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NUMERICAL ANALYSIS FOR INCHWORM MONTE CARLO
METHOD: SIGN PROBLEM AND ERROR GROWTH

ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

ABSTRACT. We consider the numerical analysis of the inchworm Monte Carlo
method, which is proposed recently to tackle the numerical sign problem for
open quantum systems. We focus on the growth of the numerical error with
respect to the simulation time, for which the inchworm Monte Carlo method
shows a flatter curve than the direct application of Monte Carlo method to
the classical Dyson series. To better understand the underlying mechanism of
the inchworm Monte Carlo method, we distinguish two types of exponential
error growth, which are known as the numerical sign problem and the error
amplification. The former is due to the fast growth of variance in the stochastic
method, which can be observed from the Dyson series, and the latter comes
from the evolution of the numerical solution. Our analysis demonstrates that
the technique of partial resummation can be considered as a tool to balance
these two types of error, and the inchworm Monte Carlo method is a successful
case where the numerical sign problem is effectively suppressed by such means.
We first demonstrate our idea in the context of ordinary differential equations,
and then provide complete analysis for the inchworm Monte Carlo method.
Several numerical experiments are carried out to verify our theoretical results.

1. INTRODUCTION

In quantum mechanics, an open quantum system refers to a quantum system
interacting with the environment. In reality, no quantum system is absolutely iso-
lated, and therefore the theory of open quantum systems has wide applications
including quantum thermodynamics [14], quantum information science [41], and
quantum biology [1]. Due to interaction with the environment, the quantum system
is irreversible [33], and its master equation can be obtained by Nakajima-Zwanzig
projection technique [36L/46], which is an integro-differential equation showing that
the dynamics is non-Markovian. When the coupling between the quantum system
and the environment is weak, Markovian approximation can be used to simplify the
simulation [24], while for non-Markovian simulations, one needs to apply more ex-
pensive methods such as QuAPT (quasi-adiabatic propagator path integral) [271[28]
and HEOM (hierarchical equations of motion) [17]. In this paper, we are interested
in the numerical analysis for the inchworm algorithm [5[7], which is a recently pro-
posed diagrammatic Monte Carlo method for open quantum system. The inchworm
algorithm was originally proposed in [9] for impurity models. In [5], the method
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is recast in a continuous form as an integro-differential equation, so that classical
numerical techniques can be applied.

In the integro-differential equation formulation of the inchworm method, the
time derivative of the propagator is written as an expression involving an infinite
series and high-dimensional integrals. Therefore, the numerical method involves
both a Runge-Kutta part for time marching and a Monte Carlo part to deal with
the series and integrals. In abstract form, we write the equation as

(1) (31—1: = RHS =ExR(X),
where Ex denotes the expectation with respect to the random variable X, and both
RHS and R(X) are functions of the solution w. While we motivate (1) using the
inchworm method, such type of equations also arises in many other contexts, and
thus our analysis applies in a wider context.

Consider using the forward Euler method as the time integrator, combined with

Monte Carlo estimate of the RHS, the numerical scheme is
ho

(2) “n+1:“n+ﬁZR(Xi(”)),
S i=1

where h is the time step, and Xi(") are random variables drawn from the probability
distribution of X. Such a scheme is highly related to a number of existing methods
such as the Direct simulation Monte Carlo [2[3], stochastic gradient descent method
[45], and the random batch method [I8]. The qDRIFT method proposed in [6] is
also a variant of (2)) by replacing the forward Euler method with an exact solver in
the context of Hamiltonian simulation. The scheme (2] can be easily extended to
general Runge-Kutta methods, which is found in [5] to be useful in the simulation
of open quantum systems. The numerical analysis of such a method has been
carried out for differential-type equations in several cases [16,[18/22]. When such
methods are applied to systems with dissipation [21[22], the numerical error can
be well controlled by the intrinsic property of the system for long-time simulations.
However, in quantum mechanics, where the propagators remain unitary for any ¢,
it is often seen that the error grows rapidly with respect to time in the real-time
simulations [426], as is known as the “numerical sign problem”, or more specifically
the “dynamical sign problem” in the context of open quantum systems [341[3540].

The purpose of the inchworm Monte Carlo method is to mitigate the numerical
sign problem when simulating the open quantum system by Dyson series expansion
[5l[7). The numerical sign problem, which will be further elaborated in Section [2.2]
refers to the stochastic error when applying Monte Carlo method to estimate the
sum or the integral of highly oscillatory, high-dimensional functions. This is an
intrinsic and notorious difficulty for simulating many-body quantum systems, such
as in condensed matter physics [25] and lattice field theory [10]. For open quantum
systems, the numerical sign problem becomes more severe as the simulation time
gets longer [34,[351/40]. Specifically, the average numerical error is proportional
to the exponential of ¢2, as introduces great difficulty for long time simulations.
Inchworm Monte Carlo method adopts the idea of “partial resummation”, and
has successfully reduced the numerical error in a number of applications [11}[13]
39]. However, as mentioned in [8], it is not totally clear how the inchworm Monte
Carlo method mitigates the numerical sign problem, despite some intuition coming
from the idea of partial resummation. In this work, our aim is to demystify such
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mechanism by a deep look into the evolution of the numerical error. We find
that the error of the inchworm Monte Carlo method grows as the exponential of
a polynomial of ¢. However, the source of such error growth is not the numerical
sign problem. The reason of the fast growth mainly comes from the amplification
of the error at previous time steps, which is more similar to the error amplification
in Runge-Kutta methods for ordinary differential equations. By separating these
two types of error growth, numerical sign problem and error amplification, we find
that partial resummation can be regarded as a tool to trade-off the two types of
error, as may help flatten the error growth curve in certain cases. We hope this also
helps understand a more general class of iterative numerical methods for computing
summations [231[311[32][3§].

In fact, such understanding of error balance can be already revealed in the con-
text of ODEs, which we will first focus on to save the involved notations in the
inchworm Monte Carlo method. Thus, in Section Bl we carry out the error anal-
ysis of differential equations for general Runge-Kutta methods with Monte Carlo
evaluation of the right-hand side. The results are of independent interests, and
the analysis also serves as a simple context to understand how partial resummation
transforms the mechanism of error growth from numerical sign problem to error am-
plification. Afterwards, a detailed analysis for the inchworm Monte Carlo method
will be given, which reveals the behavior of the error growth in the inchworm Monte
Carlo method, and explains whether/how it relaxes the numerical sign problem. In
Section 3] we introduce the inchworm Monte Carlo method based on an integro-
differential equation formulation, and we present the corresponding main results of
numerical analysis and their implication in Section [dl Our analytical results are
verified by several numerical tests in Section [B], showing the agreement between the
theory and the experiments. The rigorous proofs for the error analysis of differen-
tial equation and inchworm Monte Carlo equation are later given in Section [6] and
Section [[ respectively. Finally, some concluding remarks are given in Section

2. A STOCHASTIC NUMERICAL METHOD FOR DIFFERENTIAL EQUATIONS

To demonstrate the methodology of numerical analysis for the equations with
the form ([Il), we first consider the simple case of an ordinary differential equation:

du

(3) 3 = fGu), te[0,T],

where u : [0,7] — C? and the right-hand side f is (p + 1)-times continuously
differentiable. A general s-stage explicit Runge-Kutta method of order p reads

Un1 = U+ 0y biki,
i=1

@ i—1
ki Zf(tn—i—cih,un—khz:aijkj), i=1,---,s.
j=1

For simplicity, we assume that the time step h = T/N is smaller than 1, and ug
is given by the initial condition up = w(0). The error estimation of Runge-Kutta
methods is standard and can be found in textbooks such as [15].

As mentioned in Section [Il we now consider a special scenario where the right-
hand side of this equation can be represented as the expectation of a stochastic
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variable:
(5) f(t,u) = Ex[g(t,u, X)],  Vtu,

with X being a random variable subject to a given distribution. Inspired by the
Runge-Kutta method, we consider the following numerical scheme:

S
(6) Uns1 =Tn +h Y biki, 0<n <N,
i=1
where
_ 1N -1 A
(7) kjl = — g(tn—f—cih,ﬂn+h2aijkj,Xl(z))
S =1 j=1

with the initial condition 4y = u(0). Here X l(z) are independent samples generated
from the probability distribution of X.

In this section, we will look for the gap between these two numerical methods ()
and (6). In specific, we aim to bound the bias |E(uy — un)||2 and the numerical
error [E(|luy — ty|3)]*/2. By combining these errors with the error estimation of
Runge-Kutta methods, the final error bounds can be obtained simply by triangle
inequality:

[E(T) = un)lz < [[u(T) = unlle + [[E(un = un) |2,
E(lu(T) = an |32 < lu(T) = unllz + B (uy = an)I13)]2,

where ||u(T) — un||2 is the numerical error for the standard Runge-Kutta method,
whose analysis can be found in a number of textbooks.

2.1. Main results for differential equations. In this section, we will list the
main results of our error analysis. The results are based on the following working
hypothesis:

(8) Hvug(m)(t7u7X)|‘2 < M/7 ||vuf(m)(t7u)”2 < M/7 ”Vif(m)(t?u)”F < M//v

where f(™) denotes the mth component of f, and M, M’ and M" are constants
independent of ¢, u and X. For the Runge-Kutta solution, we define

i—1

o Var g(m) (tn +cih,up +h Z aijk;, X),
j=1

luRy |sta = max

=1

ax
38

d 3
[urK|sta = (Z |“g11<) Std> :
m=1
For simplicity, below we use R to denote the upper bound of all the coefficients
appearing in the Runge-Kutta method (4]). Precisely, we assume that
(9) \aij|,|bi|,|ci\ SRfOI‘ all Z,j

Thus, the recurrence relations of both the bias and the numerical error can be
established as:
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Proposition 1. Given a sufficiently small time step length h and a sufficiently
large number of samples at each step Ns. If the boundedness assumptions (8) hold,
we have the recurrence relations

(10)

_ _ gy 2 )
JE(uns1 = 1)z € (14 ah) [Bun = )z + o (E(lfun = nll3) + 3= lunsc )
and

(11)

~ 2 ~ 12 h? 2 a’h’ 4
E([[unt1 = tn41ll2) < (1 + BR)E(||lun —Un\|2)+ﬂ(E|URK|std+ m\“RK\m}
where o = 2°sRv/dmax(M',2sM" 2523 M2 M" R? 257 s> M"R?) and B =
max(4 + 253 M"2dR?s3 251 R252).

Next, we apply the two recurrence relations above and accumulate the two errors
step by step. We will reach the following estimates:

Theorem 2. Under the settings in Proposition [, we have
Bias estimation

[E(un —un)ll2

(12) h2 o h a2h4 max (o
< F(e -1+ OKT(F + W|URK|§td) (emaxteP)T — 1)] |urk|2a-
Numerical error estimation
274
(13)  E(fuy — ) < (7 1) (5 + sty unla ) Junsl?
2) = Ns SQRQNSQ RK|std RK|std*

Theorem (2] shows that although the stochastic scheme is biased, the bias plays
a minor role in the numerical simulation since the stochastic noise, estimated by
the square root of ([L3)), is significantly larger. It is also worth mentioning that the
constant 5 depends only on the Runge-Kutta scheme and the bound of the first-
order derivatives, while the constant o depends also on the bounds of the second-
order derivatives. However, in the estimate (I3]), the constant « only appears in
a term significantly smaller than h/N,. Thus, it is expected that the second-order
derivatives have less effect on the numerical error. This is also the case for the
inchworm Monte Carlo method to be analyzed in Section [7, and accordingly we
will give less details for the estimate involving second-order derivatives.

We will defer the proofs of Propositon [I] and Theorem [2l For now, let us discuss
the implication of these theorems and how this is related to the numerical sign
problem in the quantum Monte Carlo method.

2.2. Discussion on the relation between the numerical error and the nu-
merical sign problem. The above error estimation shows exponential growth of
the numerical error with respect to time. Such exponential growth is due to the
amplification of the error at previous time steps, as is well known in the numerical
analysis for ordinary differential equations, which is often estimated by the discrete
Gronwall inequality.

There exists another kind of exponential growth of error, which is typically
encountered in the stochastic simulation of quantum mechanical systems, called the
“numerical sign problem” [25]. Such a problem occurs when using the Monte Carlo
method to evaluate the integral or sum of a strongly oscillatory high-dimensional

Licensed to Hong Kong University of Science & Technology. Prepared on Mon Jul 3 22:28:22 EDT 2023 for download from IP 175.159.122.207.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1146 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

function. To understand how the numerical sign problem causes the exponential
growth of the numerical error, we consider the case where f(t,u) = —iH (¢)u and
g(t,u, X) = —iA(t, X)u. As an analog of quantum mechanics, we assume that H (¢)
is a Hermitian matrix, so that |Ju(t)||3 = ||u(0)||3 for any t. The solution of this
system of ordinary differential equations can be expressed by the Dyson series:

(14)
+o00 T rtm to
U(T)ZU(O)+Z/O / /O (—I)M(EXMA(I‘,M,XM)) (EXM,lA(tM—LXM—l))

. (]EXIA(tl,Xl))U(O) dtl e dtM_l dtM

Thus w(T) can be evaluated directly using the Monte Carlo method to approxi-
mate the integral, where M,t1,--- ,t); and Xy, -, X are all treated as random
variables. While different methods to draw samples exist [4], here we only consider
the simplest approach via the following two steps:

(i) draw M by the Poisson distribution with the parameter A = M’'T where
M’ is the bound of the first-order derivatives defined in (8]);

(ii) draw the time points (¢1,ta,-- - ,tar) from the uniform distribution U[{0 <
51 < < sy ST
The resulting distribution function of the random variable (M;tq,- - ,¢pr) is given
by
e AN M e MM

P(M;ty, - tm) = 0 TM = pa
67%)\]\/1

i represents the probability mass function of the Poisson
distribution, and 4 TM is the reciprocal of the volume of the simplex {0 < 51 < -+ <
sy < T}, since (t1,--- ,tp) obeys the uniform distribution on the simplex once M
is given. Let u(™™)(T) be the Monte Carlo approximation of u(7) based on one
sample obtained using this method, which is then formulated as

00E t1,1~ - (=M A(tar, Xar)A(tar—1, Xar—1) - A(t1, X1)u(0).
It is obvious that such an estimation is unbiased, i.e., Eu™™)(T) = w(T). Then
the standard error estimation of the Monte Carlo method yields
(15)

E[[u®)(T) — w(T)|* = E[lu™(T)||? ~ [|u(T)|3

S () s v

M=0

where the factor

u(num) (T) _

M!
At X0)u(0) 13 - g7 dta - dbar = [[u(T)]3

“+00
e
Z (M M/ / / E|A(tar, Xar)A(tar—1, Xar—1)

M= 0
~ A(ty, X1)u(0) |3 dty - dtar — u(T)]3
< [exp((d + 1)M'T) — 1]||u(0) |3,

where d is the number of dimensions of u. It can be observed that the numerical
error again grows exponentially in time. However, such exponential growth of the
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1147

error is not due to the error amplification in the Gronwall inequality. It comes from
the growing integral domain on the right-hand side of (I4]). Note that although the
integral domain expands as T increases, the magnitude of the infinite sum does not
grow over time (||u(T)||2 = ||u(0)]|2). This indicates that when T is large, strong
oscillation exists in the integrand of ([14)), resulting in significant cancellation when
taking the sum, which leads to huge variance for Monte Carlo estimation. This
intrinsic difficulty of stochastic methods is known as the numerical sign problem.

