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(S I N

Abstract: Proxy records from the late Quaternary help in understanding climate variability on
extended time scales. An ancient landslide deposit in Oregon U.S.A. preserved large logs from
Douglas fir trees (Pseudotsuga menziesii (Mirb.) Franco) and afforded an opportunity to explore the
response of tree growth to climate on annual and decadal scales. High-precision radiocarbon dating
indicates an age exceeding 63 ka, i.e., the trees grew within the generally cool Marine Isotope Stage 5
(MIS 5), likely during a warmer interval optimal for Douglas fir establishment. This would include
the prolonged warm MIS 5e (ca. 110-130 ka), corresponding approximately to the Eemian interglacial,
which was warm like the current Holocene interglacial. A 297-year tree-ring width chronology from
12 Douglas fir logs and 227-year tree-ring 5'3C and §'80 records are analyzed with spectral and
wavelet analysis. Variance of the ancient rings is consistent with modern Douglas fir growth sensitive
to moisture and ecological disturbances. Spectra of ancient and modern chronologies are dominated
by low frequencies with significant spectral peaks appearing at high frequencies (2.1-4 years) and
cyclic behavior transient over centuries. It is conceivable that the O-isotopes track moisture and
that C-isotopes track temperature or sunlight. The findings illustrate the challenges in assessing the
response of ancient tree-ring properties to late Quaternary climate variability.

Keywords: tree-ring proxy; Eemian interglacial; climate variability; stable isotopes; wood macrofossils;
late Quaternary; Pseudotsuga Carriere

1. Introduction

Coupled ocean—atmosphere simulations of the Last Glacial Maximum (LGM, ca.
30,000 to 20,000 years ago) climate employs orbital time scales to describe sea level and
glacial/interglacial cycles, monsoon variability, interhemispheric connections, and insola-
tion forcing [1]. LGM atmospheric circulation was strongly affected by glacial ice sheets
over northern mid-latitudes, which have altered the thermohaline circulation as well. Such
circulation changes played a key role in determining regional climate change patterns and
vegetation. Along the west coast of the Americas, an equatorward shift in the westerlies in
both hemispheres during the LGM led to conditions that are relatively wetter and colder
than present in the region [2]. Many lines of proxy evidence suggest that the frequency of
interannual extreme events and decadal variability are modulated by the El Nifio Southern
Oscillation (ENSO) teleconnections, although the global imprint of ENSO was very different
during the LGM and its effects have not been identified with great precision [3,4]. More
finely resolved proxy records like tree rings are essential to understanding the patterns
of LGM (and Late Quaternary more generally, i.e., during the end of the last 2.5 million
years) climate change on various time scales and their relationships to ENSO and other
teleconnected climate processes.
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In this study we aimed to develop well-replicated multi-parameter chronologies
from Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) subfossil wood associated with
U.S. Pacific coastal environments and investigate tree-ring proxies as indicators of late
Pleistocene climate variability. Douglas fir is currently a widespread tree species in North
America and occurs in two varieties (Figure 1). Coast Douglas fir (Pseudotsuga menziesii
var. menziesii (Mirb.) Franco) has a natural range that extends along the Pacific coast
from California up into British Columbia, while Rocky Mountain Douglas fir (Pseudotsuga
menziesii var. glauca (Mayr) Franco) occurs inland from western Canada through Arizona
and New Mexico and into Mexico [5]. Brubaker (1991) [6] proposed that evidence from
climate modeling indicates western Oregon was probably too cold and dry to support
the large-scale survival of Douglas fir forests during the LGM. However, Gugger and
Sugita (2010) [7] assembled all available Douglas fir pollen and macrofossil records to
infer both species’ geographic distributions through time and the rate of migrations in
the late Quaternary. This evidence indicates the presence of coast Douglas fir in western
Oregon and Washington (west of the Cascade Range) back to 40,000 '#C y BP. The presence
of glaciers during the late Pleistocene (40,000 to 21,000 y BP) might have inhibited and
fragmented Douglas fir distribution northward into Washington, but Gugger and Sugita
(2010) [7] proposed that a more “consistent” coastal climate, as modelled by Bartlein et al.
(1998) [8] plus the generally lower “topographic complexity” of the coastal areas, may have
provided favorable environments for the distribution of coast Douglas fir from California
north to Washington, at least during the period since the LGM (Figure 1). Paleoclimate

