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ABSTRACT: Near-term quantum computers will be limited in
the number of qubits on which they can process information as
well as the depth of the circuits that they can coherently carry out.
To date, experimental demonstrations of algorithms such as the
Variational Quantum Eigensolver (VQE) have been limited to
small molecules using minimal basis sets for this reason. In this
work we propose incorporating an orbital optimization scheme
into quantum eigensolvers wherein a parametrized partial unitary
transformation is applied to the basis functions set in order to
reduce the number of qubits required for a given problem. The
optimal transformation is found by minimizing the ground state
energy with respect to this partial unitary matrix. Through
numerical simulations of small molecules up to 16 spin orbitals, we demonstrate that this method has the ability to greatly
extend the capabilities of near-term quantum computers with regard to the electronic structure problem. We find that VQE paired
with orbital optimization consistently achieves lower ground state energies than traditional VQE when using the same number of
qubits and even frequently achieves lower ground state energies than VQE methods using more qubits.

1. INTRODUCTION
One of the main areas of research being conducted in quantum
computing today is exploring the extent to which near-term
quantum computers can be useful for solving practical
problems. Any algorithm developed for this purpose must
fulfill three primary criteria: (1) use as few qubits as possible,
(2) minimize circuit depth, and (3) be robust to noise. One of
the most promising problems for demonstrating quantum
advantage on near term quantum hardware is the electronic
structure problem.1 The canonical approach to this problem in
quantum computing has been to use the second quantization
formulation, wherein we take the spatial coordinate repre-
sentation of the electronic structure Hamiltonian and project it
onto a finite set of basis functions. The choice of which basis to
use ultimately determines how closely the obtained energy
levels using this truncated Hamiltonian will match those of
laboratory experimental results. Experimental results for
demonstrating quantum algorithms have so far been limited
to representing small molecules with minimal basis sets.2−4

Such basis sets are useful for proof-of-concept demonstrations
and for benchmarking progress, but they do not represent
results that would match laboratory results well enough to be
useful to a chemist. The ability to move beyond these minimal
basis sets will be an important step toward demonstrating
quantum advantage in computational chemistry. Doing so,
however, presents an obvious obstacle: Using larger basis sets
increases the qubit requirements for the simulation.

Furthermore, many near-term quantum algorithms developed
for the electronic structure problem involve the use of ansatz
circuits with depth scaling polynomially with the size of the
spin orbital basis set. Thus, increasing the size of the basis set
results in increased circuit depth as well.
Several methods have been proposed in recent years to make

the representation of the electronic structure Hamiltonian as
compact and resource-e!cient on quantum computers as
possible. These methods can be roughly grouped into three
categories: (1) classical preprocessing of compact e"ective
Hamiltonians, (2) orbital optimizations interleaved between
successive quantum eigensolver problems, and (3) postpro-
cessing to partially correct the basis set error. Downfolded
e"ective Hamiltonian techniques5−7 use a unitary coupled-
cluster ansatz operator to rotate the Hamiltonian in the full
orbital space, where the coupled-cluster amplitudes are solved
for classically. The transformed Hamiltonian is approximated
according to a second-order Baker−Campbell−Hausdor"
expansion and projected onto a chosen active space. Trans-
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correlated and explicitly correlated Hamiltonian methods8,9 are
conceptually similar to downfolded methods, with the main
di"erence being that the similarity transformed applied to the
Hamiltonian has an explicit dependence on the coordinate
space positions of the electrons. The purpose of this is to
e!ciently capture the anticorrelation e"ects arising from the
Coulomb repulsion between electrons that would traditionally
require large basis set expansions. Orbital optimization
methods share some similarities to e"ective Hamiltonian
methods in that they also apply a similarity transformation to
the Hamiltonian but di"er in how the transformation
parameters are found. Whereas e"ective Hamiltonian methods
solve for the transformation parameters in a preprocessing
step, orbital optimization methods10−12 apply a parametrized
unitary transformation to the Hamiltonian, projecting the
resulting parametrized Hamiltonian onto a chosen active space
and minimizing an objective function. The use of postprocess-
ing to partially correct the error arising from the truncated
basis set has also been proposed. Virtual Quantum Subspace
Expansion (VQSE)13 is a method where the ground state
problem is first solved within a chosen active space using an
algorithm such as VQE. An improved estimate for the ground
state is then obtained by classically solving a generalized
eigenvalue problem over a contracted subspace spanned by
single and double Fermionic excitation operators acting on the
solution to the previous active space problem. These excitation
operators are allowed to include excitations to the virtual space
and thus contribute to a correction to the energy from the
limited active space solution.
In this work we generalize the OptOrbFCI14 algorithm