As we will see later, if not carefully dealt with, the numerical sign problem
can cause even faster growth of the numerical error. One possible approach to
mitigating the numerical sign problem is to use the method of partial resummation,
which only takes part of the summation (instead of the whole integral), and use the
result to find other parts of the sum. For example, suppose we want to compute
the infinite sum:

s=1+a+a’>+a®+ -,

we can choose to take the sum directly using the Monte Carlo method. Alterna-
tively, we can also first take the partial sum s; = 1 + a, and then use the result
of s1 to compute another partial sum s3 = (1 + a?)s;. Afterwards, s3 can be used
to compute s7 = (1 + a*)s3, and so forth. It can be seen that the error in the
computation of s; will be amplified when computing s3, and the error of s3 will be
amplified in the computation of s7. This illustrates the idea of partial resummation,
which partly transfers the sign problem to error amplification. Below we would like
to demonstrate that sometimes the Runge-Kutta method can also be considered as
the partial resummation of ([14)), which changes the underlying mechanism of the
error growth.
Consider applying the forward Euler method to the equation

(16) i—? — LiH(u,  H(t) = ExA(t, X),

so that the numerical scheme is

h
g1 = Up — i Y Altn, X"
S =1
When n = 0, the scheme gives
h o
(17) Uy = uf ZA (0, X Yu(0).

Ns =1

If we view the underlined term as a special Monte Carlo method to evaluate the
integral

/h EA(tl, X)U(O) dtl,
0

for which we only take one sample of ¢; locating at t; = 0, then u; turns out to
be part of the right-hand side of ([14]) by reducing the integral domain from 7" to h
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and only considering M = 1. Next, this partial sum u; is used to compute us:

Uy =1y —i-— Y Alty, X
S =1

Ny (0)

A(0, X A(h, X

_u(O)—i% %) 5 ( )u(())
=1
p2 [ N,
1 0
+ (1) 15 < A(h, X} >)> (Z A(0, X! ))> u(0)

S =1 =1

2h
%u(O)—l—/ (-)EA(t1, X)u(0) dtq

2h
/ / —)2(EA(ts, X)) (EA(t1, X))u(0) dt; dts,

which can again be considered as the partial sum of ([I4]). For further time steps,
this can also be verified. As is well known, the error of the forward Euler method
may accumulate as the solution evolves, and therefore this example again shows
the change of the mechanism for the growth of the error.

However, our error estimate in Theorem [2] seems to suggest that shifting the
numerical sign problem to error amplification does not flatten the error curve,
which still grows exponentially. The reason is that our error estimation does not
make any assumption on the stability of the Runge-Kutta method, as leads to the
exponential growth of the error regardless of the scheme and the problem. Again,
let us take (16) as an example and apply the second-order Heun’s method. Then
the deterministic scheme and the stochastic scheme are, respectively,

(18) Uny1 = (I —hL)u, and Upi1 = (I — hA)ty,
where
1
D) [I(H(tn) Hit n+1)> +hH(t n+1)H(tn)} )
i ON )
5 Z ( tnaX + A( n+17X ))
N, =1

1 & 1 &
+h (FZA(W, f”)) (FZA(t"’Xl(1)>>]'
S =1

5 =1
By straightforward calculation, we can find that
Elltnt1 — Gnr1[3 < |11 = ALIZEup — Gnll3 + RZE[|(L£ — A)an|l3.

On the right-hand side, the second term can be bounded by the standard Monte
Carlo error estimate. For the first term, if we assume that H(¢,4+1) and H(t,)
are both Hermitian matrices, and H(t,41) — H(t,) = O(h), then || — hL|j3 =
1+ O(h*). Therefore when h is small, the exponential growth of the error can be
well suppressed, since

lim (1+Cr*T/"h =1
h—0t

for any positive constants C' and T. However, for large time steps such that || —
hL||2 is significantly larger than 1, the error still grows exponentially. In general, for
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1149

a stable Runge-Kutta scheme, the constant 3 in the coefficient (1+/h) appearing in
(@I can be negative or a positive o(1) quantity. In this case, partial resummation
indeed helps reduce the error growth. One example of applications is the method
of qDRIFT proposed in [6], where the total Hamiltonian is also computed using a
stochastic method. A symplectic time integrator is utilized therein so that the error
growth is also well suppressed. Note that the paper [6] provides only an estimate
of the bias for qDRIFT, while has not considered the full numerical error. As we
have discussed, the bias is in fact not the major part of the error.

The analysis of such a simple ODE sketches the idea how the numerical sign
problem can be mitigated in the algorithms with partial resummation. For open
quantum systems, the inchworm Monte Carlo method, which has been claimed
to have the capability of taming the numerical sign problem [9], is one option to
apply partial resummation to the corresponding Dyson series. However, due to the
existence of the heat bath, the evolution of the quantum state is non-Markovian, and
the equation that the inchworm Monte Carlo method solves can only be formulated
as an integro-differential equation, so that one cannot simply apply a symplectic
scheme to suppress the error growth. For this reason, the situation of the inchworm
Monte Carlo method is much more complicated due to the nontrivial behavior of
the error amplification. A detailed discussion can be found in the following.

3. INTRODUCTION TO INCHWORM MONTE CARLO METHOD

We study an open quantum system described by the von Neumann equation for
the density matrix p(t)

e
"t
where the Schrodinger picture Hamiltonian H is a Hermitian operator on the Hilbert
space Hs ® Hp, with Hs and H;, representing respectively the Hilbert spaces asso-
ciated with the system and the bath of the open quantum system. The operator
H consists of the Hamiltonians of the system and the bath, as well as the coupling
terms describing the interaction of the system and the bath. Assuming that the
coupling term has the tensor-product form, we have

(19) = [H, p| == Hp — pH,

H=H,Id,+1ds ® H, + Wy @ Wp,

where H, and W, are Hermitian operators on Hs, H, and W} are Hermitian op-
erators on Hp, and Idg, Id, are the identity operators for the system and the bath,
respectively. In our paper, we take the common assumption that the bath is mod-
eled by a larger number of harmonic oscillators, and we only consider the simplest
system modeled by a single spin. Such a problem is often used as benchmarks, as
it exhibits most difficulties in the treatment of the system-bath coupling, and is
known as the spin-boson model to be introduced below.

3.1. Spin-boson model. As one fundamental example of open quantum systems
[121[201/44], the spin-boson model assumes that

L
H, = span{|1), |2)}, ® (L*(R%))
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1150 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

where L is the number of harmonic oscillators in the bath. The corresponding
Hamiltonians are

L

Hy=c6.+ N6y, Hy=)Y ~(p} +wid}).

1=1
Here 6., 6, in H, are Pauli matrices satisfying 6, |1) = |2), 6, [2) = |1), 6.|1) =
1), 6. |2) = —]2), and the parameters €, A are respectively the energy difference
between two spin states and frequency of the spin flipping. In the bath Hamiltonian
Hy, the notations py, §; and w; are respectively the momentum operator, the position

operator and the frequency of the [th harmonic oscillator. The coupling operators

are given by
L

W, =0, Wy :ch(jlv
1=1

where ¢; is the coupling intensity between the Ith harmonic oscillator and the spin.

The density matrix solving (I9) can be formally written as p(t) = e p(0)eltH
and we assume its initial value has the separable form p(0) = ps ® p, where the
bath pp commutes with the Hamiltonian H;. We are interested in the evolution of
the expectation for a given Hermitian observable O = O; ® Id, acting only on the
system part, defined by
(20)
(O(t)) :=tr(Op(t)) =tr(Oe " p(0)e') =tr(ps ® ppe* Oe ) =tr,(psGe(2t,0)),

where we need to evaluate the full propagator G¢(2t,0) = try(ppe' Oe™11) €
C?*2, The subscript “e” stands for “exact” which is used to distinguish G, from its
numerical solutions later. The time parameters 0 and 2t are defined on the “Keldysh
contour” [19], where we consider e Oe™*# as the operator evolving the quantum
state for time ¢ using the Hamiltonian H, applying the observable operator O, and
then evolving the quantum state for another period of time ¢ using the Hamiltonian
—H. Thus the total time of evolution is 2¢, and the parameters 0 and 2t in G.(2t, 0)
denote the initial and final times of such evolution, respectively. This notation can
also be generalized to the evolution restricted on a section of the Keldysh contour
from s; to sp as Ge : T — C2*2) where T = {(s¢,8) | 2t > s¢ > s > 0}. The
precise definition of Ge(s¢, si) is

trb(pbeisbee’i(sf’S‘)He’is‘H”), if 5 < s¢ <'t,
Ge(st, 81) = { try(ppel P50 Hoemilsims0) H =it =s) Hy ), ift <s < s,
trb(pbei(ztfsf)H},ei(Sf7t)HOefi(tfsi)HefiSiHb)’ if 5 < t S S.

It can be seen that in the case s; < t < s¢, if we replace H, with H in the definition,
the result becomes identical to the definition of G.(2t,0). Since H, is the bath part
of H, the full propagator Ge(st, si) can be considered as a partial summation of
Ge(2t,0) (see [5L[7] for details). The function Ge(sg, si) is discontinuous at sy = ¢
and s; =t when the operator O is applied. While we only consider the spin-boson
model in this work, our analysis can be extended to higher-dimensional Hilbert
space H, without difficulties.

Due to the high dimensionality of the space Hp, it is impractical to solve e
directly. One feasible approach is to apply the method of quantum Monte Carlo to
approximate (O(t)) numerically based on the Dyson series of propagator Ge(2t,0)
which will be introduced subsequently.

+itH
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1151

3.2. Dyson series. It is well known that Ge(st, si) can be expanded into the fol-
lowing Dyson series (for derivation, see [5]):

(21)
Go(st,51) = GO (51, 51)

“+o00
+y M (—1)#E<YO) (g 5, 5)-£0(3) d3,  for (sg,5)€T.

M=1 s¢>8>s;

Here § = (sy,8m—1,+-,81) is an M-dimensional vector denoting a decreasing
time sequence, and #{8 < t} denotes the number of components in § that are less
than t. The integral with respect to § is interpreted as

St pSM S2
/ ¥(8)ds = / / .. / (8)dsy - -dspr_1 dsyy.
s£>8>s; Si i Si

In the integrand of (2I)), the functional 2/(*) is associated with the system part,

defined by
(22)
U(O)(Sf7 §a Si) = GgO)(va SM)WSGgO)(SMa SM—l)Ws T WngO)(S% Sl)WngO)(Sla 3i)7
where
e i(skir—sk)He if s, <sp1 <t
(23) Ggo)(5k+1, Sk) = e_i(sk_s"+1)H5, ift<sp < Sk41,

e—i(t—3k+1)HsOse_i(t_sk)HS, if Sk < t S Sk+1-

Such a form is related to the operator Wy in the interaction picture. The function
L£©) comes from the contribution of the bath, which is computed using the Wick’s
theorem [37]. It has the form

0, if M is odd;
qug(g) H(Sk,sj)Eq B(sk,s;), if M is even,

where B : {(12,71) | 11 < 12} — C is the two-point bath correlation whose general

definition is given in [7]. Later in the numerical experiments, we will specify the
formula of B(-,-) for the spin-boson model. The set Q(8) is given by:

(25)
Q(SM> 781) = {{(Sklvsjl)v"' 7(8191\4/2781'1»1/2)} {jlu"' 7jM/27k17"' 7kM/2}

(24) E(O)(SM,"' ,81) = {

={1,--- ,M},jy<k foranyl=1,--- ,M/2},

which includes all possible pairings of the set {s1, s2,- -, sp}. For example, when
M = 4, we have

Q(84783782751) = {{(‘94783)7(82751)}7 {(34782)7(53781)}7 {(84751)7(‘93782)}>}7

and thus
(26)
L) (s4, 83, 80,51) = B(s2,51)B(54, 83) + B(s3, 51)B(4, 82) + B(s4, 51)B(s3, 52).

For convenience, this is often expressed by the following diagrammatic equation:

(27) LO (54,83, 82,81) = e+ LTSN LN,
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1152 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

where each diagram refers to a product B(-,-)B(-,-) and each arc connecting a pair
of bullets denotes the corresponding two-point correlation. For general M, the value
of the corresponding bath influence functional is the sum of all possible pairings,
and the number of these diagrams is (M — 1)!l.

To evaluate Go(sg, s;), one may truncate the Dyson series at a sufficiently large
integer M and evaluate those high-dimensional integrals on the right-hand side
using Monte Carlo integration, resulting in the bare dQMC. More specifically, we
replace each integral in (2I)) by the average of N, samples of time sequences, and
the Dyson series is approximated by

(28)
Ge(st, 81) = Ggo)(sf, s

i)
M N,
1 u (Sf — Si)M . s (i (i
+ ) N > M M (1) <O (5, 8, 5) L0 (3],
M=2 S =1 )

M is even

where each time sequence §5\Z) = (sgi), e ,s%}) is drawn independently from the

uniform distribution U([s;, s¢]™) and then sorted such that sgi) < séi) << sgcf)
Note that the bath influence functional vanishes when M is odd, which is why the
right-hand side of (28)) only sums over terms with even M. For the same reason,
the truncation M should also be chosen as an even integer.

The numerical solution obtained via bare dQMC will also encounter the dynam-
ical sign problem: for any given even integer M, the function £ is the sum of
(M —1)!! terms, and each is bounded by .#*/2 upon assuming | B(-, -)| has the uni-
form upper bound .. Similar to our analysis for (I5]), the numerical sign problem
of (21) can be quantified by the following bound of variance [5, Section 5]:

(29)
+oo
(st —s)™ 1" M opMy2) _ (W[ 122 (st — s1)?
A;::Q = (M = DU (WM 2M2)” = exp > 1.
M is even

One can see from the bound above that the variance increases exponentially with
the square of the length of the time interval, making long time simulations extremely
difficult. To mitigate this fast error growth, the inchworm Monte Carlo method was
introduced in [5l[7], which will be introduced in the subsequent section.