nodelling intercomparisons generally support these conclusions and provide greater
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the Douglas fir IOgS (D)yestern North America to develop ring-width chronologies for dating and climate recon-
struction from Mexico to Canada (e.g., [10-14]). Old-growth coast Douglas fir trees in Or-
egon may reach 400-500 years in age, and according to the Klamath Inventory and Mon-
itoring Network (2017) [15], old coast Douglas fir trees may reach a height of 76 m, with
diameter of 1.5-2.1 m, and the tallest individuals measure over 90 m with a diameter of
4.5-5.5 m. Tappeiner et al. (1997) [16] considers Douglas fir stand density (trees/ha) in
western Oregon to be generally low but highly variable. Our case study employs subfossil
logs from ancient landslides identified by geotechnical reconnaissance during the realign-
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Modern Douglas fir wood has been extensively used in the dendrochronology of
western North America to develop ring-width chronologies for dating and climate re-
construction from Mexico to Canada (e.g., [10-14]). Old-growth coast Douglas fir trees
in Oregon may reach 400-500 years in age, and according to the Klamath Inventory and
Monitoring Network (2017) [15], old coast Douglas fir trees may reach a height of 76 m,
with diameter of 1.5-2.1 m, and the tallest individuals measure over 90 m with a diameter of
4.5-5.5 m. Tappeiner et al. (1997) [16] considers Douglas fir stand density (trees/ha) in west-
ern Oregon to be generally low but highly variable. Our case study employs subfossil logs
from ancient landslides identified by geotechnical reconnaissance during the realignment
of U.S. Highway 20 from Corvallis to Newport, Oregon, at ca. 45° N latitude conducted
in the late 1980s and early 1990s. Paleo-landslides ranging from 5 to 21 hectares were
found during this preliminary geological investigation. Further investigations identified
additional large landslide complexes along with 15 local slumps and debris flows. LIDAR
was used to map more than one hundred landslide landforms within the project right-of-
way [17]. During initial construction, additional information was gathered, which included
field mapping, subsurface exploration, and the radiocarbon dating of subsurface organic
deposits. The realignment of the Eddyville-Pioneer Mountain section of Highway 20
involved excavations to stabilize the hillslope and roadbed [18], and during the 2008-2009
construction phase, excavation unearthed large Douglas fir logs near Eddyville, Oregon.
A dozen tree trunks entombed in one of the ancient landslides were recovered in 2008
(Figure 1). The Oregon Department of Transportation (ODOT) recognized their potential
importance and took steps to conserve them during the excavation process and preserve
them afterward. The largest individual tree bole in the recovered samples measures greater
than 1.2 m in diameter. Approximately one-third of the recovered trees appear to be wholly
intact, whereas the others comprise significant portions of the original large trunks. The
landslide deposits also contained organic and peaty soil and sediments containing plant
and animal macrofossils from which seeds and a Douglas fir cone were recovered. This
paper explores the potential of tree-ring width and isotopic records from the coastal ancient
landslide for the assessment of late Pleistocene climate conditions and variability.

2. Methods
2.1. Dendrochronology

Large cross-sections of the recovered trunks were cut with a chainsaw by ODOT and
conveyed to the University of Arizona in a 5-ton shipment in October 2010, and samples
were prepared and dated in 2011. The wood shows excellent preservation of latewood
rings, but earlywood shows some degradation with a high percentage of incomplete “ghost
tracheids”. At the Laboratory of Tree-Ring Research (LTRR), the samples were cut with a
band saw to manageable sizes containing a complete radius of tree rings from pith to bark.
Two radial subsamples from each cross-section were subsequently sanded with progres-
sively finer grit to produce distinct and clear ring surfaces. Ring widths were measured to
0.01 mm on a LINTAB stage system (Rinntech-Metriwerk GmbH & Co. KG, Heidelberg,
Germany). The tree-ring series were crossdated visually through the plotting of tree-ring
width measurements, then the tree-ring positions were checked with correlations in the
program COFECHA [19]. Table S1 in Supplementary Materials summarizes the tree-ring
statistics of thirteen crossdated series. The tree-ring width chronology was computed using
program ARSTAN [20]. The crossdated series were detrended with negative exponential
curves. The individual detrended series were combined into a standard chronology using a
bi-weight robust mean.

