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Cerebrovascular accidents like a stroke can affect the lower limb as well as upper extremity
joints (i.e., shoulder, elbow, or wrist) and hinder the ability to produce necessary torque for
activities of daily living. In such cases, muscles’ ability to generate forces reduces, thus
affecting the joint’s torque production. Understanding how muscles generate forces is a
key element to injury detection. Researchers have developed several computational
methods to obtain muscle forces and joint torques. Electromyography (EMG) driven mod-
eling is one of the approaches to estimate muscle forces and obtain joint torques from
muscle activity measurements. Musculoskeletal models and EMG-driven models require
necessary muscle-specific parameters for the calculation. The focus of this study is to inves-
tigate the EMG-driven approach along with an upper extremity musculoskeletal model to
determine muscle forces of two major muscle groups, biceps brachii and triceps brachii,
consisting of seven muscle-tendon units. Estimated muscle forces are used to determine
the elbow joint torque. Experimental EMG signals and motion capture data are collected
for a healthy subject. The musculoskeletal model is scaled to match the geometric param-
eters of the subject. Then, the approach calculates muscle forces and joint moment for two
tasks: simple elbow flexion extension and triceps kickback. Individual muscle forces and net
joint torques for both tasks are estimated. The study also has compared the effect of muscle-
tendon parameters (optimal fiber length and tendon slack length) on the estimated results.
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1 Introduction

The complex network of the central nervous system (CNS)
conveys neural commands to upper and lower extremities. Being
activated by neural signals, musculotendon units spanning a specific
joint produce the necessary torque to actuate that joint. Actuation in
upper and lower extremity joints together creates human movement.
Brain injuries like stroke can damage this system, preventing the
CNS from sending the necessary commands to generate muscle
forces. Loss of muscle strength leads to loss in torque generation
for upper and lower extremity joints and hinders patients’ ability
to do daily tasks. It is estimated one billion people around the
world suffer from neurological disorders [1]. Complete recovery
of functionality of the upper extremity in patients with neurological
disorders is only 25% [2]. A recovering patient requires rehabilita-
tion therapies to strengthen the injured muscles. Recent research
indicates motion capture system can detect kinematic movement
and provide necessary feedback to a specific rehabilitation task [3].
Additionally, estimating muscle forces as well as joint torques is
important to quantify the muscle recovery of a patient. Researchers
developed neuromusculoskeletal models to find muscle-tendon func-
tions and replicate human movements. Determining joint torques
from these models has been one of the major challenges. Inverse
dynamics is one way of estimating joint torque from given movement
data [4]. However, multiple muscle-tendon units about a single joint
create a redundancy that leads to indeterminacy in muscle force
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calculation from joint torques. To solve this redundant issue, an opti-
mization approach based on an objective function is required to cal-
culate the individual muscle forces [5]. Another approach to
estimating the muscle forces is through electromyography (EMG)
signals. Nerve stimulation of muscle can be measured as an electr-
ical activity directly from the muscle. Surface EMGs measure this
neural activity from surface muscles during human movement [6].
With measured EMG signals, joint torques can be computed
without [7-11] or with [12-20] a musculoskeletal model. Estimating
joint torque with EMG signals only (no musculoskeletal model)
usually requires additional dynamometers or force plates during the
experimental data collection [7,9]. Musculoskeletal models along
with experimentally derived EMG data were used by researchers
to simulate upper [21] and lower extremity movements [13-16].
EMG signals recorded from muscles around a specific joint drove
the muscle-tendon units of the musculoskeletal model through a
forward dynamics approach [20]. Individual muscle forces were
determined first with subject-specific muscle parameters (peak iso-
metric force of the muscle, muscle pennation angle, tendon slack
length, and optimal muscle fiber length) and kinematics-based vari-
ables (muscle-tendon length, muscle-tendon velocity, and moment
arms). Subject-specific scaled musculoskeletal models can provide
these parameters from motion capture data processed by inverse kine-
matics (IK) tool. OpenSim is one popular open-source platform to
run simulations using these musculoskeletal models [22]. Estimated
muscle forces can be used to determine joint torques according to
the model equations of motion which avoid the necessity of an
optimization-based approach.