3.3. Inchworm Monte Carlo method.

3.3.1. Integro-differential equation. In [5, Section 4], the full propagator has been
proved to satisfy the following integro-differential equation:
(30)

8Ge(8f, Si)

H e s 91
D5 iH;Go(st, 81)

= sgn(sf —t)

+oo
+ 0y 1M+1/ d3(— 1)< W (s, 3, 51) L5, 5) |-
M=1 sg>8> s
M is odd
The equation holds for the initial time point s; € [0,2¢]\{t} and the final time
point s¢ € [si,2t]\{t}, and satisfies the following “jump conditions” due to the
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1153

discontinuity of G (s, s;):
lim Ge(st,s1) = Os lim Go(st, si),

(31) sg—tt sg—t—

lim Ge(st, s1) = lim Ge(st, $1)Os.

Si—t— si—tt
In addition, (B0) also satisfies the boundary condition G.(s’,s") = Id for all 0 <
s’ < 2t.

In the integrand of (BQ)), U is defined similarly to U () in the Dyson series with
the bare propagator Ggo)(~, -) replaced by the full propagator G(-,-):
(32) U(st, 8, 1) = Gelst, sar)WsGe(Sar, Snr—1)Ws - - WGe(s2,51)WGe(s1, 5i).
The definition of the bath part £ is also similar to £(©):
(33) L(st, 80, ,81) = Z H B(sk, s;),
q€Q°(s¢,5) (sk,55)€q

where Q° is a subset of Q appearing in £(®) which only includes “linked” pairings,
which means in its diagrammatic representation all points are connected with each
other using arcs as “bridges”. For example when M = 3, L(st, s3,82,$1) only
contains one linked diagram in (27)):

(34) £(8f783,82781) = @ZB(Sg,Sl)B(Sf,SQ).
Another example for M =5 is given by
(35)

ﬁ(sf, S5, 84, 53, 52, 81)

S P LR LT LSS0,

= B(s3,51)B(s5,$2)B(s¢, 84) + B(s4, 51)B(s5, s2) B(s¢, s3)
+ B(s4,51)B(s¢,52)B(ss5,53) + B(s5,51)B (54, 52) B(s¢, 53)

which does not include the unlinked terms in the bath influence functional
E(O)(Sf,35,34,83,32,81) such as

v LN i= Bsy, 51)B(ss, 53)B(st, 84),

@ = B(Sg7 Sl)B(Sf, 52)B(35: S4>a

where the pairs corresponding to B(sz, s1) in the first diagram and B(ss, s4) in the
second diagram do not link to the rest part of the diagrams via the arc bridges.
Despite the smaller number of the diagrams included in £($,, -+ ,s1) compared
to £ (s,,,---,s1) in Dyson series, this number also grows asymptotically as the
double factorial e=!(m — 1)!! [42]. Therefore, the modulus of L(s¢, spr, -+, s1) for

M+1

given odd M is similarly assumed to be bounded by M!|.¥ 2.

The relation between equation ([B0) and the original Dyson series (1)) is sim-
ilar to the relation between (B) and (14]). However, due to the non-Markovian
nature of the propagators, partial resummation cannot reduce the series (21)) to a
differential equation, and therefore the equation holds an integro-differential form.
Nevertheless, by partial resummation, the series in integro-differential equation (30)
converges much faster than Dyson series (21]), allowing us to truncate it to get a

(36)

)
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1154 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

reasonable approximation. In this paper, we assume that the series in ([B0) is trun-
cated up to a finite M, which can provide sufficiently good approximation to the
original equation. For convenience, we write the integro-differential equation with
truncated series as

0G(s¢, 83
(37) DEL0 ) — s — 1. Gilst, ) + Mo, G,
where
(38)
H(st, Go, $1) := sgn(sg—t) Z M“/ {S<t}W <U(sg, 8, 81)L(s¢, 8) dS.
5f>s>s,

M is odd

Remark 1. The original inchworm algorithm proposed in [7, Section 3] was not
introduced using the integro-differential equation. Instead, it writes the full prop-
agator G(st, s;) in a form similar to the Dyson series:

(39)
+oo
G(st,8i) = Gs, (81,8 Z / 1)#E<t M

f>8>51

M is even

X G, (51, 80)WsGs, (501, 50— 1) W - - - Wi Gs, (52, 51) W Gs, (51, 51) Lip(5) dS,
where s4 € (si, s¢) and

G(s¢, 51), if 5; < sp < sy,
G, (s1,81) = Ggo)(sf, Si), if 54 < 53 < s,
Ggo)(Sf, ST) G(ST, Si), if 5; < 1 < Sf.

The bath part £;,(5) in (B9) is the sum of all the “inchworm proper” diagrams
with nodes . The set of inchworm proper diagrams includes all linked diagrams,
and we refer to the readers to [7] for its precise definition. The integro-differential
equation ([BQ) can be derived from (B9) by setting s¢ — s4+ to be infinitesimal.

3.3.2. Numerical method. Similar to the case of the differential equation, we may
use general explicit time integrator to solve (B7) numerically. In this work, we
focus on the numerical method proposed in [5], which is inspired by the second-
order Heun’s method:

:;Jrl.,m = (I + Sgn(tn - t)leh)Gn,m + thv

1 . 1 . X
(40) Gnirim = (I + Esgn(tn — )iHh) G + §sgn(tn+1 — iHhG,

1
where h = ¢t/N (we again require h < 1) is the time step length, and G, ., de-
notes the numerical approximation of the solution Ge(nh, mh). Different from the
standard Heun’s method for ODEs, the slope K; has to be computed based on a
number of previous numerical solutions

(41) gn,m = (Gerl,m; Gm+2,m+17 Gm+2,m§ e ;Gn,nflu te 7Gn,m)'
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1155

The explicit expression for K7 is given by

(42)

M
K1=F1(g,,,,):=sgn(t,—t) Z M+1/ 1)#{§<t}WgIh,G(tn,SM)VVs'"Ws
M= >s>tm
M is odd

X I, G(s1, tm)L(ts, 8)dS,

where I, G(+, ) is obtained by piecewise linear interpolation on the triangular mesh
shown in Figure [l such that I,G(¢;,tx) = G, for all integers m < k < j < n.
Similarly, K5 is given by

(43)
K> = Fa(95,,m)

i=sgn(tp —t) Z M“/ DFE<BW LG (b1, s00) W - - W
77+1>S>tn7

]\/I is odd
X I;;G(Sl7 t?n)ﬁ(tn+1, g)dg,

where g5, ., = (9,.m;Gnt1ns  Gritma1,Gny1n) and IFG(-, ) is the linear
interpolation such that

I;;G(tj,tk) _ Gjﬂca lf (]a k) 7& (n+17m)a

rz-l—l,ma if (]ak) = (n+17m)

To implement this scheme, we compute each G 1 in the order illustrated in Figure
[l Specifically, we calculate the propagators column by column from left to right,
and for each column we start from the boundary value G;; = Id (red “e”) locating
on the diagonal and compute from top to bottom.

8

< St
0] t 2t

FIGURE 1. The uniform mesh and the order of computation for

N=5
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1156 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

Due to the jump conditions (31]), we need a special treatment for the two discon-
tinuities at Gy i (green “o”) and G; n (blue “@”) to achieve second-order conver-
gence. In the numerical scheme, we keep two copies of G or G y representing

the left- and right-limits when s — t*:
(GN+,k>GN*,k:) and (Gj,NJrij,N*) for 0 S k S N — 1,N+ 1 S] S 2N.

Here Gy=+ and G; y+ are, respectively, the approximation of lim,_,,+ G(s, kh)
and lim,_,;+ G(jh,s). The relation Gy+j = OsGy-j and G; v- = G, ny+Os
are immediately derived from the jump conditions. Moreover, we note that the
boundary value on the discontinuities are given by: Gy+ ny+ = Gy- y- = Id and
Gn+ n- = Os.

In the implementation, we need to follow the rules below while evolving the
scheme (4Q) near the discontinuities:

(R1) When n = N — 1, the quantities G, ,, and Gpy1,, are regarded as
Gy\- ., and Gy- ,, respectively, and sgn(tp1 — t) takes the value —1.
When n = N, the propagator Gy, ., is regarded as G« m and t, —t takes
the value 1.

(R2) The value of G,,41 n+ is set to be OsG - 5 the value of G, y- is set
to be G111 n+Os.

(R3) sgn(ty- —t) = —1, sgn(ty+ —t) = 1.

(R4) The interpolation of I,G and I};G should respect such discontinuities. For
example, the interpolating operator I, should satisfy

hm IhG(tj, S) = Gj,Ni7 hHli IhG(S, tk) = GNi,ka
—t
lim lim IhG(s s)= lim lim I,G(s,$§) =1d, lim lim I,G(s,$) = Os.
s—tt §—ott s—t™ St~ s—tt st~

The conditions for I} G are similar.

As we will prove later, the above numerical method guarantees a second-order
approximation of the solution. However, the computation cost is not affordable
when M is large since the degrees of freedom for calculating the integral with
respect to § will grow exponentially w.r.t. M. Therefore, we take advantage of
Monte Carlo integration and replace the integrals by the averages of Monte Carlo
samples, resulting in the following inchworm Monte Carlo method:

Gt = (T + sgn(ty, — )iH0) G + Kb,
(44) Grorm = (I+ %sgn(tn — t)iH h) Gy + %sgn(tmq — DiH Gy
+ %(I?lJrf{g)h, 0<m<n<2N,
with

1Oy :
= EZFl(gn,mﬂg(l))

Ng M
sgn(tn—t Z Z M ( m)M 1) <t}
= oaa

x InG(s\)  t) L(tn, 3\,
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1157

where N, denotes the number of samples and each time sequence §S\l/[) =
(sg ), sé), e ,SS\Z)) is drawn from the uniform distribution U([t,,,t,]*) and then
sorted such that s'”) < s{"

ZFQ gn m) S _»*( ))

< o< s M Similarly, we define

N

. t _ (i ~ *(i
=ty Z et (b D 18500 <O 1 Gt 537,
i=1 M=

M is odd
X iG(s1 ) L(tnsn, 83p)
with the time sequences §ﬁi) = (sik(i), s;(i), e ,sﬁi)) drawn from U([tm,, tas1]™)

and then sorted as s; 0 < EN 30 << sﬁi).

Our goal in this paper is to study the error growth of the inchworm Monte Carlo
method (44)) by comparing it with the numerical sign problem for the classic Dyson
series as discussed in (29). While it is claimed in [7,[8] that the inchworm Monte
Carlo method can effectively mitigate such sign problem, a detailed argument on
this mitigation has not been provided. Therefore, we aim at a rigorous numerical
analysis for the scheme, which will begin from the next section.

4. NUMERICAL ANALYSIS FOR INCHWORM MONTE CARLO METHOD

4.1. Notation and assumptions. To facilitate our analysis, we first introduce
some notations and assumptions in this section.

4.1.1. Vectorization and norms. For a sequence of matrices defined as y :=
(Y1,Ys,---,Y;) € C?*% we define its vectorization 4§ by

(45) :'j — (Y1(11)7Y1(21)7 }/'1(12)7 }/'1(22)7 . ,Y-[(ll), Y‘[(Ql), }/'2(12)71/2(22))T c (CM,

which reshapes the matrix into a column vector. The same notation applies to a
single matrix. For example, for Y = (Y ()55, we have Y = (Y1), Yy y(12),
Y 22)T_ For any function F(y), its gradient VF(y) is defined as a 4/-dimensional
vector:

T
OF oF OF OF oF OF oF oF
aYl(n) ’ ayl(21)7 aY1(12)’ 8Y1(22)’ ’ayl(n)’ 8YZ(21) ’ aYe(lz) ’ aYe(zz) ’

so that the mean value theorem is denoted by

VF(:u)-(

Flys) ~ Fw) = VF((1 - Ows +€w) (@ — ). for some ¢ € [0.1]

The Hessian matrix V2F(y) is similarly defined as a 4¢ x 4¢ matrix.
Let Z be an index set and g = (G, )acz be a collection of random matrices with
each G, € C?>*2. For any D C Z, we define

(46) lgllo := max{|Gale

where || - ||p denotes the Frobenius norm. When D = Z, the subscript D will be
omitted: ||g|| = |lg||z- It is clear that || - || defines a norm, and || - ||p is a seminorm
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1158 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

if D C Z. In particular, for any 2 x 2 matrix G, we define ||G|| = ||G|lr. In our
analysis, the index « is always a 2D multi-index. For example, if n > m and

1= {(m+ 17m)} U{(m+2am+ 1),(m—|—2,m)}U~~~U {(nvn_ 1)a a(n7m)}7
then g equals g,, ,,, defined in (41l). Similarly, we define

(std) _ 2+\71/2
(47) N5 (g) = max { [E(IGal12)]"*}
which will be often used throughout our analysis.

4.1.2. Boundedness assumptions. We will need the following assumptions for our
analysis:
(H1) The exact solution of (87) G., numerical solution G solved by the deter-
ministic method (40) and numerical solution G solved by inchworm Monte
Carlo method (#4)) are all bounded by an O(1) constant:
(48)
|Ge(st, 81)|| < ¢ for any 0 < s; < s¢ < 2t;

IG &1l |Gkl <% for any j,k=0,1,--- \N—1,N",N*,N+1,---2N — 1,2N.

(H2) Each rs—entry (r,s = 1,2) of the full propagator G(ﬂ”)(sf, s;) is of class C3
on the domain s; € [0,2¢]\{t}, s¢ € [si,2¢]\{t} and we define the following
upper bounds:

9 Gy

_— <
0s¢t 0s{?

Ty, T
(z1,2) G, for a=a; +as =3,

{g”, for = a; + ag = 2,

for any zo € [0, 2¢|\{t}, =1 € [z2, 2t]\{t}.
(H3) We further assume that system Hamiltonian H, and system perturbation
W can also be bounded by O(1) constants:

(49) [Hs|| <22, Wl <7

As mentioned in Section [3.3.1] the two-point correlation is assumed to be
bounded by |B(-, )| < .Z for some O(1) constant .. According to the
definition ([B3)) for £, we bound

(50) |L(Spmy Sm_1,-- ,51)] < (m — 1)L,

Remark 2. Recall that (50) is used as the upper bound for the bath influence
functional |£(%)(s,,,--- ,s1)| in Dyson series when analyzing the sign problem (29).
Since L(Sm, -+ ,s1) includes fewer diagrams, |L£(Sm, - ,s1)| can actually be con-

trolled by a lower bound as a(m)(m — 1)!l.£% with a coefficient a(m) € (0,1). In
fact, the factor a(m) is the reason why the series (88]) has faster convergence than
the Dyson series (21)). Here we are mainly interested in the case of a finite M (the
upper bound of M), and therefore the looser bound (B0} does not change the order
of the error and its general growth rate.

