
Software-Hardware Co-design of Heterogeneous SmartNIC
System for Recommendation Model Inference and Training

Anqi Guo
Boston University

University of Rochester
anqiguo@bu.edu

Yuchen Hao
Meta Platforms

haoyc@meta.com

Chunshu Wu
Boston University
happycwu@bu.edu

Pouya Haghi
Boston University
haghi@bu.edu

Zhenyu Pan
University of Rochester

zhenyupan@rochester.edu

Min Si
Meta Platforms
msi@meta.com

Dingwen Tao
Indiana University

ditao@iu.edu

Ang Li
Pacific Northwest National

Laboratory
ang.li@pnnl.gov

Martin Herbordt
Boston University
herbordt@bu.edu

Tong Geng
University of Rochester
tong.geng@rochester.edu

ABSTRACT
Deep Learning Recommendation Models (DLRMs) are important
applications in various domains and have evolved into one of the
largest and most important machine learning applications. With
their trillions of parameters necessarily exceeding the high band-
width memory (HBM) capacity of GPUs, ever more massive DLRMs
require large-scale multi-node systems for distributed training and
inference. However, these all suffer from the all-to-all communica-
tion bottleneck, which limits scalability.

SmartNICs couple computation and communication capabilities
to provide powerful network-facing heterogeneous devices that
reduce communication overhead. There has not, however, been a
distributed system design that fully leverages SmartNIC resources
to address scalability of DLRMs.

We propose a software-hardware co-design of a heterogeneous
SmartNIC system that overcomes the communication bottleneck of
distributed DLRMs, mitigates the pressure on memory bandwidth,
and improves computation efficiency. We provide a set of SmartNIC
designs of cache systems (including local cache and remote cache)
and SmartNIC computation kernels that reduce data movement,
relieve memory lookup intensity, and improve the GPU’s compu-
tation efficiency. In addition, we propose a graph algorithm that
improves the data locality of queries within batches and optimizes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICS ’23, June 21–23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0056-9/23/06. . . $15.00
https://doi.org/10.1145/3577193.3593724

the overall system performance with higher data reuse. Our eval-
uation shows that the system achieves 2.1× latency speedup for
inference and 1.6× throughput speedup for training.

CCS CONCEPTS
• Computer systems organization→ Heterogeneous (hybrid)
systems; Neural networks.

KEYWORDS
Recommendation System, SmartNIC, Heterogeneous System

ACM Reference Format:
Anqi Guo, Yuchen Hao, Chunshu Wu, Pouya Haghi, Zhenyu Pan, Min Si,
Dingwen Tao, Ang Li, Martin Herbordt, and Tong Geng. 2023. Software-
Hardware Co-design of Heterogeneous SmartNIC System for Recommen-
dation Model Inference and Training. In 2023 International Conference on
Supercomputing (ICS ’23), June 21–23, 2023, Orlando, FL, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3577193.3593724

1 INTRODUCTION
Personalized Recommendation systems (Resys) are a widely used in
applications providing online services such as product recommen-
dations, video and music recommendations, and search services
[5, 8, 11, 14, 27, 30, 36]. As recommendation prediction require-
ments and datasets have grown, deep learning recommendation
models (DLRMs) [28] have shown substantial advantages in pro-
viding ranking and click through rate (CTR) predictions.

The size of DLRMs is significantly larger than traditional deep
neural networks due to their data-intensive embedding operators
that require hundreds of Gigabytes or even Terabytes of storage.
Themodel size far surpasses the likely HBM capacity of accelerators.
Moreover, the growth of the accelerators’ HBM is not keeping up
with the ever-growing DLRM size, as shown in Figure 4 [26, 33].
Therefore, high performance DLRM inference and training require

https://doi.org/10.1145/3577193.3593724
https://doi.org/10.1145/3577193.3593724

ICS ’23, June 21–23, 2023, Orlando, FL, USA Anqi Guo, Yuchen Hao, Chunshu Wu, Pouya Haghi, Zhenyu Pan, Min Si, Dingwen Tao, Ang Li, Martin Herbordt, and Tong Geng

large-scale, multi-node systems. As a result, the scalability issue
caused by the communication bottleneck fundamentally hinders
DLRM advances.

DLRMs pose three challenges to large-scale distributed systems:
(1) Communication bottleneck. Strategies like data-parallelism are
infeasible because the replications of the model are too large to fit
into the accelerator’s HBM. A hybrid model and data parallelism is
often used to deal separately with massive embedding tables and
smaller MLPs (Figure 1). The embedding operators are partitioned
and distributed to each node and use all-to-all communication to
exchange each share of the embedding tables (EMT). The all-to-all
communication incurs a massive amount of data exchange result-
ing in communication as the bottleneck of the entire application.
The exponential growth of communication volume indicates that
this critical path will worsen. (2) Memory bandwidth challenge.
DLRMs contain up to trillions of parameters and consume up to
terabytes of memory. The embedding operators require high mem-
ory bandwidth and frequent access to the embedding tables. (3)
Computation efficiency challenge. Compared with other machine
learning models, DLRMs exhibit lower arithmetic intensity with
irregular computations like data reshaping, flattening, and trans-
posing. These irregular operations are primarily memory copies
and make GPU’s computation less efficient.

Advanced network interface cards known as SmartNICs have
emerged to mitigate network communication challenges in scale-
out data centers. Moreover, SmartNICs with computation support
are particularly useful for domain-specific computation such as
machine learning and streaming data analytics [3, 16, 17, 29, 39, 40].
As SmartNICs continue to advance in power, the combination of
compute and communication support, together with their place-
ment in the node (network facing), point to their use in overcoming
the scalability challenges in DLRM training and inference.

Simply adding SmartNICs to a distributed system, however, only
addresses point-to-point communication latency. Currently there is
no distributed system design that leverages SmartNIC resources to
overcome the other challenges: communication bottleneck, memory
bandwidth pressure, improving computational efficiency. Existing
work [20, 33, 35] uses software solutions targeting the communica-
tion bottleneck by reducing the embedding table size, or the com-
munication volume of all-to-all and all-reduce collection. However,
these approaches have limited benefit, and the software solution
can not fundamentally resolve the performance bottleneck. Others
[6, 38] introduce storage technologies to optimize the embedding
operator’s performance. But memory bandwidth and latency can’t
catch up with GPU’s HBM, and, as the model size grows, memory
bandwidth could become another bottleneck. Current GPU clusters
used for DLRM [1, 26, 32] suffer from large communication volumes
and frequent communication bottlenecks.

In this paper, we introduce a software-hardware co-design of
a heterogeneous SmartNIC system for scalable DLRM inference
and training that overcomes communication bottlenecks, mitigates
memory bandwidth pressure, and improves computation efficiency.
A set of SmartNIC designs of cache systems (including local cache
and remote cache) and SmartNIC computation kernels exploits the
locality of DLRMs to reduce data movement, relieve memory access
intensity, and improve GPUs’ computation efficiency.

Figure 2 illustrates the techniques used. (1) Remote Cache.
The large volume and intense all-to-all communication primarily
contribute to the communication bottleneck of distributed DLRM
systems. The remote cache on the SmartNIC buffers frequently
used remote embedding lookup results, reducing communication
workloads and alleviating both networking and memory bandwidth
pressure. (2) Local Cache. The local cache on the SmartNIC caches
the popular local embedding tables allowing direct retrieval of em-
bedding lookup results from the SmartNIC instead of interrupting
the GPU. This vastly reduces the memory bandwidth burden on
the GPUs’ HBMs, improving overall node memory bandwidth. (3)
SmartNIC computation. The SmartNIC’s kernels for irregular
computation complement the system nodes’ computation resources,
improving GPU efficiency by offloading irregular computations,
and minimizing GPU kernel launch overhead and hardware usage.
In additional, the computation kernels reduce gradient updates
in backward propagation and decrease the workload of backward
all-to-all communication.

We also introduce a graph algorithm that enhances the data
locality of DLRM batches by clustering similar samples. More data
reuse reduces embedding lookup requests and communication vol-
ume, increases cache hit rate, and eases system memory bandwidth
pressure. High data locality batches also benefit GPU computation
efficiency. This set of techniques works together to produce a syn-
ergistic effect, resulting in an outcome greater than the sum of their
individual contributions.