2.2. Stable Isotopes

Crossdating results enabled the pooling of contemporaneous rings from four trees
for isotope analysis in 2012-2014. The first two decades were not analyzed to minimize
possible juvenile growth-related isotopic effects [21]. Tree rings from two radii of each of
four trees were separated and pooled together for most years; except that ca. every 10 years,
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the rings of the trees were maintained separately to characterize any differences in absolute
values and patterns among trees and for a quantitative estimate of isotopic variance among
trees. The rings were then ground to 20-mesh in a Wiley Mini-Mill (Thomas Scientific Inc.,
Swedesboro, NJ, USA). The milled wood samples were converted to holocellulose and
then to a-cellulose using the Jayme-Wise oxidation method [22,23] through a procedure
using the batch processing of samples in which individual samples were contained in
the compartments of commercial digestion pouches (ANKOM Technology, Boston, MA,
USA) during chemical processing. Extractives in the wood were first removed with organic
solvents toluene/ethanol and then ethanol in a soxhlet extraction apparatus, followed by
boiling in deionized water. Lignin was removed by oxidation in an acetic-acid-acidified,
sodium chlorite aqueous solution at 70 °C, rinsed thoroughly in deionized water, and
then dried at 70 °C. These holocellulose samples were treated with 17% NaOH to isolate
a-cellulose [24]. Samples for both isotopes were analyzed on a Finnigan Delta-Plus mass
spectrometer in flow-through mode at the Environmental Isotope Laboratory, University of
Arizona. Working standards of known isotopic composition were run every three to six
samples to monitor mass-spectrometer reproducibility (analytical precision) and accuracy.
One split of x-cellulose was combusted to CO, at 1030 °C in an elemental analyzer, with
combustion products carried by a helium carrier gas and separated in a gas chromatograph,
after which the gas stream was introduced into the mass spectrometer for '3C analysis.
One split of a-cellulose was pyrolized/combusted to CO at 1350 °C, separated by gas
chromatography, and admitted into the mass spectrometer for !0 analysis. Isotopic
results in permil (%o) units are reported with respect to the Vienna Pee Dee Belemnite
(VPDB) standard for §'3C and the Vienna Standard Mean Ocean Water (VSMOW) standard
for 5'80. Over the course of sample runs for this project, repeated §!3C analysis of an
acetylnide working standard indicated a precision (mean of standard deviation) of 0.04 %o,
and repeated analysis of an Aldrich cellulose lab standard yielded a precision (mean of
standard deviation) of 0.19%.. Repeated §'80 analysis of Sigma cellulose and benzoic acid
working standards gave a precision (mean of standard deviation) of 0.29%. and 0.27 %o,
respectively. Additionally, replicate analysis of the pooled samples ca. every 10 years
yielded a mean §'3C difference between replicates of 0.01%o (std dev = 0.19%.) for 29 rings
and a mean §'80 difference between replicates of 0.15%o (std dev = 0.91%o) for 25 rings.
Removal of the most extreme outlier difference of 3.33%o for 580 (more than twice as
large as any other difference) resulted in a mean difference between replicates of 0.01 %o
(std dev = 0.64%0) for 24 rings.

2.3. Spectral Analysis

Variations of tree-ring width chronology and isotope series averaged per isotope were
summarized by smoothed periodogram spectral analysis [25] and wavelet analysis [26,27].
For spectral analysis, the raw periodogram of a padded (to next highest power of two)
and tapered (5% of each end) time series were smoothed with a succession of equal-length
Daniell filters to achieve a target bandwidth of the spectral estimate. Confidence intervals
for spectral estimates were not adjusted for multiple comparisons (e.g., no Bonferroni
adjustment). For wavelet analysis, the Morlet wavelet (6.0/6) was applied to summarize
changes in the amplitude of oscillations as a function of time and frequency, which were
displayed in color maps of the continuous wavelet transform (CWT; [27]). CWT plots were
paired with plots of the time series smoothed with a Hamming [28] low-pass finite impulse
response filter designed to emphasize decadal-and-longer wavelengths. Spectral and CWT
analysis were done with MATLAB software (Version 9.4, Natick, MA, USA).

