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1. Introduction
1.1. Motivation and results

An important use of information about demand is to engage in price discrimination. A large body of literature, starting
with the classic work of Pigou (1920), examines what happens to prices, quantities, and various measures of welfare as
the market is segmented. A seller engages in third-degree price discrimination if he uses information about consumer
characteristics to offer different prices to different segments of the market. As every segment is offered a different price,
there is scope for the producer to extract more surplus from the consumer. Additional information about consumer demand
increases flexibility for market segmentation.!

Our main contribution is to compare the profit performance of third-degree price discrimination against a uniform
pricing policy. A uniform pricing policy offers the same price to all segments of the market. Theorem 1 establishes that
for a broad class of third-degree price discrimination problems with concave profit functions (in the price space) and
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1 Pigou (1920) suggested a classification of different forms of price discrimination. First-degree (or perfect) price discrimination is given when the
monopolist charges each unit with a price that is equal to the consumer’s maximum willingness to pay for that unit. Second-degree price discrimination
arises when the price depends on the quantity (or quality) purchased. Third-degree price discrimination occurs when different market segments are offered
different prices, e.g., due to temporal or geographical differentiation.
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common support, a uniform price is guaranteed to achieve one half of the optimal monopoly profits. The profit bound in
Theorem 1 is independent of the number of segments and holds for any arbitrarily large number of segments. Interestingly,
the performance guarantee of Theorem 1 can be established with different choices regarding the uniform price, each of
which uses different sources of information regarding the market demand.

We investigate the limits of this result by weakening the assumptions of concavity and common support. First, Proposi-
tion 4 shows the significance of the common support assumption by studying a setting with concave profit functions that
have finite but different supports. We display a sequence of segments under which the profit ratio of uniform price to
third-degree price discrimination goes to zero.? Second, Proposition 5 and Proposition 6 note that the approximation result
does not hold for the commonly studied class of regular distributions. More specifically, we can weaken the concavity of
the profit function to merely assume regular environments while maintaining common support. In other words, we assume
that the profit function is only concave in the space of quantiles, rather than prices. Proposition 5 establishes that for some
regular distributions, uniform pricing can perform arbitrarily poorly compared to optimal third-degree price discrimination.
Proposition 6 establishes that when we consider the even more selective sub-family of monotone hazard rate distributions,
the poor performance of uniform pricing still holds. That is, in the third-degree price discrimination setting we need more
stringent conditions, such as concavity, beyond the most commonly used notion of regularity to attain good approxima-
tions. The importance of the aforementioned results is that they establish that if any of these assumptions is dropped (not
necessarily at the same time), then the profit ratio of uniform price to third-degree price discrimination can be small.

As an application of our main result, we consider the dynamic mechanism design problem of sequential screening with
ex-post participation constraints investigated by Krahmer and Strausz (2015) and Bergemann et al. (2020). In Section 6, we
establish the connection between the aforementioned problem and our setting and show that Theorem 1 implies that the
static mechanism in sequential screening can lead to a half approximation of the optimal dynamic mechanism.

12. Related literature

Our work builds on the classic literature on third-degree price discrimination, see e.g., Pigou (1920), Robinson (1933),
and Schmalensee (1981). In more recent work, Aguirre et al. (2010) identify conditions on the shape of the demand function
for price discrimination to increase welfare and output compared to the non-discriminating price case.

Bergemann et al. (2015) analyze the limits of price discrimination. They show that the segmentation and pricing induced
by the additional information can achieve every combination of consumer and producer surplus such that: (i) consumer
surplus is nonnegative, (ii) producer surplus is at least as high as profits under the uniform monopoly price, and (iii) total
surplus does not exceed the surplus generated by the efficient trade. Building on this work, Cummings et al. (2020) provide
approximate guarantees to segment the market when an intermediary has only partial information about the buyer’s values.

In contrast, in this paper we analyze the profit implications of uniform pricing versus third-degree price discrimination.
We are particularly interested in understanding the approximation guarantees that a uniform price can deliver. Closest to
our work is a paper by Malueg and Snyder (2006) which examines the profit effects of third-price discrimination compared
to uniform pricing. They consider a setting similar to ours in which the monopolist experiences a total cost function for
serving different segments. They show that when the demand is continuous and the total cost is superadditive, the ratio
of third-degree price discrimination profit to uniform price profit is bounded above by the number of segments that are
served under price discrimination. They provide an example under which this bound is tight and the bound for the ratio
equals the total number of segments. In contrast, in the present paper we identify a key condition which leads to a bound
that is not contingent on the number of segments in the market.

Their Proposition 2, adjusted to our setting, implies our Proposition 4. They also provide an example that attains the
worst-case performance for distributions with different support (and linear demand). While their proof is inductive, we
provide an alternative and constructive argument.

Since the seminal work of Myerson (1981), there has been great interest in simple and approximate mechanisms design.
In general, characterizing optimal selling mechanisms is a difficult task, see e.g., Daskalakis et al. (2014) and Papadim-
itriou et al. (2016). Hence, deriving simple-practical mechanisms is of utmost importance. Chawla et al. (2007), Hartline and
Roughgarden (2009), Alaei et al. (2019), and Jin et al. (2018), among others, have made remarkable progress toward estab-
lishing performance guarantees of simple mechanisms in a variety of settings. One of the key observations is that regular
environments—non-decreasing virtual value—consistently lead to good bounds. In particular, triangular instances—instances
for which the revenue functions in the quantile space are triangle-shaped (see e.g., Alaei et al. (2019))—are the worst-case
in terms of performance guarantees. In contrast to this stream of literature, we consider the problem faced by a monopolist
selling to many distinct segments of the market. Nevertheless, in line with these earlier papers, we aim to obtain perfor-
mance guarantees when comparing the best possible pricing for the monopolist (third-degree price discrimination) to the
simple pricing scheme (uniform pricing). In terms of techniques, as we discuss in the next paragraph, we resort to related
triangular instances as worst-case performance settings, but we also establish arbitrarily poor performance in the regular
case.

