
Improved Instruction Ordering in Recipe-Grounded Conversation

Duong Minh Le, Ruohao Guo, Wei Xu, Alan Ritter
Georgia Institute of Technology

{dminh6, rguo48}@gatech.edu; {wei.xu, alan.ritter}@cc.gatech.edu

Abstract
In this paper, we study the task of instructional
dialogue and focus on the cooking domain.
Analyzing the generated output of the GPT-J
model, we reveal that the primary challenge for
a recipe-grounded dialog system is how to pro-
vide the instructions in the correct order. We
hypothesize that this is due to the model’s lack
of understanding of user intent and inability
to track the instruction state (i.e., which step
was last instructed). Therefore, we propose to
explore two auxiliary subtasks, namely User
Intent Detection and Instruction State Track-
ing, to support Response Generation with im-
proved instruction grounding. Experimenting
with our newly collected dataset, ChattyChef,
shows that incorporating user intent and instruc-
tion state information helps the response gen-
eration model mitigate the incorrect order is-
sue. Furthermore, to investigate whether Chat-
GPT has completely solved this task, we an-
alyze its outputs and find that it also makes
mistakes (10.7% of the responses), about half
of which are out-of-order instructions. We
will release ChattyChef to facilitate further re-
search in this area at: https://github.
com/octaviaguo/ChattyChef.

1 Introduction

Historically, work on conversational agents has
mostly fallen into one of two categories: open-
domain chatbots (Ritter et al., 2011; Li et al., 2016;
Thoppilan et al., 2022; Shuster et al., 2022) or goal-
directed dialogue systems within narrow domains
(Williams et al., 2016; Eric et al., 2020). However,
recent advances in large language models have
paved the way for the exploration of dialog agents
that can engage in conversations with users to ac-
complish open-ended objectives, such as learning
about a new topic (Dinan et al., 2019; Choi et al.,
2018; Reddy et al., 2019), interpreting bureaucratic
policies to answer questions (Saeidi et al., 2018),
or negotiating within strategy games (Lewis et al.,
2017; Bakhtin et al., 2022).

Correct Response 49.6%

Incorrect Response

Wrong order 22.9%

Irrelevant response 10.7%

Lack of information 8.4%

Wrong information 8.4%

Table 1: Manual analysis of 10 recipe-grounded conver-
sations (131 responses in total) generated by a fine-tuned
GPT-J model on the test portion of our new dataset
ChattyChef. The incorrect responses are classified into
four error types (examples in Figure 1) with out-of-order
instructions being the most common.

In this paper, we explore the task of Recipe-
Grounded Conversation, where the dialogue agent
is expected to converse with a user to walk him/her
through the cooking procedure of a recipe, while
answering any questions that might arise along the
way (see examples in Figure 1). Although many
types of dialogue tasks have been proposed and
explored, very little prior work has focused on pro-
viding instructions to a user to complete a task. In
contrast to other dialogue tasks, such as document-
grounded conversation (Dinan et al., 2019), accu-
rately tracking the conversation state is more cru-
cial in recipe-grounded dialogue. This is because
the agent needs to know which step in the recipe
the user is currently working on in order to answer
questions, such as: what is the next step?

To investigate what challenges may arise in
recipe-grounded conversation, we have collected
a dataset by crowdsourcing (see §2). As an initial
baseline model, we used this data to fine-tune GPT-
J following a similar protocol to Peng et al. (2022).
Specifically, the conversation history, the grounded
recipe, and the gold system response are concate-
nated as a long input sequence to the model (see §5
for details). We show that fine-tuning GPT-J on a
few recipe-grounded conversations works surpris-
ingly well, however, the model makes a significant
number of mistakes based on our manual inspection

https://github.com/octaviaguo/ChattyChef
https://github.com/octaviaguo/ChattyChef

Step 1: …

Step 2: …

Step 3: Heat a skillet pan over medium-high
heat. Add the butter to the pan and allow it
to melt. Then, add shredded potatoes.

Step 4: Flatten the potatoes using a spatula.
Cook for 3-4 minutes on the first side, flip,
then cook for 2-3 minutes on the other side.

Step 5: Serve the hash brown

Recipe

I have added the butter to the pan.
What do I do next?

User
System #1 System #2

After the butter is melted, add the
shredded potatoes. You are welcome!

Ok. What’s next?
Flatten the potatoes using a spatula.

How long do I cook the hash
browns for? 3-4 minutes on one side, flip, then

2-3 minutes on the other.

Sorry, how long do I need to cook
the other side? 2-3 minutes.

Serve the hash brown.

5 minutes.

You can cook for 3-4
minutes on one side.

 

Irrelevant

Lack of  
Information

Wrong  
Order

Wrong  
Information

Figure 1: A conversation snippet of the cooking instructional dialogue task with good and bad system responses
and the corresponding error type of each bad response.

over 10 conversations (131 generated responses) of
the fine-tuned model (Table 1). Examples of each
type of error are presented in Figure 1. Notably, the
most prevalent type of errors is presenting informa-
tion from the recipe to the user in the wrong order.
We thus focus on tackling this most common error
in our work. We hypothesize two potential causes:
(1) GPT-J struggles to understand the user’s intent,
and (2) GPT-J has difficulty tracking the current
state throughout the conversation. Both are crucial
in many scenarios, for example, when the user asks
for more information about the current instruction,
the system should not skip ahead to a later step
of the recipe. Based on these hypotheses, we ex-
periment with two supplemental tasks to improve
instruction ordering: User Intent Detection (§3)
and Instruction State Tracking (§4).

The goal of Intent Detection is to classify the
user’s current intent within a fixed set of possi-
bilities (e.g., ask for the next instruction or ask
for details about ingredients). Because the set
of intents varies across domains,1 we take a few-
shot transfer learning approach to leverage existing
dialogue intent datasets, such as MultiWOZ 2.2
(Budzianowski et al., 2018) and Schema Guided
Dialogue (Rastogi et al., 2020). We show that in-
corporating natural language descriptions of intents
(Zhao et al., 2022) can enable more effective trans-
fer. For example, F1 score for detecting 19 differ-
ent user intents in ChattyChef increases from 32.0
to 65.1 when transferring from MultiWOZ (§3.2).
In addition to Intent Detection, we also explore a
simple yet effective method for Instruction State
Tracking. State tracking aims to identify which
recipe step the user is currently working on. We
show that based on unigram F1 overlap, despite

1For example, we would need a different set of intents to
model instructions in Windows help documents (Branavan
et al., 2010).

the approach’s simplicity, we are able to identify
the most relevant recipe step at each turn of the
conversation with nearly 80% accuracy.

The information from these two subtasks is then
used to support Response Generation to improve
instruction ordering (§5). Specifically, instead of
feeding the whole recipe into the generation model,
we leverage the instruction state to select only the
most relevant knowledge. To incorporate user in-
tents, we enrich the input prompt to the model with
natural language descriptions of the predicted in-
tent. Experiments show that even though intent and
instruction state predictions are not perfect, includ-
ing this information in the Response Generation
model helps mitigate the wrong-order issue. We
release ChattyChef, a new dataset of cooking
dialogues, to support future work on instruction-
grounded conversational agents.

2 Dataset Construction

To collect a corpus of recipe-grounded conversa-
tions for fine-tuning and evaluating models, we
first obtain WikiHow2 articles under the Recipes
category from the data compiled by Zhang et al.
(2020). We control the qualities of the recipes by
only selecting articles that have a helpful vote rat-
ing greater than 75% and have at least 5 votes. We
retain the images from the recipes in our dataset,
but experiments in this paper only make use of
recipe texts. Moreover, in order to improve the con-
versation quality and avoid crowd workers quitting
in the middle of a long conversation, we remove
recipes with more than 8 steps.