4.2. Main results and discussions on the error growth. In this section, we
will provide our main results for the error estimation of the inchworm Monte Carlo
method, and compare the results with the error growth of Dyson series expansion.
Theorem [3 gives the difference between the inchworm Monte Carlo method (44)
and the deterministic scheme ({Q):
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1159

Theorem 3. Let AGy,m = énﬁm — Gpm- Given a sufficiently small time step
length h and a sufficiently large N, if the assumptions (H1) and (H3) hold, the
difference between the deterministic solution and the Monte Carlo solution can be
estimated by

e Bias estimation

_ _ h
(51)  [E(AGu11m)| < 4036 (tn-m i1 (tnmir) (2 V Pt} .
e Numerical error estimation
(62)  E(IAGus1mlAN2 < by/Alon ) (oY A ) [
N,
Here
(53)
M
1 1/2
a(t) = 16Py(t) - (10t + 16t + 5% + ~t1), () = 2w 4.2"/? Z m,
4 -1
M s odd
(54)
MM 1M
Pi(t)=2029L + 30392 L5 (1+1) > 73)”(27/%,%1/%)%2
= 1
M s odd

and the function Py(-) is a polynomial of degree M — 1 and is independent of h.
The constants 01 and 0 are given by 61 = 353 and 0, = /34.

The difference between the results of the inchworm Monte Carlo method and the
exact solution is given by

Theorem 4. Under the same settings as Theorem Bl if we further assume that
(H2) holds, then the difference between the inchworm Monte Carlo solution and the
exact solution can be estimated by

e Bias estimation

HIE (Ge(tn+1, tm) — §n+1,m)

‘ < Pe(tn—m+1) (691 Pl(t"7m+l)t"7m+1) - h?

(55) Y h
+ 493d(tn7m+1)’7(tn7m+1) (6391 Pl(tnierl)tn*erl) : Fa
S
e Numerical error estimation
(56)
~ 1/2 0
[E(IG(tur1stm) = Cusaml?)] < PE(tammin) (Y Pmiidincmn) 2
h
+ 02/ (tn—m+1) (eel Pl(t"*"‘“)t"*m“) E
Here the function P¢(t) is defined by
(57)
Pe(t)= Lwisp () GGy i M1 — (o.M
4 ! 12 = M=
M is odd
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1160 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

The above result indicates the following properties of the inchworm scheme,
which are similar to the case of the differential equations:

e The bias again has only a small contribution to the numerical error, which
is often hardly observable in the numerical experiments.

e The error consists of two parts. The first part is second-order in h, and the
second part is half-order in the total number of samples.

The growth of the numerical error over time is more complicated compared to
the ODE case. Since the function P (¢) is a polynomial of degree M — 1, the growth

N+1)/2

of the error is on the order of exp (Ct( ) Clearly the growth rate depends

on the choice of M. In the numerical examples shown in [5,8], only M = 1 and
M = 3 are used in the applications. Regarding the behavior of the error growth
for different M, we remark that

e When M = 1, the final error estimation (56) shows that there exist con-
stants C; and C5 such that

2 (1600wt~ GronF)] < ot (w24 5,

showing that the error grows exponentially with respect to the time differ-
ence in the propagator, which is slower than the method using Dyson series,
where the error grows exponentially with respect to the square of the time
difference. In this case, the numerical error is successfully mitigated.

e When M = 3, there exist constants C; and C5 such that

- 1/2 h
[E(||Ge(tn+1,tm)—Gnﬂ,mH?)} < Oy eCo(tnmiittn i) <h2+ F)'

In this case, the growth rate is exponential in t?, which is the same as
the Dyson series. Thus which method has greater error depends on the
coefficient in front of ¢2. Instead of a detailed analysis, we would just
comment that the inchworm Monte Carlo method is likely to have a smaller
coefficient due to the effect of partial resummation, which leads to less terms
in (B8) than the original Dyson series.

e For larger M, the error growth ¢”*V1()t of the inchworm Monte Carlo
method in general is faster than quadratic exponential for Dyson series.
However when ¢ is small, the difference between /Py (¢)t for M > 3 and
M = 3 will not be too large (see Figure [2). Since the coefficient of t* is
smaller when k is larger, we may again expect the inchworm Monte Carlo
method has slower overall error growth for short-time simulations. Here we
would also like to mention that in practice, the departure of the curve for

M =5 from the curve for M = 3 is often observed to be much later than

that indicated in Figure 2 since our estimation of the constants in P;(t)

is based on the worst case and may not be optimal. It has been observed

in the literature that the fast error growth may stay unnoticeable for a

significant amount of time despite our error analysis [3].
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6

0 0.1 0.2 0.3 04 0.5
t

FIGURE 2. Graphs of \/Py(t) - t for various M with # = & =
% = 1. The curves for M = 3 and M = +oco are almost identical
before t = 0.15.

e When M — +oo, we have

lim () = 29°9% LT

M—+oc0

lim Py(t) = 20°GL + 3WPGALE (1 + ) PRWGL V) - 2T
M —+o0

where P(x) = 2% + 723 + 6x. Although these quantities are still finite, the
error bound (56) grows double exponentially with respect to t2, which is
undesired in applications.

The numerical experiments in [51[8] show that in certain regimes where the con-
stant .Z is relatively small, the contribution from M = 1 is dominant in the series
([BY). In this case, the inchworm Monte Carlo method can well suppress the numer-
ical sign problem and achieve an exponential error growth in these applications.

4.3. Outline of the proof. We will postpone the details of the proof while provide
an outline here. The results are obtained in the following steps:

e Estimate the derivatives of the right-hand sides (Propositions [5 and [6).
Derive recurrence relations for the numerical error (Proposition [7]).
Apply the recurrence relations to derive the error bounds (Theorem [3]).
Estimate the error of the deterministic method (Proposition []).

Use the triangle inequality to derive the final error bounds (Theorem [4)).

Some more details of these steps are given by a number of propositions below.
We first define some sets of 2D multi-indices that will be used.

Qum ={0(,k) €Z? | m <k <j<n}, Q= Qng1,m;
(58) O = {(J, k) € Qum | j=n or k=m}, 0, 1 = 01 ms

Qnm = D \On m, Qo = Qng1ms

Fn,m(i) = {(]7 k) € Qn,m ‘ Jj—k= i}, F:L,m(i) = Fn+1,m(i)~

One may refer to Figure [3] to visualize these definitions. Note that €2, ,, and Qy ,,
respectively contain indices of the numerical solutions in g,, ,,, and gy, ,, and thus
give the locations of all nodes that K; and K> depend on. In addition, since
Gh1,m is calculated completely based on the rest of g, ,,, we define Q, ,, =
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Q5 »\{(n +1,m)} to represent the indices of all full propagators that we actually
use in order to obtain Gj41,m-

k

2 s 9 7

FIGURE 3. An example illustrating the elements contained in each
set defined in this section when n = 8, m = 2. §,, ,,: all red nodes;
0 m: “®” + red “X7; Qn’m: “o7; O ¢ all nodes; 9927 ¢ all
“x7 Q;‘Lm “o” + “®”; Oy, m: all nodes except blue “x”; T, ,,(2):
all red nodes on the thick black line; T, ,,(2): all nodes on the
thick black line.

For the analysis of ODEs, it has been assumed in (&) the boundedness of the first-
and second-order derivatives of the right-hand side. Correspondingly, our first step
is to estimate the derivatives of the functional F; and Fy given by (2) and (43).
For Fj, the results are given by Propositions [B] and [6] for first- and second-order
derivatives respectively.

Proposition 5. Assume (H1), (H3), (R4) hold. Given the time step length h
and any §,, ,, being a conver combination of evact solution gy, ,, given by (145),
numerical solution of scheme Q) g,, ,,, and numerical solution of inchworm Monte
Carlo method ([@4)), the first-order derivative of F1(§,, ,,,) defined by (@2) w.r.t. the
pq—entry (p,q = 1,2) of G is bounded by

(59) aFl (gn,m) < Pl (tn—m)hv fO’I’ (k,E) € 89”7“’“
8G/(:Z) ! (tn—m)h2v for (k’e) = Q”vm’

where Py (t) is defined in (54]).

Proposition 6. Assume (H1), (H3), (R4) hold. Given the time step length h, the
second-order derivative of Fy(§,, ,,,) defined in [42) w.r.t. the pyq1—entry of Gy, s,
and the paga—entry of G, e, (Pis¢i = 1,2) is bounded by:

o If (ki,t1) x (k2,£2) € OQn,m X O m,
(60)
82F1 (£n,m)

oG oG | = \Paltaei, ot

< {Pg(tnm)h, if one of the conditions (a)-(d) holds,
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where the conditions (a)-(d) are given by

a) k1 = ko = n, (fl,fg) € {(n

c) ki =n and by =

(
(b) ¢ =ty =
(
(

d) ko =n and {1 =

o If (k1,4y) x
(61)
‘ *F1(&nm) ‘
‘8Gk’ilgf)8Gk’qu

o If (kl,ﬁl)

(62)
‘ PFi(&nm) ’
etz ociz

o If (ki,01)

(kla k2) € {(m+ 17”)5 (n’m + 1)}v
m, (

_ [Palta
Pyt

X (k27€2) € Qn,m X aQTL,T)’U

ol
Py(tn_

X (kg,ég) € én,m X Qn,m;

D},

—1,m),(m,n—

k27£1) €
m, (k1a€2) €
(ka, L2) € O X Ly,

{mgﬁlgn—l,m—klgkggn’ |61 —
{mgﬁggn—l,m—l—lgklgn‘ |6y —

ko| <1},
k| <1}.

m )%,
m)h37

forki=n,lke—t1|<1 or f;=

otherwise.

m, ‘kl —€2|§1,

m)
m)h,

for ka=n, k1 —02|<1 or ly=
otherwise.

m, |k2_€1| S 17

62F1 (gn,m)
(P1q1) 9 (P292)
L 0GLE

Po(tn_m)h*, otherwise,

(63) H < {P 2 (tn—m) 1,

where Py(t) is a polynomial of degree M — 1 independent of h.

fO’f‘ |]€1 —£2| S 1 or |I€2 —£1| é ].,

In Propositions [fl and [l the functions P (-) and Py(+) are the same as the corre-
sponding functions in Theorems [3] and [l respectively. The proofs of Propositions
[5l and [6] are quite technical and tedious and thus we move them to [Cl Unlike the
case of differential equations, the partial derivative of Fj(:) involves a number of
previous numerical solutions (all red nodes in Figure [3)), and the magnitudes de-
pend on the locations of the nodes, as forms different cases in Propositions [l and
[6l Similar results for the derivatives of Fy(-) with the same functions P (t), Pa(t)
can be proven, where all the indices n should be changed to n + 1.

With the above estimates for the derivatives, we can establish recurrence rela-

tions for the bias and the numerical error:

Proposition 7. Let Ag,, ., = Gpm —

gn,m and Agrz,m = a;kL,m -

g; ... Given a

sufficiently small time step length h and a sufficiently large N, if the assumptions
(H1) and (H3) hold, the difference between the deterministic solution and the Monte

Carlo solution can be estimated by

e Bias estimation:

(64)
||E(AGn+l,m)||
< (45 %4h4)||E(AG,Lm)||+22P1( nwemi)h®Y _(2+Hn—m+1-i)
=1

7
+ <§O_Z(tnm+l)

[N(Std)( gn m):| i + 8a(tn—mt1)¥(En—ms1) -

)PE(AG:, ).

h3
w)
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o Numerical error estimation:

(65)
1
E(|AG 1 1,mlI*)]"? < (14 2o W) E(|AG m )]/
+22P (ty—ms1)h? ; (2+(n—m+1—i)h)./\/1£;‘2(i)(Ag;:,m)

~

N}

and
(66)

1 1
E(|AGhs1m ) < (143 25 B(IAGn ) + (L4 £ 2 5)h [E(IAG,m])] 7

n—m ) s . h2
{44131 (tnmi) DY (24 (n=mA+1=D) )N (A )+ 48 (Enmia ) (i) ._}

i=1 ’ Ns

n—m 2 h2
+912P3(tm+1)h4{z (2+(n—m+1—i)h)Np(§d’(i>(Ag:;,m)} T (bremin) 57
i=1 o s

where the functions & and 7 are defined in (53)).

In Proposition [, two different recurrence relations are given for the numerical
error. Note that (6] is not a simple square of the estimation (63). The main reason
lies in the term 4a(t,_m41)¥(tn—m+1) - h?/Ns located at the end of the second line
in (GG). Below we are going to use a simple analog to help the readers understand
the difference. Consider the two recurrence relations

h
67 n < n —7
( ) €nt+1 > € + \/— prs
2h? h?
2 .2 .
(68) eni1 <€, + N, en + N

The relation between these two recurrence relations is analogous to the relation
between (65) and (66). The square of the first recurrence relation (67)) is

) ,  2h h2
Cn+1 S €n + Wen + Fa

where the cross term is different from (68]). However, the relation (68]) provides
a higher numerical order than (7)), since by Cauchy-Schwarz inequality, we can

derive from (68) that

h? 2h2
(69) et < (1 + E) en + N
indicating that e,, ~ O(y/h/N;), while the recurrence relation (67) can only give us
en ~ O(y/1/Ns). Besides, in order to study the error growth rate with respect to
time, we are not allowed to use the Cauchy-Schwarz inequality to simplify equation
([66]) like (69]). Later in our proof, the simpler equation (63]) will be used to determine
the growth rate of the numerical error, while the more complicated version (66)) is
responsible for the final error estimation. Theorem[3lis obtained from the recurrence
relations stated in Proposition [7
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To obtain the final estimates (Theorem []), we need to estimate the error of the
deterministic scheme (40Q)), which is given by

Proposition 8. We define the deterministic error Ep41.m = Ge(tnt+1,tm)—Gnt1,m-
If the assumptions (H1), (H2), (H3) hold, then for a sufficiently small time step
length h and a sufficiently large number of samples at each step Ng, we have

(70) ||En+1,m|| S Pe(tn—m-i-l) (691 Pl(tn_m-*—l)tn_m*—l) -h2,

where P¢(t) is defined in (B4), and the constant 01 is the same as the one in
Theorem [l

It is easy to see that our final conclusions in Theorem Ml are a straightforward
combination of Theorem [3] and Proposition [8 by the triangle inequality.