2 In the related literature section we discuss the relation between this result and Malueg and Snyder (2006).
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Our work also shares some similarities with the approach taken by Dhangwatnotai et al. (2015) (see also Hartline (2020)
chapter 5) to study the prior-independent single sample mechanism. In this mechanism, bidders are allocated an object ac-
cording to the VCG mechanism with reserves randomly computed from other bidders’ bids. In a setting with n bidders, the
authors establish that random pricing achieves half of the optimal profit. The authors expand this result to more complex
settings and formalize it by using an intuitive geometric approach similar to the one we present in Section 3. In particular,
under the assumption of regular distributions, the profit function in the quantile space turns out to be concave. Consequen-
tially, the profit function is bounded below by a triangle with height equal to the maximum profit. This implies that the
expected profit from uniformly selecting a quantile is bounded below by the area of the triangle or, equivalently, by half
the maximum profit. One of the proofs we give for our result in Theorem 1 uses this observation to prove a different result,
namely, that uniform pricing can deliver at least half the value of optimal third-degree price discrimination. However, we
must assume that the profit functions are concave in the price space, otherwise our half approximation result might not hold.
Indeed, in Proposition 6 we show that, in contrast to the aforementioned papers in our third-degree price discrimination
setting, for regular distributions, simple pricing leads to arbitrarily poor guarantees.

2. Model

We consider a monopolist selling to K different customer segments. Each segment k is in proportion ¢ in the market
where « > 0 for all k e {1,..., K} and Z,’f:l ay = 1. If the monopolist offers price p; to segment k and has constant
marginal cost ¢ > 0, then the monopolist receives an associated profit of:

k(pr) = (P —©) - (1 — Fy(pp))

where Fi(-) is the cumulative distribution function of a distribution with support in ®, C R . We assume that ¢ < sup{f :
0 € O}, ¥k, i.e., the efficient allocation would generate sales with positive probability in every segment. The total profit the
monopolist receives from the different segments by pricing according to a vector of prices p=(p1,...,Pk) Is

K
I(p) =Y eui(pi).
k=1
The monopolist wishes to choose p to maximize TI(p).
The monopolist can choose prices in different manners. First, for each segment k, the monopolist can set the price py
where

pj € argmaxmi(p).
peBy
Let p* be the vector of prices {p;},’f:l; we refer to these prices as the per-segment optimal prices. Note that p* corresponds
to the case of third-degree price discrimination. We use TT* to denote TT(p*). Another way of setting prices is to simply use
a uniform price for all segments. In this case, the monopolist solves the problem

K
n’2 max Zaknk(p). (1)
peu,’f=]6~)k k=1

We use p, to denote the optimal price in the above problem, which we refer to as the optimal uniform price. With some
abuse of notation we sometimes use TTY (p) to denote TT(p) when all the components of p are equal to p. We call the ratio
between the best third-degree price discrimination scheme and the best uniform price scheme the profit ratio:

HU
o
We use TT*(c, F) and TTY (@, F) to make explicit the dependence of the monopolist profit on the model parameters («, F):

the segmentation, a = {ak]f:1. and the demand, F = {Fk}le. Our main objective in this paper is to study how this ratio
performs across a wide rage of parameter environments:

(2)

Y (a, F
in # (P)
o F TT* (o, F)
3. Concave profit functions

In this section, we assume that the profit functions, my(-), are concave. We will further assume that the segments’
supports, @y, are identical across segments, that is, ®, = ® for all k where @ is a closed and bounded interval [0, 8] of R .
In later sections, we analyze (77) under relaxed assumptions.
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We now establish that a particularly simple uniform price, formed as the midpoint between the marginal cost ¢ and the
largest possible value 8,

c+6
Ps = 3

can achieve half of the monopolist’s profit.

, (3)

Theorem 1 (Uniform price is a half approximation).
Suppose that the profit functions my(p) are concave and defined in the same bounded interval @ C R4 forallk € {1, ..., K}. Then the
uniform price ps delivers a 1/2-approximation for the monopolist’s profits.

Proof. We show that by setting ps = (c 4+ 6)/2 the monopolist can obtain at least half the profit of third-degree price
discrimination. Indeed, the concavity of m(-) ensures that:

b1 T(py) . T Tk(pf

k(Ps) 5 Tk Py if ps < pp. and Tk(Ps) 7k(Pk)

- > if ps > pr. (4)
ps—c  pr—c 0—ps O0—p; K

By noticing that (ps —¢)/(pj —¢) = 1/2, (8 — ps)/(@ — p}) = 1/2, and p} € [c. 6], we deduce that in either case my(ps) >
Te(pp)/2 for all k€ {1,..., K}. Multiplying this inequality by oy, adding it up over k, and observing that Y = Y (ps), we
obtain the desired result:

Y, F)
inf———>1/2. O
o F TT* (o, F)

Theorem 1 provides a fundamental guarantee of uniform pricing compared to the optimal third-degree price discrimina-
tion. In particular, the monopolist can simply use a judiciously chosen price across all customer segments to ensure half of
the best possible profit from perfectly discriminating across the different segments in the market. Interestingly, it is possible
to achieve this profit guarantee by setting a price that only uses the upper bound of the support and the marginal cost.?
An implication of this is that half of the optimal profit can be secured by using only information about the upper end of
segments’ support, §. While the simplicity of this pricing policy is appealing, the informational requirements might be too
stringent. In practice, finding the upper bound of the support can be difficult because it can entail experimenting with high
prices. We next investigate what other simple pricing policies can achieve the approximation guarantee in Theorem 1 and
discuss their informational requirements.