2.1 Conversation Collection

After getting the recipes, we then ask crowd work-
ers to create conversation data by role-playing.

2https://www.wikihow.com/Main-Page

https://www.wikihow.com/Main-Page

There are two roles in each conversation of our
dataset: an agent and a user. The agent is pro-
vided with a full recipe article and assumed to be
an expert on cooking, while the user can only see
the title of the recipe (i.e., the name of the dish).
During the conversation, the agent needs to help
the user complete a cooking task with the knowl-
edge learned from the recipe and/or their common
knowledge about cooking. Different interfaces are
used by crowd workers when they play the agent
and the user (see Appendix D.2).

Crowd workers are instructed that conversations
should be relevant to the provided recipe, and
should also be natural and interesting. In our pro-
cess, at each turn of a conversation, agents need to
identify and highlight the relevant text span in the
article, if present, before sending a message, but
they are not allowed to answer by copying and past-
ing. Instead, the agent must rephrase the instruction
in their own words. To facilitate more natural in-
teractions, both workers can discuss guidelines and
ask their partner to resend messages whenever they
have confusion or disagreements, using a separate
chat interface.3 Furthermore, in our preliminary
study, we found that users tend to repeatedly send
messages such as “What is next?” to simply urge
the agent to move on without thinking or trying to
learn the task. To encourage diverse conversations,
we provide different dialog act prompts for anno-
tators to choose from: “teach a new step”, “ask a
question”, “answer a question”, and “other” (see
Appendix D.2). Diverse dialog acts such as ask-
ing and answering questions are encouraged with
higher payments.

2.2 Dataset Statistics

We summarize the statistics of our final dataset –
ChattyChef – and compare it with CookDial (Jiang
et al., 2022) in Table 2. Compared to Cookdial,
even though ChattyChef has fewer utterances per
dialogue, our recipe steps are much longer, and
each step includes multiple sentences or micro-
steps (about 6.0 sentences per step on average).
This feature sets our dataset aside from the Cook-
Dial, where nearly all recipe steps have only one
short sentence or one single instruction. Having
recipes with long, multi-sentence steps makes the
conversation more diverse, giving crowd workers
more freedom in choosing their own way of in-

3During data annotation, we formed teams of two workers
and allowed them to communicate with each other via Slack.

Dataset ChattyChef CookDial

Conversation Statistics
#Dialogues 267 260
#Utterances per dialog 26.0 35.0
#Grounding recipes 267 260

Recipe Statistics
#Steps per recipe 3.9 8.4
#Tokens per recipe 417.7 120.0
#Sentences per step 6.0 1.0
#Tokens per recipe step 70.1 14.4

Table 2: The statistics of our dataset and CookDial.

Dataset Diversity (%) N-gram overlap (%)
(1/2-gram) (1/2/3/4/5-gram)

CookDial 18.7 / 38.1 44.6 / 24.4 / 15.7 / 10.6 / 7.4
ChattyChef 26.0 / 53.6 30.2 / 12.0 / 5.8 / 3.4 / 2.2

Table 3: The statistic about the diversity of the agent’s
utterances in CookDial and ChattyChef. Diversity (dist-
1/2): the number of unique unigrams/bigrams divided
by the total number of all unigrams/bigrams in the con-
versations. N-gram overlap: the percentage of n-gram
overlap between the recipes and agent responses.

structing, as some micro-steps can be done in par-
allel while others can be skipped. This attribute is
important as it makes our dataset closer to a real-
life setting, where the user will normally not strictly
follow the order of steps in the recipe. As shown
in Table 3, the utterances from the agent in our
dataset are much more diverse than CookDial and
have instructions worded more differently from the
grounded recipe.

Analysis of Instruction State Changes. In this
work, we define the instruction state at a time step
as the last recipe step which the agent instructed.
We analyze the change of instruction state between
two consecutive agent utterances of our dataset in
Figure 2. Most of the time, the instruction would
be either the same or the next recipe step. However,
there are also cases when the agent needs to go back
to previous steps (e.g., when the user requests to re-
peat an instruction) or go ahead (e.g., when the user
wants to skip some steps) to provide instructions.
In ChattyChef, the agent sometimes goes backward
for as many as six steps, or forward seven steps.
These observations have partially demonstrated the
challenge of instructing multi-step procedures in
the correct order, as there are many possibilities.
Simply providing information from the recipe in a
linear sequence is insufficient.

3 User Intent Detection

In this section, we discuss the User Intent De-
tection subtask. Formally, the task is to predict
a set of user intent indices I (as one utterance
may contain multiple intents), given the tth user
utterance Uusr

t and the conversation history H =
{U sys

1 , Uusr
1 , ..., U sys

t−1}. We hypothesize that pro-
viding information about the user’s intents may
help the response generation model better provide
information to the user in the correct order. For
example, if the user asks for ingredient substitu-
tions, the system should not respond by providing
information based on the current step of the recipe.

3.1 Few-Shot Transfer Learning

Instruction-grounded chatbots could potentially be
developed for many domains beyond cooking, for
example, repair manuals (Wu et al., 2022), wet-lab
protocols (Kulkarni et al., 2018), software docu-
mentation (Olmo et al., 2021), etc. Each new do-
main will require a different set of user intents,
motivating the need for few-shot intent classifica-
tion. To better support few-shot learning, we also
investigate whether existing large-scale dialogue
corpora, such as MultiWOZ, can be used to transfer
knowledge to instruction-grounded chatbots.

Simply training on MultiWOZ using existing in-
tent labels is unlikely to work well, because the
MultiWOZ intents are very different from those
needed for recipe-grounded dialogue. To address
this challenge, we utilize natural language descrip-
tions of the intents, following Zhao et al. (2022). A
full list of intent descriptions is provided as input to
T5 model (Raffel et al., 2020), which is fine-tuned
to predict the index of the correct intent. Intent in-
dices are randomized during fine-tuning, to prevent
memorization of the MultiWOZ intents, which are
different from those in ChattyChef, and force the
model to learn to recognize intents based on their
text descriptions. A complete list of intents and
their associated descriptions is presented in Table
10 (in the Appendix). Example prompts used for
MultiWOZ, and recipe-grounded conversation are
presented in Table 12 (in the Appendix).

In addition to supporting few-shot transfer learn-
ing from existing resources such as MultiWOZ, the
intent descriptions are also useful for providing in-
tent information to the response generation model
(see §5, and Table 13 in the Appendix for details.)

6 5 4 3 2 1 0 1 2 3 4 5 6 7
Instruction State increment

0.1%

1.0%

10.0%

60.0%

Figure 2: Statistic of the change of the instruction state
between two consecutive agent utterances (the minus
value means that the agent moves back and instructs on
the past steps).

Train Valid Test

#Dialogues 134 46 87
#Turns per dialogue 26.6 24.8 26.0

Table 4: Data split statistics of ChattyChef.