5. NUMERICAL EXPERIMENTS

In this section, we will verify the above statements using numerical experiments.
Sections[5.1]and [5.2]will be devoted, respectively, to the case of differential equations
and the inchworm Monte Carlo method.

5.1. Numerical experiments for ordinary differential equations. We con-
sider an example as the following ordinary differential equation:

- % - —%Ku(t) — Ex (R(u, X)), t € 0,7,

R(u,X) = —iXu
with the initial condition 4(0) = 1 and the random variable X ~ U(0, K).
We apply the two schemes proposed in (I8)) to get the numerical solutions

U, and @, with uniform time step length h = T/N. For the stochastic u,, we
carry out the experiments independently for Neo, = 100NN, times to obtain

ﬂ%l), ﬂg), e ,ﬂslNe"") and we approximate the numerical error by
1 Nexp
72 ]Eun—ﬂnQ Uy = un_ﬂ’g)27 forn:O717...7N_
(72) (1 2) Now ; | |

Based on these settings, we now focus on the numerical order of the scheme and the
growth of the numerical error with respect to t. For given time step h, we define
the error function e(-) by e(nh) = .

We first set K = 3 and K = 10 in (1) and T = 3. Figure [ shows the evolution
of the numerical error e(t) for h = i and various numbers of samples N;. For
K = 10, the left panel of Figure [ shows that the error grows exponentially over
time as predicted in Theorem ] while for smaller K, the stability of the method
takes effect, and the error grows only linearly up to 7' = 3 as exhibited in the right
panel of Figure[dl This verifies that the exponential growth can be well controlled
if appropriate Runge-Kutta schemes and sufficiently small time steps are adopted,
which avoids the numerical sign problem in the Monte Carlo method that directly
calculates (L4)).

To verify the convergence rate with respect to h and Ny in the estimate (13)),
we set K =1 and T = 1 in (71)) and consider the numerical error at ¢ = 0.5 and
t = 1. We first fix Ny = 100 and reduce h from 1/2 to 1/64, and then fix h = 1/4
and increase N, from 100 to 3200. The numerical errors are listed in Table [l from
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x1078

35

Ng = 100
Ng = 200
Ng= 400
Ng= 800

——— Ng =100

0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3
t t

FIGURE 4. Evolution of numerical error e(t) (left: K = 10, right:
K =3)

which we can easily observe the first-order convergence for both h and Ny, as agrees
with our estimate (L3]).

TABLE 1. Numerical error e(0.5),e(1) with different time step h
and number of samples Ny and the order of accuracy

h, N €(0.5) order e(1) order
1/2,100 | 1.0917e-04 - 2.1940e-04 -
1/4, 100 | 5.2721e-05 1.0502 1.0593e-04 1.0505
1/8,100 | 2.6257e-05 1.0057 5.2776e-05 1.0052
1/16, 100 | 1.3027e-05 1.0111 2.6039e-05 1.0192
1/32, 100 | 6.5086e-06 1.0011 1.3013e-05 1.0007
1/64, 100 | 3.2579e-06 0.9984 6.5124e-06 0.9987

h, N €(0.5) order e(1) order
1/4, 100 | 5.2721e-05 - 1.0593e-04 -
1/4,200 | 2.6533e-05 0.9906 5.3332e-05 0.9901
1/4, 400 | 1.3210e-05 1.0062 2.6520e-05 1.0079
1/4, 800 | 6.6185e-06 0.9970 1.3254e-05 1.0007
1/4, 1600 | 3.3043e-06 1.0022 6.5942e-06 1.0072
1/4, 3200 | 1.6528e-06 0.9995 3.3060e-06 0.9961

5.2. Numerical experiments for the inchworm Monte Carlo method. To
verify the error growth of the inchworm Monte Carlo method, we consider the spin-
boson model where the system Hamiltonian has the energy difference € = 0.1 and
frequency of the spin flipping A = 1. For the bath part, we assume an Ohmic
spectral density, which formulates the two-point correlation as

(73)

L 9
c w ..
B(Tl,Tg):ZT:)l {coth<%>cos(wl(|7'1—t|—|7'2—t|))—1sm (wl(\ﬁ—t\—|rg—t|)) ,
=1
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where the coupling intensity ¢; and frequency of each harmonic oscillator w; above
are respectively given by

c = w \/% [1 — exp(—Wmax/we)],

l
w = —w:In (1 - Z[l - exp(—wmax/wc)]> , l=1,---,L.

As for the parameters above, we set L = 200, wpax = 4w, with the primary
frequency w. = 3, £ = 0.6 and 8 = 5 throughout our experiments.

5.2.1. Ewolution of observable. The observable of interest is set to be O = 6, ® Id,
which only acts on the system part, and the initial density matrix p = ps ® pp is
given by
10 _
Ps = |1> <1‘ = (0 0) and py =2 ! eXp(_ﬁHb)v
where Z is a normalizing factor satisfying tr(p,) = 1. Therefore, evolution of the
observable (6,(t)) can be approximated via inchworm Monte Carlo method by

(@:(jh)) ~ (1| Gnjn—j 1) = GRY, y_j, for j=0,1,-- N,

where énm € C**2 is obtained by the scheme (44]) and recall that é;li,i is the
(1,1) entry. Such evolution is plotted in Figure[ll Note that due to the numerical
error, the computed (6,(¢)) may contain a nonzero imaginary part, and here only
the real part of the numerical result is plotted.

1
M=1
M=3
08 M=5 |1
M=7
0.6 A QuAPI|]
—~ 0.4
)
&N
~ 0.2
0 -
0.2 3
0.4 L
0 1 2 3 4 5

FIGURE 5. Evolution of Re(6,(t)) by inchworm Monte Carlo method

The numerical results in Figure [§ are obtained using the inchworm Monte Carlo
method (44)) with time step h = 1/10. We choose Ny = 10* for M = 1, N, = 10°
for M = 3, Ny = 10% for M = 5 and N, = 107 for M = 7. For larger M, the
sign problem becomes more severe and thus we need more samples for each Monte
Carlo integration in order for the curves to be sufficiently smooth. In addition, the
results by the iterative QuAPT method [29[30] are given as the reference solutions.

One can observe from Figure [ that when ¢ < 1, the four curves are hardly
distinguishable, which agrees with the fact that smaller M is required for shorter-
time simulations. For larger ¢, the truncation with M = 1 becomes inadequate,
while M = 3 still provides reasonable approximation to the solution up to t = 5.

Licensed to Hong Kong University of Science & Technology. Prepared on Mon Jul 3 22:28:22 EDT 2023 for download from IP 175.159.122.207.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1168 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

The convergence with respect to M can be observed by further increasing the
terms in the truncated series. In these simulations, due to the sufficient number
of samples, the stochastic error is mostly suppressed, and one can see that the
numerical result with M = 5 can already provide a satisfactory matching with
the reference solution thanks to the rapid convergence of the series after partial
resummation.

As a comparison, the values of Re(é,(t)) computed using the Dyson series trun-
cated with M = 2,4,6,8 are plotted in Figure Bl Here M is the maximum value
of M when we truncate the Dyson series (21]), and it is chosen as an even number
since the terms with odd M are all zero. All these numerical results are obtained
based on N, = 10%. When ¢ < 2 (see the left panel), the curves appear to converge
to the reference solution provided by the QuAPI method. However, the conver-
gence is obviously much slower compared to the inchworm method. Even when
M = 8, the numerical result of the Dyson series is still considerably far away from
the reference solution around ¢ = 2. Meanwhile, due to the quadratic exponential
sign problem of Dyson series, the curves for M = 6 and M = 8 become oscillatory
after ¢t = 3 despite the large Ns we use, and eventually turn out to be unreliable as
the solution continues to evolve (see the right panel). This shows that Dyson series
has encountered a faster error growth than inchworm method for ¢t < 5 and thus
demonstrates that the inchworm method can effectively mitigate the sign problem
for short-time simulations via partial resummation.

1 T T 15 —
M=2 M=2
M=4 M=4
M=6 M=6
M=8 10 M=8
A QuAPI A QuAPI
0.5
=
&
oOF
ANa 4
05 | | | 10 | | | |
0 0.5 1 15 2 0 1 2 3 4 5
t t

FIGURE 6. Evolution of Re(6,(t)) by Dyson series (left: evolution
up to t = 2; right: evolution up to t = 5)

5.2.2. Order of convergence. Unlike the differential equation case, now it is much
harder to find the solution of the deterministic scheme due to the high-dimensional
integral on the right-hand side of ([81). Therefore, instead of verifying (52)) directly,
we use

(74) E(|Gnm = Gumll*) = Var(G,m) + [E(Grym = G I,

and only take the first term on the right-hand side (the variance of énm) to approx-
imate our numerical error. Such an approximation is reasonable since the second
term ||E(Gp m — Gnm)||? has a higher order O(h?/N2) by the bias estimation (&I]).
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To compute the variance numerically, we run the same simulation Neyp, times, and
compute the unbiased estimation of the variance:
2)
)

N 1 Nexp 1 Nexp
Var(Grom) & finm = —o2 [ GIFL 112 — || — Gl
o =i = oy (L STiar - L e
where (ﬂf ]m is the result of the kth simulation. For a given time step h, we let
e(jh) = Bnyjn—j;. Below we first check the numerical order for M = 3. By

choosing Nexp, = 1000N N, we get results shown in Table 2] from which one can
clearly observe the order of convergence given in (52)).

TABLE 2. Numerical error ¢(0.5), e(1) with different time step h
and number of samples N, and the order of accuracy

h,Ns | €(0.5) order e(l) order || h,N; | €(0.5) order e(l) order
1/10,2 | 0.0417 - 0.1488 - 1/4,1 | 0.1939 - 0.8579 -

1/12,2 | 0.0350 0.9658 0.1228 1.0505 || 1/4,2 | 0.0972 0.9959 0.3908 1.1344
1/14,2 1 0.0303 0.9293 0.1051 1.0083 || 1/4,4 | 0.0473 1.0386 0.1824 1.0990
1/16,2 | 0.0263 1.0574 0.0915 1.0409 || 1/4,8 | 0.0237 0.9998 0.0886 1.0417
1/18,2 | 0.0237 0.8936 0.0811 1.0203 || 1/4,16 | 0.0119 0.9962 0.0436 1.0235
1/20,2 | 0.0214 0.9614 0.0728 1.0341 || 1/4,32 | 0.0059 1.0053 0.0217 1.0091

5.2.3. Error growth. Despite the good performance of the inchworm Monte Carlo
method in this example, we will show in this section that the evolution of the
numerical error indeed follows the asymptotic behavior in our error analysis. To
this end, we compare the growth of error using inchworm Monte Carlo method with
M =1 and M = 3 in Figure [T, where the time step is set to be h = 1/8, and we
choose Nexp = TO0NN,. As predicted, the two curves almost coincide for ¢ < 1.
For M = 1, the numerical error starts to show the exponential growth from t = 4.5,
and for M = 3, the quadratic exponential growth becomes obvious from ¢t = 2.5.
Both results are in accordance with the theoretical results in Theorem [3l

= 109 r r r r - r
M=3 M=3

— — — Quadratic — — — Quadratic
M=1 M=1

— — — Linear — — — Linear

= 401}

1072

0 1 2 3 4 5 6 7

FIGURE 7. Evolution of numerical error e(t) (left: N, = 4, right:
N, = 8)
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By now, we have stated all the results in this paper. From the next section, we
will start to prove the theorems and propositions.

6. PROOFS FOR THE CASE OF DIFFERENTIAL EQUATIONS

In this section, we prove the results for differential equations as stated in Section

2.1}

6.1. Proof of Proposition [1]— Part I: Recurrence relation for the bias. In
this section we focus on the proof of (10). By taking the difference of the schemes
() and (@) and applying the triangle inequality and the bounds of the coefficients,
we get

(75) IE(uns1 = Tns1)llz < [Eun = @n)ll2 + R |[E(k; — k)2
i=1

for all non-negative integers n. We then focus on the estimate for |[E(k; — k;)||2. In
fact, we have the following results:

Lemma 1. Given a sufficiently small time step length h. If the boundedness as-
sumptions (8) are satisfied, we have

~ ~ ~ h2
(76) Bk = F)lz < o' (B = i)ll2 + E(lun = iinl13) + 5= lunsc )
s
and
7.2 / ~ 112 1 2
i Nillg) > n — YUnl|2 RK|std ) »
(77) E(|ki = kil13) < 8 (E(ln = nl13) + 5 lurila)
s

for B = 25t max(2dsM’?,1) and o/ = 2°v/dmax(M',2sM", s> M" R?B'). Here we
recall that s is the number of Runge-Kutta stages, d is the dimension of solution u
and R, M', M" are some upper bounds defined in (8)—(9).

With Lemmalll one may insert the estimate (7€) into (75 to get the recurrence
relation ([I0) stated in Proposition [l for the bias |E(t;41 — Unt1)||2. The proof of
Lemma [l is given below:

Proof of Lemma [ll. Apply the relation (&) and use Taylor expansion at the deter-
ministic point (tn + c;h,u, + hzz;ll aijkj), we have for the mth component of

E(k; — k),
(78)
~ i—1 -1
E(E™ - ™) = ]E(f(m)(tn+cih, un B agik;) = f Ot + i, anMZaijkj))
Jj=1 j=1
"
< M'Ewills + = El|w;]13,
where

i—1
w; = (’U,n - ﬂn) + hZaij(k‘j - kj),
j=1
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1171

and we have applied the boundedness assumption (g]). The above inequality imme-
diately yields

i—1

1Bk = Bl < VaM' ([[E(un — )2 + hR Y Bk — Fy)]l2)
(79)
Vs M (B — ) 3) + W2B Y Bk — Ky [3)).