In what follows, we provide a simple geometric argument as an alternative to the proof of Theorem 1. This alternative
proof not only sheds light on different informational requirements of simple pricing policies that can achieve at least 1/2
performance, but also shows how ideas used in approximate mechanism design translate to our setting. Indeed, the next
argument is similar to the one presented in Dhangwatnotai et al. (2015) and Hartline (2020) for concave profit functions in
quantile space, i.e., for regular distributions.

Let

A
g = g (py).

that is, 1, corresponds to the maximum profit the seller can obtain from the fraction oy of customers in segment k. Note
that IT* equals Zi’le 1. Since for each segment k the profit function is concave on @, we can lower bound it by a triangular-
shaped function that we denote by Li(p) as depicted in Fig. 1 (a).

More precisely, we define the lower bound functions

L) & i (=0, ifpelepyl;
K(p) = = , .7
—r—’(,:~(97p), if p € [p. €]

Observe that Zfﬂ Li(p) is a concave piecewise linear function that achieves its maximum at some p € {p,’;}f:1. We use ITF

to denote its maximum value. Then, it is easy to see that [TV > [1F because fo:l Li(p) lower bounds Zleakjrk(p), see
Fig. 1 (b). Next, we argue that

K 18 1
nt= max L > - re==1IT1". 5
p}}{ k(P) >3 E k=3 (5)
k=1 k=1

3 We thank John Vickers for this suggestion.
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Fig. 1. (a) The solid curves depict the concave profit function of each segment, oy, (p). The dashed lines depict the lower bounds Li(p) for each segment.
(b) The solid curve shows the sum of the profit functions over segments, Zf:] o T, (p). The dashed curve shows the sum of the lower bound over

segments, 25:1 Li(p).
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Fig. 2. Alternative geometric proof of Theorem 1: the area below 2521 Li(p) equals the sum of the areas below Ly(p) for all k.

Consider Fig. 2 and note that ITF- (8 —c) is equal to the area of the smallest rectangle that contains the graph of 2;1(21 Li(p).
As a consequence, ITL - (9 — ¢) is an upper bound for the area below the curve Zle Lr(p). That is,

o g K K

) _
_ (@ —
. (@ —c)szLk(p)dp - Z[Lk(mdp :Zw,

o k=1 k=1 k=1

where in the last equality we have used the fact that L, (p) is triangle-shaped and, therefore, the area below its curve equals
e - (8 —¢)/2. Dividing both sides in the expression above by (8 — ¢) yields (5), completing the proof. In particular,

K K

1

NV =max{> oym(p){ = max 1Y oym(p)p = -1 (6)
pe® par pe(p].-- Pk} k=1 2

This argument suggests two distinct yet simple ways of selecting the uniform price. First, the monopolist can optimize
against the mixture of customer segments to derive the optimal uniform price. This is advantageous for situations in which
the monopolist possesses aggregate market information but discriminating across segments is not an available option. When
the monopolist has more granular market information, for example, the monopolist knows the prices {p;’g}l’f:], then it is not
necessary for the monopolist to optimize over the full range of prices; he can simply choose one of the K prices at hand.

In sum, the two distinct arguments presented for Theorem 1 complement each other and point to different ways the
monopolist has of achieving the performance guarantee of 1/2, depending on the information available. If the monopolist
knows the upper bound of the support, setting ps = (c +6)/2 is a simple choice. However, if such information is not
available then there are two more options that can be directly inferred from the inequalities (6): (i) the monopolist can find
the optimal uniform price for the aggregate demand or (ii) identify among the best per segment prices the uniform price
that maximizes the revenue from the aggregate demand.

As mentioned in the introduction, our result and our second approach share some similarities with Dhangwatnotai et
al. (2015). For the case of one buyer—and regular distributions—they show that the expected profit of randomly selecting
a price achieves half of the optimal profit. Their approach uses the fact that the profit function in the quantile space for
regular distributions is concave, and then proposes a uniform randomization over quantities. We can use a similar argument
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Fig. 3. lllustration of the construction in Proposition 2. Profit functions for both segments.

to show that the expected profit of uniformly choosing prices achieves half the profit of third-degree price discrimination.
Indeed, suppose we set a price p at random such that p ~ UJc, #]. Then, the expected profit is

ne@-o 1., -
2 2

Mx

ELT1 (p)]-onzm(p) —dp> fZLk(p)dp—_

Y k=1 L k=1

T
N

We summarize this discussion in the following proposition.

Proposition 1 (Uniformly at random pricing).
Suppose that the profit functions m(p) are concave and have common and compact support. Then for p ~ Ulc, 8] we have that
Ep[l'[U(p)] is at least half as large as IT*.

To conclude this section, we note that the above pricing policies all correspond to specific instances of simple pric-
ing. Hence, it is still possible that the optimal uniform pricing achieves a better performance than the one established in
Theorem 1. In the next proposition, we show that the latter is not possible by establishing that the profit guarantee in
Theorem 1 is tight. To see why this is true, consider Fig. 3. There are two segments in the same proportion with maximum
profit equal to 1. Assume that the profit of the first segment is very low at the price of the second segment and vice-versa.
Then uniform pricing will achieve only the maximum profit of one of the segments, but very little of the profit from the
other segment. In the figure, the best uniform pricing is pj and it achieves % 14 % - &; while perfect price discrimination
achieves % -1+ % -1 =1. As ¢ becomes small, the ratio of the profits of optimal uniform pricing to third-degree price
discrimination approaches 1/2. In the proof of Proposition 2, we carefully construct the cumulative distribution functions to
mimic the behavior in the above illustration.