To summarize, the contributions of this work include:
• A scalable software-hardware co-design for heterogeneous
SmartNIC systems for both forward and backward propaga-
tion of DLRMs.
• A set of techniques for SmartNIC design that overcomes the
communication bottleneck of distributed DLRMs, mitigates
memory bandwidth pressure, and improves computation
efficiency. A graph algorithm improves the data locality of
batches and optimizes overall system performance with high
data reuse.
• Evaluation results showing that heterogeneous SmartNIC
systems can achieve 2.1× latency speedup for inference and
1.6× throughput speedup for training.

The remainder of the paper is organized as follows. Section 2
provides DLRM background and the paper’s motivation. Section
3 presents details of the graph algorithm. Section 4 introduces the
cache system and computation kernels for forward and backward
propagation. Results from experiments are presented in Section 5.
Section 6 discusses related work; concluding remarks are given in
Section 7.

2 DLRM BACKGROUND AND MOTIVATION
2.1 Deep Learning Recommendation Model
Figure 5 gives an overview of DLRMs. DLRMs have two types of
inputs, dense features and sparse features, and predict the probabil-
ity that a user would interact with an item; this is referred to as the
Click Through Rate (CTR). Dense features contain continuous data
like a user’s age or the current time. Sparse features are categorical
features such as posts, pages, or items. These categorical features
are represented using IDs, which map to embedding vectors from

Software-Hardware Co-design of Heterogeneous SmartNIC System for Recommendation Model Inference and Training ICS ’23, June 21–23, 2023, Orlando, FL, USA

Figure 1: Deep LearningRecommendationModelWorkflowOverview (EMT: Embedding Table,MLP:Multilayer Perceptron, CTR:
Click Through Rate(Prediction), N1T1 Gradients: Computed gradients of Embedding Table 1 from Node 1) The heterogeneous
SmartNIC system targets the memory bottleneck, communication bottleneck, computation bottleneck of forward propagation
and backward propagation (Section 4). A graph algorithm improves the batch data locality (Section 3).

Figure 2: SmartNIC Design and DLRM Challenges

Figure 3: Heteroge-
neous SmartNIC System
Overview

Figure 4: DLRM memory capac-
ity requirements and GPU HBM
growth

their corresponding embedding tables (EMT). Modern DLRMs con-
sume thousands of categorical features with thousands of EMTs;
these are handled by embedding operators. Feature interaction com-
bines the output of the bottom multilayer perception (MLP) and
feeds it into the top MLP for CTR prediction.

Figure 5: Deep Learning Recommendation Model.

2.2 Distributed DLRM System Challenges
The embedding operators are partitioned and distributed to the sys-
tem since their size largely exceeds a single accelerator’s HBM size.
Samples are required to access each partition of embedding param-
eters before performing the next stage, resulting in data-dependent
behavior of the embedding operators. This results in a combination
of model and data parallelism for the distributed DLRMs shown
in Figure 1. In forward propagation, input all-to-all, and embed-
ding all-to-all are required to gather each partition of embedding
parameters for each data-parallel sample group. CTR computation
waits until all embedding operators are gathered for each sample.

ICS ’23, June 21–23, 2023, Orlando, FL, USA Anqi Guo, Yuchen Hao, Chunshu Wu, Pouya Haghi, Zhenyu Pan, Min Si, Dingwen Tao, Ang Li, Martin Herbordt, and Tong Geng

These all-to-alls contribute to the major bottleneck during DLRM
inference. In backward propagation, embedding vector gradients
must be redistributed. Another backward all-to-all is therefore used
to update the embeddings before the next batch iteration starts.
These three all-to-alls are the throughput performance killer of
DLRM training. As the prediction demand rises, the number of
embedding operators grows bigger, and more nodes are added to
meet the increasing query requests. Scalability is thus an urgent
issue that hinders the development of DLRMs.

To satisfy a growing demand for “smart” networks, SmartNICs
with substantial and tightly coupled communication and compute
capability are being widely deployed in data centers. Some Smart-
NICs of interest in this work have anARMprocessor, FPGA, domain-
specific accelerators, and high bandwidth memory [3, 16, 17, 29, 39,
40]. But besides accelerating packet processing, SmartNICs provide
an opportunity for offloading application workloads. Transparent
use of SmartNICs alone, however, only improves point-to-point
communication. Leveraging SmartNICs’ tightly coupled communi-
cation and compute capabilities for applications processing can be
challenging.

2.3 Characteristics of DLRM Data Power Law
Distribution

Figure 6: Power Law Distribution of Datasets

The frequency distribution of a categorical feature’s embedding
follows a power law distribution (as shown in Figure 6). A small
fraction of embeddings results in most of the accesses as, typically,
a large fraction of users is interested in a small number of popular
items, e.g., web pages or movies. This characteristic leads to data
reuse opportunities for the corresponding embedding vectors and
for architectures to exploit the resulting locality to overcome the
DLRM communication bottleneck.

3 GRAPH ALGORITHM
This section discusses a graph algorithm that enhances the data
locality within batches of queries.

3.1 Graph Mini Batch
DLRMs use batches as a processing unit to expose parallelism and
enable high throughput. Although a sample’s sparse features follow
a power law distribution, batches of forward and backward propaga-
tion are formed by sequentially fetching independent. Performance
can be improved further by improving data locality within the
batch: Batches with better data locality can enhance every phase
of DLRM processing with reduced embedding lookup, lower mem-
ory bandwidth pressure and communication volume, and higher
compute efficiency.

Figure 7: Graph Algorithm (T0i0: Embedding Table (EMT) 0,
index 0) Left (blue) table indicates a sample batch that can
be viewed as an incidence matrix. The right (orange) table
indicates the scoreboard ranking popularity of edges in the
hypergraph. A mini batch of samples with high similarity is
generated as input to forward propagation.

Instead of fetching samples sequentially from the dataset, we
perform the graph algorithm to select a mini batch of samples
with high data locality. A larger number of samples is pre-loaded
as the input of the graph batch algorithm to select a group of
closely related samples for the mini batch. In Figure 7, the blue table
indicates the pre-loaded batch of samples that the graph algorithm
uses as input. The table can be viewed as a lookup incidence matrix
with rows of samples and columns of lookup indices.

Based on the lookup incidence matrix, a hypergraph is formed
where samples are nodes and embedding table lookup indices are
edges (see middle graph in Figure 7). Sample nodes are connected
to index edges corresponding to the lookup table. The hyperedges
with higher degrees are formed because DLRM sparse features
follow a power law distribution with a higher chance of multiple
samples looking up the same popular indices. As the lookup table
indicates, embedding table 0 with index 0 (edge T0i0) is requested
by sample nodes 0, 1, 4, 5, 7, and table 1 index 0 (edge T1i0) is
requested by sample nodes 0, 1, 3, 4. The hypergraph is generated
as each of the embedding tables’ indices is iterated. Within the
graph, an edge with high degrees means more data reuse as a single
embedding lookup can serve more sample nodes. Samples nodes
that share more overlapped edges have more similarities (share
more sparse features) with better data locality. The graph algorithm
filters samples that have overlapping embedding lookup indices,
which are indices accessed by a larger number of samples. The graph
algorithm saves lookup requests, reducing all-to-all communication
and reducing memory transfer bandwidth.

The simplified graph algorithm workflow is shown in Algorithm
1. The embedding lookup incidence matrix is generated along with
pre-loading the batch of samples from the dataset with a counter
attached to each embedding index to register the degree of the index
edges. After loading the batch samples, hyperedge degree is sorted
using the edge degree counter. The table on the right indicates the
popularity of the EMT index from top to bottom. Embedding table
0 index 0 (T0i0) is the most popular index with sample nodes 0, 1,
4, 5, and 7 connected with high similarity.