(developed in the context of classical computing for settings in
which classical computational resources are limited) to the
quantum computing setting in which qubit counts and
coherent circuit depth are limited resources. OptOrbFCI is
an orbital optimization method that applies a partial unitary
transformation to the set of basis functions, collapsing it to one
of a smaller size and introducing the elements of the matrix
representation of this transformation as additional parameters
to be optimized in the overall ground state search problem. An
FCI solver is used to find the ground state energy in a reduced
basis. Extending OptOrbFCI to the quantum computing
setting corresponds to replacing the FCI solver subroutine
with one of several quantum eigensolvers such as the
Variational Quantum Eigensolver (VQE),15 Quantum Imagi-
nary Time Evolution (QITE),16,17 or Quantum Monte
Carlo.18 In this work, we pair the orbital optimization
subroutine with VQE, calling the resulting overall method
OptOrbVQE. We find that OptOrbVQE consistently achieves
lower ground state energy compared to standard VQE
methods when using the same number of qubits. Higher
accuracy results are also achieved while simultaneously using
fewer qubits than these methods in several instances.
The rest of the paper is organized as follows. In Section 2 we

give a brief overview of the main method for computing
ground states in quantum computing, VQE. In Section 3 we
propose the orbital optimization approach in the setting of
variational quantum eigensolvers to reduce the resource
requirement of qubits. In Section 4 we benchmark
OptOrbVQE on several small molecules. In Section 5 we
discuss the results and potential directions of future research.

2. VARIATIONAL QUANTUM EIGENSOLVER
One promising method for computing the ground state of
chemical systems on near-term quantum hardware is the
Variational Quantum Eigensolver (VQE). The method begins
by formulating the electronic structure Hamiltonian in the
second quantization as
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=
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where hpq and vpqrs are the one and two-electron integrals as in
eq 2 and eq 3 over our set ofM basis functions {ψ1, ψ2, ..., ψM}.
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This Fermionic Hamiltonian can be mapped to a qubit
Hamiltonian of the form in eq 4 by using one of several known
mapping schemes such as Jordan−Wigner, Parity, or Bravyi−
Kitaev.19

=H h P

i

i i

(4)

Here Pi are tensor products of local Pauli operators acting on a
register of qubits. The quantum computer can measure
expectation values of these Pauli operators, and a classical
computer computes their weighted sum. The wave function is
parametrized as | = |U( ) ( ) ref , where | ref is an initial
reference state of our choice and U( ) is a parametrized
quantum ansatz circuit. Using the variational principle, the
ground state search problem can be formulated as the
minimization problem:

| |†
U HUmin ( ) ( )ref ref (5)

A quantum computer prepares the wave function and measures
the Hamiltonian expectation value, and then passes this value
to a classical gradient-free optimization subroutine, which
returns a new value for the parameters. This process repeats
until the stopping condition of the optimizer is reached.

3. OPTIMAL ORBITAL VQE
Let us now introduce the orbital optimization in the VQE
setting, motivated by a similar scheme in the classical setting as
the OptOrbFCI algorithm proposed by two of the authors.14 If
our set of basis functions has size M, then this will require the
use of M qubits if no techniques to reduce this count are
employed. Suppose we have access to a quantum computer
with only N < M qubits or that we are using an ansatz circuit
that scales with the number of qubits in such a way that we are
limited to calculations using N qubits. We thus have to restrict
to a Hamiltonian with only N spin orbitals by applying a partial
unitary transformation for the basis change, which we
represent using a M × N real partial unitary matrix V . The
basis functions will transform according to

= Vi
j

M

ji j
(6)
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This corresponds to the one and two body integrals
transforming according to eq 7 and eq 8.

=
=
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The ground state energy is now a function of not only the
ansatz parameters θ but the partial unitary matrix V as well.
The ground state search problem is now a minimization
problem over both the space of ansatz parameters and the
space of all real partial unitary matrices of dimension M × N:

| |†
U H V Umin ( ) ( ) ( )

V M N( , )

ref ref

(9)

where
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N (10)

The transformed Hamiltonian as a function of V is given by
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where the primed and unprimed indices index the transformed
and original basis wave functions, respectively. (For example,

†ap is the Fermionic creation operator corresponding to spin−
orbital ψp, and †ap is the Fermionic creation operator
corresponding to the transformed spin−orbital p .) This
Fermionic Hamiltonian can then be mapped to a weighted
sum of Pauli string operators acting on qubits. We leave the
Hamiltonian expressed in terms of Fermionic operators to
emphasize that the method is independent of the mapping
chosen. The expectation values | |† †U a a U( ) ( )p qref ref and

| |† † †U a a a a U( ) ( )p q s rref ref are the 1-RDM and 2-RDM

elements Dq
p1 and Dr s

p q
,
,2 , respectively. These quantities are

(after being mapped to qubit operators) measured on a
quantum computer with respect to the ansatz state
| = |U( ) ( ) ref in the same fashion as conventional VQE.
It is important to note that the optimization problem in eq 9

consists of two distinctly di"erent types of parameters subject
to di"erent types of constraints: the partial unitary V and the
vector θ (which typically consists of real numbers subject to
some bounds). Thus, it is natural to treat the two sets of
variables separately. In this work we adopt the procedure
originally proposed by OptOrbFCI in the classical setting. The
minimization problem in eq 9 is divided into two subproblems:
minimizing the energy with respect to V (keeping θ fixed) and
minimizing the energy with respect to θ (keeping V fixed). We
alternate between these two subproblems until some stopping
criterion is reached. Because this algorithm involves two
minimization subproblems (each with their own iteration

number counter) that are both repeated multiple times (where
this number of times is associated with an additional “outer
loop” iteration number counter), we specify which indices are
used to denote which type of iteration counter throughout this
paper in order to reduce any ambiguity:

• l will be used to denote the iteration number within the
minimization with respect to V ;

• m will be used to denote the iteration number within the
minimization with respect to θ (the same as what is
typically referred to as the iteration number within the
context of VQE without orbital optimization);

• n will be used to denote the outer loop iteration number
(i.e., the number of times the minimization subproblem
with respect to V has been conducted so far).

