight 10, the subscript r

denotes the transformation property under homogeneous finite group Γ′
3

∼= T ′.

explicit forms of these modular multiplets are

Y
(2)

3 =
(

Y
(1)

2′′ Y
(1)

2′′

)

3
, Y

(3)
2′ =

(

Y
(1)

2′′ Y
(2)

3

)

2′

, Y
(3)

2′′ =
(

Y
(1)

2′′ Y
(2)

3

)

2′′

,

Y
(4)

1 =
(

Y
(2)

3 Y
(2)

3

)

1
, Y

(4)
1′ =

(

Y
(2)

3 Y
(2)

3

)

1′

, Y
(4)

3 =
(

Y
(2)

3 Y
(2)

3

)

3
,

Y
(5)

2 =
(

Y
(2)

3 Y
(3)

2′

)

2
, Y

(5)
2′ =

(

Y
(2)

3 Y
(3)

2′

)

2′

, Y
(5)

2′′ =
(

Y
(2)

3 Y
(3)

2′

)

2′′

,

Y
(6)

1 =
(

Y
(3)

2′ Y
(3)

2′′

)

1
, Y

(6)
3i =

(

Y
(3)

2′ Y
(3)

2′

)

3
, Y

(6)
3ii =

(

Y
(3)

2′ Y
(3)

2′′

)

3
,

Y
(7)

2 =
(

Y
(3)

2′ Y
(4)

3

)

2
, Y

(7)
2′ =

(

Y
(3)

2′ Y
(4)

1

)

2′

, Y
(7)

2′′i =
(

Y
(3)

2′ Y
(4)

1′

)

2′′

,

Y
(7)

2′′ii =
(

Y
(3)

2′ Y
(4)

3

)

2′′

, Y
(8)

1 =
(

Y
(4)

1 Y
(4)

1

)

1
, Y

(8)
1′ =

(

Y
(4)

1 Y
(4)

1′

)

1′

,

Y
(8)

1′′ =
(

Y
(4)

1′ Y
(4)

1′

)

1′′

, Y
(8)

3i =
(

Y
(4)

1 Y
(4)

3

)

3
, Y

(8)
3ii =

(

Y
(4)

1′ Y
(4)

3

)

3
,

Y
(9)

2 =
(

Y
(1)

2′′ Y
(8)

1′

)

2
, Y

(9)
2′i =

(

Y
(1)

2′′ Y
(8)

1′′

)

2′

, Y
(9)

2′ii =
(

Y
(1)

2′′ Y
(8)

3i

)

2′

,

Y
(9)

2′′i =
(

Y
(1)

2′′ Y
(8)

1

)

2′′

, Y
(9)

2′′ii =
(

Y
(1)

2′′ Y
(8)

3ii

)

2′′

, Y
(10)

1 =
(

Y
(2)

3 Y
(8)

3i

)

1
,

Y
(10)

1′ =
(

Y
(2)

3 Y
(8)

3ii

)

1′

, Y
(10)

3i =
(

Y
(2)

3 Y
(8)

1

)

3
, Y

(10)
3ii =

(

Y
(2)

3 Y
(8)

1′

)

3
,

Y
(10)

3iii =
(

Y
(2)

3 Y
(8)

1′′

)

3
.

(C.10)

D Alternative method to derive the Majorana superpotential

As shown in section 4, it is convenient to first consider the constraints of traditional flavor

symmetry and then the modular symmetry in the paradigm of eclectic flavor symmetry.

Likewise we can first analyze the constraints of modular symmetry and subsequently the

traditional flavor symmetry. In the following, we shall revisit the superpotential WM for

the Majorana fermion mass in this alternative method. The general expression of WM is

given in eq. (4.16), where ψc and Φ are assumed to transform as (3,30) under the eclectic

symmetry group ∆(27) ⋊ T ′.

Let us first study the T ′ invariance of the superpotential WM . Notice that 30 can

be decomposed into a singlet 1′ and a doublet 2′′ of T ′ with 30 = 1′ ⊕ 2′′, as shown in
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eq. (3.24). With the modular form multiplets defined in eq. (4.1), the T ′ invariant terms of

WM result from the following T ′ tensor products

1 ⊂ (

1 ⊕ 1′ ⊕ 1′′ ⊕ 2 ⊕ 2′ ⊕ 2′′ ⊕ 3
)⊗ (

1′ ⊕ 2′′
)⊗ (

1′ ⊕ 2′′
)⊗ (

1′ ⊕ 2′′
)

. (D.1)

From the Kronecker product of T ′ in eq. (B.3) we know

(

1′ ⊕ 2′′
)⊗ (

1′ ⊕ 2′′
)

= 1′′ ⊕ 2 ⊕ 2 ⊕ 1′ ⊕ 3 . (D.2)