In the real-world case, however, if the mini batch only chooses
samples based on the top edges’ degrees, samples in the mini batch
cannot be closely related as each sample would have more sparse

Software-Hardware Co-design of Heterogeneous SmartNIC System for Recommendation Model Inference and Training ICS ’23, June 21–23, 2023, Orlando, FL, USA

Algorithm 1 Graph algorithm

1: Mini_Batch[mini_batch_size]
2: Incidence_Matrix[batch_size][EMT_idx]
3: Hyperedge_Cntr[batch_size]
4: Hyperedge_Threshold = n
5:
6: # Feed samples from dataset to the incidence matrix
7: while len(Incidence_Matrix)<batch_size do
8: Incidence_Matrix← sample
9: Update Hyperedge_Cntr[EMT_idx]
10: end while
11:
12: # Get similar samples
13: Sample_List[batch_size] # Initiated as a priority queue
14: for hyper_edge in
15: sorted(Hyperedge_Cntr[0:Hyperedge_Threshold]) do
16: for sample_id in Hyperedge_Sample[hyper_edge] do
17: Sample_List← sample_id
18: end for
19: end for
20: Mini_Batch← Sample_List[0:mini_batch_size]
21:
22: # Delete mini_batch samples
23: for Sample_id in Mini_Batch do
24: Update Hyperedge_Cntr, Incidence_Matrix
25: end for
26:
27: return Mini_Batch

features. So we introduce the hyperedge threshold that picks the
top 𝑛 popular embedding table indices and does a node selection
that selects the sample nodes that appear most often in these indices.

A priority queue is used to maintain the sample list, which is con-
tinually updated in descending order based on the number of times
each sample appears. During the graph algorithm’s execution, the
priority queue stores sample nodes in the order of decreasing simi-
larity, with the most similar samples at the top of the queue. Upon
completion, the first mini batch size of samples forms a mini batch
and feeds into the forward propagation pipeline. As Figure 7 indi-
cates, edges T0i0 and T1i0 are selected as popular indices. Within
these two indices, sample nodes 0, 1, and 4 appeared most with a
high similarity. The mini batch fetches these three nodes and mini
batch of size 3 is formed. The mini batch samples are deleted from
the lookup incidence matrix and the Hyperedge counter is updated
for the next batch. New samples are fetched from the dataset and
forwarded to the next iteration.

3.2 Refresh Batch
As in the previous section, the graph algorithm always finds the
most similar (sharing sparse features) samples within batches. So
as iterations of the graph algorithm continue, samples that have
less common sparse features are always left in the batch. These
samples are not chosen by the graph algorithm leading to fewer
chances for data reuse. Besides these, the inference of DLRM also
has latency requirements. Samples that are left too long in the batch
is not served and cause users to never hear back from requests.

Figure 8: Similarity of Samples within Mini Batches. The red
circle indicates a batch refresh with new samples.

To address these issues, we introduce a batch refresh mechanism.
The graph algorithm selects samples within the batch one-by-one
until it is empty and then refills the batch from the dataset when
one of the two criteria has been reached. First, we use a downgrade
factor to trace the similarity among the samples in the mini batch
selected by the graph algorithm. As the downgrade factor reaches
a threshold, this means that the similarity of the mini-batch is too
low to form a data reuse opportunity. Batch refresh is triggered to
avoid continuing poor data reuse within the mini batch. Second,
a timing counter is attached to each sample. When any of the
samples has waited too long for service, batch refresh is triggered
to consume the batch and refill with new samples. As shown in
Figure 8, batch similarities are reduced as processing continues.
The red circle means the batch refresh mechanism is triggered to
refresh the samples within the batch.

4 SYSTEM HARDWARE ARCHITECTURE
The scalability of DLRM is the central issue that hinders the rec-
ommendation system’s development as the model size grows even
more significant to provide more accurate predictions. The main
bottlenecks that impact the scalability of DLRM are memory, com-
munication and computation. In this section, we introduce three
aspects of design on SmartNIC for both forward and backward
propagation: local cache, remote cache and SmartNIC computation
kernel, which address those three bottlenecks.

4.1 Forward Propagation
4.1.1 Local Cache. DLRM has a high demand on memory band-
width because the embedding operators request frequent and high
volume embedding table lookups. The embedding tables can also
consume up to terabytes of memory. If the system use a GPU as
an accelerator, the memory bandwidth and capacity requirement
exceed the GPU’s HBM capability. In order to handle the embed-
ding layer, multiple GPUs are aggregated to meet the memory
requirement introduced by the large size embedding tables. Em-
bedding tables are distributed to each GPU’s HBM memory. As in
the previous section, each node receives embedding lookup from
every other node. As the scale of the system grows, and the size
of the DLRM embedding layer grows, embedding lookup requests
increase, which creates more load on the memory. The memory
itself could also be the bottleneck of the system’s scalability as
large numbers of embedding table lookups can introduce signifi-
cant memory access overheads. For large scale GPU-based clusters,
nodes are connected through network interface cards (NICs). Em-
bedding lookup requests are sent through the network, received
by NICs, and sent to the GPUs through PCIe. With more frequent

ICS ’23, June 21–23, 2023, Orlando, FL, USA Anqi Guo, Yuchen Hao, Chunshu Wu, Pouya Haghi, Zhenyu Pan, Min Si, Dingwen Tao, Ang Li, Martin Herbordt, and Tong Geng

requests, the overhead of PCIe and GPU memory access could also
diminish the embedding operator’s performance.

Figure 9: Local cache on the SmartNIC buffers popular em-
beddings. Hits on local cache save lookup requests to the
GPU’s HBM. Dedupe eliminates redundant index lookups.

We introduce local cache on SmartNICs to address the DLRM
memory bottleneck. The local cache can relieve memory pressure
on the GPU by reducing the lookup overhead on the PCIe and GPU
memory accesses. Embedding operator requests are first received
by the SmartNIC and sent to the GPU for lookup. Local cache
on the SmartNIC buffers the lookup result from the GPU. Before
generating the GPU memory lookup index list, the lookup indexes
are checked if it is hit on the local cache on SmartNIC. If yes,
there is no need to send it to the GPU as the embedding vectors
are already on SmartNIC. After the GPU’s memory lookup, the
local cache updates its buffer using the least recently used (LRU)
policy. It is very likely that lookup indices hits on the local cache
because it buffers the most popular indices of the embedding table.
With the introduction of local cache, reduced GPU interruption and
memory pressure alleviate the memory bottleneck of processing
the embedding operator.

Before the input all-to-all phase, each node sends the correspond-
ing embedding lookup based on the distribution of the embedding
table. After the all-to-all, each node receives the lookup requests
from other nodes with batches of lookup indices. Because of the
power law distribution, a large number of duplicated lookups be-
tween nodes and samples take up memory bandwidth. The Dedupe
kernel on the SmartNIC uses a deduplication table to keep a record
of the lookup index with its corresponding source node and sample
ids. The list of lookup indices is checked if it is a hit.

Afterward, a list of lookup indices is summarized and used to
issue a lookup request to the GPU’s memory. If a hit, then the
lookup result is sent to the packet packager to prepare a lookup
result packet and update the local cache (using LRU). If a miss,
indices are temporarily saved to the GPU lookup request table. As
deduplication finishes, lists of lookups are sent to the GPU. When
the GPU sends the lookup result back to SmartNIC, the lookup
vector is inserted into the local cache on SmartNIC updating cache.
The result is formatted by the SmartNIC using the deduplication
table to check its source node and sample index. As lookups from
dedupe finish, the embedding all-to-all phase exchanges lookup
results among the nodes.

4.1.2 Remote Cache. DLRM size is significant because of the em-
bedding operator, which can require terabytes of memory, and is
growing as more embeddings provide more accurate predictions.
Since replicating the entire model on each device is infeasible, a
hybrid model and data parallelism are introduced where the em-
bedding tables are distributed among nodes. A large system can
therefore support a large shared memory capacity and lookup band-
width. As shown in Figure 1, all-to-all communication is needed to
gather each node’s queries and distributing the embedding tables’
lookup results. The all-to-all communication, however, introduces
enormous pressure on the system’s network and grows quadrati-
cally with batch size.

In forward propagation, there are two all-to-all communications.
The input all-to-all requests the embedding table lookup for each
node’s sample queries’ sparse features. The embedding all-to-all
returns embedding lookup results to each of the sample’s original
source nodes. The computation kernels wait until the all-to-all
phase is finished to continue and compute the prediction results.

Figure 10: Remote cache on SmartNIC buffers remote embed-
ding tables. Queries check if a remote embedding is a hit on
the remote cache before issuing the remote lookup request.