3.2 Experiments

Datasets. To evaluate the performance of the
model on ChattyChef in the few-shot setting, we
annotate the user intents for 10 conversations
from the train set, 10 conversations from the val-
idation set, and all 87 conversations in the test
set. We consider a total of 19 different user in-
tents for ChattyChef, which include 16 intents in-
herited from the CookDial dataset (Jiang et al.,
2022) and 3 new intents: req_confirmation
(ask for verification), req_explanation (ask
to explain the reason or explain in more detail),
req_description (ask for description). The
full list of all 19 intents and their descriptions can
be found in Appendix B.1. The numbers of intent
annotations in the train, validation, and test split
are 128, 125, and 1059. In addition to ChattyChef,
for intent detection, we also use other datasets to
conduct the cross-dataset experiments. In partic-
ular, we use one in-domain dataset CookDial and
two large out-of-domain datasets, namely Multi-
WOZ 2.2 and Schema Guided Dialogue (SGD).
Specifically, MultiWOZ 2.2 contains dialogues cov-
ering 8 domains (i.e., restaurant, hotel, attraction,
taxi, train, hospital, bus, and police); while SGD
has conversations spanning over 20 domains (e.g.,
banks, events, media, calendar, travel) but also not
include cooking. For MultiWOZ and SGD, we
extract all user utterances, which have active in-
tents along with the conversation histories. For
CookDial, as there is no official data split, we split
the data on the conversation level with the propor-

tion of train, validation, and test set being 8:1:1.
The sizes of the train/validation/test set of Multi-
WOZ, SGD and CookDial are 47,897/6,208/6,251,
153,940/22,832/39,623, and 3,599/466/545, respec-
tively.

Models. We choose to experiment with the fol-
lowing training settings to evaluate this subtask:
(1) In-context learning (In-context): As a base-
line approach, we prompt the GPT-J model, which
learns to do this task by only observing a few exam-
ples without any parameter updates. (2) Few-shot
fine-tuning (None → ChattyChef): in this setting,
we fine-tune the T5 model (following the approach
discussed in §3.1) on a few training examples (16-
/128-shot) from ChattyChef. (3) Cross-dataset (X
→ ChattyChef): the T5 model is first fine-tuned on
another dataset (i.e., X may be MultiWOZ, SGD,
or CookDial), and the fine-tuned model is then di-
rectly used to predict user intents in ChattyChef for
0-shot experiment or is further fine-tuned on a few
examples of ChattyChef to perform the task. (4)
Cross-dataset two-hop (X → CookDial → Chat-
tyChef): this setting is similar to the Cross-dataset
setting except that the model is fine-tuned on two
datasets, first on an out-of-domain dataset (either
MultiWOZ or SGD) then on CookDial.

For all models which utilize T5, we use the T5-
XL version. More details about the training process
of these models are described in Appendix B.1.

Results. Following Jiang et al. (2022), we use
micro-F1 as the evaluation metric for Intent De-
tection. Table 5 demonstrates the performance
of different models. In-context learning with 16
demonstrations significantly outperforms few-shot
fine-tuning on a single dataset (None → Chatty-
Chef) with 128 examples.

Moreover, fine-tuning on another dataset first
(X → ChattyChef), either from in-domain or out-
of-domain, does help boost the performance (over
None → ChattyChef) dramatically on all settings.
This result is expected for the in-domain dataset as,
besides the domain similarity, CookDial and Chat-
tyChef also share a large number of intents. More
interestingly, leveraging MultiWOZ and SGD also
improves the performance by more than 28% and
33% for the 16- and 128-shot, respectively, even
though these two datasets cover quite different do-
mains and intents from ChattyChef.

Finally, fine-tuning the model on MultiWOZ
or SGD first further improves the performance of

Model 0-shot 16-shot 128-shot

In-context - 40.2 -

None→ChattyChef - 7.5 32.0
MultiWOZ→ChattyChef 14.2 36.2 65.1
SGD→ChattyChef 21.5 34.9 66.9
CookDial →ChattyChef 72.3 72.8 74.5

MultiWOZ→CookDial→ChattyChef 73.9 76.6 77.7

SGD→CookDial→ChattyChef 73.7 76.5 78.3

Table 5: Performance of models in the User Intent De-
tection task in few-shot settings. Fine-tuning the models
on large out-of-domain datasets first (i.e., MultiWOZ or
SGD) is helpful for the task in low-resource settings.

WordMatch SentEmb

Validation 576 82.0 80.8
Test 1145 79.0 79.4

Table 6: The alignment accuracy for Instruction State
Tracking on the validation and test set.

CookDial → ChattyChef. In particular, both Mul-
tiWOZ/SGD → CookDial → ChattyChef outper-
form CookDial → ChattyChef on all settings with
large margins. From this result and the above obser-
vations, we note that fine-tuning on a large dataset
first, even from other domains, is extremely helpful
for intent detection in the low-resource setting.

Since we want to measure the effectiveness of
incorporating the intent information into the gen-
eration model, we will use the intent predictions
from the best model (SGD → CookDial → Chatty-
Chef 128-shot) in the later experiments on response
generation (§5).

4 Instruction State Tracking

We study the second subtask to support the instruc-
tion ordering of the generation module – Instruc-
tion State Tracking. The goal of this task is to
predict the current state of the instruction, or in
other words, the last instructed recipe step. For-
mally, given the tth system response U sys

t , the
previous instruction state Tt−1 (i.e., an index of
a recipe step), and the recipe with a list of nr steps
R = {R1, R2, . . . , Rnr}, the expected output of
this subtask is Tt.

4.1 Aligning Conversations to Recipe Steps

For this subtask, we adopt a simple unsupervised
approach to track the instruction state. The key
idea of our approach is to align the most recent
system utterance with its most similar step in the

recipe, and this aligned step will be the current in-
struction state. If the utterance can not be aligned
with any recipe steps, the current instruction state
will be the same as the previous one. For the scor-
ing function that measures similarity between the
conversation history and the text of recipe steps,
we use two simple approaches: (1) WordMatch
(Word Matching): the scoring function computes
the unigram F1 overlap between two input texts.
(2) SentEmb (Sentence embedding): the scoring
function computes the cosine similarity between
sentence embeddings of the two input texts. More
details about the alignment algorithm and SentEmb
approach are described in Appendix B.2.

4.2 Experiments
Setup. For this subtask, we evaluate two ap-
proaches: WordMatch and SentEmb, which were
discussed above. We manually annotate the instruc-
tion states for all the system responses in Chat-
tyChef and evaluate the accuracy of the two ap-
proaches on the validation and test sets.

Results. The performance of Instruction State
Tracking is reported in Table 6. Despite of its
simplicity, the WordMatch approach has compa-
rable performance to SentEmb. In particular, Word-
Match outperforms SentEmb on the validation set
by 1.2%, but is slightly worse on the test set by
0.4%. One plausible explanation is that there are
many entities (e.g., ingredients, cooking utensils)
in the recipe that are hardly be paraphrased in the
cooking dialogue. In the next section, we will use
the predicted instruction state from the WordMatch
approach for integration with the generation model.

5 Response Generation

Given the conversation history and the grounded
recipe, the Response Generation task aims
to generate the instruction response to the
user. Formally, given the history H =
{U sys

1 , Uusr
1 , ..., U sys

t−1, U
usr
t−1}, the recipe R, the di-

alog system is expected to generate the next utter-
ance U sys

t .

5.1 Generating Dialog Responses
Base Model. In this work, we chose GPT-J
(Wang and Komatsuzaki, 2021) as the base model.
To fine-tune the model, we follow the approach of
Peng et al. (2022) that concatenates the dialog his-
tory, the cooking recipe, and the system response as
“H <|Knowledge|> R =>[system]U sys

t ”

and feed it to the model. Both [system]
and <|Knowledge|> are regular text strings.
Let S be the source text, which corresponds
to part of this concatenated string of the
dialog history and the cooking recipe (i.e.,
“H <|Knowledge|> R =>[system]”). In
the fine-tuning phase, the model tries to learn the
conditional probability of P (U sys

t |S), which can
be written as the product of a series of conditional
probabilities:

P (U sys
t |S) =

nt∏
i=1

p(U sys
t,i |U sys

t,<i, S)

where nt is the length of the response at the tth turn
of conversation, U sys

t,<i indicates all tokens before
the ith token generated by the system.