Proposition 2 (Tightness).
Under the assumptions of Theorem 1

o Y. F)y 1
inf ————=-.
o F M (a, F) 2

Proof. Without loss of generality we take ¢ = 0. Consider a case with two segments in the same proportion and the
following distributions:

1—e*P), ifp<a;
1171(13)—’]1L (p) ):
P

(M=a)* if p >a,
and
np (1—e720), ifp <a;
1-F(p)= ;[W a)+( +€)} ifpe(@M—a;
H-tp-M+ay+1}, if p e [M—a, M],
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with support ® = [0, M] for some M > 2a to be determined, and we choose A > 0 such that Fi(-) is continuous at a > 1,
and & > 0 is a small parameter. Below, we will show how to choose the parameters to ensure that Fy(-) is a well-defined
continuous distribution for k € {1, 2}. First, we verify that m; is concave for k € {1, 2}. Indeed, for k=1 we have

. ( eMP) | ifp<a;
T(p) = _ .
(M ) ifp>a.

The first piece of mq(-) is increasing and concave while the second piece is decreasing and linear. The continuity of Fq
requires that 71(a) = 1, equivalently, (1 — e~®1)/(aix{) = 1/a. The latter always has a solution because the function (1 —
e~ *)/x maps to the entire interval (0, 1] and we are assuming a > 1. We conclude that 71(-) is concave on ®. Additionally,
by taking the derivative of 1 — F1(-), it is possible to verify that 1 — Fq(-) is decreasing as long as M > a.

We now verify the concavity of m,(-). We have

5 (1—e 2P, ifp<a;
A 1—
2 (p) = %(P a)+(ﬁ+a). ifpe(a,M—a);
fa(prJra)H. ifpe[M—a, M].

Note that as in the previous case, each piece of m2(-) is concave. We can also verify that it is continuous. This is clear
at p=M —a, and for p =a we must choose Ay to ensure continuity. In this case, we must have my(a) =€ +a/(M — a);
equivalently, (1 —e~%2)/(ar2) =&/a+1/(M — a). Assuming that

gla+1/(M—a) <1, (8)

we can always find A that makes w3 (-) continuous at p =a. In turn, 73(-) linearly decreases in [M —a, M], linearly increases
in (a, M — a] (because of (8)), and increases as a strictly concave function in [0, a]. Thus to ensure concavity we need to
verify that the slope of m3(p) from the left of p =a is larger than the slope from the right at p = a, that is,

e—h2l = B (M{i“ + 8) )
- (M-=2a)

(9)

To see why (9) holds, note first that %, which solves (1 —e~%2)/(ar;) =&/a+1/(M —a), is bounded above by the solution
to 1/(aky) =e/a+ 1/(M —a), that is, Ay = A3. Hence to verify (9) it suffices to show that

1 1- (Ma—a + E)

exp( — > ) (10)
g/a+1/(M —a) (M — 2a)

Let us choose M such that £ = 1/(M — a)X with k > 0 to be determined, that is, M —a = £~/¥_ Then (10) becomes

1—(ae/* +e
exp(— 1 )2 (as +€).

gla+el/x (e—VK —q)

Note that for &€ < 1, as x | 0 the left-hand side converges to e~%# while the right-hand side converges to 0. Hence we

can always choose « € (0, 1) such that (9) holds. Moreover, since £'/¢ < & (because k¥ < 1), we have that (8) is always
satisfied for € small enough. In conclusion, we can always choose the parameter of our instance such that 71,(-) is concave.
Additionally, by taking the derivative of F,(-), it is possible to verify that it is decreasing as long as M > 2a (which can also
be achieved for « € (0, 1) small).

Under perfect price discrimination we have that mp(pj) =1 for k € {1, 2}, so that I[T* = 1. Now, because both 71(-) and
M5 (-) increase in [0, a] and decrease in [M — a, a], the optimal uniform price must lie in [a, M — a]. In this interval both
functions are linear and the derivative of their sum is —&/(M — 2a) < 0. Hence the optimal uniform price is p, =a, which
yields

.(as”"Jrs) %g(aJr‘l).

l\JI'—‘

This implies that

g @R 11 .

mf —— 8 a

o F TT*(x, F) — 2

Because & > 0 is arbitrary, we conclude that the lower bound performance of 1/2 in Theorem 1 is tight. O
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We note that Proposition 2 and Theorem 1 imply that the ratio in (7P) does not degrade too fast in the number of
segments. Indeed, the worst performance can be achieved for the case K =2, but as K increases the performance does
not continue to degrade. This is a consequence of the concavity assumption. If we did not assume concavity we could have
profit functions that take values close to zero around the optimal prices for other segments and a value of, for example, 1
at their own optimal per-segment prices. In this case, the ratio in (P) would degrade at rate 1/K (see also Section 5).

4. Profit performance in general environments

In this section we examine weaker conditions relative to the environment studied in Section 3. In particular, we aim to
understand how the profit ratio behaves when we relax the assumptions in Theorem 1. We first consider the assumption of
compact support and then consider different supports across customer segments. Then, we study non-concave environments.
In the latter, we are especially interested in common well-behaved environments such as regular and monotone hazard rate
(MHR) value distributions. For ease of exposition and without loss of generality in this section and the following we will
assume ¢ = 0, unless otherwise stated.

4.1. Concave with unbounded support

In Theorem 1, we considered concave profit functions supported on some common finite interval ®. In the next proposi-
tion, we relax the finite support assumption while keeping a common support and concave profit functions across customer
segments.

Proposition 3 (Zero profit gap with unbounded support).
Suppose that the profit functions for all segments are concave with common and unbounded support © =R . Then Y = IT*,

Proof. Without loss of generality, assume that p] <--- < p}. Note that the concavity of the profit functions together with
the unbounded support assumption causes each i (p) to be increasing up to pj; and then constant and equal to . (p}) for
any price p larger than pj for all k > 1. This leads to the following distributions:

hy(p)/p, ifp<pg;

1—Fi(p) = . . i
me(pp)/p. ifp=pg,

for some increasing and concave function hy(-) such that limohk(p)/p =1, hx(p)/p is decreasing, and hy(0) = 0. In turn, by
p—

setting p, equal to pk, the profit Y becomes fo:] apT(py) =11". O

The proposition establishes that in the concave case with unbounded support there is no gap in the profit between no
price discrimination and full price discrimination. The intuition behind Proposition 3 is simple. Concavity, together with the
unbounded support assumption, implies that the marginal profit for each segment must equal zero for sufficiently large
prices. As a consequence, setting an equal and sufficiently large price for every segment achieves the optimal third-degree
price discrimination outcome.