Cross-wavelet analysis [27] was applied to test the coherency of ring width index and
isotope averaged values. Coherency is analogous to correlation as a function of frequency.
Significant levels of coherency were defined with Monte Carlo testing [27]. Linkage of
ancient ring cyclicity to climate is assessed via a comparison of spectral properties of
modern Douglas fir chronologies from the Coastal Range of Oregon, which show diverse
influences from climate forcing and ecological disturbances [29,30].
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2.4. Radiocarbon Dating

The initial age determination of the logs was done at the University of Arizona AMS
(Accelerator Mass Spectrometer) dating laboratory in December 2009 on subsamples from
10 of the logs, one of which (specimen #355, Supplementary Materials Table S1) was
subsampled on the inside and outside for separate analysis. The samples were broken into
small pieces and given a standard ABA (acid-base-acid) pretreatment, in which samples
were successively soaked at 70 °C in an HCl solution overnight, a 70 °C NaOH solution
overnight, and a second 70 °C HCl solution overnight, with rinsing in deionized water
after each treatment [31]. The pretreated samples were combusted to CO, and converted
to graphite for AMS targets [32]. Maximum measures were taken during processing and
analysis to push back the dating limit, such as using low-blank vacuum lines for handling
sample gases [33] and extended periods of AMS measurement. A correction for isotopic
fractionation was applied based on the stable-carbon isotope composition of the sample.
Table S3 of Supplementary Materials shows the Arizona AMS measurements, but those
ages unfortunately exceeded the maximum detection limit attainable with the Arizona
AMS equipment and protocols and therefore could only be reported as ca. greater than
52,000 y BP.

The second series of AMS radiocarbon measurements were done in 2014 at the Ra-
diocarbon Dating Laboratory, University of Waikato, New Zealand, which specialized in
ultra-high-precision radiocarbon dating and long decay counting. We resampled three
Douglas fir log samples and ground ca. 160 g of wood subsamples containing 10 years
of rings from each of three trees (specimens #351, 354, 358, Table S1) finely enough to
pass through a 20-mesh sieve. These were processed via duplicate analysis (ca. 80 g
per duplicate) to achieve the highest precision, and furthermore they were processed at
Waikato along with two ancient kauri blank samples (ca. 160 ka) to assure confidence in
the processing and to establish pretreatment backgrounds. Soluble wood extractives were
removed by dissolution in acetone and then water. Alpha-cellulose was isolated by first
removing lignin and hemicelluloses with six treatments with 6 mL of concentrated HCl
and 15 g NaClO, (sodium chlorite) and rinsing with deionized water. This was followed by
1000 mL 5% w/v NaOH added for 30 min under N, gas and then rinsing with deionized
water. Finally, the cellulose samples were reacted with 5% HC], filtered, rinsed, and dried.
The alpha-cellulose was converted to benzene [34] that sat undisturbed for ca. 30 days to
ensure there was no radon present before liquid scintillation counting began. The counting
was done for ca. 2 weeks per sample. Each measured result is reported as conventional age
or percent modern carbon (pMC) following Stuiver and Polach (1977) [35]. This is based on
the Libby half-life of 5568 years, with correction for isotopic fractionation applied. Because
these are lower limits to the age, the ages are calculated according to the convention of
Stuiver and Polach (1977) [35] for limit ages.

3. Results and Discussion
3.1. Tree-Ring Multi-Parameter Records

The microscopic inspection of wood anatomy for 11 recovered trees was done at the
USDA Forest Products Lab, Madison, WI, and revealed all to be Douglas fir (Pseudotsuga),
but taxonomy could not be differentiated at the species level. All sampled logs from the
landslide tree cohort were successfully crossdated into a 297-year ring width chronology
(Figure 2a) with 0.58 serial correlation and standard deviation 0.20. The sample depth of
more than five trees covers 295 years of the ring index record, whose sufficient length and
sample size support meaningful insights into the interannual, decadal, and multidecadal
variability in tree growth that possibly responds to climate.
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0.73%o. As for 5!3C in the period with all four trees analyzed separately, the greatest range
was 2.49 %o, and the smallest was 0.67 %o (average range of 1.50%o, SD = 0.57 %.). A second
measure is standard deviation among the trees analyzed separately, which averages 0.66 %o.
Both isotopic records can be considered usable for exploring common environmental in-
fluences on 513C and §'80. The 53C mean of the studied intervals is —22.56%., and the
5180 mean is 28.11%o. 5'3C was positively correlated with 5180, r=0.18 (p <0.01) (Table 1),
although part of this relationship may be related to the upward trend exhibited by both
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isotopes. Correlation of first differences was used to eliminate the influence of trends, and
the relationship between the isotope series was not significant, r = 0.01 (p = 0.89). The
tree-ring width chronology correlates significantly only with the §'80 chronology, although
the 5!80 record correlates with both other chronologies (Table 1).