The superscript opt will be used to denote the optimal point
for each of the minimization subproblems within a given outer
loop iteration. The OptOrbVQE algorithm can be summarized
as follows:

1. Set the outer loop iteration number n = 0 and choose an
initial partial unitary transformation = =Vn l0, 0 and initial
VQE parameters θn=0,m=0. Choose an outer loop stopping
tolerance ϵouter.

2. On a classical computer, calculate the transformed
Hamiltonian H V( )

n
and use one of several known

mappings to generate the corresponding transformed
qubit Hamiltonian.

3. Initialize the ansatz state as |=U( )n m, 0 ref and perform
VQE on a quantum computer to obtain n

opt and the
estimated ground state energy = =E V( , )n n l n

opt
, 0 .

4. If | | <= =E V E V( , ) ( , )n l n
opt

n l n
opt

outer1, 0 1 , 0 , halt the
algorithm and return = =E V( )n n l, 0 , |U( )n

opt
ref , and

=Vn l, 0 as the optimal quantities of interest. Else, continue
to next step.

5. On a quantum computer, measure the 1-RDM and 2-
RDM elements with respect to the state |U( )n

opt
ref .

6. Initialize the partial unitary as =Vn l, 0 and perform the
minimization subproblem in eq 9 with respect to V
(using the 1- and 2-RDM tensors from the previous
step) to obtain Vn

opt .

7. Set =+ =V Vn l n
opt

1, 0 and =+ =n m n
opt

1, 0 . Optionally, a
small random perturbation can be added to + =Vn l1, 0 to
avoid shallow local minima.

8. Set n = n + 1 and repeat steps 2−8.

There are a few clear initializations = =Vn l0, 0 and =Vn l, 0 that
can be used in this algorithm. Throughout this work, we
choose = =Vn l0, 0 to be the permutation matrix that selects N
spin orbitals from the starting basis with the lowest Hartree−
Fock energy ordered by ascending energy. This is equivalent to
starting with a large basis but restricting the active space to
these N spin orbitals. This is not the only initialization that
could be used, but it is an intuitive one. In general, we can take
any M × N real matrix A and project it onto one which is a
partial unitary through the orthonormalization function:

= †A AQ Qorth( ) 1/2 (12)
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where Q and Λ together are a solution of the diagonalization
equation A†A = QΛQ†. We could, for instance, orthonormalize
a matrix whose elements are sampled from a random
distribution of our choice. The normal distribution or the
uniform distribution over some interval would be natural
choices. If P is the permutation matrix used in this work, then
on e a l t e r n a t i v e c h o i c e f o r = =Vn l0, 0 wou l d b e

+P M North( Rand( , )), where Rand(M, N) is a random M
× N matrix. Throughout this paper, the partial unitary + =Vn l1, 0
i n s t ep 7 o f the a lgor i thm i s chosen to be

+V M North( Rand( , ))n
opt , with the elements of Rand(M,

N) in this instance being sampled from the normal distribution
centered about mean 0 with a standard deviation 0.01. The
random perturbation matrix is added to help the method avoid
getting trapped in shallow local minima.
We end this section by noting the di"erences between this

proposed method and specific examples of methods in
categories mentioned in the introduction. (1) In contrast to
explicitly correlated and downfolded Hamiltonian parameters,
where the similarity transformation parameters are found as a
preprocessing step according to a predefined set of equations
or chemical intuition, OptOrbVQE (like other orbital
optimization methods) finds the optimal parameters by
minimizing an objective function. (2) Many of the techniques
referenced in the introduction such as the DUCC5 and CT-
F12 Hamiltonians,8 QDSRG,6 OO-UCC,10 A-OO-VQE,11 and
quantum CASSCF12 use a similarity transformation which
takes the form of a chemically motivated ansatz. The DUCC,
CT-F12, and QDSRG methods further approximate the
transformed Hamiltonian according to a second-order
expansion. In OptOrbVQE, the similarity transformation is
not constrained by the form of an ansatz and can take the form
of a general partial unitary. This partial unitary matrix is then
applied directly to the one- and two-body integral tensors over
the full orbital space, removing the necessity of any
approximations. In the other orbital optimization techniques
mentioned in the introduction, such as OO-UCC, SA-OO-
VQE, and quantum CASSCF, the use of a unitary trans-
formation over either the full orbital space or a subset of it
necessitates the partitioning of the full orbital space into core,
active, and virtual subspaces in order to reduce the problem to
a manageable size. The orbital optimization subproblem in
OptOrbVQE is more flexible, with the choice of active space
being determined automatically according to the minimization
of an objective function. The removal of core or virtual orbitals
as a preprocessing step can be employed, but it is not
necessary.