4.2. Significance of common support

Here we consider concave profit functions supported on some finite interval ® for each segment k > 1. In contrast to
the previous section, we will not assume that @, = © for all segments. In order to gain intuition, note that, for an arbitrary
distribution, the optimal revenue can be arbitrarily small compared to the expected surplus. Indeed, consider for example
the distribution F(v)=1—-1/(14v) for v > 0.4 For this distribution, the optimal revenue sup{v - (1 — F(v))} is 1 while

v

the expected surplus is oc. Hence, if we consider segments with point-mass distributions for every value v, the monopolist
profit under uniform pricing (which would correspond to the optimal revenue for F) can be arbitrarily bad compared to
optimal third-degree price discrimination—which would correspond to the expected surplus for F. In the next result, we
make this intuition precise and show that there is a discrete collection of non-point-mass distributions with non-common
support for which uniform pricing delivers arbitrarily small profit as the number of segments increases.

Proposition 4 (Significance of common support).
If the segments can have distinct supports then the optimal uniform price may yield an arbitrarily small profit ratio as the number of
segments increases.

4 Hartline and Roughgarden (2009) use this distribution to provide a lower bound on the worst revenue performance ratio of Vickrey with duplicated
bidders and the optimal auction,
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Fig. 4. Example for the construction of concave profit functions with different supports, as in the proof of Proposition 4 for K = 5. In (a) we illustrate the
profit functions for each segment where the value and optimal per-segment price decay as 1/k. In (b) we show ZL a7k (p) which is maximized at any
of the per-segment optimal prices and is bounded above by 1/K.

Proof. We construct concave profit functions with finite support such that @ # ©; for all k # j. Let the distributions
{Fk(-)}x be defined by

if p € [0, vgl:

0,
Filp) = {7“3”)(‘”‘“"), if pe (v, v + el

&P

with

1 1
Vg = op=—, &€, v —vE), Vkell,....K}

(K—k+1) K

This leads to the following profit functions:

p, if p [0, vgl;

Tp)= {Z—jg(vk +ex—p). ifpe (Vi vit+er

The perfect price discrimination profit is

K K K
1 1 1 1
= UV = — == —.
;"" I(ZK kK+1 (Zk
The optimal uniform price must be achieved at one of the v, hence

1
nv =~ [ ] {— K—k 1}:-.
Kkn?ax ZV" KM ke K-k Dyp=7%

Hence,
nv x T 1
Tx  1~K 1 K 1
M 3 Y log®)

Proposition 4 shows the importance of the common support assumption. Above we construct concave profit functions
that have finite support, but the endpoints of the supports are increasing, see Fig. 4 (a). In the construction, all segments are
given the same weight and the profit functions are triangle-shaped. All of them start at zero, go up along the 45 degree line,
peak at 1/(K —k + 1), and then go down sharply such that the upper end of the support of segment k is strictly between
1/(K —k+ 1) and 1/(K — k) (solid lines in Fig. 4 (a)). In turn, [1* (normalized by the per-segment proportions) grows
logarithmically with K. Since the upper bound of the supports are strictly increasing and non-overlapping, the uniform price
profit at the per-segment optimal prices, [TV (1/(K — k + 1)), is constant and equal to 1 (normalized by the per-segment
proportions), see Fig. 4 (b). For example, in the case of K =5, consider p3 = 1/3. At this price, m1(1/3) = m2(1/3) =0

—0 asKteco. O
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and 3(1/3) =m4(1/3) =75(1/3)=1/3. Hence 5- NIV =04+0+3 - % = 1. As a result, the ratio in (P) goes to zero as the
number of segments increases. Note that this only works because the profit functions do not have common support. The
non-common support allows for the possibility of having profit functions such that at the per-segment optimal prices some
of them have zero profit. We note that a similar version of this result was stated in Malueg and Snyder (2006), Proposition
2. Their proof is inductive whereas our proof is constructive and provides a transparent view regarding the significance
of the common support. Finally, we note that in the context of simple optimal auctions, Hartline and Roughgarden (2009)
developed a related construction to argue the necessity of a single-item setting and regular distributions to obtain revenue
guarantees for anonymous reserve price versus the optimal auction that do not scale with the number of bidders.

4.3. Non-concave environments

One of the most commonly analyzed families of distributions in the mechanism design literature is regular distributions.
These are distributions such that the virtual value function is non-decreasing. Formally, we say that distribution F is regular
if and only if ¢(p) is non-decreasing:

1—F(p)

f(p)
As pointed out in Section 1.2, several approximation guarantees have been obtained for these distributions in diverse set-
tings. One of the main insights used in the literature is that the profit function associated with this family of distributions
is concave in the quantile space. Indeed, let 7 (p) =p- (1 — F(p)) and consider the change of variables ¢ =1 — F(p). Define
the profit function in the quantile space as 7(q) =q- F~1(1 — q). Then

p(p)=p—

L P P
T(@)=F (1—-q) =¢(F(1—q)),

q
dg FF1(1 —q))
and since ¢(-) is non-decreasing, we can conclude that 77(q) is concave. The concavity of 77(q) allows arguments similar
to the ones employed in the triangular proof of Theorem 1. For example, Dhangwatnotai et al. (2015) use this property
to show that with one bidder, the expected profit from random pricing (uniformly selecting a quantile) is half the profit
of the optimal monopoly price. This suggests that a similar approach may work in our framework. In particular, we ask
whether it is possible with regular distributions to exploit the concavity of the profit functions to obtain good approximation
guarantees.
Recall that for each segment k > 1, the profit function comes from a cdf Fp, for which we assume its pdf f; is well-
defined. To switch to the quantile space, for any p € ©, we would need to define

gk=1—Fx(p) and 7k(q)=q-F, ().