We introduce the remote cache on SmartNIC to address the com-
munication bottleneck by reducing the all-to-all communication
workloads. After embedding all-to-all, remote embedding table
lookup results are sent back to the original source node. The re-
sults are buffered by the remote cache on SmartNIC. The remote
cache uses the least recently used (LRU) policy to update the stor-
ing vectors as iteration goes. As the system warms up, the remote
cache on SmartNIC stores the most popular remote embedding
table’s vectors. Figure 10 indicates the workflow of how sample
queries make use of the remote cache. After the graph algorithm
generates mini batch of query samples, samples first check if the
lookup is hit on the remote cache. If it hits, this lookup request
is not needed and can directly get the remote embedding results
from the remote cache. The result is held until embedding all-to-all
finishes. Since DLRM samples follow power law distribution, popu-
lar remote lookup has a higher chance is requested in the future.
The remote cache that buffers the popular embeddings reduces the
unnecessary duplicated remote embedding lookup request. If the
lookup is missed on the remote cache, it is forwarded to the packet
packager for remote lookup.

4.1.3 SmartNICComputation. DLRMgenerally exhibits lower arith-
metic intensity compared to the traditional DNN model. DLRM

Software-Hardware Co-design of Heterogeneous SmartNIC System for Recommendation Model Inference and Training ICS ’23, June 21–23, 2023, Orlando, FL, USA

consists of various computations including matrix multiplication,
no-linear activation, and irregular computation like data reshape
matrix flattening, and matrix transposing. These irregular computa-
tions can not use GPU’s hardware resources efficiently as GPUs are
good atmassive parallel scalar computations. The irregular compute
introduces frequent memory copy that takes enormous amounts of
hardware and HBM resources, and can not use the GEMM operator
on the GPU. Kernel calling overheads are another factor that largely
hinders the computation efficiency of accelerators.

We introduce computation and data management kernels (shown
in Figure 11) on SmartNICs to minimize overhead and improve
the GPU’s computation efficiency. After the embedding all-to-all,
each node receives the embedding lookup result from the remote
node and is ready to send the result to the GPU for prediction
calculation. Instead of dumping the unmanaged raw data directly
to the GPU, feature interaction processing, which includes irregular
computation operations, are offloaded to the SmartNIC, which has
dedicated hardware for higher computation efficiency. The raw data
are reorganized by the kernel on the SmartNIC before forwarding
to GPU for computation. The computation kernel on smartNIC
combines the dense and sparse features as a matrix and the matrix
is transposed as the input to feature interaction which uses the
matrix multiplication kernel. After feature interaction processing,
the result is flattened to convert the 2D matrix into a 1D vector,
which is then sent to the GPU for top MLP computation. These
dedicated irregular kernels on smartNIC improve the computation
efficiency and save hardware utilization for GPU.

Figure 11: SmartNIC computation with irregular computa-
tion kernels including data layout transform, matrix trans-
pose, matrix flattening, and element-wise pooling. Remote
cache is updated with the remote embeddings after embed-
ding all-to-all.

4.2 Backward Propagation
DLRM training workflow differs from inference in that synchroniza-
tion is needed between batches of training samples. In backward
propagation, computation kernels for training (training cores) are
implemented and supported in the SmartNIC. Embedding gradients
are calculated after forward propagation and used to update the
embedding table’s value. A backward all-to-all gathers every node’s
partial embedding gradients and collectively updates the distributed
embedding value. The next batch of training samples is issued when
all embedding tables have been updated. A remote cache would not
be effective in training because the cached embeddings are being

updated. The updated embeddings are located in the embedding
table’s original node.

In the forward propagation phase of the training process, the
local cache on the SmartNIC reduces the system memory accessing
pressure. In backward propagation, the SmartNIC computation
kernel improves throughput with two levels of reduction, local and
global, using the reduction computation kernel on the SmartNIC.

Figure 12: Backward propagation local gradient reduction
using SmartNIC computation

4.2.1 Local Gradient Reduction. The embedding gradients are gen-
erated during backward propagation. After the GPU’s gradient cal-
culation, gradients are sent to the SmartNIC for backward all-to-all
communication that updates the corresponding embedding tables.
The DLRM samples adhere to a power law distribution, which in-
creases the likelihood that samples within batches on each node
access the same embedding value and result in repeated updates of
the gradients for those embeddings. The local gradient reduction
kernel combines the gradients for the same embeddings on each
node and calculates the overall gradient for each embedding. After
all samples have been handled, the packet generator packs the up-
dated gradients for each embedding table and sends them to their
destinations. Local gradient reduction kernel reduces the workload
of backward all-to-all and saves GPU overhead.

Figure 13: Backward propagation global gradient reduction
using SmartNIC computation. The gradient is updated both
in the SmartNIC’s local cache and the GPU’s HBM.

ICS ’23, June 21–23, 2023, Orlando, FL, USA Anqi Guo, Yuchen Hao, Chunshu Wu, Pouya Haghi, Zhenyu Pan, Min Si, Dingwen Tao, Ang Li, Martin Herbordt, and Tong Geng

4.2.2 Global Gradient Reduction. After backward all-to-all, each
node has received embedding gradients from every other node. A
table of embedding vector gradients is updated as they are received.
When this is completed, the final gradients are used to update the
embedding table’s value. The local cache is used in the forward
propagation process and stores the embedding vector value from
the GPU’s HBM (using LRU). So the local cache is guaranteed to
have stored the embedding vector that needs to be updated by the
gradients. The final gradient is updated on both the local cache on
the SmartNIC and the GPU’s HBM. The updated local cache buffers
the updated embedding for future batches. With the local cache and
reduction kernel on the SmartNIC, memory bandwidth pressure,
PCIe overhead, and interruption overhead of the GPU’s function
calls are all minimized.

4.3 An Alternate Design
An alternate design was also explored where the entire applica-
tion is offloaded onto the SmartNIC. Even though large amounts
of PCIe, kernel call, and software stack overheads are saved, the
performance does not approach that of the heterogeneous archi-
tecture (with GPU) because of the limited hardware resources and
higher computational capability of the GPU.

5 EVALUATION
5.1 Experimental Setup
The DLRMmodel evaluation is based onMeta Research open source
code [7]. The CPU baseline uses a 16-core 32-thread Intel® Xeon®
Gold 6226R; the GPU baseline uses an Nvidia RTX8000. To evaluate
the SmartNIC hardware, we use an Xilinx Alveo U280 FPGA with
configure hardware implementations of runtime, cache system, and
computation kernels using High Level Synthesis (Vitis HLS 2022.1).
For scalability, we used MPI as the backend for CPU and GPU
evaluation. Multiple Alveo U280 FPGAs are connected through
transceivers as a cluster to evaluate the multi-SmartNIC system.
Since there is no exact heterogeneous SmartNIC-GPU system, we
evaluated the real SmartNIC parameters on the muti-node Alveo
U280 cluster and plugged it into a simulator based on DLRM open-
source code [7] with a GPU as an accelerator.

We evaluated the system using three well-established recommen-
dation model datasets: Criteo Kaggle, Criteo Terabyte and Avazu
for both inference and training. Table 1 shows the parameters of
these datasets.

Table 1: DLRM Datasets Parameters

Dataset Kaggle Terabyte Avazu
Dense Feature 13 13 1
Sparse Feature 26 26 21
EMT Rows 33.8M 226M 9.3M
Row Dim 16 64 16

The evaluation figures use the following abbreviations: BL =
Baseline, GA = Graph Algorithm, LC = Local Cache on SmartNIC,
RC = Remote Cache on SmartNIC, SC = SmartNIC Computation,
FS = Full (complete) SmartNIC system.

5.2 Performance Evaluation
5.2.1 Graph Algorithm. The graph algorithm improves system
performance in inference by 1.2 × on average, with less impact
in training. It is more practical and effective in inference due to
high number and randomness of the query requests in real-time: As
the algorithm rearranges batch clusters of similar queries, system
communication and memory pressure are reduced. In training,
the dataset samples are given with more straightforward data pre-
processing which achieve comparable data locality.

5.2.2 Forward Propagation. This section evaluates the system per-
formance with forward propagation using the graph algorithm,
local cache, remote cache, SmartNIC computation, and full Smart-
NIC centric design.