Intent-aware Model. Since the intent labels may
not convey the full meaning of the user’s intents
(§3), we propose to leverage the natural language
description of the intents when integrating this
information type into the model. In particular,
we enhance the input prompt to the GPT-J model
as “H <|Knowledge|> R [user] wants
to:D. => [system] U sys

t ”, where D is the
description of user intent. An example prompt is
shown in Table 13 (in the Appendix).

State-aware Model. When provided with a
full recipe, the response generation model might
have difficulty choosing the correct recipe part to
condition on when generating a response, which
can lead to giving wrong order instructions. As the
instruction state (§4) indicates the last instructed
step, this information is essential for selecting the
proper knowledge from the recipe for the model.
Therefore, we explore two heuristic approaches for
knowledge selection: (1) Cutoff: only select recipe
steps starting from the current instruction state.
Formally, the input prompt to the GPT-J model is
“H <|Knowledge|> R′=>[system]U sys

t ”,
where R′ = {RTt−1 , . . . , Rnr}, and Tt−1 is the
output from the Instruction State Tracking module.
(2) Center: Only select recipe steps in the ±1
window around the current state. Formally, the
input prompt to GPT-J will be similar to Cutoff
except for R′ = {RTt−1−1, RTt−1 , RTt−1+1}.

5.2 Experimental Setup
For this task, we evaluate the following models: (1)
GPT-J: the base GPT-J model. (2) GPT-J+cut: a
state-aware model, using the Cutoff approach to

Model Automatic Evaluation Human Evaluation

BLEU BLEURT Length Diversity wrong order | irrelevant | lack of info. | wrong info. | correct

GPT-J 4.1 44.7 11.1 9.9 / 37.9
GPT-J+int 3.9 45.0 10.0 10.4 / 38.5
GPT-J+cut 4.3 45.2 10.9 9.9 / 38.7
GPT-J+ctr 4.7 45.9 11.7 9.3 / 36.6
GPT-J+ctr+int 4.2 45.1 10.3 10.8 / 39.3

ChatGPT† 5.4 53.0 64.9 12.5 / 45.3

Table 7: Automatic and human evaluation of Response Generation models ChattyChef. The automatic evaluation
is conducted on the entire test set of 87 multi-turn conversations, and human evaluation is on 10 multi-turn
conversations (131 generated responses). †: Automatic evaluation metrics for ChatGPT are computed using the
same subset of test data used in the human evaluation due to its access constraints. Length: the average length in
terms of number of tokens. Diversity: diversity scores based on the unique unigrams (left) and bigrams (right).

select the grounded knowledge. (3) GPT-J+ctr:
same as the above method, but the grounded knowl-
edge is selected by using the Center approach.
(4) GPT-J+int: the GPT-J model which is incor-
porated with User Intent information. (5) GPT-
J+ctr+int: a state-aware model using the Center
approach and is additionally incorporated with user
intent. (6) ChatGPT:4 We also interact with Chat-
GPT, a chatbot launched by OpenAI. We provide
the recipes and the corresponding conversation his-
tories from our test set and ask ChatGPT to provide
the next system response. At the time of writing,
because OpenAI had not yet published an API to
process a large number of requests, we manually in-
teracted with ChatGPT and collected 131 responses
for 10 test conversations. The details about the
training process of GPT-J base model and its vari-
ants are provided in Appendix B.3.

5.3 Results

We report the following automatic evaluation met-
rics: BLEU (Papineni et al., 2002),5 BLEURT (Sel-
lam et al., 2020), the average length of the outputs
and the diversity scores (Li et al., 2016) based on
the proportion of unique n-grams over the total
number of n-grams. Because there is a lack of
consensus on how best to automatically evaluate
open-domain dialogue models (Liu et al., 2016;
Sedoc et al., 2019; Csáky et al., 2019), we also
conduct two human evaluations in which model
outputs are rated in terms of correctness while the
errors are categorized.

4https://chat.openai.com/chat
5All BLEU scores reported in this paper are based on

corpus-level BLEU-4.

Automatic Evaluation. Table 7 shows the perfor-
mance of different models on the test set of Chat-
tyChef. All GPT-J variants (+int, +cut, +ctr, and
+int+ctr) have comparable or better performance
than the base model, except for GPT-J+int, which
has a lower BLEU score, and GPT-J+ctr, which
has lower diversity scores. In terms of the com-
parison of the two knowledge selection methods,
GPT-J+ctr has higher BLEU and BLEURT scores,
while GPT+J+cut has better diversity scores. One
possible reason is that the Center approach consid-
ers a small context window of at most three recipe
steps. It helps the model to focus on the most rele-
vant information; but at the same time, it reduces
the total amount of knowledge the model can rely
on to instruct, making the responses less diverse
than other models. Finally, incorporating the intent
information does not show improvement in terms
of BLEU and BLEURT, however, this approach
does help increase the diversity of the generated
responses. We also conduct additional experiments
on the CookDial dataset in Appendix A.

Human Evaluation. In order to further under-
stand the behaviors of the models, we ask three
annotators to analyze the system outputs and manu-
ally categorize their errors. We also ask the annota-
tors to rate the correctness of each system response,
using a 5-point Likert scale (i.e., 5-completely cor-
rect; 4-mostly correct, has minor and acceptable
errors; 3-borderline, has both correct and incor-
rect information, nothing outweighs the other; 2-
mostly incorrect, but still has correct information;
1-completely incorrect). The inter-annotator agree-
ments measured by the nominal and ordinal Krip-
pendorff’s alpha (Krippendorff, 2004) for the error
categorization and correctness rating are 0.43 and

Recipe:

Step 1: ...

Step 2: Make your batter and breading.

.

. This is your
breading. If you want to add other spices to
your batter put them in the dry mixture on the
plate. Some great spices to use would be
garlic, paprika, or chili powder.

Step 3: Slice your jalapeno ...

Step 4: Dip the jalapeno peppers ...

To
make your batter, mix 0.5 cups (120 mL) of
flour, 0.5 cups (120 mL) of milk, and one egg
in a bowl In a separate shallow bowl or plate,
put 3 tablespoons (44 mL), 1.5 cups (350 mL)
of breadcrumbs, and 1.5 teaspoons (7.4 mL)
of salt and mix them thoroughly

If you want to
add a liquid ingredient like beer or lime juice,
add it the mixture in the bowl with the raw
egg.

Conversation history:

 ...

[user] Cool! I'm ready to make the batter.

[system]
 ...

[system] .
Would you like to do this?

[user] No. Let's move on then.

[system] Next,

[user] Mixture is ready.

In a bowl mix together 0.5 cups of flour, 0.5 cups of milk and one egg.

Some may choose to add ingredients such as beer or lime juice for some added flavour

in a separate dish to your batter, mix together 1.5 cups of breadcrumbs and 1.5
teaspoons of salt.

Gold response: To the dry mixture you can add in any seasonings of your choice.

GPT-J: Yes, mix them thoroughly. wrong order

wrong order

irrelevantGPT-J+ctr: Yes, the mixture is ready.

GPT-J+int: Next, you can dip the peppers in the batter mixture.