By recursion, we obtain
(50)
506~ Rl < (1-+ VRM'Y | VAN B — )]+ Vs (B0 — 7 )

i—1

IR Y Bl - 1))

j=1

We observe from the inequality above that the upper bound of ||E(k; — %2)||2 is
partially determined by the second moment E(||k; — k;||3) up to (i — 1)-th Runge-

Kutta stage. Therefore, we subsequently consider the estimate for E(||k; — EJH%)
By direct calculation,

E(||k: — kil3)
i—1 1 X i1 o
- ]E[Hf(t" +eihyun +h Y asks) = 2= Y g(tn + by + hZaijkj,X}“)Hj
Jj=1 S =1 =
i—1 1 N, )
éZE[Hf(t”“"h’“"+hZ%’%)—ﬁ g(tn + cih, un+h2a”k x") Hz}
j=1 s 11
2 N i—1
IE[HZ[ (b + b + 0> agihy, X9)
=1 j=1

(t + ¢;h, un—i-hZaUkJ,X H }
2 12 2
N ~—[urk |2 + 2M " dE || w]f3

i—1
2 - ~ 2
< 4dsM’ (E(Hun - un”%) + R?R? ZE(Hk] - k]”g)) + F‘URKEtd'
=1 °
Here we have used the mean value theorem and the standard error estimates for
the Monte Carlo method to obtain the upper bound.
By applying the above inequality recursively backwards to the first Runge-Kutta
stage, we obtain a uniform bound for E(||k; — k;|3):

. _ 2
(81) E(lk = Rill3) < (1 +4M 2 R2dsh?)* (4dsME (|lun — in3) + = Jurxcl2a ).
s
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1172 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

The estimation (77) can be obtained by setting 8’ = 25! max(2dsM'?,1) for
h < 1/(2M'Rv/ds). Substituting (8I) into (80), we can obtain (76) with h <
1/ max(M'Rvd, R\/5[7). |

6.2. Proof of Proposition [Il — Part II: Recurrence relation for the nu-
merical error. We again insert the two schemes and expand the numerical error
]E(Hun-‘rl - an-H”%) into

]E(||un+1 — Unt1 ||§)

:]E[ H(un —ﬁn)+h§:bi(ki —Ez)

]

= E(llun — @nl3) + A2E[ || D bithi = Fo)
i=1

(82) ]

+ hE[(un — )t ibi(ki — E-)} + hE[(ibi(ki — E—))T(un _ an)].

The second term on the right-hand side can be immediately estimated using the
previous result (77) given in Lemma [I}

e[ |t

IN

R%sh® > E(|lki — kill3)

i=1

~ h?
R2528 (2B (Ilun — nll3) + 5lurscha )

IA

Using this estimate, naively we can bound the last two cross terms in (82)) by
Cauchy-Schwarz inequality. However, such a strategy will lead to an error estimate
with the form

S S
~ ~ ~ A\t ~
(= i) bk = T | + RE[ (D2 bilhi = o)) (= )|
i=1 i=1
~ 2 h 2
< O RE(lun — unll3) + F|URK|std )
where the last term is suboptimal and will lead to a deterioration in the final error
estimate. Therefore we need a more careful estimate as in Lemma [2}

Lemma 2. Given a sufficiently small time step length h. If the boundedness as-
sumptions (8) are satisfied, we have

s N s _ T
(84)  BE[(un — i)t Y bilhi = F) | + B[ (D bilks = o)) (un — )|
i=1 i=1
O/2h5 .
< Cor ("l + Pl = T 3)).
where C., = max(R?s%, 2 + 25+2M’2dR2s3). Here we recall that s is the number of
Runge-Kutta stages, d is the dimension of solution u, R, M' are some upper bounds

defined in the assumptions ®)—@) and o' is given in Lemma [l
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1173

With Lemma[2] we now plug the estimates (83) and (84) into (82) to obtain the
recurrence relation ([I0) for the numerical error by

(85) E(|[unt1 — nial3)
/
< (1+Ccrh+R252B/h2)]E(|\un—ﬂn\|§)+(Ocr N? |uRK|Std—|—R2 2g/ 0 |URK|Std>

from which one can see that if h and N, satisfy h < %C;ﬂ,, then ([II)) holds for
B = max(2C., R?s*3’) with 3 is given in Lemma [Il

The rest of this section devotes to the proof of Lemma[2l We introduce a “semi-
stochastic” approximation u,1 defined by

1—1
ki = [ty + cih, i + 0 aijky), i=1,---,s;
(86) . =t
Tng1 = Un + th/E
=1

This approximation applies the deterministic Runge-Kutta scheme to the stochastic
solution ,, for one time step. Lemma [3] controls the difference between this local
approximation and the stochastic scheme ().

Lemma 3. Let X; := (X(l),X(Q), e ,X(i)) be the collection of samples up to ith
Runge-Kutta stage where each XU) = (X{j),Xz(j), e ,XI(\?S)), we have
7. T / h? 2
(87) Ex, (ki — ki)l < o - Jurklseas
where o' is given in (0.

The proof of Lemma [3] is omitted since it is almost identical to the proof of
Lemmal[ll The first and second terms on the right-hand side of (7€) do not appear
in the above result, since k; and E are computed based on the same solution at the
nth step. Below we provide the proof of Lemma 2t

Proof of Lemma [2l Tt suffices to only focus on one factor hE [(un—ﬂn)T S bi(ki—

%2)} since the other one is simply its conjugate transpose which can be controlled
by exactly the same upper bound. We use k; as a bridge and split
(88)

S AT
< HJE[(n TS balhs — )]+ A [ — ) B, (3 0 — )
i=1

i=1

e (Ssck R

~ h > .
< WE(lun — Tallf) + SE[ | bk — Ko)
i=1

R2%sh

™ (Ellki — kill3 + ElEx, (K - F)l13).

i=1
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1174 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

From the first line to the second line above, we have taken advantage of the fact
that #, is independent from X, which is sampled at the (n + 1) time step when
calculating %,41. The difference between k; and k; can be estimated in the same
way as the derivation of (81)). The result is

(89) E(|[k; — kql|3) < 4M"*sd(1 + AM"*dR*sh?)°E(||uy, — Un|2).
Inserting the above inequality and the result of Lemma Bl into (88]), we get

‘hIE [(un — )t i bi (ki — Ez)} ‘

2.2 /2h5
< [1+ 2R3 MPd(1L+ AM AR 5h)° | B(luy — i 3) + Rsrah?

Nz Jurk e
from which one can easily observe that the lemma holds if 4M"2dR%sh? < 1. |

6.3. Proof of Theorem [2] — error bounds. In this section, we apply the
two recurrence relations stated in Proposition [l to get the estimates for the bias
|IE(unt1 — Unt1)|]2 as well as the numerical error E(||un11 — Uny1]|3)-

By using ([11]) recursively backwards w.r.t. n, we have

(90)
E([[tnt1 — Uni13)
. h2 a2h5 n
< (L4 B(fuo — Toll) 5 - hunacia sl ) 3 (160
1=0
h a’ht
— (E|URK|§td —+ m‘ﬂ]{}(ﬁtd) (eﬁtn+1 — ].)

which leads to the global estimate (3] for the bias. Inserting (90)) into the recur-
rence relation (10) and expanding the recursion in a similar way, we get
(91)

IE(unt1 — Unt1) |2

i
L

(1+ah)’ (ef}t’H -1)

M

o’ht
<a—|uRK|stdZ t+ah) -+ ah (§-lun ua+ S )
i=0

W
"o

3

<h_2 atnin _q 2 h l 2 a2ht 4
=N (e - )|uRK|std+a N, ‘URK‘std+ SQRQNE |uRK|std

S

et (ef}t’H — 1)

.
HM
= o

3

<h—2(eo‘t”ﬂfl)|u 2 +ah( urk |2 +i|u I )
=N RK|std N RK|std 2R2N2 RK|std

S

(emax(a,ﬁ)tn 7 1)

R* .
:E(e i — 1) Jurk| S+ otn (_|URK|std+ 2R2N2 |URK|<td)

which completes the proof of (12).

max(a,ﬁ)tn _ 1)’

7. PROOFS OF ESTIMATES FOR INCHWORM MONTE CARLO METHOD

In this section, the proofs of theorems in Section [4.2] are detailed. We will again
first focus on the difference between the deterministic method and the stochastic
method, and the error of the deterministic method will be discussed at the end of
this section. Thanks to the previous discussion on the differential equation case, we
may follow this framework which guides the general flow of our derivation. Below
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1175

we point out the major differences as well as difficulties for the case of this integro-
differential equation before the detailed proof:

e Since Ky depends on more previously-computed time steps than K7 due to
the nonlocal integral term in (37) (this can be easily observed by comparing
9nm With g;, ), a uniform expression for K like (4)) is no longer available
for the integro-differential equation. Therefore, we need individual analysis
for each K;.

e Recall that the Taylor expansion is applied in the proof of Lemma [ (e.g.
in (8)), which requires to estimate the first- and second-order derivatives
of the source term f(¢,u). This can no longer be simply assumed as in (8]
and has to be carefully studied. They play crucial roles in understanding
the behavior of the inchworm Monte Carlo method.

e The derivation of the error amplification can no longer be handled by the
simple discrete Gronwall inequality, due to the involvement of a large num-
ber of previous steps on the right-hand side of the numerical scheme. The
error estimation must be handled with more care, e.g. the estimation we
used to handle the cross term in (84) (Lemma [2)) will lead to a pessimistic
(suboptimal) fast growth rate in the error estimate of integro-differential
equations.

e Most importantly, the magnitude of the derivatives depends on M, as it
is determined by the dimensionality of the integral in the equation. This
will result in different error amplification with different choices of M. This
is the key point which explains whether/how the inchworm Monte Carlo
method mitigates the numerical sign problem.

7.1. Proof of Proposition [7l— recurrence relation for the numerical error.
By the definitions of the deterministic method (40) and the inchworm Monte Carlo
method (44), it is straightforward to check that

(92) AGni1,m = Anm (W) AG, m + %h (Bp,m(h)AK; + AK,),

where for simplicity we have used the short-hands

AK; = K; - K,

Ap(h) = I—i—% (sgn(tn — t)Fsgn(tnm — 1))iHsh — %sgn(tn — #)sgn(tuy — t)H2A2,
Bym(h) =1+ sgn(tps1 —t)iHsh.

By triangle inequality, the error can be bounded by

93)  [E(|AGn11m]%)]"?

1/2
< [E(| Ap i () AG ) |2

+ %h {]E (HBn,m(h)AKl +AK2||2)}1/2.

For the first term on the right-hand side, we have
E([|An,m(R)AG,m)|1%)

1 1 2
< [p (I—i— 3 (sgn(ty, — t)+sgn(tnp —t))iHh — Esgn(tn — t)sgn(tp — t)HSQhQ)]

E(|AGnm)I1?),
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1176 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

where p(-) denotes the spectral radius of a matrix. Let A; and Ay be the two
eigenvalues of Hs. Then

(94)
2
{p (I—i——(sgn(tn — t)+sgn(tnpn —t))iHh — §sgn(tn —t)sgn(tppn — t)HSQhZ)}
1 1 2
= max 1+ 5 (sgn(tn, —t)+sgn(tpn —t))iNh — Esgn(tn — t)sgn(tpy — t)ATh?
=1,
1 1
= max <1+ 1 (sen(tpi1 —t)—sgn(tn —t))2 A h2 4+ 1 (sgn(tp1 —t)sen(ty —t))2 )\fh‘l)
1 1
=1+ (p(Hy))* n* < 1+Z%4h4.

Note that in the third line of the above equation, the second term vanishes due to
the fact that the scheme evolves according to (R1), (R3). Consequently, the first
term on the right-hand side of (93] can be estimated by

(| Ay (D) AG )Y < 1 J14 2oetna - [B(IAG ) 12)]2
(95) [E(]| An,m(h) mH)] < 1+ [E(]l )]

< (1 ) [BUIAG )P 2.

To estimate the second term on the right-hand side of (@3], we again need to

N 1/2
bound {E(HK, - Ki||?) to obtain a recurrence relation for the numerical error.

Such results are given in Lemma [4

Lemma 4. Assume that the hypotheses (H1) and (H3) hold. For a sufficiently
small time step length h, we have

(96)
HE(INQ - Kl)H < 8Pi(tn—m)h 2+ (n—m—i)h)|[E (Ag,,m)| T (i)
i=1 '
2
+ altn-m) [N (g,
(97)

n—m

|B(R: — )| < 28P1(taoms)h D (24 (n—m+ 1= 0)h) |[E (Ags;,)|
i=1

0y om (@)
. td) A 1124 16n - h?
+5a(tn—m+1) Nﬁnrm(Agn,m) + 16a(tn—m+1)7(En—m+1) - N
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1177

and
(98)
[EUR -~ K02 <8P 3 @4 (- m = AT (g, )
— 1
+ 2 V ’Y(tn—m) : \/Ea
(99)

n—m

~ 1/2
[E(1Fz — Kol®)] " < 28P1(tmi)h Y @+(n=m+1-0h) NS, (Agh )
i=1

+3 Vv W(tn—m-i-l) : \/—F,

where & and 7y are defined in (B3)). Here we recall that Py(t), P2(t) are given in
Propositions Bl and [6l, and W', %4, are some upper bounds given in the assumptions
(H1) and (H3).

We only write down the proof for ([08) and (99]) which are related to the numerical
error in this section. The other two will only be used when estimating the bias so
we put the corresponding proof in Appendix [B.

Proof of (98) and (99). (i) Estimate of E(||K; — K1|2):

The definition of K; indicates that
E§[F1 (gn,mv §)] =F (gn,m)7
]E§/ [FQ(gz,m’ §/)] = FQ(a;kL,m)
by the fact that § and § are sampled independently from 9n,m and §Zm Therefore,
for each rs—entry we have

(101)
Es(|K{™) — K{)P?)

—_

(100)

N 2
TS 1 = = TS)~ —1
:Eg Fl( )(gn,m) - FZFI( )(gn,m;st)
5 =1
1 ra(rs) ~ — 2 TS)~ 2 TS TS) [~ 2
= FE’B‘ |: Fl( )(gn,mvs) - ‘Fl( )(gmm)‘ :l + ‘Fl( )(gn,m) _Fl( )(gn,m)‘
which gives
(102)
- i, 1/2 1 . B 2 o 2\ 11/2
BRI - &P) " < o B ([ G| [ @] )|

1/2

+ (5 (|0 - 7G|

According to the boundedness assumptions (H1), (H3), the first term on the
right-hand side of the inequality above is immediately bounded by

1 X 2 2\7%/? 1
| E ’F(Ts) a ) s - ‘F(rs) g ‘ >:| < vV A(tn—m) - )
m |: < 1 (gn,m 8) 1 (gn,m) = 7( ) \/ﬁs

(103)
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1178 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

with 5(¢) defined in (53]). For the second term, we use mean value theorem to get

(104)
[E (’Fl(rS)(gn,m) _Fl(m)@n,m) ‘2)] 1/2

(| ) G

N

- o\ 71/2
TS

aF nnm)
Bz ¥ “aaun A

i=1 (k,£)€ln, m (i) P,a=1,2
] ‘AG

)

IN

e

Y Y Y e

i=1 (k,0)E€ln,m (1) P,a=1,2

,m

aFl ’I"S (,r,
T

7

aGgDZI)
(k,£)€Ty m (i) P,g=1,2 (
. max {IE (‘AG,(:’ }
(k,2)ET R, m (4); N
p,q=1,2

n—m—1
< 4P1( n%) |f"N Std (n% (Agnm + Z 2h+ n m— 1_Z)h2)N Std (Agn m)]
i=1

oF" (n,, )
SIS

QJ

n—m

< AP (tym)h Z (2+(n—m—i)h )N'(Std

L m (@
i=1

Here we have considered the derivatives of F; (-) for different locations in §2,, ,,,. Also,
we have applied Minkowski inequality in the first “<” and Holder’s inequality in
the second “<”. The estimate (98]) can then be obtained by inserting (103 and
(104) into ([102)).