Musculoskeletal models require muscle-tendon parameters like
maximum isometric force, tendon slack length, and optimal fiber
length to determine muscle forces. These parameters may vary
depending on the subject’s anthropometry, sex, or age [23]. True
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subject-specific determination of these parameters requires cadav-
eric specimen and is impossible to obtain from a living subject. A
generic assumption in the literature can be noticed where the param-
eters were taken from multiple cadaveric measurements [24]. Often
this approach failed to estimate an accurate representation of
muscle-tendon force due to the high sensitivity to these parameters
[25]. Scaling the muscle-tendon parameters to a specific subject
improves this estimation of muscle force as well as joint moment.
There are several ways existing in the literature that scale these
parameters, especially optimal fiber length and tendon slack
length. For example, OpenSim scales these two parameters by
simply keeping their ratio constant for a specific joint angle to
match the muscle-tendon unit length of the subject [22]. Another
approach is to optimize the differences in generic and scaled
models for a discrete number of joint angles [25]. Cerebrovascular
accidents like stroke can affect the lower limb as well as upper
extremity joints. Shoulder, elbow, or wrist can be affected and
hinder the ability to produce necessary torque for activities of
daily living (ADLs) [26]. Patients may require physiotherapy to
rehabilitate and improve their ability to perform daily tasks.
Digital human modeling is being employed to predict human
motion and plan necessary rehabilitation techniques [3,27]. EMG-
driven modeling can estimate these muscle forces and quantify
any loss of movement of the affected limb.

Most of the aforementioned studies were focused on the lower
extremity. This study explores joint torque estimation of the
upper extremity through EMG data on the targeted muscles, i.e.,
the EMG-driven approach with an upper extremity OpenSim
model to determine muscle forces for two specific elbow exercises
(elbow flexion extension and triceps kickback). Muscle forces
obtained by two major muscle groups (biceps brachii and triceps
brachii) consisting of seven muscle-tendon units will be compared
during this study. A pilot investigation was reported in Ref. [28].
Estimated muscle forces were used to determine joint torque pro-
duced by the elbow joint. Muscle parameters like optimal fiber
length and tendon slack length in the pilot study were adapted
from the literature. This study further explores the effect of
anthropometry-based scaling of those parameters on the joint
torque calculation.

2 Methodology

Figure 1 shows the flowchart for the methodology implemented
in this research. The process starts with in-lab experimental data
collection that obtains motion capture data of the movement and
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EMG signals of the target muscles. Obtained motion capture data
go through the IK tool of OpenSim along with musculoskeletal
model [29] to provide muscle-tendon length, muscle-tendon veloc-
ity, and moment arm for specific muscles. These parameters along
with processed EMG signals are taken as inputs for the
EMG-driven model that computes individual muscle forces. Once
the individual muscle-generated moment of a joint is calculated,
the total joint moment for a specific degrees-of-freedom (DOF) is
obtained through the summation of all individual muscles’ contribu-
tions. Details about these steps are described in the following
sections.

2.1 Electromyography-Driven Model. Joint moment contri-
bution of a certain muscle is determined from Hill-type muscle
models using Egs. (1a) and (1b) [20].

Mj(0) = 15(t). F™. a(t)fi(LY (0). (V2 () + £ (L (B)cos aj
j j i j

(la)

M (1) = M(t)cos ay + 17 (1) (1b)

where M;j is the moment about a given joint produced by the jth
muscle, rj is the moment arm of that muscle, FjOM is the peak isomet-
ric force, aj is the muscle’s activation obtained from the EMG
signals, a; is the muscle pennation angle, and EM and YM are the
normalized muscle fiber length and velocity, respectively.
(C©), £V} (0), and (L' () represent the normalized
muscle active force-length, passive force-length, and force-velocity
curves, respectively (Fig. 2). Hill-type muscle models describe
muscle-tendon length IMT as shown in Eq. (1b), where IM is the
muscle fiber length and I is the tendon length for the jth muscle.

Normalized lengths EM(t) and ! (t), and velocity VM(t) are cal-
culated from Egs. (2a) and (2b). Here, vMT is the muscle-tendon
velocity, 1].ST is the tendon slack length, and leM is the optimal
muscle fiber length of the jth muscle [20].