Since the contraction (ψcψc)1′ = 0 and the two doublet contractions (ψcψc)2 should be

symmetrized, the non-zero T ′ contraction of (ψcψc)r are

(

1′ ⊕ 2′′
)⊗ (

1′ ⊕ 2′′
)

= 1′′ ⊕ 2 ⊕ 3 . (D.3)

Consequently the trivial singlet 1 resulting from the tensor products of T ′ representations

are

1 ⊂ (

1 ⊕ 1′ ⊕ 1′′ ⊕ 2 ⊕ 2′ ⊕ 2′′ ⊕ 3
)⊗ (

1′′ ⊕ 2 ⊕ 3
)⊗ (

1′ ⊕ 2′′
)

⊂ (

1 ⊕ 1′ ⊕ 1′′ ⊕ 2 ⊕ 2′ ⊕ 2′′ ⊕ 3
)⊗ (

1 ⊕ 2′ ⊕ 3 ⊕ 2′ ⊕ 1′′ ⊕ 3 ⊕ 2 ⊕ 2′ ⊕ 2′′
)

. (D.4)

Hence, we can obtain nine T ′ invariant contractions when the modular form multiplets run

over all possible irreducible multiplets of T ′. The results are given by

WM = α1Y1(ψc1 −ψc2)2(φ1 −φ2)−2
√

2ωα2Y2(ψc1 −ψc2) [φ3(ψc1 +ψc2)−ψc3(φ1 +φ2)]

+α3

(√
2ψc3Y5 −ω2Y4(ψc1 +ψc2)

)

(ψc3(φ1 +φ2)−φ3(ψc1 +ψc2))

+α4

[

2ψc3Y6φ3(ψc1 +ψc2)− ωY7(ψc1 +ψc2)2(φ1 +φ2)√
2

+ψc23

(

Y6(φ1 +φ2)+
√

2ωY7φ3

)

]

− α5√
2

(ψc1 −ψc2)2
[√

2Y9φ3 −ω2Y8(φ1 +φ2)
]

+2α6(ψc1 −ψc2)(φ1 −φ2)
[

Y8(ψc1 +ψc2)−
√

2ωψc3Y9

]

+
α7

4

[√
2Y8

(

(ψc1 +ψc2)2(φ1 +φ2)+4ψc23 φ3

)

+2ωY9(ψc1 +ψc2)(φ3(ψc1 +ψc2)+2ψc3(φ1 +φ2))
]

+2
√

2α8(ψc1 −ψc2)
[

ωY11(φ3(ψc1 +ψc2)+ψc3(φ1 +φ2))+Y10(ψc1 +ψc2)(φ1 +φ2)−2ω2ψc3Y12φ3

]

+
α9

2
(φ1 −φ2)

[

−2ω2ψc3Y11(ψc1 +ψc2)−ωY10(ψc1 +ψc2)2 +42ψc23 Y12

]

. (D.5)

Furthermore, invariance under ∆(27) requires that WM must be a trivial singlet 10,0 of

∆(27). As both matter field ψc and flavon field Φ are assigned to ∆(27) triplet 3, while the

modular forms are invariant under the actions of ∆(27). Consequently the trivial singlet

10,0 resulting from the tensor products of ∆(27) representations are

10,0 ⊂ 3 ⊗ 3 ⊗ 3 =
(

3̄S,1 ⊕ 3̄S,2 ⊕ 3̄A

)

⊗ 3 =
(

3̄S,1 ⊕ 3̄S,2

)

⊗ 3 .

Hence there are only two ∆(27) invariant terms in WM ,

WM =
12
∑

i=1

Yi
[

ai
(

(ψc1)2 φ1 + (ψc2)2 φ2 + (ψc3)2 φ3

)

+ a′
i(ψ

c
1ψ

c
2φ3 + ψc1ψ

c
3φ2 + ψc2ψ

c
3φ1)

]

.

(D.6)
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We find that the ∆(27) flavor symmetry imposes the following restrictions on the coefficients

αi in eq. (D.5):

α1 = α2 = α3 = α4 = α8 = α9 = 0, α5 =
√

2ωα6 =
ω

2
α7 ≡ ωα . (D.7)

Thus the superpotential WM reduces to

WM = α
[√

2Y8

(

(ψc1)2 φ1 + (ψc2)2 φ2 + (ψc3)2 φ3

)

+ 2ωY9(ψc1ψ
c
2φ3 + ψc1ψ

c
3φ2 + ψc2ψ

c
3φ1)

]

,

(D.8)

where the complex coupling α is enforced to be real by the gCP transformation K∗. We

obtain the same superpotential WM as that of eq. (4.21), and only the modular form doublet

Y
(kY )

2′′ (τ) = (Y8, Y9)T gives non-vanishing contribution.
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