Let q = {qk}f:1. The optimal uniform price profit, ITY, is given by

K
Y = max o - 7T
05"51; k- Tk ()

s.t. F,;luqu):.f;l(]qu) vk, j.

Note that in this formulation the objective function is the sum of concave functions. However, we have additional constraints
compared to the original formulation of ITY in Section 2. These constraints stem from the fact that under uniform pricing
each segment receives the uniform price p, and since g = 1 — Fi(p) we must have that F~'(1 —q,) = F~1(1 — q;) for all
segments k, j > 1. At this point, the natural approach would be to lower bound each 7} by a triangle-shaped function—
similar to Fig. 1 (a), but in the quantile space. We would then solve the resulting optimization problem and, hopefully,
obtain a good approximation guarantee.

Unfortunately, for regular distributions, in general, the former approach fails. Consider the case of triangular instances
in quantile space. These are instances for which the profit functions in the quantile space are triangle-shaped—they have
corresponding distributions that are regular. They are widely used in the literature of approximate mechanism design as a
bridge to provide good profit guarantees. However, in our setting they can perform arbitrarily poorly.

Proposition 5 (Triangular instances and failure of regular distributions).
For triangular instances defined by

1, ifp=vi
Fk(p) = p-(]—qk) f
pa-go+vea: P =Vk
there exists a choice of {ozk},’f:l € (0, DK, {vk};’f:1 € R§ and {qk}f:l € (0, DX that delivers an arbitrarily small profit ratio as the

number of segments increases.
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Proof. Let us start by considering triangular instances. The profit functions are

ifp> v

0,
Tk(p)=p- (1= Fe(p)) = [ PVEGy ifp = vy

p-(1—q)+vi-ax *
Note that m(p) is increasing and concave up to Vi and then is constant and equal to zero for p > vy. For each curve the
optimal price is v, (minus small € > 0), and thus

K
H*=Zak‘vk-qk. (]1)

For the uniform price, the optimal price must be achieved at one of the vq,..., vg. Therefore,

i Vi-dk }
= max E
iefl K}I Yk

,,,,, ]*QK)+VI< dk

Next we establish that l'[”/l'[‘ — 0 as K — oc. Consider the instance
1 1
Vp=————, (=05, and o,=—, Vke{l,..., K}.
(K—k+1) K

Hence,
K 1 1 K
Zak- Vi Vi Qi Z K=i+D)  K=k+D) k+1) _lz 1
— vi-(l—qo) +vi-qx Kk e !+1)+(K k+1) K= 2(K+1) = (k+1)

The last term above is decreasing in i, and therefore

K

K K
1 1 1
mnvi==-y_-  _ - 2
I(Z2K+l—k KZ (f
k=1 1

We also have that

log (%)

X 1 < 1
= A - Vg - = — = —
; e Ve K; K— k+1) 2K

M::

1
— ~ — log(K).
T g(K)
k=1
Thus,
1 2K
nv ?log(Kﬂ) _ZIOg(KJrl)

~
=~

m  blog(ky = log(K)

—-0 (=2-log(2)/log(K)). O

Given that for general regular distributions we may obtain arbitrarily poor guarantees, we next investigate if such results
can be improved upon by considering a commonly used sub-family of distributions with more structure. We consider
distributions with monotone (non-increasing) inverse hazard rate (1 — Fi(p))/ fr(p). Note that triangular distributions do
not belong to this family as they an have increasing hazard rate. Interestingly, even distributions with monotone hazard rate
can deliver only an arbitrarily small profit guarantee.

Proposition 6 (Failure of monotone hazard rate distributions).
There exist distributions with monotone inverse hazard rate and common and bounded support for which the optimal uniform price
delivers an arbitrarily small profit ratio as the number of segments increases.

Proof. We construct regular distributions {F,r(}ff:1 such that TTY/TT* — 0 as K 1 oo. For L > 0 large, define
1 — e~ (K—k+1)p
Fk(p)=m VPZD. and ak=l/1< VkE{],,I(}

Thus, we consider truncated exponential distributions with support in [0, L]. Note that these distributions have monotone
inverse hazard rate because

1—Fe(p) 1 B 1 o~ (K—kt1)L
fip)  K—k4+1 (K—k+41) e—K—k+Dp
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is non-increasing. For all k > 1, the profit functions are
—(K=k+1)p _ o—(K—k+1)L
(p) =p - (1= Fe(p) =P~

whereas the per-segment optimal prices satisfy

1 — e~ (K—k+DL—p) L l—e KkDLp o Kk 1R, _ g Kk )L
Kkr1 - A )= e T e ® ke

First, notice that py < 1/(K —k + 1). Then the third-degree price discrimination profit can be bounded as follows:

*

P =

K
= Zakﬁk(l);)

. 2
o (K—k+1)pj (e—(K—k+1)pk B e—(K7k+1)L)

(K —k+1)(1 — e K-kt
el B ef(K7k+l)L)2

1
K K—k+1

=
£

A%

Il
M= I~ T
=| =

2 K

(;)e el —et) Z 1
K

K — K —k+1

e (ff1 - e’L)2
~N——.log(K
X og(K),

where in (a) we used the fact that the function e** (e=¥ — EM)z is decreasing for x € [0, L] and that p} < L. In (b) we used
L large enough such that L > 1. The uniform price profit for some price p is

p—(K—k+1)p _ o= (K—k+1)L

Zak”k(p) K ZP e (K—k+1)L
<P Ze—(K—k+1)p
K
k=1

» K
_ —kp
=—Ye

P>

D 1—eKp
T K el —1
1—e K
< -
- K

1

<_e

K

where the second to last inequality holds because we always have that p + 1 < e?. With this, we can conclude that