Table 1. Correlation between ancient Douglas fir ring chronologies for the common interval of
228 years. Asterisk marks a significant correlation at p < 0.005.

Parameter TRW (Tree-Ring Width Parameter) s13C Standard Deviation
TRW 0.19
s13C 0.10 0.47
8180 0.35* 0.18* 0.69

3.2. Interpretation of *C Dating

Age determination of the wood yielded *C ages beyond the current limits of radiocar-
bon dating. ODOT obtained an uncalibrated radiocarbon age on the first recovered tree
trunk of >40,000 C y (Beta-247622) and a subsequent sample dated >45,000 (Beta-264255).
If the absolute age was close to these, the trees would have been growing during the
generally cold Marine Isotope Stage 3 (MIS 3, ca. 60 to 27 ka, based on climate periods
identified in the record of oxygen isotope variations in marine sediment cores) [38], per-
haps more likely during one of the repeated abrupt but brief Dansgaard—Oeschger warm
excursions [39] during MIS 3. The application of best-practice radiocarbon techniques to
ancient organic matter near the limits of dating pushes the age to >52,000 1*C y BP from the
University of Arizona AMS facility (Table S3). Subsequent state-of-art, ultra-high-precision
liquid scintillation dating at the University of Waikato pushed dating back 10,000 “C years,
determining that ages exceeded ca. 62,000 *C y BP. Table 2 shows the *C measurements
from this high-precision liquid scintillation counting. This indicates that some landslides in
this area are older than 62,000 years.

Table 2. Radiocarbon dating results from high-precision liquid scintillation counting at University of
Waikato, NZ. Notice that the ages actually reflect the background levels achieved during dating.

Tree .10-Year Sample ID 14.C pMC Minimum Age Average Age
Ring Group with Error 14CyBP “CyBP
s 230-239 Wiosoi 00060019 20 62255
it 130-139 Wiows 00200022 o0 62315
o 190-199 Wiosse 000040017 6000 63430

The true absolute age of these trees is not clearly established with *C dating but might
be constrained by other age proxies from the area. Buried forests dating from recent to
ancient have been found along the Oregon coast [40]. The work of Smyth et al. (2005) [41]
describes a particular deposit of trees buried by a landslide adjacent to U.S. Highway 101 in
coastal Oregon with radiocarbon ages greater than 50,000 y BP. These trees were thought to
be spruce, and geological evidence suggests the trees grew after 80,000 BP when a wave-cut
platform was formed, above which the paleosoils and tree trunks are located.

Unfortunately, we do not have any such geological evidence to constrain the maximum
age of the trees. However, if the age is 63,000 y BP, the trees would be in Marine Isotope
Stage 4 (ca. 72,000 to 58,000 years ago [42,43], during which conditions would be cold
according to NGRIP oxygen isotopes [39]. It seems more likely that that the trees were
growing in the Eemian interglacial ca. 130,000 to 115,000 years ago, whose climate was
like modern Holocene conditions. The Eemian is approximately coincident with the
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MIS 5e substage (ca. 134,000 to 119,000 years ago) of MIS 5 [42—44]. After the Eemian,
conditions progressively cooled through the end of MIS 5 ca. 70,000 years ago. Brief
warmer intervals during the MIS 5 cooling might have been favorable to establishing and
supporting Douglas fir forests in Oregon, but the Eemian/MIS 5e period would have been a
longer phase of sustained favorable conditions for the trees. The age of the trees exceeding
100,000 years would provide evidence of an even longer period of landslide activity in this
area. Employing high-precision radiocarbon dating to establish an age of such old trees
preserved in the landslide provides more certainty when cross-referenced against other
age-relevant factors.