(1) Local Cache: Figure 16 illustrates the latency speedup of us-
ing local cache and graph algorithm with respect to three datasets.
The forward propagation latency performance is not significantly
impacted by the local cache and the speedup remains steady as the
size increases. This is mainly because batches of the forward propa-
gation are pipelined. The latency of batches is hidden if the lookup
request misses the local cache on the SmartNIC and fetches the
lookup result from GPU. Using the graph algorithm improves the
latency by speedup of average 1.2× of three datasets as it enhances
the data locality within batches, reducing remote communication
and memory access, and thus improving overall latency. Figure 18
shows the Hit/Miss rate of local cache on SmartNIC and GPU’s
memory. As the size of the local cache increases, fewer memory ac-
cesses are needed from the GPU’s memory. The local cache relieves
the memory bandwidth pressure on the GPU.

(2) Remote Cache: Figure 19 shows the latency speedup of for-
ward propagation with Remote Cache on the SmartNIC and graph
algorithm. Remote cache largely caches the remote embedding
lookup because of the power law distribution characteristic. When
the query sample hits the remote cache, the remote cache lookup
communication request is saved, reducing both queries’ latency
and the system’s communication workload, and improving commu-
nication efficiency with less communication congestion. Figure 20
shows saved remote lookup requests using remote cache and graph
algorithm. As the remote cache size increases, more lookups are
saved. Graph algorithm clusters similar samples to reuse lookups
more effectively. Figure 21 shows the decline of the local cache hit
rate as remote cache size increases. This is because embedding table
accesses follow a power law distribution. A larger remote caches
store more popular embedding indices, causing less popular em-
beddings to remain in GPU’s HBM. Queries for remote embeddings
are more likely to request these unpopular embeddings.

(3) SmartNIC Computation: Figure 17 shows the speedup of using
SmartNIC computation in forward propagation. The figure indicates
that there is not a noticeable effect on latency compared to training.
This is because inference batches are processed in a pipeline, and the
main bottlenecks are embedding lookup and communication. The
latency reduction from the SmartNIC irregular computation kernel
only accounts for a small portion of the entire process. However,
during training, SmartNIC computation is important for reducing
gradients, which is described below.

(4) Forward Propagation Overall Speedup: Figure 22 shows the
overall latency speedup of the techniques across three datasets.

Software-Hardware Co-design of Heterogeneous SmartNIC System for Recommendation Model Inference and Training ICS ’23, June 21–23, 2023, Orlando, FL, USA

0

5

10

15

CPU BLSp
ee

du
p

vs
. C

PU
 B

L

Node 2 Node 4 Node 8 Node 16 Node 2 Node 4 Node 8 Node 16 Node 2 Node 4 Node 8 Node 16
Kaggle Terabyte Avazu

BL
GA
LC
GA+LC
LC+RC
GA+LC+RC
LC+RC+SC
GA+LC+RC+SC
FS
GA+FS

Figure 14: Inference Scalability

0

10

20

30

40

CPU BL

Sp
ee

du
p

vs
. C

PU
 B

L

Node 2 Node 4 Node 8 Node 16 Node 2 Node 4 Node 8 Node 16 Node 2 Node 4 Node 8 Node 16
Kaggle Terabyte Avazu

BL
GA
LC
GA+LC
LC+SC
GA+LC+SC

Figure 15: Training Scalability

0.9
1.0
1.1
1.2

1.3

0
10

0
50

0
10

00
50

00 0
10

0
50

0
10

00
50

00 0
10

0
50

0
10

00
50

00 0
10

0
50

0
10

00
50

00 0
10

0
50

0
10

00
50

00 0
10

0
50

0
10

00
50

00

Kaggle

Sp
ee

du
p

vs
. B

L(
0)

Terabyte
BL GA BL BLGA GA

Avazu

Figure 16: Latency Speedup of For-
ward Propagation Using Local Cache
on SmartNIC

0.9

1.0

1.1

1.2

Kaggle

Sp
ee

du
p

vs
. B

L

Terabyte Avazu

BL SC GA GA+SC

Figure 17: Latency
Speedup of For-
ward Propagation
using SC

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0 3K 6K 9K
Cache Size

Ca
ch

e
Hi

t R
at

e

Cache Size Cache Size
12K 15K 0 3K 6K 9K 12K 15K 0 3K 6K 9K 12K 15K

Kaggle Terrabyte Avazu

Figure 18: Forward Propagation Hit Rate of Local Cache on
SmartNIC. Missing on local cache indicates an embedding
lookup on the GPU’s HBM.

1.0

1.2

1.4

1.6

1.8

BL
GA

2.0

2.2

Sp
ee

du
p

vs
. B

L(
0)

0 3K 6K 9K
Cache Size Cache Size Cache Size

12K 15K 0 3K 6K 9K 12K 15K 0 3K 6K 9K 12K 15K

Kaggle

1.0

1.2

1.4

1.6

1.8

2.0
Terrabyte

1.00

1.05

1.10

1.15

1.20

1.25
Avazu

Figure 19: Latency Speedup of Forward Propagation Using
Remote Cache on the SmartNIC

The speedup is higher for Kaggle and Terabyte that for Avazu.
The graph algorithm improves the data locality of samples within
batches and enhances the overall system latency. The figure high-
lights that remote cache and graph algorithm significantly enhance
forward propagation by reducing communication workloads and
increasing data reuse. Fewer communication requests significantly
reduce the all-to-all bottleneck. Meanwhile, local cache and Smart-
NIC computation show limited impact on forward propagation as

0

10K

20K

30K

40K

50K
Kaggle

0

30K

60K

90K

120K

150K
Terrabyte

0

8K

16K

24K

32K

40K
Avazu

Remote Cache Size

Sa
ve

d
Lo

ok
up

 N
um

be
rs

0 3K 6K 9K 12K 15K
Remote Cache Size

0 3K 6K 9K 12K 15K
Remote Cache Size

0 3K 6K 9K 12K 15K

BL
GA

Figure 20: Saved Lookups (Remote Embedding Lookup Re-
quests) of Forward Propagation Using Remote Cache

Remote Cache Size Remote Cache Size Remote Cache Size

Lo
ca

l C
ac

he
 H

it
Ra

te

0 3K 6K 9K 12K 15K 0 3K 6K 9K 12K 15K 0 3K 6K 9K 12K 15K
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00
Kaggle Terrabyte Avazu

Figure 21: Hit Rate of Local Cache Using Remote Cache of
Forward Propagation

inference batches are processed in a pipeline, hiding the latency
between them. These two techniques mainly alleviate GPU mem-
ory bandwidth pressure, kernel overhead, and hardware resource
utilization.

0.0

0.5

1.0

1.5

2.0

Sp
ee

du
p

vs
. B

L

2.5

Kaggle Terabyte Avazu

BL
GA
LC
GA+LC
LC+RC
GA+LC+RC
LC+RC+SC
GA+LC+RC+SC
FS
GA+FS

Figure 22: Comparison of latency speedup of forward propa-
gation using the graph algorithm, local cache, remote cache,
SmartNIC computation, and the full SmartNIC system.

5.2.3 Backward Propagation. In backward propagation, samples
are trained in sequential batches, with each batch starting only

ICS ’23, June 21–23, 2023, Orlando, FL, USA Anqi Guo, Yuchen Hao, Chunshu Wu, Pouya Haghi, Zhenyu Pan, Min Si, Dingwen Tao, Ang Li, Martin Herbordt, and Tong Geng

after the previous one is completed. During this process, the embed-
ding vectors are updated with gradients computed in the backward
pass. The remote cache is not beneficial in this stage as the cached
embedding vectors become outdated after backward propagation.

1
1.1
1.2
1.3
1.4
1.5
1.6

0 2K 4K
Cache Size Cache Size Cache Size

6K 8K 10K 0 2K 4K 6K 8K 10K 0 2K 4K 6K 8K 10K

Kaggle Terrabyte Avazu

BL GA SC GA+SC

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7

1
1.1
1.2
1.3
1.4
1.5
1.6

Sp
ee

du
p

vs
. B

L(
0)

Figure 23: Throughput Speedup of Backward Propagation
Using Local Cache on SmartNIC

Figure 23 shows the training throughput speedup of graph algo-
rithm, local cache, and using SmartNIC compute with three datasets.
As the figure indicates, as local cache size increases, the through-
put increases accordingly. This results from more embedding table
requests being serviced by the local cache of the SmartNIC, reduc-
ing the pressure on GPU memory bandwidth and the embedding
lookup overhead. Figure 24 shows the hit/miss rate of local cache
on SmartNIC.