M leT(t) - ljST
L= ™ cos Q; (2a)
j
MT
MY (t)
Vi= 1o o (2b)
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Once the individual muscle moment of a joint is calculated, the
total joint moment for the ith DOF, 'MFMS(t), is obtained through
summation of all individual muscle contributions at the ith DOF
in Eq. (3), where n represents total number of muscles spanning

that DOF.

M) = (Mi() )

2.2 Experimental Data Collection. A healthy 30-year-old
male subject (mass 103 kg, height 188.1 cm) performed two differ-
ent tasks that require the elbow to produce torques. Task 1 was
simple elbow flexion extension. During this task, the shoulder
was kept fixed at a 30 deg humerothoracic elevation. Task 2 was
a standard muscle exercise called triceps kickback. Both tasks
were performed without any loads in hand. Five trials per task
were performed by the subject. The experimental protocol was
approved by the Internal Review Board (IRB) at Texas Tech
University.

The motion capture system was comprised of eight Eagle-4
cameras with ten retro-reflective markers placed on the right arm
during each task as shown in Fig. 3 (Motion Analysis Corporation,
Rohnert Park, CA). Details on the motion capture environment are
explained in Refs. [30,31]. Analog EMG signals were recorded with
Trigno Wireless Biofeedback System (DELSYS Incorporated,
Natick, MA) containing 16 surface EMG sensors. To calculate
muscle forces through EMG, three sensors were placed on the
biceps brachii, long head of triceps muscle, and lateral head of
triceps muscle. To make the study simple, biceps long and short
head, brachialis (BRA), and brachioradialis (BRD) muscles
shared the same EMG activation [29]. Similarly, triceps medial
adopted the same activity as triceps lateral.

EMG placement and surface preparation were done according to
guidelines established in Ref. [32]. To reduce active noises, any
excessive hair from the skin surface was trimmed. An alcohol
swab was applied to remove surface oils and other contaminants.
Motion capture (60 Hz) and analog EMG (1299 Hz) were recorded
simultaneously during each task using Cortex (Motion Analysis
Corporation, CA). At first, a static standing T-pose trial was per-
formed to be used for scaling purposes in OpenSim. Next,
maximum voluntary contraction (MVC) was recorded for each of
the target muscles [32]. These MVCs were later used to normalize
the EMG data. After a 15 min rest, the subject was instructed to
perform the tasks. Between each trial, a 5 min rest period was
assigned. For each task, the subject’s upper body was kept straight.
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The markers in motion capture data were labeled and filtered at
cut off 6 Hz frequency in Cortex (Motion Analysis Corporation,
CA) [29] (Fig. 4). EMG post-process was done using Visual-3D
(C-MOTION, Washington DC). Steps involved in processing the
EMG data are shown in Fig. 5. EMG signals are recorded by
placing electrodes on the skin. With activation of the muscle,
skin, and electrodes also makes a small movement inducing noise
to the signals [33]. EMG processing removes unwanted noise.
EMG post-process was done using Visual-3D (C-MOTION, Wash-
ington DC). Raw EMG data were first high pass filtered (cut off
50 Hz) to remove high frequency noise and prevent influencing
the signal. Then a full wave rectification was done to make the
signals all positive. The EMG signals vary in both positive and neg-
ative polarities. Thus, the mean of the signals will always be zero
and the mean value cannot be used as an indicator of the EMG
amplitude unless the signal is rectified. The rectified signal was
then low pass filtered with cut off frequency of 6 Hz to make the
result look like the “envelope” of the original signal [12]. A fourth-
order Butterworth filter smoothed out the data. Once processed,
EMG data were normalized using MVC data collected for each
muscle.

2.3 OpenSim Biomechanical Model. Moment calculation
implemented in Eq. (la) requires muscle-tendon length (IJMT),

muscle-tendon velocity (vaT), and moment arm (rj) for the jth
muscle. A generic upper extremity OpenSim musculoskeletal
model was used for this step as shown in Fig. 6 [29]. The model
includes seven DOF: three at the shoulder, two at the elbow, and
two at the wrist. The joints are actuated by 50 Hill-type muscle-
tendon units crossing the shoulder, elbow, forearm, and wrist [34].