3.3. Stable Isotopes

Because this is an ancient floating chronology, we cannot perform standard dendrocli-
matology, which compares climate data with ring widths and isotopes to establish statistical
relationships. Ring widths of inland and coastal Douglas fir have been found to correlate
with moisture and drought metrics (e.g., precipitation, standardized precipitation index,
vapor pressure deficit) [45-48]. Generally, tree-ring carbon isotopes are strongly influenced
by the processes of photosynthesis and stomatal conductance, which in turn are frequently
related to moisture availability (e.g., soil moisture, precipitation, vapor pressure deficit) but
also sometimes to insolation (affecting photosynthesis) and temperature when moisture
is not limiting [36]. Tree-ring oxygen isotopes are also often found to strongly relate to
moisture (e.g., precipitation, relative humidity, vapor pressure deficit) contributing to the
evaporative isotopic enrichment of water in the leaf but also to temperature, influencing
the isotope composition of atmospheric source water [49].

Several studies have specifically examined the isotopic composition of modern Dou-
glas fir tree rings, particularly with respect to ecophysiology, with vapor pressure deficit
(VPD) seeming to be a dominant influence on both isotopes. Panek and Waring (1997) [50]
examined Douglas fir tree rings along a gradient from coastal to inland and found that
tree-ring 5'C was significantly related to VPD and the ratio of modeled transpiration to
potential transpiration. Levesque et al. (2013) [51] examined ring width (total, earlywood,
and latewood) and both 5!°C and 80 in the tree rings of five primary European timber
species at xeric and mesic sites to assess the potential performance of the species under
warmer—drier future conditions. Although spruce and larch trees were inferred to be the
most threatened by such climate change, coast Douglas fir at both xeric and mesic sites
showed strong negative relationships for earlywood and latewood §'3C with soil moisture
deficit (SMD), more so for spring—summer SMD at the xeric site and summer SMD at the
mesic site. Correlations of %0 with SMD were not as strong, but the strongest at the
xeric site was earlywood §'80 with May SWD and earlywood $'0 with April-May-June
SWD at the mesic site. Roden et al. (2005) [52] analyzed 513C and 680 of the tree rings of
12-year-old coast Douglas fir in Oregon and found variations in 5§'80 values associated with
VPD, which indicate their potential as a proxy for humidity and site water balance, but the
signal for §13C was less certain because of the addition of N fertilizers to the plantation
where the trees were growing. Barnard et al. (2012) [53] also analyzed §'3C and §'30 in the
2000-2007 tree rings of coast Douglas fir tree rings in Oregon and found that the isotopes
covary related to relative humidity influencing stomatal conductance and evaporative
demand, with stronger relationships exhibited by the more dominant trees.

Interestingly, another study using tree-ring isotopes of coastal Douglas fir regards
a fungal disease known as Swiss needle cast, which causes leaf chlorosis and premature
needle loss [54,55]. Changes in ring growth and §'3C at a coast Douglas fir site were inter-
preted as resulting from a reduction in stomatal conductance and rates of photosynthesis
caused by a decline in stomatal function [54]. At both the coast and inland Doug]as fir sites,
summer VPD was the primary environmental parameter influencing growth and both §'3C
and 5'80. Lee et al. [55] found synchronous growth reduction from disease in modern
coastal and inland Douglas fir trees with a periodicity of 25-30 years, which correlated
with winter and summer temperatures and summer precipitation, consistent with elevated
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caused by a decline in stomatal function [54]. At both the coast and inland Douglas fir
sites, summer VPD was the primary environmental parameter influencing growth and
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Wavelet analysis indicates that any cyclic behavior is transient in the ancient tree rings
rather than persistent over centuries (Figure 4). Moreover, wavelets of ancient, as well as
modern, chronologies of Douglas fir from the Coastal Oregon Range are dominated by
low frequencies, but significant spectral peaks relative to red noise often appear at high
frequencies, for example at wavelengths 2—4 years (Figures 4 and 52). The wavelet of the
8180 record retains 8-16 years and very much resembles the wavelets of modern tree-ring
widths, which respond to moisture variability [29,30]. Interestingly, spectral analysis of an
ancient floating baldcypress tree-ring chronology from the eastern U.S., believed to also
date to the last interglacial period, exhibits significant periodicity at 2.9, 5.7, 7.9, 17.5, and