K
U max | > k1 awk(p)}

= < >
I~ I T oe(e!-e

* 1
= 3 — 0, Kftoo. 0O
-y Jlog(K) € (e'—e 1)” - log(K)

Proposition 6 establishes that for some monotone hazard rate distributions, uniform pricing can perform arbitrarily poorly
compared to optimal third-degree price discrimination. The intuition behind this result is similar to that of Proposition 4.
We consider exponential distributions such that at the optimal uniform price, most of the per-segment profits will be low,
and therefore they will not contribute much to I1Y, see Fig. 5 (a). Since for exponentials, the associated profit functions
decay quickly after they peak, they behave in a similar manner as the case of non-common support distributions where the
upper end of the support is increasing. Indeed, in the proof of Proposition 6 we obtain a profit guarantee similar to that
found in the proof of Proposition 4, namely, O(1/log(K)). Finally, we note that to prove the proposition, we use truncated
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Fig. 5. Example for the construction of profit functions from regular distributions in Proposition 6 with K =5. In (a) we illustrate the profit functions for
each segment where the per-segment optimal profit is e~!/k and the per-segment optimal price 1/k. In (b) we show Zle T (p) with maximum value
0.14 (bounded above by 1/K).

exponential distributions. In turn, we only relax the concavity of the profit functions, but we keep the common and finite
support assumptions intact.

5. Worst-case performance

In this brief section, our objective is to investigate how the worst case performance of uniform pricing depends on the
number of segments. For this purpose, suppose there are K segments and without loss of generality let us assume that

0 = a1m(p]) = aama(py) = - =agmwk(py). (12)

Using this condition we can verify that the ratio l'[”/l'[* is always bounded below by 1/K. Indeed, note that nv = l'[”(p‘,‘{)
and

K times

‘ arTR(PY) + -+ oY) 1w
MY (pi) = am(py) = ax Tk (py) = — 2 2 ) ouTdpy),
k=1

k=1
where in the last inequality we use (12). This proves that the worst-case performance of uniform pricing with respect
to third-degree price discrimination is 1/K. In what follows, we argue that this lower bound performance can indeed be
achieved.”
We now suppose that the demand in every segment k is described by a Dirac distribution with an atom at value v;. We
denote by D the set of the segmentations and per segment demand functions that are generated by Dirac distributions,
thus {e, vk}ff:l eD.

Under perfect price discrimination, the monopolist can charge the price pp = v to the buyer and extract full surplus:
Z,If:l o V. Under uniform pricing, the monopolist charges a fixed price p across all segments and collects profit only from
those segments whose value, vy, is larger than p: Zf;l aply,-p. In turn, the optimization problem we would like to solve
to assess the performance of uniform pricing becomes

K
rpj‘(})‘ 2 k1 %P ly=p K
inf — T , Sk Zak =1, ay>=0Vk
Cie- Vi Zk:] AV k=1

Observe that in the above problem, without loss of generality, we can assume that the values v} are ordered. This allows
us to simplify the numerator in the objective above. Note that the maximum in the numerator must be achieved at some
price pj=v; for je{1,...,K} and for any p; we have

K K
D apilpep =Dj Y Gk
k=1 k=j

> Proposition 2 in Malueg and Snyder (2006) provides an inductive argument for this result with linear demand functions. Here we provide a constructive
argument with atomic distributions,
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In turn, this enables us to reformulate the problem as

max_ pj Zfzjak K
inf , st pp<---<pg. op=1, ay>0Vk;. (13)
. Pk Z{f:] o P kgl:

Next, we exhibit values of p; and «; such that the ratio in the problem above is arbitrarily close to the lower bound 1/K.
Let & > 0 be small, and define the prices

v K—1
e (1+¢ 1(1+e
=2 (EE) L kelk -1 and pe=o (D)
K c K £

and let the per-segment proportions be
11
ag=——, kefl,....K}.
K pg

Next, we verify that the above prices and proportions are feasible. Indeed, it is easy to verify that py is increasing in k,
while for the per-segment proportions we have that o > 0 and

Yu-Y (i) + () -

Now let us look at the objective in problem (13). Given our choice of prices and proportions, we have that oy p, = 1/K, and
therefore the denominator in (13) equals 1. For the numerator consider j e {1,..., K —1}. Then

nieei () (i) ()

k=j —j
& f1+e J & i-1
T K e 1+e¢
_1+4e
=
and pgax = 1/K. Therefore the objective in (13) evaluated at our current choice of prices and proportions equals
K 1 1+¢e) 1+¢
max i ¥ ofr =max{ —, = .
T P 2 {K K } K

In conclusion, we have exhibited an instance for which the performance of the optimal uniform price is arbitrarily close to
the worst performance guarantee 1/K. We summarize this result in the following proposition.

Proposition 7 (Worst performance achieved).

The worst case profit ratio in the class of Dirac demand functions is given by
‘ n’ 1
inf — =,

{o. vihk_ €D I~ K

6. Connection to sequential screening

The result in Theorem 1 is intimately related to the problem of ex-post individually rational sequential screening, in
which the seller must optimally design a menu of contracts that incentivize buyers of different types to self-select, see e.g.,
Krdahmer and Strausz (2015) and Bergemann et al. (2020). The connection between the two settings comes from considering
the types in sequential screening as the segments of our paper and observing that optimal static pricing in the screening
setting is the same as our optimal uniform pricing. Additionally, the optimal screening profit is bounded above by the
optimal perfect price discrimination profit. As we show next, this allows us to prove a half approximation result for the
sequential screening setting.

In what follows we formally introduce the sequential screening setting and then establish the connection with our third-
degree price discrimination setting. There is a seller selling one unit of an object at zero cost to a buyer with an outside
option of zero. The buyer is of type k € {1, ..., K}, with probability ¢}, o > 0 and Zle ) = 1. Both parties are risk-neutral
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and have quasilinear utility functions. There are two periods. In the first period, the buyer privately learns her type k—which
provides information about her true willingness-to-pay for the object—and then the parties contract. The contract specifies
allocation and payment as a function of reported interim type and ex-post value. In the second period, the buyer privately
learns her value &—drawn from a distribution function F(#) with density function f;(6)—and allocations and transfers are
realized.