ChatGPT: Great! Now you can slice your jalapenos. If you're just making rings, slice them across
the width of the pepper. If you're filling them, make an incision on one side and remove the seeds
before adding your stuffing mixture. Don't use more than a tablespoon or the pepper might
explode while frying. wrong order

Figure 3: Example errors generated by each of the four systems. The system utterance in the history and its
corresponding recipe micro-step have the same color. Text in red indicates the error types of the system responses.

GPT
-J

GPT
-J+i

nt

GPT
-J+c

ut

GPT
-J+c

tr

GPT
-J+c

tr+i
nt

Cha
tGP

T
0.0%

20.0%

40.0%

60.0%

80.0%

100.0%
1 2 3 4 5

Figure 4: Percentages of model’s outputs with high cor-
rectness ratings of 4 and 5. All GPT-J (+int/+cut/+ctr)
variants that use intent and/or state tracking information
generate better outputs than the vanilla GPT-J.

0.62, respectively. More details about how to ag-
gregate three annotations are in Appendix C). As
shown in Table 7 and Figure 4, all GPT-J variants
that incorporate the intent and/or state information
have fewer errors and more responses rated with
4 and 5 for correctness than the base model. Even
though automatic metrics do not show a clear differ-
ence, human evaluation reveals that GPT-J+int has
fewer (22.9%→18.3%) wrong-order errors com-
pared to the base model and is also the model with
the least number of this type of error. On the con-
trary, using Center approach (i.e., GPT-J+ctr and
GPT-J+ctr+int) in grounded recipe selection does
not have much impact on reducing the number of
wrong-order responses, despite the fact that it helps
improve BLEU and BLEURT scores. In addition,
all +int/+ctr variants of GPT-J have fewer responses

GPT
-J

GPT
-J+i

nt

GPT
-J+c

ut

GPT
-J+c

tr

GPT
-J+c

tr+i
nt

Cha
tGP

T
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%
1 2 3 4 5

Figure 5: Correctness ratings of the wrong-order outputs
from each model. All GPT-J (+int/+cut/+ctr) variants
make fewer serious wrong-order errors (correctness of
1) than the vanilla GPT-J. Errors are sometimes not seen
as severe in ChatGPT’s longer responses than GPT-J’s.

with severe wrong-order errors (correctness of 1)
than the base model.

Finally, we also analyze the errors in the outputs
of ChatGPT. Overall, ChatGPT performs extremely
well in this task with only 10.7% of the outputs be-
ing erroneous. The outputs of ChatGPT are notably
longer than other systems since ChatGPT tends to
instruct multiple recipe steps in one utterance or uti-
lize knowledge outside the given recipe. As shown
in Table 7, wrong-order instruction is still the most
common error for ChatGPT. One scenario where
ChatGPT makes mistakes in terms of the ordering
is when the recipe step contains multiple micro-
steps (see an example in Figure 3). It indicates that
there are still many challenges that remain unsolved
in the cooking instruction dialogue task.

6 Related Work

The task of recipe-grounded conversation is close
to the Conversational Question Answering (CQA)
task. In CQA, given a reference text, the system
needs to engage in a multi-turn conversation to an-
swer questions from users. Compared to single-
turn question answering, CQA raises new chal-
lenges (e.g., co-reference resolution, contextual
reasoning) due to the dependency between Ques-
tion Answering turns. There exist multiple datasets
in this area, such as CoQA (Reddy et al., 2019),
QuAC (Choi et al., 2018), DoQA (Campos et al.,
2020), and ShARC (Saeidi et al., 2018). There are
several differeces between Instructional Dialogue
and Conversational Question Answering. Firstly, in
the dialogue setting, the message from the system
can also be a question, such as verification. Sec-
ondly, while the goal of CQA is seeking informa-
tion, Instructional Dialogue focuses on supporting
users to complete a procedure; therefore, there is
additional order-related relationship between the
system’s responses and the instructions that needs
to be managed by the dialog agent.

Recent work has investigated issues that arise
in chatbots based on large language models. For
instance, they are known to sometimes generate
toxic language (Baheti et al., 2021; Deng et al.,
2022), make factual errors in their statements (Hon-
ovich et al., 2021; Dziri et al., 2022; Rashkin et al.,
2021), and be overly confident (Mielke et al., 2022).
In this work, we focus on addressing a specific
problem related to instruction-grounded dialogue,
which is presenting information in the wrong order
to a user.

A small amount of prior work (Jiang et al., 2022;
Strathearn and Gkatzia, 2022) has started to ex-
plore the problem of recipe-grounded conversation,
which makes these papers the two closest to ours.
Both of these papers focused primarily on dataset
creation. Jiang et al. (2022) included experiments
on response generation, but as their focus was on
building a new dataset, they did not conduct ex-
tensive experiments or perform a human evalua-
tion of their system’s outputs. They did propose
baselines and evaluate the tasks of User Question
Understanding and Agent Action Frame Prediction,
which are similar to our User Intent Detection and
Instruction State Tracking. Although these tasks
have similar goals, our work is different in the sense
that we focus on tackling the problems in the low-
resource setting, by transferring knowledge from

existing dialogue corpora such as MultiWOZ. Fi-
nally, besides providing additional recipe-grounded
conversations as in these two prior works, our main
focuses are on analyzing challenges of current large
langauge models (i.e., GPT-J and ChatGPT) on this
task and addressing the specific challenge of in-
struction ordering.

7 Conclusion

In this paper, we have proposed to explore two
additional subtasks, namely User Intent Detection
and Instructional State Tracking, to mitigate the
problem of incorrect instruction order in Instruc-
tional Dialogue. We analyze these two auxiliary
subtasks with different methods in low-resource
settings. Even though the performance of the mod-
ules for the two subtasks is still low, experiment
results show that incorporating the user intent or
state information does help to mitigate the wrong-
order instructions issue, with the intent information
having a greater impact. However, combining the
two pieces of information does not lead to improve-
ment over using each individual one of them alone.
Therefore, we believe that further research for the
two subtasks is still needed, and also more effective
ways of incorporating the information into the Re-
sponse Generation module need to be investigated.
Finally, we release ChattyChef, a new cooking
instructional dataset, to promote future research in
this direction.

Limitations

In this work, we have only analyzed the common
errors of two models (i.e., GPT-J and ChatGPT) in
the Instructional Dialogue task. One open question
is whether other GPT-based models or models with
other architectures (e.g., encoder-decoder models)
also have the same issue in this task. Our work and
dataset are also limited to the English language.

Ethical Considerations

To collect recipe-grounded conversations we hired
crowd workers using the Prolific platform.6 The
study was conducted with the approval of our local
IRB. The compensation was derived based on Pro-
lific’s payment principles. We estimate the hourly
pay for crowd workers was $15.49 (details in Ap-
pendix D). Crowd workers were strictly asked not
to write any offensive content or personal informa-
tion.

6https://www.prolific.co/

https://www.prolific.co/

Acknowledgments

We thank Yao Dou, Fan Bai as well as four anony-
mous reviewers for their helpful feedback on this
work. We also thank Govind Ramesh, Grace Kim,
Yimeng Jiang for their help with human evalua-
tion. This research is supported in part by the
NSF awards IIS-2112633 and IIS-2052498. The
views and conclusions contained herein are those
of the authors and should not be interpreted as nec-
essarily representing the official policies, either ex-
pressed or implied, of NSF or the U.S. Government.
The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

References
Ashutosh Baheti, Maarten Sap, Alan Ritter, and Mark

Riedl. 2021. Just say no: Analyzing the stance of
neural dialogue generation in offensive contexts. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing.

Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele
Farina, Colin Flaherty, Daniel Fried, Andrew Goff,
Jonathan Gray, Hengyuan Hu, et al. 2022. Human-
level play in the game of diplomacy by combining
language models with strategic reasoning. Science.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural language processing with Python: analyzing text
with the natural language toolkit. " O’Reilly Media,
Inc.".

SRK Branavan, Luke Zettlemoyer, and Regina Barzilay.
2010. Reading between the lines: Learning to map
high-level instructions to commands. In Proceedings
of the 48th annual meeting of the association for
computational linguistics.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - a large-
scale multi-domain Wizard-of-Oz dataset for task-
oriented dialogue modelling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 5016–5026, Brussels,
Belgium. Association for Computational Linguistics.

Jon Ander Campos, Arantxa Otegi, Aitor Soroa, Jan De-
riu, Mark Cieliebak, and Eneko Agirre. 2020. DoQA
- accessing domain-specific FAQs via conversational
QA. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7302–7314, Online. Association for Computational
Linguistics.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. QuAC: Question answering in context.

In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2174–2184, Brussels, Belgium. Association for Com-
putational Linguistics.

Richárd Csáky, Patrik Purgai, and Gábor Recski.
2019. Improving neural conversational models with
entropy-based data filtering. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics.

Jiawen Deng, Jingyan Zhou, Hao Sun, Fei Mi, and
Minlie Huang. 2022. Cold: A benchmark for chi-
nese offensive language detection. arXiv preprint
arXiv:2201.06025.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2019. Wizard
of Wikipedia: Knowledge-powered conversational
agents. In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

Nouha Dziri, Ehsan Kamalloo, Sivan Milton, Osmar Za-
iane, Mo Yu, Edoardo M Ponti, and Siva Reddy. 2022.
Faithdial: A faithful benchmark for information-
seeking dialogue. arXiv preprint arXiv:2204.10757.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi,
Sanchit Agarwal, Shuyang Gao, Adarsh Kumar, Anuj
Goyal, Peter Ku, and Dilek Hakkani-Tur. 2020. Mul-
tiwoz 2.1: A consolidated multi-domain dialogue
dataset with state corrections and state tracking base-
lines. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 422–428.

Or Honovich, Leshem Choshen, Roee Aharoni, Ella
Neeman, Idan Szpektor, and Omri Abend. 2021.
Q2:: Evaluating factual consistency in knowledge-
grounded dialogues via question generation and ques-
tion answering. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing.

Yiwei Jiang, Klim Zaporojets, Johannes Deleu, Thomas
Demeester, and Chris Develder. 2022. Cookdial: a
dataset for task-oriented dialogs grounded in proce-
dural documents. Applied Intelligence, pages 1–19.

Klaus Krippendorff. 2004. Reliability in content analy-
sis: Some common misconceptions and recommen-
dations. Human communication research, 30(3):411–
433.

Chaitanya Kulkarni, Wei Xu, Alan Ritter, and Raghu
Machiraju. 2018. An annotated corpus for machine
reading of instructions in wet lab protocols. In Pro-
ceedings of NAACL-HLT.

Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh,
and Dhruv Batra. 2017. Deal or no deal? end-to-end
learning of negotiation dialogues. In Proceedings
of the 2017 Conference on Empirical Methods in
Natural Language Processing.

https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/D18-1547
https://doi.org/10.18653/v1/2020.acl-main.652
https://doi.org/10.18653/v1/2020.acl-main.652
https://doi.org/10.18653/v1/2020.acl-main.652
https://doi.org/10.18653/v1/D18-1241

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016. Deep re-
inforcement learning for dialogue generation. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing.

Chia-Wei Liu, Ryan Lowe, Iulian Vlad Serban, Mike
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. In Proceedings
of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing.

Sabrina J Mielke, Arthur Szlam, Emily Dinan, and Y-
Lan Boureau. 2022. Reducing conversational agents’
overconfidence through linguistic calibration. Trans-
actions of the Association for Computational Linguis-
tics, 10.

Alexander Miller, Will Feng, Dhruv Batra, Antoine Bor-
des, Adam Fisch, Jiasen Lu, Devi Parikh, and Jason
Weston. 2017. ParlAI: A dialog research software
platform. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 79–84, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. 2021. Gpt3-to-plan: Extracting plans from
text using gpt-3. FinPlan 2021.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of ACL,
pages 311–318, Philadelphia, Pennsylvania, USA.
Association for Computational Linguistics.

Baolin Peng, Michel Galley, Pengcheng He, Chris
Brockett, Lars Liden, Elnaz Nouri, Zhou Yu, Bill
Dolan, and Jianfeng Gao. 2022. Godel: Large-scale
pre-training for goal-directed dialog. arXiv preprint
arXiv:2206.11309.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1–67.

Hannah Rashkin, David Reitter, Gaurav Singh Tomar,
and Dipanjan Das. 2021. Increasing faithfulness in
knowledge-grounded dialogue with controllable fea-
tures. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and
the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers).

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara,
Raghav Gupta, and Pranav Khaitan. 2020. Towards
scalable multi-domain conversational agents: The
schema-guided dialogue dataset. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34.

Siva Reddy, Danqi Chen, and Christopher D Manning.
2019. Coqa: A conversational question answering
challenge. Transactions of the Association for Com-
putational Linguistics, 7.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982–3992, Hong Kong, China. Association for Com-
putational Linguistics.

Alan Ritter, Colin Cherry, and William B Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages 583–
593.

Marzieh Saeidi, Max Bartolo, Patrick Lewis, Sameer
Singh, Tim Rocktäschel, Mike Sheldon, Guillaume
Bouchard, and Sebastian Riedel. 2018. Interpretation
of natural language rules in conversational machine
reading. arXiv preprint arXiv:1809.01494.

Joao Sedoc, Daphne Ippolito, Arun Kirubarajan, Jai
Thirani, Lyle Ungar, and Chris Callison-Burch. 2019.
Chateval: A tool for chatbot evaluation. In Proceed-
ings of the 2019 conference of the North American
chapter of the association for computational linguis-
tics (demonstrations).

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881–7892, Online. Association for Computational
Linguistics.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju,
Eric Michael Smith, Stephen Roller, Megan Ung,
Moya Chen, Kushal Arora, Joshua Lane, et al. 2022.
Blenderbot 3: a deployed conversational agent that
continually learns to responsibly engage. arXiv
preprint arXiv:2208.03188.

Carl Strathearn and Dimitra Gkatzia. 2022. Task2Dial:
A novel task and dataset for commonsense-enhanced
task-based dialogue grounded in documents. In
Proceedings of the Second DialDoc Workshop on
Document-grounded Dialogue and Conversational
Question Answering, pages 187–196, Dublin, Ireland.
Association for Computational Linguistics.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng,
Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al.
2022. Lamda: Language models for dialog applica-
tions. arXiv preprint arXiv:2201.08239.

Ben Wang and Aran Komatsuzaki. 2021. GPT-
J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/
kingoflolz/mesh-transformer-jax.

https://doi.org/10.18653/v1/D17-2014
https://doi.org/10.18653/v1/D17-2014
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2022.dialdoc-1.21
https://doi.org/10.18653/v1/2022.dialdoc-1.21
https://doi.org/10.18653/v1/2022.dialdoc-1.21
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

Jason D Williams, Antoine Raux, and Matthew Hender-
son. 2016. The dialog state tracking challenge series:
A review. Dialogue & Discourse, 7(3).

Te-Lin Wu, Alex Spangher, Pegah Alipoormolabashi,
Marjorie Freedman, Ralph Weischedel, and Nanyun
Peng. 2022. Understanding multimodal procedural
knowledge by sequencing multimodal instructional
manuals. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4525–4542, Dublin,
Ireland. Association for Computational Linguistics.