4. NUMERICAL RESULTS
Our implementation of the OptOrbVQE algorithm is a
combination of in-house code and code from the open source
packages Qiskit20 (Qiskit Nature 0.3.2, Qiskit Aer 0.10.4, and
Qiskit Terra 0.20.0) and PyTorch21 1.11.0. The method of
finding the optimal V with fixed θ is the same as that used in
the OptOrbFCI proposal paper: a projection method with
alternating Barzilai−Borwein stepsize.22 The code for this
optimizer was developed in-house using several tensor
functionalities of PyTorch. We choose to use PyTorch for
several reasons: (1) We find that it has an e!cient einsum
implementation which greatly speeds up the computation of eq
9. (2) It has support for automatic di"erentiation, which

enables e!cient computation of the gradient of eq 9 with
respect to V in the projection method. (3) It o"ers support for
GPU acceleration, which can speed up the calculation
significantly, especially for larger starting basis sets. The
subproblem of minimizing the energy with respect to θ uses
Qiskit’s VQE implementation.

4.1. Minimal Qubit Usage. In this section we investigate
the ground state accuracy achievable by OptOrbVQE when
using the same number of spin orbitals as a minimal basis set.
We then compare the results to VQE and FCI simulations
using basis sets of the same size or larger. Ideally, we would
only compare OptOrbVQE to VQE because this is a more
appropriate comparison than classical FCI methods. However,
we find that simulating VQE in Qiskit is much more
computationally expensive than carrying out an FCI problem
of the same size using PySCF. Thus, FCI results are a
convenient stand-in for VQE results that would be computa-
tionally infeasible. The assumption here is that the FCI ground
state energy serves as a lower bound for what is achievable by
VQE. In the best-case scenario where a su!ciently powerful
ansatz is used and VQE achieves convergence to the global
minimum, these values would closely match.
The classical optimizer used in VQE subproblem instances

in this section is L-BFGS-B.23 We use Qiskit’s AerSimulator in
combination Qiskit’s AerPauliExpectation algorithm to com-
pute expectation values of both the molecular Hamiltonian and
the observables involved in computing the 1 and 2-RDM. This
combination yields ideal, noiseless results. Thus, these
simulations serve to test the ability of the OptOrbVQE
algorithm to converge under ideal conditions, but not its
robustness to noise. We defer a study of the robustness to
noise of the method to Section 4.3. The stopping tolerances for
both the orbital rotation subproblem and the OptOrbVQE
algorithm as a whole are set to 10−5. The maximum outer loop
iteration number is set to 19 so that the VQE subproblem is
run at most 20 times.

4.1.1. H4. We begin by presenting classically simulated
results for H4, a toy model which consists of 4 hydrogen atoms
arranged in a square with an H−H distance of 1.23 Å. The
ansatz used is 2-UCCSD.24 In Qiskit, one has the ability to
repeat a base ansatz circuit n times to produce a more
expressive ansatz. When we refer to n-UCCSD, we mean an
ansatz which consists of the base UCCSD ansatz repeated n
times in this fashion. Using n-UCCSD has the e"ect of
increasing both the circuit depth and the number of
independent parameters by a factor of n over UCCSD. We
find that two repetitions are necessary for VQE in the STO-3G
basis to converge to within the chemical accuracy of the FCI
value (calculated using PySCF25 2.0.1) in the same basis for
the H4 toy model.
We set the number of spin orbitals to be 8 for H4, the

number of spin orbitals for this system in the minimal STO-3G
basis set. Figure 1 illustrates the convergence of the
OptOrbVQE algorithm as a function of the outer loop
iteration number for various starting basis sets. We compare
the results to that obtained from VQE in the 6-31G basis using
2-UCCSD as the ansatz. Under these conditions, VQE is using
16 qubits. Despite the fact that OptOrbVQE is using half the
number of qubits as VQE, we find that it achieves a lower
ground state energy for all the starting basis sets used. This
lower energy is achieved after just the n = 1 outer loop
iteration, which corresponds to carrying out the orbital
rotation subroutine once and the VQE subroutine twice. The
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energy is lowered further when cc-pVTZ and cc-pVQZ are
used as starting basis sets with further iterations.
4.1.2. LiH. For LiH, we use 1-UCCSD as the ansatz. We set

the number of spin orbitals for OptOrbVQE to be 12, the
number of spin orbitals for this system in the minimal STO-3G
basis set. We compute the ground state energy at the near-
equilibrium Li−H distance of 1.595 Å as well as the binding
curve of LiH.
Figure 2 illustrates the convergence of OptOrbVQE as a

function of the outer loop iteration number. We find that

OptOrbVQE achieves a lower energy than VQE in the 6-31G
basis after the n = 1 iteration. The energy is further improved
with additional iterations. In particular, OptOrbVQE using cc-
pVTZ as the starting basis surpasses the FCI energy in the cc-
pVDZ basis at the n = 7 iteration. OptOrbVQE starting from
the cc-pVDZ basis also approaches, but does not surpass, this
value. We also note that starting from a larger basis does not
always result in a more accurate value, as can be seen from
OptOrbVQE (cc-pVQZ starting basis) not achieving the same
accuracy as the other two starting basis sets.
Figure 3 illustrates the results obtained for the binding curve

of LiH. We can see that OptOrbVQE easily outperforms VQE
using the same number of qubits. OptOrbVQE consistently

achieves an energy lower than the FCI energy in the 6-31G
basis. OptOrbVQE also often achieves an energy lower than
the FCI energy in the cc-pVDZ basis, although this is not
guaranteed and sometimes fails to do so.