We consider direct revelation mechanisms, with allocations x : @ — [0, 1] and transfers t : @ — R, that depend on
reported interim type k' and ex-post value 8’. Then the ex-post utility of a buyer who reported k in the first period and v’
in the second period while her true value @ is given by:

u(0;6') =6 - x.(6") — t (8").

Similarly, the interim expected utility of a buyer whose true interim type is k, but reported to the mechanism k' and is
truthful in the second period, is given by:

U é[ukf(z;z) - fr(2)dz.
6}
There are two kinds of incentive compatibility constraints that must be satisfied. The first is the ex-post incentive com-
patibility constraint which requires that for any report in the first period, truth-telling is optimal in the second period:
Up(8:6) = up@;68') vkell,...,K},v6.8" € O.
The second is the interim incentive compatibility constraint which requires that truth-telling is optimal in the first period:
Uge = Upe Yk, = {1,...,K}.
Finally, the key constraint in the sequential screening problem with ex-post participation constraints is that the buyer must
be willing to participate after having learned her type and value:
ug(@;6) =0, Vkel{l,...,K}, VBeO.

The seller aims to maximize the expected transfers from a mechanism that satisfies both incentive compatibility constraints
and the ex-post participation constraint. Lemma 1 in Bergemann et al. (2020) implies the following reformulation of the
seller’s problem in which we only need to solve for the allocations and the utility of the lowest ex-post type. & =0, of each
interim type k, which is denoted by uy, thus u; = u(0; 0):

seq & osi‘,?ii‘.uk - Zakuk + ;ak ka(Z) (z I fk)(z)) fr(2)dz

2]
s.t xg(-) isnon-decreasing, Vke({l,...,K}

u, >0, Vke{l,....K}

Uy +ka(z)(1 — Fr(2)dz = uy +kar(_z)(l — Fe(2)dz, Vk. K e{1,...,K}.
6] 6]
The first set of constraints comes from the ex-post incentive compatibility constraints in the original formulation. The

second set of constraints ensures ex-post participation. The final constraints come from the interim incentive compatibility
constraints.

To see the connection between the setting above and our third-degree price discrimination setting, first consider IT5¢4
without the interim incentive compatibility constraints. In this case the problem decouples across types, and for each type
it reduces to:

max fx(z)-ozk (z — ﬂ) fi(z)dz

0<x<1 fr(2)
)

s.t x(-) is non-decreasing.

Note that uy, =0 for all k is optimal in all decoupled problems. It is well known (see e.g., Riley and Zeckhauser (1983)) that
the problem above has a bang-bang solution, say py. Therefore,

w 1 Fu@) d € -
% < Z/ak (zf 7) fr(z)dz = Zaknk(pk) < Zaknk(pk) — I1*. (14)
=y fi(@) P pa
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That is, the optimal solution in the sequential screening problem is bounded above by the optimal third-degree price
discrimination solution.

Additionally, we can consider IT°*? in the case where the seller uses a static price—a price that is the same regardless of
the buyer's interim type. In other words, we set x(-) = x(-) for all k. In this case, after setting u, =0 for all k, the interim
incentive compatibility constraints are directly satisfied, and the problem becomes:

. — F
ystatic 2 012)?;(1 ([X(Z) (Zak ( - (k)(Z)) fk(z))a‘z

s.t x(-) non-decreasing.

As before, the optimal solution is bang-bang:

K

g K
i 1—Fy(2)
static — f _ e dz = =Y. 15
max kE ]oek z fk(2)dz Tgleag kz ] o Tk (p) (15)
D -

pe® fr(@)

That is, the static optimal solution in the sequential screening problem coincides with the optimal uniform price solution.
Under the conditions of Theorem 1, conditions (14) and (15) imply that:

Hsmtic Il U 1 u

> >1/2.
[1seq Hseq II*

We have thus established the following corollary of Theorem 1.

Corollary 1 (Half approximation in sequential screening).
Suppose that the assumptions of Theorem 1 hold. Then in the ex-post individually rational screening setting of Krédhmer and Strausz
(2015) and Bergemann et al. (2020), the optimal static contract delivers a 1/2-approximation for the seller’s profits.

7. Conclusion

We consider the profit performance of uniform pricing in settings where a monopolist may engage in third-degree price
discrimination. We establish that, for concave profit functions with common support, using a single price can achieve half
of the optimal profit the monopolist could potentially garner by engaging in third-degree price discrimination. Our profit
guarantee does not depend on the number of market segments or prices the seller might use. The different arguments we
provide for Theorem 1 highlight that the monopolist can achieve the performance guarantee of 1/2 in different informational
settings by using a simple uniform price.

We then investigate the scope of our profit guarantee. We establish that by relaxing either the concavity or the common
support assumption, uniform pricing can lead to arbitrarily poor profit guarantees as the number of market segments
increases. Interestingly, for regular distributions and triangular instances—leading cases in the literature of approximate
mechanism design—we show that uniform pricing can again secure only very poor profit guarantees that scale with the
number of market segments.

Depending on the nature of a market, different types of price discrimination are possible. A plausible direction for future
work is to consider an environment in which the seller can exercise second-degree price discrimination by creating a menu
of prices and quantities. For example, consider a setting with K different markets, each of which is characterized by a
different distribution of valuations. Within each market the seller may offer an optimal menu of prices and quantities.
However, due to legal or business constraints such powerful price discrimination may not be implementable. Instead, the
seller might only be able to offer the same menu across all markets. In turn, it becomes a natural question to explore the
performance of this limited menu versus the full discriminating one.
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