The first step is to scale the model to anthropometrically match
the human subject. Static marker data along with the subject’s
body mass scale the body segments, muscle actuators, and inertial
properties of the model.

The IK tool in OpenSim calculates joint kinematics by tracking
marker positions from experimental data. This tool minimizes the
squared error between model markers and experimental markers’
positions and provides an optimal joint angle for each frame [29].
As tasks in the experiment do not require shoulder or wrist move-
ments, those coordinates in the model are locked. Time-dependent
variables such as muscle-tendon length (IMT(t)), muscle-tendon
velocities (VMT(t)), and moment arms (rj(t)J) are recorded in this
step. Time invariant muscle parameters are taken as constant at
first [29,35-38] as listed in Table 1. These muscle parameters are
usually derived from multiple cadaveric specimens, making them
acceptable for a wide range of subjects. Later optimal fiber length
and tendon slack length are optimized to subject’s anthropometry
as described in Sec. 2.4.
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Fig. 3
eight camera system, and (c) camera layout

2.4 Optimized Muscle  Parameters to  Subject’s
Anthropometry. Optimal fiber length (1) and tendon slack
length (ljST) of a specific jth muscle are scaled to the subject’s
anthropometry according to the methods described by Modenese
et al. [25]. With this method, muscle length and tendon length are
first normalized according to Egs. (2a) and (2¢). Equation (1b)
can further be expressed in terms of normalized muscle fiber
length and normalized tendon length in Eq. (3).

T = (" cos )™ + 1T (4)
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Lab experiments: (a) motion capture marker and EMG placement for the subject, (b) motion capture environment with

Unscaled upper extremity dynamic model [29] is chosen for this
step and named as “reference model”. Optimal fiber length and
tendon slack length for this model are assumed to be physiologi-
cally valid. Next, the reference model is scaled to the target sub-
ject’s anthropometry and named “scaled model”. I’ and 15T for
this model need to be calculated. For both models, each DOF is uni-
formly sampled to m number of points (k=1, 2, ..., m). For the kth
pose, Eq. (3) can be rewritten in Eq. (4).

M T
llj"[kT = (L cos aj)lfM + Lj,kljST 5)

(a) Processed motion capture data with ten markers and (b) corresponding marker

position in the OpenSim upper extremity model [29]
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I:Ifk and I:;k for all the sample points are calculated from the ref-

M M M T T T
erence model (Cy,, L,,..., Ljx and Lj, Ljs, ..., Ljy). Next,
muscle-tendon lengths for all sample points are taken from the

scaled model (IMT, IMT, ..., IMT). Now Eq. (4) can be expressed

Table 1 Muscle parameters from the literature [29,35—-38]

IJVM(cm) F ij () 15F(cm) o (deg)
Muscle [38] [36,37] [29,35] [38]
Biceps long head 11.6 525.1 27.8 0
Biceps short head 13.2 316.8 20.0 0
Brachialis 8.6 1177.4 5.4 0
Brachioradialis 17.3 276.0 13.3 0
Triceps long head 134 771.8 14.3 12.0
Triceps lateral head 11.4 717.5 9.8 9.0
Triceps medial head 11.4 717.5 9.1 9.0

(TRImed)
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Fig. 7 Flowchart on how the ID tool works

as follows for all the poses.

T

~M ~
MT — |OM ST
lj,l = (L, cos OLJ)Ij + lellj
MT - (M \[OM T ST
lj,2 = (L, cos U.J)lj + EJ,21J'

~M ~T
1’;’[‘: = (Lj,, cos C(j)lij + L jlmlJ.ST

As the above equations generate an over constrained linear
system, it is solved in least square sense to get the values of
optimal fiber length (I) and tendon slack length (I°T) of the jth

muscle.

2.5 Inverse Dynamics. In addition to EMG-driven modeling,
joint torques were also obtained using OpenSim native inverse
dynamics (ID) tool (Fig. 7). This tool determines net forces and
torques for a joint based on provided kinematics. The scaled mus-
culoskeletal model and kinematics were fed to the ID tool and the
total joint torque of the elbow was calculated for both tasks. The
range of joint torques obtained here will be compared with the
results obtained from EMG-driven modeling.