4.1.3. BeH2. In this section we test OptOrbVQE on BeH2, a
linear molecule with a near-equilibrium Be−H bond distance
of 1.3264 Å. 1-UCCSD is the ansatz used. The number of spin
orbitals used by OptOrbVQE is set to 14, the number of spin
orbitals for this system in the minimal STO-3G basis. Figure 4

illustrates the convergence of OptOrbVQE at the equilibrium
configuration. We find that starting from either the cc-pVTZ or
the cc-pVQZ basis set results in OptOrbVQE surpassing the
FCI energy in the 6-31G basis at the n = 2 iteration. Further
iterations result in improved energy. Starting from the cc-
pVDZ also surpasses the FCI (6-31G basis) but requires more
iterations to do so.

4.1.4. H2O. In this section we test OptOrbVQE on the H2O
molecule. The ansatz used is 1-UCCSD. The number of spin
orbitals used by OptOrbVQE is set to 14, the number of spin
orbitals for this molecule in the minimal STO-3G basis. Figure
5 plots the di"erence of the OptOrbVQE energy from the FCI
energy in the 6-31G basis for H2O at the near-equilibrium
configuration of O−H distance 0.9578 Å and H−O−H bond

Figure 1. Convergence of OptOrbVQE as a function of the outer
loop iteration number for H4 at the near-equilibrium H−H distance of
1.23 Å.

Figure 2. Convergence of OptOrbVQE as a function of the outer
loop iteration number for LiH at the near-equilibrium bond distance
of 1.595 Å.

Figure 3. Top: Dissociation curve of LiH. Bottom: Di"erence of
energy relative to FCI (cc-pVDZ).

Figure 4. Convergence of OptOrbVQE as a function of the outer
loop iteration number for BeH2 at the near-equilibrium Be−H bond
distance of 1.3264 Å.
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angle of 104.4778°. These results are di"erent from the other
systems presented in that while the method still easily
outperforms VQE using the same number of spin orbitals,
we do not observe OptOrbVQE using a minimal number of
spin orbitals to surpass the FCI energy in the larger 6-31G
basis. OptOrbVQE can however be observed to approach the
FCI (6-31G basis) energy at the milli-Hartree level, with the
energy di"erence converging to approximately 2.5 × 10−3

Hartree when using cc-pVQZ as the starting basis. One notable
feature about this convergence curve is that the rate of
convergence is most rapid up until the n = 3 iteration and then
hits a plateau. The energy then fluctuates until the maximum
number of iterations is reached, indicating the possible
presence of multiple local minima which di"er in energy at
the milli-Hartree level. A similar trend is observed when
starting from the cc-pVTZ basis, although the converged
energy accuracy is worse and the fluctuations are less
pronounced in this case. It is also worth noting that the 0th
iteration of OptOrbVQE outperforms VQE in Figure 5.
Because the initial partial unitary for OptOrbVQE is set to be
the matrix which selects the N lowest energy spin orbitals, the
0th iteration corresponds to starting with a large basis, but
reducing the active space to one the same size as the STO-3G
basis. Thus, using orbital optimization is often not necessary to
outperform VQE in the STO-3G basis. The main benefit of
orbital optimization is further accuracy improvements at the
milli-Hartree level.
4.2. Increasing Qubit Resources. One important feature

of OptOrbVQE is that the number of spin orbitals used is a
tunable parameter that can be set to any positive integer up to
the number used by the starting basis set. The previous
sections examined the performance of OptOrbVQE for various
systems when using a number of spin orbitals equal to the
minimal STO-3G basis. In this section we increase the number
of spin orbitals used by OptOrbVQE in order to examine the
potential for the method to further improve energy accuracies
as the capabilities of quantum computers improve with time.
We test OptOrbVQE on H2 using even integer numbers of
spin orbitals from 4 to 16. Qiskit’s AerSimulator and
AerPauliExpectation are used to obtain ideal noiseless results
as in Section 4.1. The optimizer used is L-BFGS-B and the
ansatz used is 1-UCCSD. Figure 6 plots the di"erence of the
OptOrbVQE energy at the near-equilibrium bond distance of