Li Zhang, Qing Lyu, and Chris Callison-Burch. 2020.
Reasoning about goals, steps, and temporal ordering
with WikiHow. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4630–4639, Online. As-
sociation for Computational Linguistics.

Jeffrey Zhao, Raghav Gupta, Yuan Cao, Dian Yu,
Mingqiu Wang, Harrison Lee, Abhinav Rastogi,
Izhak Shafran, and Yonghui Wu. 2022. Description-
driven task-oriented dialog modeling. arXiv preprint
arXiv:2201.08904.

https://doi.org/10.18653/v1/2022.acl-long.310
https://doi.org/10.18653/v1/2022.acl-long.310
https://doi.org/10.18653/v1/2022.acl-long.310
https://www.aclweb.org/anthology/2020.emnlp-main.374
https://www.aclweb.org/anthology/2020.emnlp-main.374

A Experiments on CookDial dataset

A.1 Incorporation of Instruction State and
User Intent information

In this section, we explore the performance of mod-
els using Instruction State and Intent Information
on the CookDial dataset. We fine-tuned the models
adopting the same approaches as in §5 and using
the same set of automatic metrics to evaluate. In-
stead of extracting silver labels, We use the gold
Instruction State (i.e., "tracker_completed_step" in
CookDial) and User Intent information from the
CookDial dataset. The performance of all models
is demonstrated in Table 8.

From the table, we can see that the model per-
formance on CookDial is much higher than in our
dataset, this is due to the more straightforward in-
struction scenarios and higher lexical similarity be-
tween the grounded recipe and system utterances in
CookDial (as discussed in §2.2). In addition, simi-
lar behaviors of the models fine-tuned on CookDial
and ChattyChef can also be observed here - incor-
porating the Instruction State information helps to
improve BLEU and BLEURT scores, while incor-
porating the intent information helps the models
generate more diverse responses.

A.2 Transfer learning from CookDial to
ChattyChef

To explore whether the information learned from
CookDial is helpful for our dataset, we keep fine-
tuning the model from Table 8 with the correspond-
ing settings on our dataset. As shown in Table 9,
transfer learning does not show a clear improve-
ment in terms of BLEU and BLEURT, it even
hurts the performance of the model in many cases.
The big difference between the two datasets (as
discussed in §2.2) may be the reason why trans-
fer learning is ineffective here. However, transfer
learning also has the merit of making the system
outputs more diverse, especially for GPT-J+cut and
GPT-J+ctr.

Model BLEU BLEURT Length Diversity

GPT-J 34.7 65.0 11.5 13.0 / 44.3
GPT-J+int 30.9 62.5 10.4 13.8 / 45.3
GPT-J+cut 35.6 65.2 11.7 12.8 / 43.9
GPT-J+ctr 35.3 65.4 11.3 13.3 / 44.6
GPT-J+ctr+int 32.0 63.2 10.6 13.7 / 44.5

Table 8: Performance on the test set of CookDial
dataset.

Model BLEU BLEURT Length Diversity

GPT-J 3.7 45.3 9.7 11.0 39.9
(-0.4) (+0.6) (-1.4) (+1.1) (+2.0)

GPT-J+int 4.3 45.5 10.4 11.2 40.8
(+0.4) (+0.5) 0.4 (+0.8) (+2.3)

GPT-J+cut 4.0 45.2 9.9 11.8 44.6
(-0.3) (0.0) (-1.0) (+1.9) (+5.9)

GPT-J+ctr 4.1 45.5 9.6 11.6 42.4
(-0.6) (-0.4) (-2.1) (+2.3) (+5.8)

GPT-J+ctr+int 4.2 45.7 9.8 11.5 41.9
(0.0) (+0.6) (-0.5) (+0.7) (+2.6)

Table 9: Transfer learning performance of models on
the test set of ChattyChef. The number below in each
cell indicates the change to the model fine-tuned with
the same setting on ChattyChef only.

B Implementation Details

For all experiments, we train models across 4 A40
GPUs (48GB each). The total GPU hours for train-
ing a GPT-J model in the Response Generation task
is about 5.3 hours, and the total GPU hours for
training the T5 models in the User Intent Detection
task is about 4 hours.

B.1 User Intent Detection
The details about user intents and their description
are reported in Table 10. Examples of input and
out prompts to the T5 model are demonstrated in
Table 12.

For all experiments which use T5 model, we set
the maximum sequence length to 1028 and the num-
ber of training epochs to 30, we stop the training
process if the perplexity of the model on the vali-
dation set does not improve after 5 epochs. We use
AdamW to optimize and consider the initial learn-
ing rate ∈ {1e-5, 5e-5, 1e-4}. For the in-context
setting, the maximum length of the input sequence
is set to 1984.

For all the models, we employ beam search with
a beam size of 5 for decoding. We select the model
checkpoint that produces the lowest perplexity on
the validation set and then apply the selected one
to the test set.

B.2 Instruction State Tracking
The Instruction State Tracking Algorithm is de-
scribed in Algorithm 1). In order to produce the sys-
tem utterance - recipe alignment, similarity scores
between the most recent system response to all
the recipe steps are computed (Line 3 - 7 in Algo-
rithm 1). After that, by comparing the similarity

Intents Descriptions

greeting greeting
req_temperature ask about the cooking temperature
thank thank
req_instruction ask for instructions
confirm confirm the current stage
req_repeat ask to repeat the last information
negate negate
req_amount ask about the amount information
req_ingredient ask about the ingredients
req_is_recipe_finished ask whether the recipe is finished
req_tool ask about the cooking tool
req_duration ask about the cooking duration
affirm affirm
goodbye goodbye

req_substitute ask for tool or ingredient substitu-
tions

req_confirmation ask for verification
req_description ask for the description

req_explanation ask to explain the reason or ex-
plain in more detail

other other intent

Table 10: Descriptions of user intents in ChattyChef

Algorithm 1: Instruction State Tracking
Input: RecipeR = {R1, R2, . . . , Rnr}

Most recent system utterance: Usys
t

Previous instruction state: Tt−1 Threshold
parameters 0 < α1 ≤ α2 < 1
Scoring function f

Output: Instruction State Tt

1 Initialize score[i] = 0 ∀i = 1, 2, . . . , nr

2 Initialize current_state = Tt−1

/* compute similarity scores
between the most recent system
utterance and all recipe steps
*/

3 for i = 1, 2, . . . , nr do
4 micro_steps← sentence_tokenize(Ri)
5 score[i] = maxr∈micro_steps f(U

sys
t , r)

6 best_state← argmax(score)
7 max_score← score[best_state]
8 if (best_state == current_state+ 1 and

max_score > α1) or (max_score > α2) then
9 current_state← best_state

10 Tt ← current_state

score to thresholds (i.e., α1 and α2), the algorithm
decides whether the current system utterance is
aligned to a new state (i.e., a new recipe step – line
9 in Algorithm 1) or is aligned with the previous
state.

For the Sentence Embedding approach, we use
sentence-transformers/paraphrase-
MiniLM-L6-v2 (Reimers and Gurevych, 2019)
to compute the sentence embeddings of system
responses and recipe steps. We use NLTK(Bird
et al., 2009) to perform the word and sentence
tokenization. About the threshold, we set α1, α2

equal to 0.2 and 0.3, respectively, for the Word
Matching approach. For the sentence embedding
approach, we set α1 equal to 0.5 and α2 equal
to 0.6. The thresholds are chosen based on the
accuracy of the validation set.