(i) Estimate of E(|| Ky — Ks|?):

Similar to (I02), we use the triangle inequality to bound { (|K(r8) Kém) |2)}
by

1/2

(105)

- . 1/2 1 @ G 2\ 71/2
B0y - kP) " < e B (| @] - @]

) (rs) 21"
+h0@”mmu—@”@%w)},

where the first term on the right-hand side can be estimated similarly to (103]), and
the result is

1 (rs)
( ) /—NS |: < 2 n m

(rs) 9 1/2 _ 1
‘FQ nm)‘ < V(tn—m+1) ' \/ﬁ
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1179

For the second term on the right-had side of ([105), we mimic the analysis in (104))

to get
1/2
E F(TS) ~% F(rs) 2
2 (gn,m) ( n,m)

(107) < AP (ty_my1)h {{ (”GnHm Ghorl )]1/2

+> @2+Mn-m+1 —i)h)J\/'F(?i( \(Agr, )}.
=1

Here the difference between CNT';;Jer and Gy, 4, can be estimated by
(108)
. 1/2
E (1 i1 — Chrnl?)]

[ (107 + st~ 01,0 A1) 4[RO — 1)

IN

1
< (14 5°1%) [E(|AGn )]
n—m . . h
+ 8P (tn—m)h” Z (24 (n—m—i)h) lent,(:(i)(Agn,m) + 2V (tn-m) - \/—ﬁ’
i=1 s

where we have applied our previous estimate ([I0I) to bound E(||K; —K1|2), and we
have omitted the details of the estimation of E <||(I + sgn(t, — t)iHsh) AGnymH2),
which is similar to (94]).

{ (‘Fém) 9nm) — F(m)(NZm)‘Zﬂl/z

1 s
< AP (a0 { (L+ S A2RANED L (B )
(109) nm
+ (14 8Pi(tam)h?) Y 2+ (n—m+ 1= N (Agh )
=1 "

h
N T R
+ 2V (tnm) - =
Again, we insert the estimates (106) and (L09)) into (L03) to get
- . 11/2
[E(1R, - 7 ))]

1
<8 (3 +h+ (5%2 + 16 P (ty_m))h% + 8P1(tn_m)h3> Pi(tn_my1)hX

(110) n—m
S @+m-m+1 —z)h)/\/itd) (g5 ) + (24 16Pi(tn—m11)h?)
=1

X V/A(tn—m+1) - \/%
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By choosing a sufficiently small time step such that h + (3.2 + 16Py (t,—p))h* +

8Py (ty—m)h® < 1 and h < | /m, the estimate (Q9)) can be obtained. O

With the results above, we now return to the formula (93) and give the recurrence

relation for the numerical error [E(|[AG 41,m|?)] Y2 as

[E(IAGn1.m]%)] "

< (Lt g ) [BUAG, )] + 50+ b [E(AK )]
+ 3h [E(AK )]

() < (1 Lot [B(IAG 5] 2

+ 22P (tn—ms1) Z 2+ ( n—m+1_z)h)NFitd( (Ag?)

— h
’Y(tn m+1) \/F

N

_|_

upon assuming h < %
Next, we consider the recurrence relation of E(||AG,,+1.m|/?). By straightforward
expansion,

1
= E(| A (1) AGrnm)|) + {1°E || Bum (MAK: + AR

(112)
2

E(”AGnJerHQ) =

\A (WA, + S (B (NAKy + AK:)

quadratic term

+RehE [tr (( m(WAK] + AK)! (An,m(h)AGn,m))]

cross term

To bound the quadratic term, we first derive the following results from the estimates

(98) and ([99):
(113)
n—m 2
E(|K; — K1 %) < 128P3(t [Z 24 (n—m—i)h )/\/(ffd)(z (Agnm)]
=1

1

+ 8’?(tn—m) : Fv

n—m 2
E(|| K2 — Ka||?) < 1568P2(tn—m+1) lz (2+(n— m+1—z)h)/vr<itd> (Ag; )1
=1
1
N,

+ 18¥(th—m+1) -
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1181

Then the quadratic term is bounded by

1
THE (1B (W) MK+ A K|

quadratic term

1 1
5 L+ AW PE(|AK )+ 5 hPE(|| AL )

IN

1
(114) < BE(IAK]?) + S PE(AK]?)
n—m 2
< 912P2(ty_ 1)k [Z 2+ (n—m+1—)R)NEY  (Agh )
i=1 "
h2
+ 17’7(tn—m+1) : Fv

thanks to the previous requirement on h in (I11)) and the results (98) and (Q9) in
Lemma [4] obtained in the previous section.

Similar to the proof of Lemma [2] the estimation of the cross term in (I12)) is
more subtle. We will again need some key estimates from the following local scheme
for the inchworm equation:

_:erl,m = (I + Sgn(tn - t)iHsh)én,m + K1h7

_ 1 i 1 . Aok
(115)  Gnirm =T+ §sgn(tn — )iHh) Gy + isgn(tnﬂ —)iHhG

+ (K1 + Ky)h, 0<m<n<2N,

1
2
where

Kl = Fl(gn,m)v gn,m = gn,m;
(116) _ » . » ~ ~ -
Ky = F, (gn,m)’ 9nm = (gn,m; Grtin, s Gngrmet1s Gn+1,m)'

These quantities are introduced as the counterpart of (86)), which is a deterministic
time step applied to the stochastic solutions. The following results are similar to
Lemma [3] for the case of differential equations:
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1182 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

Lemma 5. Given the time step length h and the number of Monte Carlo samples
at each step Ny, we have

(117)

IEs(Ky — K1) =0,

(118)
_ ~ h2
[Ez s (K2 — Ko)|| < 4a(tn—m+1)¥(tn—m+1) - N
S
(119)
B 1/2 n—m p
[E(|Ky = K] < 8Pi(tn-m)h Y (24 (n=m = )W) N (Ag,,0),
=1
(120)
B 1/2 n—m 4
[E(| Kz — Ka|*)] " < 28Pi(tn-ms1)h Y 2+ (n—m+1-)h) N{& . (Ag),,),
i=1 '

where the formula of a(t) is given in (96]).
The rigorous proof of Lemma [3] is omitted since it is almost identical to that of
Lemma [4

Now we are ready to bound the cross term in (112)). By the same treatment as
the case of differential equations, we have

(121)
‘Re hE [tr ((Bn,m(h)AKl + AK)! (An,m(h)AGmm)ﬂ ‘

< [BE [tr (Bum (W) (K1 = K1) + (K2 = K2)) " (Ann (1) AGw ) )|
+|hE [tr ((B,Lw(h)(Kl SR+ (- K <An,m<h>AGn,m>ﬂ \

= | [ox ((Bun () (51 = Ky) + (B2 = K2)) ' (Aun () AGrm) ]|

i (s 6 )] i) |

< E (A (MAG, )] { & (| B (51— Rr) + (2 - B))]

o= (

where we have applied Cauchy-Schwarz inequality in the last step.

On the right-hand side of (I21), the term [E (|| Ay, (h) AGp,m |1?)] 2 has already
been bounded in ([@5)). For the other term, we can find the bounds by Lemma [l

e (Bun )~ o)+ (0~ R)|)] }
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1183
immediately:

[E (||Bn7m(h)(K1 — K1) + (Ko — K2)||2)} 1/2

<2 [B (1K - Kaf2)] " + [E (1K - Kal?)]
SUP(tymi)h Y 2+ (n—m+1— D NS, (Agh ),
=1 .

(122) {E [Eae (Bum() (i — Ry + (s — Ko)) H?)]m

RN

<]

Ess (Bun(h) (K1 = ) + (Ko - Ko) ) |

<2|[Esz (K1 — K)||” + |[Esz (K2 — Ko)||*
n2

4a(tn—m+1)¥(tn—mt1) - N

Thus the final estimation of the cross term is

(123)

‘RehIE [tr ((Bn,m(h)AKl + AK)! (An,m(h)AGmm))} ‘

IN

1
< (1 + §%4h4> h [E(JAG,m|12)]"?

~— . std * _ _ h2
{44P1(tn_m+1)hZ(2—|—(n—m+1—z)h)./\/'lgzw?(i)(Agmm)—|—4oz(tn_m+1)7(tn_,,,ﬁ1).ﬁs}.
i=1
Finally, we combine the estimate (I14]) for the quadratic term with (I23) for the
cross term to obtain the recurrence relation (66]) for the numerical error.

7.2. Proof of (52) in Theorem [Bl—estimation of the numerical error. In
this section we discuss how to apply the recurrence relations in Proposition [T to
obtain the estimates in Theorem [l Here we only focus on the estimate for the
numerical error which we are more interested in. For the bias, we refer the readers
to B for the detailed proof.

In Proposition [1l two recurrence relations are given, in which the first relation
([65)) is easier to analyze due to its linearity. For simplicity, we rewrite this estimate

as
(124)

(Std) *

Nl";’m(j—m+l)(Agn,m>
j—m
< (NG (A ) Feh? Y (24 G -m+1-Dh) NS (Ags )
" i=1 o
h .
+C3—a j:m,"'7ﬂ—1,

VN,
where we have introduced the notations c¢; = %%4, co = 22P; (ty—m) and c3 =

%\/ (tn—m) for simplicity. The inequality (124]) is obtained by taking the maximum
on the diagonals, and using the fact that ¥(t;11-m) < ¥(tn-m)-
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1184 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

This inequality shows that the recurrence relation of the error with two indices
n and m can be simplified as a recurrence relation with only one index j. For
each j, the quantity ./\/'lgitd)(j_m)
on the (j — m)th diagonal (see Figure B). This can also be understood by an
alternative order of computation: once all the propagators on the diagonals I}, (i)
for i < j —m are computed, the propagators on I';, ,, (i) can actually be computed
in an arbitrary order, i.e., the computation of all the propagators on I}, (i) are
independent of each other. The derivation of (124 is inspired by this observation,
and this idea will also be used in the proof of Theorem [ to be presented later in
this section.

To study the growth of the error from (I24)), one can define a sequence {4;}
with the following recurrence relation:
(125)

(Ag;, ) denotes the maximum numerical error

j—1
h
Aji1 = (143coh?)Aj+cah® | > (2+(j—|—1—z’)h)Ai+c3\/—N_s for j =m, -+ ,n—1,
i=m-+1
and initial condition A,, = 0. Then we have [E(||AG,41.m[?)]Y? < Ajiq if we
require E—;hQ + h < 1. Increasing the index j in (23] by one, we get

J
(126)  Ajyo = (1+43c2h®) A +eoh® Y (24 (+2—i)h)Ai+c3
1=m-+1

h
VN,
Subtracting (125) from ([126]) yields

Jj—1
(127) Aj+2 = (2 + 302h2)Aj+1 - (]. + C2h2 - QCth)AJ‘ + 02h3 Z Al
i=m-+1

Similarly, we can reduce the index j in (I27) by 1 and again subtract the two
equations, so that a recurrence relation without summation can be derived:

(128) Aj+2 — (3+302h2)A]‘+1 + (3+402h2 - QCth)Aj — (1 +02h2 — 02h3)A]‘,1 =0.

The general formula of A; can then be found by solving the corresponding charac-
teristic equation. We denote A; as

(129) Aj :017“{+0'2Tg+037“§.
The formula of each r; is given in[A] based on which we can estimate A,, by
(130) Ap < C(h,Ng) - (L4 01/ Pi(tn—m)h)" ™™,
where 01 is a constant and C'(h, Ny) is a function to be determined.
The recurrence relation (63 helps determine the growth rate of the numerical
error. However, if we use (63]) to determine the function C'(h, Ns), we can only find

C(h, Ng) x /1/N, whereas the desired result is C'(h, N;) « y/h/Ns. To this end,
the other recurrence relation (66 has to be utilized, as in the proof given below:

Proof of Theorem Bl (numerical error). As mentioned previously, we only present
the proof of (52)) in this section. We claim that the error satisfies

s . - [ h
(]_3]_) ngj,ﬁ(jj(l+1)(Agn,m) S 92 V ’V(tnferl) . F(l + 91 AV4 P1 (tn,m+1)h)l

for/=0,1,--- ,n—m.
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1185

Here 65 is some O(1) constant. We will prove this claim by mathematical induction

using (66)).
We first check the initial case | = 0. By the recurrence relation (66), the left-hand
side of ([131) is bounded by

(132)

bd k
N ) (Al )

= max ([E(|AG s 1ml)]Y2 E(IAGm 2mi1 )]+ E(1AG11.0]2)]2)

< \/ﬁ\/’_}/(h)\/% <0, V ’_Y(tn—m+1) : \/NI’

as holds for any constant 6, > v/17.
Assume that (I31)) holds for all I = 0,1, --
(133)

NED oy (B ) =mas ([E(IACm k1. lP)] o B AG 1.0 -412)]7)

Jk—1, when l =k,

Therefore we just need to find the bounds for each []E(||AGm+k+j7m+j,1||2)]1/2,
j=1,---,n+1—m—k. This will be done by the recurrence relation (66l). For
clearer presentation, we rewrite equation (66) below only with subscripts replaced:

(134)
B(IAGnsttimesall) < (14 700) - B(IAGn 1145 1mes-al)

1
+ (1 + —«%”4/14) 4P, (tn—ms )P - [E(|AGm4ntj—1mtj—1]%)] Yz

k
<3 @2+ (k+1 - D)) N (Ag: )
=1

m4k4j—1,m+j— 1(8)

h3

_ 1/2
+ (14 50 ) 1000t oms) i [B(1AGmsr -1y 1 )]

2

mAk+j—1,m4j—1

k
+ {912P12(tnm+1)h4 [Z 2+ (k+1— i) NS o (A
=1

h2
+ 17’7(tn—m+1) F :

For the first and third terms on the right-hand side, we use the inductive hypothesis
(I31) with I = k — 1, which indicates that

2
S d *
IE(||AGm+k+j—1,m+j—1||2) < [Né{yj(k)(Agn m)]

<92’7(n m+1 1+91\/P1 nerlh

(135)
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1186 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

to get

(136)

1
(14 qrnt). E(||Aam+k+jfl,m+j71u2)
1 R
<<1+Z<%04h4>02’7(n m+1 N 1+01 Pl nm+1h2k2
(137)

1 _ _ 1/2
(1+ 51 ) 40t i) o[BGy 1mssal?)]

h3

N,
1 . h7

< <1—|—§<%ﬂ4h4) 4a(tn—mi1) [T (tn—mi1 ))>/ %05 - \/ N3 (1401 Py (ty—mpa )2) 1

<h0§’y(n m+1 1+91\/P1 nm+1h2k2

where we have assumed (1 + %%4114) ]}\L]—S < e )9\"’/7(75 ) to get the last
s A\ln—m+1 Yln—m+1

“<” in ([I31). For the second and the fourth terms on the right-hand side of (134)),
we first use the inductive hypothesis to get

(std)
Fm+k+1 1mtj— 1( )(Agn m)
(std) *
(138) =M o(Agnm)

h ; .
O/ (tn—m+1) - \/ F(l + 01/ Pr(tp—mir)h) ", fori=1,--- k.