SmartNIC computation is crucial in improving training through-
put by handling irregular computation and reducing gradient up-
dates shown in figure 23. Two levels of reduction, including gradient
reduction on the local node and global gradients reduction of all
other nodes, are performed on the SmartNIC.

Figure 25 indicates an overall throughput speedup. The graph
algorithm improves the overall throughput speedup by an average
of 1.1×. Local cache improves the throughput speedup by 1.3×.
SmartNIC computation improves the throughput by 1.4×. Overall
the throughput speedup can reach 1.5×.

0 2K 4K 6K 8K 10K 0 2K 4K 6K 8K 10K 0 2K 4K 6K 8K 10K

Kaggle Terrabyte Avazu

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Ca
ch

e
Hi

t R
at

e

Cache Size Cache Size Cache Size

Figure 24: Backward Propagation Hit Rate of Local Cache on
SmartNIC. Missing local cache indicates embedding lookup
on the GPU’s HBM.

We also evaluated the effect of batch size on the throughput
speedup with SmartNIC computation shown in figure 26. The
results show that as batch size increases, the speedup becomes
bounded by the computation bottleneck.

5.3 System Scalability
We evaluated the system’s scalability of inference and training using
2, 4, 8, and 16 nodes shown in figure 14 and 15. The embedding
tables are evenly distributed among each node. We use 2-node CPU
MPI as an overall baseline.

0

0.5

Sp
ee

du
p

vs
. B

L

1.0

1.5

2.0

Kaggle Terabyte Avazu

BL
GA
LC
GA+LC
LC+SC
GA+LC+SC

Figure 25: Throughput Speedup of Backward Propagation
Using Graph Algorithm, Local Cache and SmartNIC Compu-
tation Kernels

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Graph Minibatch Size Graph Minibatch Size Graph Minibatch Size

0

20

40

60

80

Sp
ee

du
p

vs
. B

L(
5)

100

0

20

40

60

80

100
Kaggle Terrabyte

0

20

40

60

80

100

120
Avazu

SC
BL

Figure 26: Throughput Speedup wrt Training Batch Sizes

Figure 14 shows inference scalability. We tested the same work-
loads with respect to the number of nodes and found that as the
number of nodes increases, the per-node embedding table size de-
creases resulting in reduced memory bandwidth pressure. However,
communication workloads increase as the node number scales up.
Overall, the inference latency speedup shows better scalability us-
ing techniques on SmartNICs.

Figure 15 shows the scalability of training throughput speedup.
As the system scales out, all-to-all communication and backward
propagation is mainly the bottleneck that limits the scalability of
training throughput. SmartNIC computation plays an important
role in driving the scalability of the system’s throughput speedup.

0
Normalized Number of Cycles

20% 40% 60% 80% 100%
BL
LC
RC
SC

BL
LC
SC

In
fe

re
nc

e
Tr

ai
ni

ng

Regular Compute Irregular Compute + Data Layout Transform
Overhead EMT Forward All to All Backward All to All

Figure 27: Time Breakdown of DLRM Inference and Train-
ing. Overhead includes NIC to GPU PCIe latency, kernel call
overhead, host-to-device, etc. Backward all-to-all refers to
gradient update in backward propagation.

Figure 27 shows a breakdown of these techniques for inference
and training. In inference, all-to-all communication takes nearly
40% of the total time. The local cache on SmartNIC reduces the em-
bedding lookup time. The remote cache saves a significant amount
of all-to-all communication time, as popular embeddings are stored
locally on the SmartNIC and do not require communication re-
quests. Both the local cache and remote cache eliminate overhead,
e.g., the host-to-NIC latency via the PCIe bus. In training, SmartNIC

Software-Hardware Co-design of Heterogeneous SmartNIC System for Recommendation Model Inference and Training ICS ’23, June 21–23, 2023, Orlando, FL, USA

computation reduces both backward all-to-all for gradients update
and irregular computation latency.

6 RELATED WORK
Commercial FPGA-based SmartNICs have been released by vari-
ous vendors. AMD’s offerings include the Alveo U25 [39] and the
SN1000 [40] SmartNIC with FPGA programmable logic and an ARM
core. Intel’s include the Infrastructure Processing Unit (Intel IPU)
[16] and the Intel FPGA SmartNIC [17]. Nvidia provides the DPU
[29] for data center AI and networking workloads. Broadcom’s
Stingray SmartNIC [3] has an 8-core ARM CPU and a P4 packet
processing engine. See also [2, 34] for surveys.

SmartNICs are being used as computation resources to offload
networking functions and applications. Catapult [4] uses FPGA-
based network solution to offload network applications and certain
AI applications. Work by [18] proposed a configurable network
protocol on intelligent NICs. COPA [21] provides a software/hard-
ware framework that makes the underlying FPGA hardware (Smart-
NIC device) agnostic to middleware. FCsN [9, 10] proposed a high-
performance FPGA centric SmartNIC framework, which supports
domain-specific computation, low-latency communication, and
host-detached scheduling. FAST extends some of these capabilities
to a switch-attached configuration [12, 13]. INCA [31] provides
general-purpose compute capabilities for SmartNICs that can be
utilized when the network is inactive. sPIN [15] provides a portable
programming model to offload simple packet processing.

DLRM requires highmemory bandwidth and capacity [23, 37, 41–
43]. Hashing functions are optimized in work by Weinberger, et
al. [37]. Sethi, et al. [33] optimizes embedding partitioning and
placement techniques. Lim, et al. and Lin et al. [24, 25] use various
quantization schemes to reduce communication volume. These
studies address embedding operators using software and algorithm
solutions that do not fundamentally solve the DLRM bottleneck in
a hardware aspect.

Much attention is given to using GPUs as computation accelera-
tors. Mudigere, et al. [26] introduced a software-hardware co-design
system using GPU for distributed training. Kwon, et al. [22] pro-
posed a software runtime system that manages GPU DRM as a
fast “scratchpad.” Other work explores using storage technology to
enhance the performance embedding operator of DLRM. Eisenman,
et al. [6] present a storage system that reduces the DRAM footprint
using Non-volatile Memory. Wilkening, et al. [38] proposed a near
data processing solution that improves the performance of under-
lying SSD storage for embedding table operators. These studies,
however, are not focused on the communication bottleneck that
arises as the DLRM scales up. Zhu, et al. [44] present an FPGA
cluster for recommendation inference for embedding lookups and
computation. Jiang, et al. [19] proposed a recommendation infer-
ence engine using FPGAs’ high bandwidth memory and a pipelined
dataflow. These studies do not target scalability as the recommen-
dation model grows.

7 CONCLUSION
Processing DLRMs is one of the important applications in large-
scale online services as DLRMs have evolved into the single largest
machine learning application. The software-hardware co-design

heterogeneous SmartNIC system targets the scalability challenges
of DLRM processing, including communication, memory, and com-
putation. The graph algorithm clusters similar queries into batches
resulting in higher system efficiency and performance. This sys-
tem pushes the performance boundary of current software and
hardware platforms.

8 ACKNOWLEDGEMENTS
This research was partially supported by the U.S. DOE Office of
Science, Office of Advanced Scientific Computing Research, un-
der award 66150: "CENATE - Center for Advanced Architecture
Evaluation". The Pacific Northwest National Laboratory is oper-
ated by Battelle for the U.S. Department of Energy under Contract
DE-AC05-76RL01830. This work was supported, in part, by the NSF
through awards CCF-1919130 and CCF 2151021, by grants from
Red Hat, and by AMD and Intel both through donated FPGAs, tools,
and IP.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-
berg, Dan Mane, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viegas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed
Systems. https://doi.org/10.48550/ARXIV.1603.04467

[2] C. Bobda, J. Mandebi, P. Chow, M. Ewais, N. Tarafdar, J.C. Vega, K. Eguro, D. Koch,
S. Handagala, M. Leeser, M.C. Herbordt, H. Shahzad, P. Hofstee, B. Ringlein, J.
Szefer, A. Sanaullah, and R. Tessier. 2022. The Future of FPGA Acceleration in
Datacenters and the Cloud. ACM Transactions on Reconfigurable Technology and
Systems 15, 3 (2022), 1–42. doi: 10.1145/3506713.