3 Results

Figure 8(a) shows each muscle’s moment of elbow joint for Task
1 using EMG-driven model. Among the muscles, biceps brachii
group (long head and short head) shows higher levels of moments
than the triceps group. Also, an upward trend can be noticed during
flexion and a downward trend for extension of elbow. The total joint
torque produced by all muscles for elbow flexion extension based
on Eq. (3) is shown in Fig. 8(b). A peak moment of around
25 Nm is achieved at the end of elbow flexion. After the peak,
the joint moment keeps decreasing during extension and finally
reaches a fixed value of 5 Nm.

A typical triceps exercise (triceps kickback) is performed by
the subject, where the same set of muscles is recorded through
EMG shown in Fig. 9(a). Similar to Task 1, the biceps long head
(BICLong) shows a peak moment of 8 Nm. Results show that
triceps group (long head, lateral head, and medial head) generates
negative moments throughout the task. Triceps long head
(TRILong) has the highest negative moment of around -4 Nm.
Summing up individual moments, Fig. 9(b) shows the net elbow
joint torque. During Task 2, the joint moment reached a peak of
8 Nm.

Range of joint torques obtained from the ID tool in OpenSim and
EMG-driven model are compared in Fig. 10. Results show good
comparison between the techniques with Task 1 slightly closer to
the ID results than Task 2.

4 Discussion

This study presented a method to integrate the EMG-driven
model and musculoskeletal model to estimate elbow joint torque.
Two major muscle groups containing seven muscle-tendon units
crossing the elbow joint were used. Two different tasks were per-
formed by the subject to collect necessary EMG and motion

JUNE 2023, Vol. 23 / 030901-5
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capture data. Among the tasks, Task 1 with elbow flexion-extension
without any load showed higher joint torque compared to Task 2.
From Figs. 8(a) and 9(a), it was noticed for both tasks biceps
brachii produced the highest moment, which agreed with the litera-
ture as biceps are the strongest flexors in the upper extremity [39].

EMG process and normalization play an important role in this
approach. Several methods to normalize EMG signals exist. For
example, some researchers took the maximum activation during a
task as the reference value for normalization [20,40]. In this
study, peak activation during MVC was taken as the reference to
normalize muscle activation computed from EMG. Each muscle
had different testing protocols to determine MVCs [32]. The differ-
ences in reference activation level affect EMG processing and may
affect the joint torque calculation. Even though MVC reference for
normalization obtained a good result for a healthy subject in this
study, the question remains how to obtain this value for a patient
who cannot perform necessary maximum contraction due to risk
of injury, muscle inhibition, or pain. In our future research, we
may try other normalization methods.

The moment calculation required several inputs from a musculo-
skeletal model. Muscle-tendon length, muscle-tendon velocities,
and moment arm were recorded in this study as a function of
joint angle. One of the important factors here was the geometric
adjustment of the musculoskeletal model to reflect different sub-
jects. OpenSim scaling with a static marker set was used. This
process scaled the inertial properties, body segments, and muscle
actuators geometry; but did not adjust the subject-specific muscle
parameters like maximum isometric force or pennation angle. As
determining subject-specific values of these parameters is
complex, we adapted their values from the literature. A sensitivity

030901-6 / Vol. 23, JUNE 2023
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test regarding these parameters may improve the estimation
[29,35-37].

Time invariant muscle parameters listed in Table 1 were taken as
constant during the preliminary study. Even though the parameters
in the literature were calculated based on multiple cadaveric speci-
mens, it is not ideal to assume each subject has the same value.
Subject-specific parameters may vary due to different muscle archi-
tectures in different subjects. Since it is not possible to measure
these in vivo in living subjects, optimization-based approaches
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Fig. 10 Range of jointtorque comparison for ID and EMG-driven
modeling approach for both tasks
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can estimate these parameters based on linear scaling of the model
to subject. To further check the validity of these parameters, optimal
fiber length and tendon slack length were optimized based on Mod-
enese et al. [25], as explained in Sec. 2.4. This approach used
anthropometry-based calculation to optimize the optimal fiber
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Fig. 12 Comparison of joint moment between the scaled model
and optimized model for (a) Task 1 and (b) Task 2
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length and tendon slack length for multiple poses of the
musculoskeletal model in different DOF. The results obtained
are shown in Figs. 11(a) and 11(b). The previous model (only
scaled, muscle parameters were taken from the literature) is
called “scaled model” and the new muscle parameter optimized
model is named as “optimized model”. A maximum of 11.7%
change in the optimal fiber length can be noticed in biceps short
head (BICshort). Brachioradialis showed the smallest change of
6.7%. As for tendon slack length, brachialis shifted most with a
20.3% change and triceps lateral head (TRILat) had the lowest
6.1% shift.