B.3 Response Generation

An example of the input to the GPT-J model is
illustrated in Table 13.

To fine-tune all the GPT-J models, We set the
maximum sequence length to 1280 and the number
of training epochs to 3. We use AdamW to optimize
and set the initial learning equal to 1e-5, except for
transfer learning experiments with CookDial, in
which we use the learning rate of 5e-6. We employ
beam search with a beam size of 5 for decoding.
We select the model checkpoint that produces the
lowest perplexity on the validation set and then
apply the selected one to the test set.

C Human Evaluation

In this section, we discuss the way to aggregate
annotations from annotators. For the error catego-
rization experiment, the final decision of an exam-
ple is reached if all three annotators have the same
annotation. When only two annotators have the
same annotation, a fourth one will join and decide
whether to agree with the majority. In all other
situations, a discussion between annotators is held,
and the final decision is based on majority voting.
For the correctness rating experiment, the rating
of each example is the average score of the three
annotators. In cases when only two annotators rate
an example as completely correct or a rating of 5,
but the third one detects an error and marks the
example as incorrect (i.e., belongs to one of the
four error types), if the final decision from the er-
ror categorization is also incorrect, the correctness
of this example is the rating of the third annotator.
The same rule applies to the opposite situation, i.e.,
only two annotators rate an example as completely
incorrect, and the third one thinks it is correct.

Paired Self M-User

Avg time per turn (min) 2.35 1.77 1.60

Avg cost per turn ($) 0.72 0.42 0.35

#Turns per recipe step 2.04 2.30 2.13

#Dialogues 86 160 21

Table 11: Statistics of the data collection methods.

Input: 0:book a table at a restaurant 1:book a hotel to stay in 2:search for police station 3:search for places to wine and
dine 4:search for a medical facility or a doctor 5:search for a bus 6:search for a hotel to stay in 7:search for trains that take
you places 8:search for places to see for leisure 9:book taxis to travel between places 10:book train tickets [user] I am
looking for a hotel called the alpha-milton guest house. [system] Sure! I’ve located the guesthouse, it is located in the
north area. Would you like me to book you a room? [user] No thank you but I do need the address please?

Output: [intents] 6

Input: 0:negate 1:confirm the current stage 2:ask to repeat the last information 3:ask about cooking duration 4:ask for
verification 5:thank 6:ask to explain the reason or explain in more detail 7:ask about the cooking temperature 8:affirm
9:greeting 10:ask for the description 11:ask about the amount information 12:goodbye 13:ask whether the recipe is finished
14:ask for instructions 15:ask about the ingredients 16:ask about the cooking tool 17:ask for tool or ingredient substitutions
18:other intent [user] Yes, what do I need? [system] Russet potatoes, or other high starch potatoes [user] What is the first
step? [system] Wash and peel the potatoes, use cold water when washing [user] What do I use to peel the potatoes?

Output: [intents] 16

Table 12: Examples of the input and output of the User Intent Detection model. The top example is from MultiWOZ
2.2 dataset, and the bottom one is from Our cooking instruction dataset). Red: Indexed intent descriptions. Blue:
Conversation history.

[system] Would you like to learn how to make hash browns? [user] Yes, what do I need? [system] Russet potatoes, or
other high starch potatoes [user] What is the first step? [system] Wash and peel the potatoes, use cold water when washing
[user] What do I use to peel the potatoes? <|Knowledge|> - Peel the potatoes. Wash the potatoes well in cold water, then
peel using a small knife or a vegetable peeler. Russet potatoes, or other potatoes with a high starch content, work best for
hash browns. - Shred the potatoes. Line a bowl with a clean dishtowel, then shred the potatoes directly into the towel-lined
bowl, using a cheese grater. - Squeeze out the moisture. You must squeeze out as much moisture as possible from the
shredded potatoes. This is the most important step in achieving crispy (rather than mushy) hash browns. To do this, gather
the corners of the dishtowel containing the shredded potatoes and twist the neck until you form a tight package. Continue
twisting the cloth and squishing the potato in your fist until you’ve squeezed as much liquid as you can from the potato.
Alternatively, you can try squeezing the moisture from the potatoes using a potato ricer. You do not need to force the
potatoes through the ricer, simply use it to press out the moisture. - Heat the skillet. Heat a large skillet pan (preferably
cast iron) over a medium-high heat. Add the butter to the pan and allow to melt. Once the butter has melted, add the dry,
shredded potatoes to the pan and toss to coat with butter. Season with salt and pepper. - Cook the hash browns. Once the
potato has been coated with butter, flatten it using a spatula to maximize contact with the hot pan. It should be no more
than 1/2 an inch thick. Cook for 3-4 minutes on the first side, flip, then cook for 2-3 minutes on the other side. The hash
brown potatoes are ready when each side is crisp and golden brown. - Serve. Slide the hash brown from the pan, or lift
using a large spatula. Cut it into halves or quarters, if necessary. Serve on its own, with hot sauce or ketchup, or alongside
bacon and eggs for a top notch breakfast. [user] want to: ask about the cooking tool. => [system] you can use a vegetable
peeler, or a small knife

Table 13: An example of the prompt to the Response Generation model. Blue: Conversation history. Brown:
Grounded recipe. Green: Intent description prompt. Red: Output of the model.

D Dataset construction

D.1 Collection Strategies

Even though employing two workers using differ-
ent interfaces has advantages, we see that pairing
workers on a task is inefficient. In particular, for
each conversation, one worker would need to wait
for a long time until the partner joined the task.
Moreover, in some cases, some workers are un-
cooperative. For example, during the chat, one
worker may spend too much time sending his mes-
sages or even quit the task, which will have a bad
impact on his partner (Choi et al., 2018; Reddy
et al., 2019). As a result, we study three different
collection strategies as follows.
Paired conversations (Paired): Two workers are
required for each conversation; one acts as the

agent, and the other act as the user. After two
workers got paired, they would be assigned to the
same cooking task; however, only the agent has
access to the recipe, and all the user knows about
this task is the title (i.e., what to cook).
Self-chat (Self): In this mode, only one worker is
needed for each conversation. The worker will play
both roles (i.e., Agent and User).
Model-User (M-User): One worker is assigned for
each conversation in this mode. However, unlike
Self-chat, when the worker plays the User role, he
would be provided with candidate responses from
a model, and he could either pick one and edit it or
enter his own words.

All conversations were collected through the
ParlAI API (Miller et al., 2017). The partici-
pants for this paper were recruited using Prolific

(www.prolific.co). We restricted the task to
workers whose first language is English and with
more than 100 submissions with at least a 99% ap-
proval rate. Crowd workers were not informed of
the specific details of the dataset. However, they
consented to have their responses used for this pur-
pose through the Prolific Participation Agreement.
The statistic about each collection method is re-
ported in Table 11.

D.2 Collection Interfaces
See Figure 7 for the screenshot of our crowdsourc-
ing interface.

www.prolific.co

con
firm

req
_in

str
uct

ion
aff

irm
tha

nk

req
_co

nfi
rm

ati
on

oth
er

ne
ga

te

req
_in

gre
die

nt

req
_du

rat
ion

req
_de

scr
ipt

ion

req
_am

ou
nt

req
_is

_re
cip

e_f
inis

he
d

go
od

by
e

req
_ex

pla
na

tio
n

req
_su

bst
itu

te

req
_to

ol

req
_te

mpe
rat

ure

gre
eti

ng

req
_re

pe
at

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Figure 6: Statistic of user intents over 91 conversations.

Figure 7: A screenshot of our crowdsourcing interface.