[3] Broadcom. 2019. Stingray PS250 2x50-Gb High-Performance Data Center Smart-
NIC. https://docs.broadcom.com/doc/PS250-PB

[4] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael,
Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. 2016. A cloud-scale
acceleration architecture. In 2016 49th Annual IEEE/ACM International Symposium
onMicroarchitecture (MICRO). 1–13. https://doi.org/10.1109/MICRO.2016.7783710

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. New York, NY, USA.

[6] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey
Pupyrev, Kim Hazelwood, Asaf Cidon, and Sachin Katti. 2018. Bandana: Using
Non-volatile Memory for Storing Deep Learning Models. https://doi.org/10.
48550/ARXIV.1811.05922

[7] facebookresearch. 2019. Deep Learning Recommendation Model for Personaliza-
tion and Recommendation Systems. https://github.com/facebookresearch/dlrm

[8] Carlos A. Gomez-Uribe and Neil Hunt. 2016. The Netflix Recommender System:
Algorithms, Business Value, and Innovation. ACM Trans. Manage. Inf. Syst. 6, 4,
Article 13 (dec 2016), 19 pages. https://doi.org/10.1145/2843948

[9] Anqi Guo, Tong Geng, Yongan Zhang, Pouya Haghi, Chunshu Wu, Cheng Tan,
Yingyan Lin, Ang Li, and Martin Herbordt. 2022. FCsN: A FPGA-Centric Smart-
NIC Framework for Neural Networks. In 2022 IEEE 30th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM). 1–2.
https://doi.org/10.1109/FCCM53951.2022.9786193

[10] Anqi Guo, Tong Geng, Yongan Zhang, Pouya Haghi, Chunshu Wu, Cheng
Tan, Yingyan Lin, Ang Li, and Martin Herbordt. 2022. A Framework for
Neural Network Inference on FPGA-Centric SmartNICs. In 2022 32nd Interna-
tional Conference on Field-Programmable Logic and Applications (FPL). 01–08.
https://doi.org/10.1109/FPL57034.2022.00071

[11] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen,
David Brooks, Bradford Cottel, Kim Hazelwood, Bill Jia, Hsien-Hsin S. Lee, An-
drey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, and
Xuan Zhang. 2019. The Architectural Implications of Facebook’s DNN-based
Personalized Recommendation. https://doi.org/10.48550/ARXIV.1906.03109

https://doi.org/10.48550/ARXIV.1603.04467
https://docs.broadcom.com/doc/PS250-PB
https://doi.org/10.1109/MICRO.2016.7783710
https://doi.org/10.48550/ARXIV.1811.05922
https://doi.org/10.48550/ARXIV.1811.05922
https://github.com/facebookresearch/dlrm
https://doi.org/10.1145/2843948
https://doi.org/10.1109/FCCM53951.2022.9786193
https://doi.org/10.1109/FPL57034.2022.00071
https://doi.org/10.48550/ARXIV.1906.03109

ICS ’23, June 21–23, 2023, Orlando, FL, USA Anqi Guo, Yuchen Hao, Chunshu Wu, Pouya Haghi, Zhenyu Pan, Min Si, Dingwen Tao, Ang Li, Martin Herbordt, and Tong Geng

[12] P. Haghi, A. Guo, Q. Xiong, C. Yang, T. Geng, J.T. Broaddus, R. Marshall, D.
Schafer, A. Skjellum, and M.C. Herbordt. 2022. Reconfigurable switches for high
performance and flexible MPI collectives. Concurrency and Computation: Practice
and Experience 34, 2 (2022). doi: 10.1002/cpe.6769.

[13] P. Haghi, W. Krska, C. Tan, T. Geng, P.H. Chen, C. Greenwood, A. Guo, T. Hines,
C. Wu, A. Li, A. Skjellum, and M.C. Herbordt. 2023. FLASH: FPGA-Accelerated
Smart Switches with GCN Case Study. In ICS 2023: International Conference on
Supercomputing.

[14] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law,
Kevin Lee, Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and
Xiaodong Wang. 2018. Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective. In 2018 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA). 620–629. https://doi.org/10.1109/HPCA.
2018.00059

[15] Torsten Hoefler, Salvatore Di Girolamo, Konstantin Taranov, Ryan E. Grant, and
Ron Brightwell. 2017. SPIN: High-Performance Streaming Processing In the
Network. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Denver, Colorado) (SC ’17). As-
sociation for Computing Machinery, New York, NY, USA, Article 59, 16 pages.
https://doi.org/10.1145/3126908.3126970

[16] Intel. 2021. Intel® Infrastructure Processing Unit (Intel® IPU). https://www.
intel.com/content/www/us/en/products/network-io/smartnic.html

[17] Intel. 2022. Intel® FPGA SmartNIC. https://www.intel.com/content/www/us/
en/products/details/fpga/platforms/smartnic.html

[18] R.G. Jaganathan, K.D. Underwood, and R. Sass. 2003. A configurable network
protocol for cluster based communications using modular hardware primitives
on an intelligent NIC. In 11th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, 2003. FCCM 2003. 286–287. https://doi.org/10.1109/
FPGA.2003.1227273

[19] Wenqi Jiang, Zhenhao He, Shuai Zhang, Thomas B. Preußer, Kai Zeng, Liang Feng,
Jiansong Zhang, Tongxuan Liu, Yong Li, Jingren Zhou, Ce Zhang, and Gustavo
Alonso. 2020. MicroRec: Efficient Recommendation Inference by Hardware and
Data Structure Solutions. https://doi.org/10.48550/ARXIV.2010.05894

[20] Jie. 2020. Training Deep Learning Recommendation Model with Quantized
Collective Communications.

[21] Venkata Krishnan, Olivier Serres, and Michael Blocksome. 2020. COnfigurable
Network Protocol Accelerator (COPA) † : An Integrated Networking/Accelerator
Hardware/Software Framework. In 2020 IEEE Symposium on High-Performance
Interconnects (HOTI). 17–24. https://doi.org/10.1109/HOTI51249.2020.00018

[22] Youngeun Kwon and Minsoo Rhu. 2022. Training Personalized Recommendation
Systems from (GPU) Scratch: Look Forward Not Backwards. In Proceedings of the
49th Annual International Symposium on Computer Architecture (New York, New
York) (ISCA ’22). Association for Computing Machinery, New York, NY, USA,
860–873. https://doi.org/10.1145/3470496.3527386

[23] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. 2019. ALBERT: A Lite BERT for Self-supervised Learn-
ing of Language Representations. https://doi.org/10.48550/ARXIV.1909.11942

[24] Hyeontaek Lim, David G. Andersen, and Michael Kaminsky. 2018. 3LC: Light-
weight and Effective Traffic Compression for Distributed Machine Learning.
https://doi.org/10.48550/ARXIV.1802.07389

[25] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J. Dally. 2017. Deep
Gradient Compression: Reducing the Communication Bandwidth for Distributed
Training. (2017). https://doi.org/10.48550/ARXIV.1712.01887

[26] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch,
Srinivas Sridharan, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, Liang Luo,
Jie (Amy) Yang, Leon Gao, Dmytro Ivchenko, Aarti Basant, Yuxi Hu, Jiyan Yang,
Ehsan K. Ardestani, Xiaodong Wang, Rakesh Komuravelli, Ching-Hsiang Chu,
Serhat Yilmaz, Huayu Li, Jiyuan Qian, Zhuobo Feng, Yinbin Ma, Junjie Yang, Ellie
Wen, Hong Li, Lin Yang, Chonglin Sun, Whitney Zhao, Dimitry Melts, Krishna
Dhulipala, KR Kishore, Tyler Graf, Assaf Eisenman, Kiran Kumar Matam, Adi
Gangidi, Guoqiang Jerry Chen, Manoj Krishnan, Avinash Nayak, Krishnaku-
mar Nair, Bharath Muthiah, Mahmoud khorashadi, Pallab Bhattacharya, Petr
Lapukhov, Maxim Naumov, Ajit Mathews, Lin Qiao, Mikhail Smelyanskiy, Bill
Jia, and Vijay Rao. 2022. Software-Hardware Co-Design for Fast and Scalable
Training of Deep Learning Recommendation Models. In Proceedings of the 49th
Annual International Symposium on Computer Architecture (New York, New York)
(ISCA ’22). Association for Computing Machinery, New York, NY, USA, 993–1011.
https://doi.org/10.1145/3470496.3533727