Figure 12 shows a comparison between the joint moments
predicted by the scaled model and optimized model for both
tasks. Only the optimal fiber length and tendon slack length
were optimized in this study as shown in Fig. 11. Joint moment
calculated with the optimized parameters shows a little deviation
during the flexion part of Task 1, whereas for extension, it
remains similar. As for Task 2, small variations can be noticed
during the overall task, but kept the same moment profile as the
scaled model.

Another limitation of this study is the inability to obtain subject-
specific peak isometric force for each muscle. This parameter is
directly related to subjects’ individual muscle volumes, which can
be obtained through MRI scans of the specific subject. Therefore,
we relied on the published literature to obtain these values
[36,37]. An appropriate estimation of this parameter may improve
the joint moment estimation for a specific subject.

Velocity and acceleration play an important role in dynamic
joint torque calculations [41]. A previous study that compared
static and dynamic joint torque for elbow found at lower speed
(less than 0.25 rad/s) gravitational components contributed most
to the joint torque [41]. But with the increase of velocity (more
than 1 rad/s) and acceleration, Coriolis-centrifugal and inertial con-
tributions became prominent [41]. As shown in Fig. 13, the
angular velocity and acceleration reached a maximum of 3 rad/s
and 12 rad/s, respectively. These high velocity and acceleration
values (i.e., dynamic case) contributed to a high joint torque for
Task 1.
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12 those inaccessible muscles can be obtained [45]. This will be our
future work.
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= B 5 Conclusion
E This study reported a method to estimate joint torque from EMG
?a’ 6 data and a musculoskeletal model and apply this procedure to cal-
g culate the elbow joint moment. The EMG-driven model required
§ 4 some muscle-tendon parameter values like maximum isometric
force, tendon slack length, pennation angle, and optimal muscle
5 fiber length. Other time-dependent variables like muscle-tendon
length, muscle-tendon velocity, moment arm around target joint
and, most importantly, muscle activation from EMG data was
0 5 1 5 R 4 S also needed for the calculation. Kinematic time-dependent variables
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Fig. 14 Joint torque for Task 1 if BRA and BRD are not
considered

EMG data from deep muscles like brachialis or brachioradialis
could not be obtained as they are not accessible by surface EMG
sensors. Some researchers used surface EMG to derive data from
brachialis muscle [42], but the possible interference from the
nearby muscles reduced the quality of the data [43]. Therefore, it
was assumed in this study that brachialis and brachioradialis
shared the same activity as biceps brachii [29]. This assumption
might carry some errors in the calculation of joint torque, as in
reality, their activation values might not be exactly the same. If
the contributions from these two muscles were not considered,
the maximum total joint torque for Task 1 would have been
lowered (Fig. 14) to around 10 Nm, which agrees with experiments
conducted by Peng et al. [44]. The inverse dynamics approach could
calculate joint moments based on kinematics from motion capture
data and does not require muscle forces. By optimizing the error dif-
ference of joint torque in these two methods (EMG-driven joint
moment calculation and inverse dynamics), muscle excitation of
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were calculated through a musculoskeletal model of the upper
extremity. From motion capture data, the inverse kinematics tool
in OpenSim was used to calculate the joint angles, thus obtaining
muscle-tendon length, muscle-tendon velocity, and moment arm.
EMG and motion capture data were collected for two specific
tasks involving the elbow. Joint torques were calculated for both
tasks and compared to each other. The method can be an important
tool to assess muscle-related injuries of the upper extremity, e.g., for
individuals with post-stroke.
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