For5R20py Gar8PRPRIRRFStathle et al. (2012) [56] attribute to forcing by ocean—atmospheric clignete

modes in both the Pacific and Atlantic.
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Studies of Late Quaternary climate variability on high numbers of subfossil tree sam-
ples are extremely rare [57-60]. Subfossil wood buried simultaneously by catastrophic
events like tephra deposition, flooding, or earthquakes could be considered random tree-
ring sampling, which contradicts the dendrochronological principal of site and tree selec-
tion and which has been used in the tree-ring reconstruction of climate variability [61].
Nevertheless, the multi-parameter approach tested here validates the correspondence of
tree-ring responses. Furthermore, the spectral properties of tree-ring parameters from
ancient trees make it possible to compare low- and high-frequency variability with modern
tree growth with a known climatic response. Although the spatial signature of the ancient
tree-ring response to climate change cannot be achieved at such ancient times, the glimpse
into the ancient environments and climate variability provides a new perspective on the
interpretation of late Quaternary climate change, yet this view is very fragmented and
not coherent.

4. Conclusions

Proxy records of climate variability during the late Quaternary are necessary to un-
derstand the patterns of climate change on various time scales and their relationships
to climate forcing. We explore response of ancient tree-ring proxies of temperature and
moisture on annual and decadal scales using macrofossils. An ancient landslide deposit in
Oregon, U.S,, fortuitously preserved large Douglas fir (Pseudotsuga menziesii (Mirb.) Franco)
trees. Initial wood radiocarbon ages >40 ka suggested a date in Marine Isotope Stage 3
(MIS 3, ca. 60 to 27 ka), a generally cold interval interrupted by brief Dansgaard-Oeschger
warm excursions that might have been favorable to forest establishment or expansion.
Subsequent advanced high-precision radiocarbon dating indicated that the age exceeds
62 ka. However, exactly 62 ka would be less likely because it would align with a cold
interval in MIS 5a, whereas later MIS 5 substages would have brief warmer intervals more
optimal for Douglas fir establishment and growth, particularly the prolonged warm MIS
5e (ca. 120 ka) approximately corresponding to the Eemian interglacial with conditions
similar to the current Holocene interglacial period. This discovery provided a remarkable
opportunity to assess the environment of that time using tree rings.

In its own right, the development of a robust 297-year tree-ring width chronology from
12 Douglas fir logs indicated some common forcing to growth, which would frequently
be interpreted as being related to climate. Because of accurate dating and a sufficient
number of tree samples, 227-year reliable records of tree-ring cellulose 5'>C and 580 series
provided further proxies to understand conditions at the time the trees grew. We could not
use standard dendroclimatology techniques comparing tree-ring records with instrumental
data. However, we consulted isotope—climate relationships reported in modern coast Dou-
glas fir studies, and we examined correlations among records and their spectral properties.
The O-isotopes were strongly correlated with ring widths and may be an indicator of
moisture as suggested by modern studies. The detrended C-isotopes do not correlate with
O-isotopes, which may indicate that C-isotopes are responding to sunlight or to tempera-
ture. Tables S5 and S6 in the Supplementary Materials show various ring width and isotope
parameters for modern and ancient coast Douglas fir, which indicate these parameters in
the ancient trees fall into the range of values observed in the modern trees. This suggests
the environment and tree growth/physiology response was similar 120,000 years ago to
that of today in coastal Oregon, at least according to Douglas fir tree rings.

The spectra of ancient as well as modern chronologies are dominated by low frequen-
cies, but significant spectral peaks relative to red noise often appear at high frequencies
(wavelengths 2.1-4 years). Wavelet analysis indicates that any cyclic behavior is transient
rather than persistent over centuries. The spectral analysis does not indicate any strong,
persistent, regular ENSO or PDO periodicities in any of the proxies, and they are not seen
in modern coast Douglas fir tree-ring width chronologies, so the implication is that the
Eemian Douglas fir growth influences are similar to those of modern.
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This is the first case study of MIS 5 tree rings in the North America made from well-
replicated fossil tree-ring samples. It should be noted that this tree-ring collection is unique
and very unlikely could be replicated due to age uncertainty. With that, we conclude that
the application of tree rings for the assessment of the late Quaternary climate at interannual—-
decadal scales may be difficult, although it would be useful to explore further the potential
of tree rings of macrofossils.
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