0.735 Å using OptOrbVQE and the FCI energy in the cc-
pVTZ basis (56 spin orbitals). The FCI energy in the cc-pVDZ
basis (20 spin orbitals) is also included for reference. The most
significant (but expected) feature of this plot is that the energy
accuracy obtained by OptOrbVQE can be improved by
increasing the number of spin orbitals that it uses. This
comes with the caveat that using more qubits does not always
result in a lower converged energy. Several plateaus can be
seen over the interval considered. For example, increasing the
number of spin orbitals from 6 to 8 does not result in
significantly improved energy when starting from either the cc-
pVTZ or the cc-pV5Z basis sets. Increasing the number of
qubits from 10 to 16 also does not appear to result in improved
energies when starting from the cc-pVQZ basis. Another
notable feature of this plot is that, for a given number of qubits,
starting from a larger basis set does not always result in lower
energy. This can be seen from OptOrbVQE starting from the
cc-pVQZ basis achieving a lower energy than starting from the
cc-pV5Z basis for 8 and 10 qubits. Finally, we note that, in
Figure 6, the green curve compares the logarithmic di"erence
between the energy obtained by OptOrbVQE starting from the
cc-pVTZ basis and the FCI energy in the full 56 spin−orbital
cc-pVTZ basis. The highest degree of accuracy obtained at 16
spin−orbitals is approximately 3 milli-Hartree. There are
several factors contributing to this discrepancy: (1) OptO-
rbVQE consists of two optimization subproblems, neither of
which is guaranteed to converge to the global minimum. Each
may converge to a spurious local minimum or within a
neighborhood of the global minimum. (2) The VQE
subproblem utilizes a wave function ansatz. This comes with
an associated ansatz representation error that is not present in
the classical FCI algorithm. (3) It is well-known that large basis
set expansions improve the ability of computational methods
to capture energy contributions that arise from electron
correlation e"ects, in particular dynamic correlation. Although
orbital optimization helps the method capture some of this
energy contribution, its smaller basis size precludes it from
capturing all of it.
The first two points listed here may also help to explain

some unintuitive behavior exhibited by some of the tests in this
paper. For example, in Figure 2, the largest starting basis used
by OptOrbVQE, cc-pVQZ, is the one which achieved the least
accurate energy among the three starting basis sets considered.

Figure 5. Convergence of OptOrbVQE as a function of the outer
loop iteration number for H2O at the near-equilibrium O−H bond
distance of 0.9578 Å and bond angle 104.4776°.

Figure 6. Converged energy of OptOrbVQE as a function of the
number of spin orbitals for H2 at the near-equilibrium bond distance
of 0.735 Å.
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This is counter to what one would intuitively expect, where the
more flexible variational space should give it the potential to
achieve the highest quality accuracy. Furthermore, several
plateaus are observed for all three starting basis sets. Similarly,
in Figure 6 there are several instances where increasing the size
of the variational space through an increase in the number of
qubits does not strictly result in an increase in accuracy but
rather appears to occasionally result in a plateau. There are a
few possible explanations for this behavior. We note that in
order for the benefits of an increased variational space to be
apparent in the final accuracy obtained, it is necessary for both
the orbital optimization and the VQE subproblems to converge
su!ciently close to their global minima and for the VQE
ansatz to have su!cient representation accuracy in the rotated
basis sets determined by the orbital optimization subroutine at
each iteration. If any of these conditions are not met, the final
energy accuracy may not reach its full potential. We defer a
more in-depth study on how to improve the convergence of
OptOrbVQE to future work. For example, one could
investigate incorporating adaptive ansatz strategies26,27 into
the VQE subproblem. The intuition behind this approach is
that an adaptive ansatz may be better suited for representing
the ground state of a system than a fixed ansatz when the basis
set representation itself is iteratively changing. A second
possibility would be to add a random perturbation to the initial
parameters of each VQE iteration. In these tests, a random
perturbation is added to the initial partial unitary to help the
orbital optimization escape from shallow local minima, but the
VQE subproblem may also benefit from a similar initialization.
4.3. Robustness to Noise. We now investigate the

robustness of the OptOrbVQE algorithm to noise, which we
carry out in two stages using the binding curve of the H2
molecule as a test system. In Section 4.3.1, we incorporate
statistical sampling as the only source of the noise. On
quantum hardware, this type of noise arises from the repeated
circuit preparation and observable measurement process. For
example, to measure the quantity | |†

U HU( ) ( )ref ref we
would prepare the circuit U n( ) times, measuring each of the
Pauli terms Pi in eq 4n times, and classically compute the
weighted sum of their expectation values. Because this form of
noise is independent of the ansatz circuit depth, starting with
this form of noise allows us to compare OptOrbVQE using a
smaller basis to VQE using a larger basis while keeping the
e"ects that would arise from the di"erence in circuit depth
between these two problem instances separate. In Section 4.3.2
we add a local depolarizing noise model to the statistical noise.
4.3.1. Statistical Sampling Noise. For the noisy simu-

lations, we choose COBYLA as the classical optimizer. Its lack
of a need to calculate gradient information makes it more
resilient to noise than L-BFGS-B. The ansatz used is 1-
UCCSD. The mapping used is Jordan−Wigner. 106 circuit
samples are used for observable measurements. OptOrbVQE is
set to use cc-pVQZ as the starting basis and uses 4 spin orbitals
in the transformed basis. We compare it to VQE in the 6-31G
basis (8 spin orbitals), using the FCI (6-31G basis) as a
baseline. Figure 7 illustrates the results obtained for these tests.
The outer loop stopping tolerance is set to 10−3. The error bars
are calculated internally by Qiskit, which records the statistical
variance σ associated with expectation values from n circuit
samples and returns the error as

n
.

We can see that, in the presence of statistical sampling noise,
OptOrbVQE retains its ability to achieve a lower ground state
energy than VQE while only using half the number of qubits
for interatomic distances 0.6 Å and greater.