[27] Maxim Naumov, John Kim, Dheevatsa Mudigere, Srinivas Sridharan, Xiaodong
Wang, Whitney Zhao, Serhat Yilmaz, Changkyu Kim, Hector Yuen, Mustafa
Ozdal, Krishnakumar Nair, Isabel Gao, Bor-Yiing Su, Jiyan Yang, and Mikhail
Smelyanskiy. 2020. Deep Learning Training in Facebook Data Centers: Design
of Scale-up and Scale-out Systems. https://doi.org/10.48550/ARXIV.2003.09518

[28] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia
Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr

Kondratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill
Jia, Liang Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommen-
dation Model for Personalization and Recommendation Systems. https:
//doi.org/10.48550/ARXIV.1906.00091

[29] Nvidia. 2021. NVIDIA BLUEFIELD-2 DPU. https://www.nvidia.com/content/
dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-
dpu.pdf

[30] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kalaiah,
Daya Khudia, James Law, Parth Malani, Andrey Malevich, Satish Nadathur, Juan
Pino, Martin Schatz, Alexander Sidorov, Viswanath Sivakumar, Andrew Tulloch,
Xiaodong Wang, Yiming Wu, Hector Yuen, Utku Diril, Dmytro Dzhulgakov, Kim
Hazelwood, Bill Jia, Yangqing Jia, Lin Qiao, Vijay Rao, Nadav Rotem, Sungjoo Yoo,
and Mikhail Smelyanskiy. 2018. Deep Learning Inference in Facebook Data Cen-
ters: Characterization, Performance Optimizations and Hardware Implications.
https://doi.org/10.48550/ARXIV.1811.09886

[31] Whit Schonbein, Ryan E. Grant, Matthew G. F. Dosanjh, and Dorian Arnold.
2019. INCA: In-Network Compute Assistance. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(Denver, Colorado) (SC ’19). Association for Computing Machinery, New York,
NY, USA, Article 54, 13 pages. https://doi.org/10.1145/3295500.3356153

[32] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. https://doi.org/10.48550/ARXIV.1802.05799

[33] Geet Sethi, Bilge Acun, Niket Agarwal, Christos Kozyrakis, Caroline Trippel, and
Carole-Jean Wu. 2022. RecShard: Statistical Feature-Based Memory Optimization
for Industry-Scale Neural Recommendation. In Proceedings of the 27th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (Lausanne, Switzerland) (ASPLOS ’22). Association for
Computing Machinery, New York, NY, USA, 344–358. https://doi.org/10.1145/
3503222.3507777

[34] H. Shahzad, A. Sanaullah, and M.C. Herbordt. 2021. Survey and Future Trends
for FPGA Cloud Architectures. In IEEE High Performance Extreme Computing
Conference. DOI: 10.1109/HPEC49654.2021.9622807.

[35] Hao-Jun Michael Shi, Dheevatsa Mudigere, Maxim Naumov, and Jiyan Yang.
2020. Compositional Embeddings Using Complementary Partitions for Memory-
Efficient Recommendation Systems. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery amp; Data Mining (Virtual
Event, CA, USA) (KDD ’20). Association for Computing Machinery, New York,
NY, USA, 165–175. https://doi.org/10.1145/3394486.3403059

[36] Brent Smith and Greg Linden. 2017. Two Decades of Recommender Systems at
Amazon.com. IEEE Internet Computing 21, 3 (2017), 12–18. https://doi.org/10.
1109/MIC.2017.72

[37] Kilian Weinberger, Anirban Dasgupta, Josh Attenberg, John Langford, and Alex
Smola. 2009. Feature Hashing for Large Scale Multitask Learning. https:
//doi.org/10.48550/ARXIV.0902.2206

[38] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu,
David Brooks, and Gu-Yeon Wei. 2021. RecSSD: Near Data Processing for Solid
State Drive Based Recommendation Inference. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (Virtual, USA) (ASPLOS ’21). Association for Computing Ma-
chinery, New York, NY, USA, 717–729. https://doi.org/10.1145/3445814.3446763

[39] Xilinx. 2020. Alveo U25 SmartNIC Accelerator Card. https://www.xilinx.com/
products/boards-and-kits/alveo/u25.html

[40] Xilinx. 2022. The Industry’s First SmartNIC With Composable Hard-
ware. https://www.xilinx.com/applications/data-center/network-acceleration/
alveo-sn1000.html

[41] Jie Amy Yang, Jianyu Huang, Jongsoo Park, Ping Tak Peter Tang, and Andrew
Tulloch. 2020. Mixed-Precision Embedding Using a Cache. https://doi.org/10.
48550/ARXIV.2010.11305

[42] Chunxing Yin, Bilge Acun, Xing Liu, and Carole-Jean Wu. 2021. TT-Rec: Tensor
Train Compression for Deep Learning Recommendation Models. https://doi.
org/10.48550/ARXIV.2101.11714

[43] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun,
and Ping Li. 2020. Distributed Hierarchical GPU Parameter Server for Massive
Scale Deep Learning Ads Systems. https://doi.org/10.48550/ARXIV.2003.05622

[44] Yu Zhu, Zhenhao He, Wenqi Jiang, Kai Zeng, Jingren Zhou, and Gustavo Alonso.
2021. Distributed Recommendation Inference on FPGA Clusters. In 2021 31st
International Conference on Field-Programmable Logic and Applications (FPL).
279–285. https://doi.org/10.1109/FPL53798.2021.00057

https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1109/HPCA.2018.00059
https://doi.org/10.1145/3126908.3126970
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic.html
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/smartnic.html
https://doi.org/10.1109/FPGA.2003.1227273
https://doi.org/10.1109/FPGA.2003.1227273
https://doi.org/10.48550/ARXIV.2010.05894
https://doi.org/10.1109/HOTI51249.2020.00018
https://doi.org/10.1145/3470496.3527386
https://doi.org/10.48550/ARXIV.1909.11942
https://doi.org/10.48550/ARXIV.1802.07389
https://doi.org/10.48550/ARXIV.1712.01887
https://doi.org/10.1145/3470496.3533727
https://doi.org/10.48550/ARXIV.2003.09518
https://doi.org/10.48550/ARXIV.1906.00091
https://doi.org/10.48550/ARXIV.1906.00091
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://doi.org/10.48550/ARXIV.1811.09886
https://doi.org/10.1145/3295500.3356153
https://doi.org/10.48550/ARXIV.1802.05799
https://doi.org/10.1145/3503222.3507777
https://doi.org/10.1145/3503222.3507777
https://doi.org/10.1145/3394486.3403059
https://doi.org/10.1109/MIC.2017.72
https://doi.org/10.1109/MIC.2017.72
https://doi.org/10.48550/ARXIV.0902.2206
https://doi.org/10.48550/ARXIV.0902.2206
https://doi.org/10.1145/3445814.3446763
https://www.xilinx.com/products/boards-and-kits/alveo/u25.html
https://www.xilinx.com/products/boards-and-kits/alveo/u25.html
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
https://doi.org/10.48550/ARXIV.2010.11305
https://doi.org/10.48550/ARXIV.2010.11305
https://doi.org/10.48550/ARXIV.2101.11714
https://doi.org/10.48550/ARXIV.2101.11714
https://doi.org/10.48550/ARXIV.2003.05622
https://doi.org/10.1109/FPL53798.2021.00057

	Abstract
	1 Introduction
	2 DLRM Background And Motivation
	2.1 Deep Learning Recommendation Model
	2.2 Distributed DLRM System Challenges
	2.3 Characteristics of DLRM Data Power Law Distribution

	3 Graph Algorithm
	3.1 Graph Mini Batch
	3.2 Refresh Batch

	4 System Hardware Architecture
	4.1 Forward Propagation
	4.2 Backward Propagation
	4.3 An Alternate Design

	5 Evaluation
	5.1 Experimental Setup
	5.2 Performance Evaluation
	5.3 System Scalability

	6 Related Work
	7 Conclusion
	8 ACKNOWLEDGEMENTS
	References