4.3.2. Depolarizing Noise. In order to model the e"ects of
gate noise, we add a local depolarizing channel to each one-
qubit gate and a tensor product of two local depolarizing
channels to each two-qubit gate. This has the e"ect that every
time a one-qubit gate is applied, one of the three Pauli
operators (with equal likelihood) is also applied with
probability perror. For two-qubit gates, this probabilistic error
event occurs independently for each qubit involved. In this
work we set perror = 10−3. No error mitigation techniques are
used. Aside from adding gate noise, the methodology remains
the same as in Section 4.3.1, except that the ansatz is changed
from 1-UCCSD to a hardware-e!cient ansatz shown in Figure
8.

In Qiskit, this corresponds to the Real Amplitudes circuit
with the number of repetitions set to 2. The first layer of this
circuit prepares the qubits in the Hartree−Fock state. The
parameters are initialized to zero. We compare OptOrbVQE to
VQE (STO-3G basis), using the FCI (6-31G basis) energy as a
baseline. The results of these tests are shown in Figure 9.
We find that OptOrbVQE consistently achieves lower

energy than VQE when using the same number of qubits.
Unlike in Section 4.3.1 when only statistical sampling noise
was used, OptOrbVQE no longer achieves energy lower than
FCI in the 6-31G basis. It does, however, approach this
reference energy at the milli-Hartree level for several
interatomic distances.

Figure 7. Top: binding curve of H2 using 106 circuit samples. Bottom:
di"erence in energy from the FCI (6-31G basis) energy.

Figure 8. Ansatz used for H2 simulations with depolarizing noise.
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5. DISCUSSION AND CONCLUSIONS
One of the main challenges that exists today in quantum
computing is demonstrating quantum advantage on a problem
with practical utility. One such problem is calculating the
ground state of electronic chemical systems to high accuracy
when compared to laboratory results. In this work we have
demonstrated that OptOrbVQE o"ers a clear path toward this
goal in two ways: (1) When using a number of qubits equal to
that in a minimal basis, OptOrbVQE consistently achieves
higher accuracy than VQE using a minimal basis set. In many
cases it can even outperform VQE methods of larger basis sets
using a fraction of the number of qubits. As an aside, we also
note that because these numerical demonstrations used an
initial partial unitary which selects the subset of spin−orbitals
with the lowest Hartree−Fock energy, the zeroth OptOrbVQE
energy is equivalent to that which would be obtained by VQE
using an active space selected in this manner. Thus, we observe
that OptOrbVQE achieves more accurate results than VQE
when the starting underlying full orbital space basis is the same
as well. (2) The number of qubits used by OptOrbVQE is a
tunable parameter. Increasing the number of qubits typically
has the e"ect of improving the energy accuracy, which provides
a convenient method for systematically demonstrating
improved results as the capabilities of quantum computers
progress.
This improved performance comes at the cost of running the

orbital optimization and VQE subproblems multiple times.
While we find that our classical simulations can in some
instances utilize 10 or more iterations before the stopping
condition is reached, the bulk of the convergence typically
occurs during the first 2−5 iterations. These first few iterations
are typically su!cient for the method to surpass VQE and FCI
methods of larger basis sets. A user of this algorithm could
simply choose to limit the number of iterations to 2−5 and still
see most of the benefit of this method over using VQE with a
basis set of the same size or larger.
One final point to note is that although we have used VQE

to demonstrate this method, many other quantum eigensolvers
could be used in its place to achieve di"erent goals or to
improve the performance. The main criterion is that the
eigensolver returns an improved estimate for the eigenstate(s)
over its input state(s). For example, Quantum Phase

Estimation (QPE)28 would not be a suitable choice of
eigensolver because it returns an estimate of the eigenvalue
but does not return an improved estimate of the eigenstate
itself. However, an algorithm such as α-VQE29 that uses QPE
as a subroutine could be a suitable eigensolver because it
iteratively improves the estimation of the ground state. Other
suitable ground state eigensolvers that could be explored in this
orbital optimization framework include Quantum Imaginary
Time Evolution (QITE),16 variational QITE,17 Quantum
Monte Carlo,18 ADAPT-VQE,26 and qubit-ADAPT-VQE.27
Excited state eigensolvers could be explored as well. The three
most obvious candidates would be Quantum Subspace
Expansion (QSE),30 quantum Equation of Motion (qEoM),3
and EOM-VQE.31 These methods operate by first performing
the ground state search using an algorithm such as VQE and
then performing a classical postprocessing diagonalization step
to find low-lying excited states of the Hamiltonian. Thus,
OptOrbVQE could be used as a ground state solver for these
methods. Two other excited state eigensolvers for which it
would be straightforward to incorporate this orbital opti-
mization procedure would be multistate contracted VQE (MC-
VQE)32 and Subspace Search VQE (SSVQE) .33 These two
methods both apply an ansatz circuit to a set of mutually
orthogonal input states and minimize an objective function
consisting of a weighted sum of expectation values of the
Hamiltonian with respect to each of the resulting parametrized
states. OptOrbVQE could easily be generalized to “Op-
tOrbMC-VQE” or “OptOrbSSVQE” by modifying eq 9 to be a
weighted sum of the transformed Hamiltonian with respect to
mutually orthogonal parametrized states in the same manner as
these methods. Orbital optimization could also be applied to
the quantum Orbital Minimization Method (qOMM)34 by
modifying eq 9 in an analogous way. These methods all find
low-lying excited states simultaneously through the minimiza-
tion of a single objective function. Variational Quantum
Deflation (VQD)35 is di"erent from these other methods in
that it finds the low-lying excited states sequentially through a
series of minimization procedures. Thus, the application of
orbital optimization to VQD would be more involved than
simply modifying eq 9 but could still be investigated. We leave
the investigation of the application of the orbital optimization
procedure to these eigensolvers to future work.
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Hardware-Efficient Ansaẗze on a Quantum Processor. PRX Quantum
2021, 2, 020310.
(28) Aspuru-Guzik, A.; Dutoi, A. D.; Love, P. J.; Head-Gordon, M.
Simulated Quantum Computation of Molecular Energies. Science
2005, 309, 1704−1707.
(29) Wang, D.; Higgott, O.; Brierley, S. Accelerated Variational
Quantum Eigensolver. Phys. Rev. Lett. 2019, 122, 140504.
(30) McClean, J. R.; Kimchi-Schwartz, M. E.; Carter, J.; de Jong, W.
A. Hybrid quantum-classical hierarchy for mitigation of decoherence
and determination of excited states. Phys. Rev. A 2017, 95, 042308.
(31) Asthana, A.; Kumar, A.; Abraham, V.; Grimsley,
H.et al.Equation-of-motion variational quantum eigensolver method
for computing molecular excitation energies, ionization potentials, and
electron a!nities. arXiv, 2022, 2206.10502.
(32) Parrish, R. M.; Hohenstein, E. G.; McMahon, P. L.; Martínez,
T. J. Quantum Computation of Electronic Transitions Using a
Variational Quantum Eigensolver. Phys. Rev. Lett. 2019, 122, 230401.
(33) Nakanishi, K. M.; Mitarai, K.; Fujii, K. Subspace-search
variational quantum eigensolver for excited states. Phys. Rev. Research
2019, 1, 033062.
(34) Bierman, J.; Li, Y.; Lu, J. Quantum Orbital Minimization
Method for Excited States Calculation on a Quantum Computer. J.
Chem. Theory Comput. 2022, 18, 4674−4689.
(35) Higgott, O.; Wang, D.; Brierley, S. Variational Quantum
Computation of Excited States. Quantum 2019, 3, 156.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c00895
J. Chem. Theory Comput. 2023, 19, 790−798

798

https://doi.org/10.1038/s41534-019-0209-0
https://doi.org/10.1038/s41534-019-0209-0
https://doi.org/10.1103/PhysRevResearch.2.043140
https://doi.org/10.1103/PhysRevResearch.2.043140
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1021/acs.jctc.0c00421?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00421?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00421?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/2058-9565/ac0292
https://doi.org/10.1088/2058-9565/ac0292
https://doi.org/10.1039/D0CP04106H
https://doi.org/10.1039/D0CP04106H
https://doi.org/10.1039/D0CP04106H
https://doi.org/10.1103/PhysRevResearch.2.033421
https://doi.org/10.1103/PhysRevResearch.2.033421
https://doi.org/10.1088/2058-9565/abd334
https://doi.org/10.1088/2058-9565/abd334
https://doi.org/10.1088/2058-9565/abd334
https://doi.org/10.1103/PhysRevResearch.3.033230
https://doi.org/10.1103/PhysRevResearch.3.033230
https://doi.org/10.1103/PhysRevResearch.3.033230
https://doi.org/10.1103/PhysRevX.10.011004
https://doi.org/10.1103/PhysRevX.10.011004
https://doi.org/10.1103/PhysRevX.10.011004
https://doi.org/10.1021/acs.jctc.0c00613?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00613?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00613?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41586-021-04351-z
https://doi.org/10.1038/s41586-021-04351-z
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1137/16M1098759
https://doi.org/10.1137/16M1098759
https://doi.org/10.1137/16M1098759
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1088/2058-9565/aad3e4
https://doi.org/10.1088/2058-9565/aad3e4
https://doi.org/10.1002/wcms.1340
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1038/s41467-019-10988-2
https://doi.org/10.1103/PRXQuantum.2.020310
https://doi.org/10.1103/PRXQuantum.2.020310
https://doi.org/10.1126/science.1113479
https://doi.org/10.1103/PhysRevLett.122.140504
https://doi.org/10.1103/PhysRevLett.122.140504
https://doi.org/10.1103/PhysRevA.95.042308
https://doi.org/10.1103/PhysRevA.95.042308
https://doi.org/10.1103/PhysRevLett.122.230401
https://doi.org/10.1103/PhysRevLett.122.230401
https://doi.org/10.1103/PhysRevResearch.1.033062
https://doi.org/10.1103/PhysRevResearch.1.033062
https://doi.org/10.1021/acs.jctc.2c00218?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.2c00218?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.22331/q-2019-07-01-156
https://doi.org/10.22331/q-2019-07-01-156
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c00895?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