The next step is to insert the above estimation into (I34]). To assist our further
calculation, we let ¢y = 611/ Pi(tn—m+1) and perform the following calculation:
(139)

k
> @2+ (k+1—i)h) - (1+csh)’
=1

k k
=2) (I+cah) +hY (k+1—i)- (1+csh)’
=1 =1

(1 —|— C4h)k+1 — (1 + C4h)

_ 9 L p L eah)*2 = (L4 eah)® = (1 + eah)eskh

cah cih?
k+1 k+1 k+1
§2(1+C4h) +2(1+c;1h) :(1+C4h) P i_’_% 7
cah cih h ¢ c
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1187

where we have assumed h < -=. By this inequality, we see that when h is sufficiently
small, for any 6; > 1, the Second term on the right-hand side of (134) satisfies

1 2
(1 + 5%%4) A4Py (tn—m+1)P” - [E(|[AGm4ktj—1,mt5-1]17)] Y

k
<32+ (k+1—)h) NS
=1

kg —1,maj—1 (@

o (Ag )

< (1 + %%4}14) 44P1(tn7m+1)9 [ m+1 - Z 2 + k+ 1-— Z)h)

(140) (1O Prlbaomi)h)" T
< 88 (1+%%4h4) 14 01\/Pr(tp—mi1)h) <—vnm+1)+i>

—_——
<2

Xheg'y(n m+1 1"’91\/1:)1 nm+1h2k2
< T04v/ Py (tn—mt1)hO35 (tn—mi1) 1+91\/P1 nemt1)h) 272,

and when 63 = /34, the fourth term on the right-hand side of ([34]) satisfies

<24/ P1(tn—m+1)

k 2
std *

912P1 n— m+1 [Z + 1— Z) )N( t+)k+J N 1(1) (Agn,m)

=1

2

+ 177( n—m+1)N
W[ &
< 9121312(tn,mﬂ)agﬁ(tn,mﬂ)F [Z 2+ (k+1-9)h)(1
S li=1
2 2
Pr(tn—m+1)h) ™M + 17’7(tn—m+1)ﬁ
(141) )
/Pi(tn_ 1
= 3648 (1 + 01\/P1(tn—m11)h)? <M + —2> h
01 02
<2
% h92— i 2k—2 1_7 2
2V(tn—m+1) 3~ (L4 01V Pr(tn—ms1)R)™ 77+ g xh035(tn—m+1)
s 2
<3

— 1+ 6P (tn,ml)h)%*2
<h927(n m+1 1"’91\/P1 n— m+1h2k2

2
by assuming 7296h (*”Pl(t_m“) + 9%> <1/2.
1

01
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1188 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

Inserting (L36), ([40), ([3D), (D) into (L), we get
(142)

E(|AGum-tkrjmrj-1]?)

1+ (704+/P1 (trmi1 ) +2)h+ 25404 _ h
< (1+9 \/ﬁh)g X 9%7(tn—frn+l)ﬁ(1+91 V Pl(tn—'m-i-l)h)2k
1 1\n—m+1 S

h
é ggﬁ(tnfqul)F(l + 91 V Pl(tnfm+1)h)2k

by setting 6; = 353. Since this inequality holds for all j = 1,--- ;. n4+1—m — k,
by ([133]), we know that (I3I)) holds for [ = k. By the principle of mathematical
induction, we have completed the proof of (I31)).

Finally, we set [ = n —m in (131 to get

std *
E(|AG1ml?)]? = NG (i) (Agh )

(143) 7
< 0oV (tn-ma1) -\ 7 (L4 00V Prlta-me)h)" ™,
resulting in the final estimate (52)) for the numerical error. ]

Remark 3. Due to the jump conditions (31]), we actually need to multiply by the
norm of the observable ||O;|| on the right-hand side of (I24]) when crossing the
discontinuities. However, we can always first consider the observable O/||Os||, and
then multiply the result by [|Og||. Therefore we can always assume [|O4|| = 1 in
this paper and thus our analysis is not affected.

7.3. Proof of Proposition [8—estimation of the error for the deterministic
method. In this section, we consider the error E, 41, = Ge(tnt1,tm) — Gntim
for the deterministic scheme (40). By triangle inequality,
(144)

||En+1,mH

< [Guttriss ) = [Ann 016ttt + 31 (B0 Fila ) + Pl

Part 1

1
+ H |:An,m(h)Ge(tnu tm) + §h (Bn,m(h)Fl(gz,m) + F2(g$:m)):| - Gn+1,m

)

Part 2

where gy, ,,, and g7*,, are defined as
(145)
Gnm = (Ge(lmir, tn); Ge(tmi2s tmpa ), Ge(tmiz, tm)i 3 Ge(tn, tna1), -+ Geltn, tm)) ,
gf:m = (gi,m; Ge(tni1,tn), s Geltny1, tmr1), Ge(tngt, tm)) )
which are similar to the definitions of g, ,, and g}, ,,. We note that G, on the
discontinuities are again defined to be multiple-valued as

Ge(tn,tr) = (Ge(tt, 1), Ge(t ™, tr)) and Ge(tj, tn) = (Ge(t;, tT), Ge(t;, t7))

for0 <k<N-1land N+1<j <2N. We further define e, ,, = 9rm — Gnm
and e}, ,, = g;",,, — Gy, m, Which will be used later. The estimation of the two parts

in ([I44]) will be discussed in Sections [[.3.1] and [7.3.2]
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1189

7.3.1. Estimation of Part 1 in (144]). We further split this part of the error by
(146)

1
Ge(tn+17 tm) - An,m(h)Ge(tm tm) + §h (Bn,m(h)Fl (gi,m) + FZ(gvez*,m))

1
= (Ge(tn-i-l; tm) _An7m(h)Ge(tn7 tm)) - Eh (Bn m(h)H(tnv Ge; tm)+H(tn+1; Gea tm))

1 1
+§h (Bn,m(h),H(tm Goytm) +H(tn, Goytim)) — Eh (Bn,m(h)FI(gz,m)“‘Fb(g?:m))v

where the definition of H is given in (37).
Using Taylor expansion, we may easily obtain the bound for the first term of

(115):
(147)
h
|Geltass )= A ()Gult )= B ()Mt i) Mt G )|

1 5
< (=g g h3
- (4 * 12 )
Meanwhile, since

(148)

H(tn, Ge,tm) — m)

Fi(gy,
M
_ iM+1 _\#{5<t}
- i [ ey
Z tn >8>t

M is odd
Ws[Ge( ny S]VI)W W G (81> ) IhG ( ny s]\/[)Ws' . 'WsIhGe(slytm)]E(tny g)dga

we need the following estimation to bound the above term:

(149)
||G (tna SIV[)W T WsGe(Shtm) - IhGe(t’ru SM)WS e WsIhGe(Slatm)H

M
gz (tn, 530 )Ws - - WoGe(sjra, sj4 )| # I|Gol5j41,85) — InGe(sjt1,5,) |- #

. HIhGe(Sj7 Sj_l)Ws ce WsIhGe(Slatm)H :

The term ||Ge(s;+1,8;) — InGe(sj+1, ;)| in the above equation is the linear inter-
polation error. By the standard error estimation of interpolation (see e.g. [43]), if
the point (s;j41,s,) locates inside the triangle 7", the interpolation error is

(150) G (5541, 57) — InGT (5541, 55)

< 518 o (%6

where Rp is the radius of the circumscribed circle of 77 and p(Dngrs)) denotes
the spectral radius of the Hessian of G((fs), which can be bounded by

(D?G )<||v2 )| < 29
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Plugging the above result into (149]) and using the bounds of the exact and numer-
ical solutions, we get

(151) ||Ge(tnasM)Ws"'WsGe(Shtm) _IhGe(tn>s]V[)Ws"'WsIh (517 )H
< (M +10)gMpMg"n?

Finally we apply this bound to (I48)) to obtain

(152) |H(tn, Ge, tm) = Fr(g5,,0)|| < Bltn—m)h®
where
. Mo M4
Bty =wg" L? Mz_:l m(%ﬁﬂmtw
M is odd

Note that H(t,1,Ge,tm) — F2(gy",,) can be obtained by changing ¢, to t,41
in the expression of H(tn, Ge,tm) — F1(gy, ). Therefore its bound can be given by

B(tn—m-i-l)hZ' Thus,
1 1
(158) |55 ({0, Gos )+ Mt 11, Gestn)) = 5 (Fi(g5) + P
< B(tn7m+1)h3~

Inserting the estimates ([I47)), (153) into ([146), we have the following estimation for

Part 1 of (144):
(154)
HGe(th,tm) B {An,m(h)Ge(tn,tm) + %h (B (D) Fi(5 ) + Fg(gfifm))} H

Part 1

< l%g// + ig/// + B(t ) h3

~ 4 12 n—m-+1 .
7.3.2. Estimation of Part 2 in (144]). The estimation for this part of the error is
similar to that of the stochastic error. By the numerical scheme (40Q), we have
(155)

1 «
A (WGt ) + 31 (B (D1 (55,0) + Fa(g))| = Gt
1 1 N N

= Aﬂ,m(h)Eﬂ,m+§th,m(h) (Fl(g‘rez,m) - Fl(gn,m))+§h (FQ(gz,m) - FQ(gn,m)) .
For the second term on the right-hand side, we can mimic the analysis of (104) to
get
(156)

HFl(gfL,m) - Fl(gn,m)H < 8P1(tn—m h Z 2 + n— - Z)h) Hen,m| r
=1

n,m (1)
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For the third term, due to the same analysis, we have

HFQ(gZTm) _F2(g:17m)H SSPl(tn—m-i-l { HG lnti1,t ) G*+1 m”

(157) n—m
+ > 2+ (n—m+1-i)h) |€Z,m||rrl,m(z'>}v
i=1
where
|Getntas tm) = Gt |
= || |Geltn,t )—i—hiG(t tm) + 5 hQaQG(V tm)
= elln,lm 6Sfen7 82'3"’"7‘
— [(I + sgn(tn - t)leh) Gn,m + hFl (gn,m)] H
(158) - ‘ (I +sgn(ty — t)iHh) By + b [H(tn, Ge,tm) — Fi(gp.m)]
82
h28 gGe(Vvutm)
< (T + sgu(ty, — t)iHR) Byl + h || H( tn,Gc,t ) = Fi(gnm) |
1
+h’|Fl(g$l7m) Fl gnm H + ’ Os QG V"’ H

Note that the second-order derivative above is the remamder of the Taylor expan-
sion and should be interpreted as

8_2(? (Vnstm) = ( ! G(U)( Tlll)jtm) g_%Géu)(wgu)’tm))
ds? " 9 G(zl)( ),tm) g—S?Gém)(uﬁfz),tm)
Using the previous results (IEZD and ([I56]), we have the bound
(159)
|Ge(tnsss tm) = Gl |

(1 + %2h2)”En m” + 8P1 n— m h2 Z 2 + n-— - Z)h) ”en,m| Tom(2)
=1
+ (417 + B(tn-—m)h?)
1 n—m
< (1 + 5%2h2)”En,mH + 8P1(tn—M)h2 Z (2+ (” —m— Z)h) ||en,m||l“n,m(i)
=1

+ 254// h2
upon assuming h < 9" /B(t,_m). Plugging the above estimate into (I57), we obtain

(160)  [|Fo(ghm) — Folgm,m)|]
< 28Pi(ty-mi1)h Y 2+ (n—m+1—i)h) e} lrs i) +16Pi(tnmi1)F"h®
i=1
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which is a result similar to (99).
Now we plug the estimates (156) and ([160) into (153]), we obtain the following
estimation for Part 2 of Ej, 41 m:

(161)
H {An,m(h)Gc(tn, tm) + %h (Bum (W) F1(g5) + P (g‘j:m))} _ G"“””H

Part 2
1 n—m
< (1430 B[+ 2Pt T 2 1=t 100 €5l
i=1

+ 8P (tn—m+1 )g”hg .

By now, we can combine the estimates for Part 1 (154]) and Part 2 ([I61)), so that
the estimation (144)) yields the recurrence relation:

(162)
HEnJrl,m”
1 n—m
< (1+§jf4h4) | B || 4+22P1 (ty 1 )02 Z 2+ (n—m+1=0)h) [le} llr: @)
=1

+ Pe(tn—m+1) . h?,’
where
Pe(t) = G% + 8P1(t)> g + %%’” + B(1).

One may compare the recurrence relation above with (63)) to find that the only
difference between these two inequalities is the truncation error (last term). There-
fore, we may simply replicate the procedures ([124)—({130Q) and conclude that the
deterministic error has the exact same growth rate in the exponential part as the
numerical error:

(163) 1Enstmll < P2(tnmi1) (1 + 01/ Pr(tn—mr1)h)" " - 2

which can again be verified by mathematical induction. Therefore, we arrive at the
estimate for the deterministic error as stated in Proposition

8. CONCLUSION

We have presented a detailed analysis to study the error growth in the inchworm
Monte Carlo method, emphasizing the trade-off between the numerical sign prob-
lem and error growth due to accumulation and amplification due to time marching.
The result explains why the inchworm Monte Carlo method has a slower error
growth than the classical quantum Monte Carlo method, and our analysis reveals
how partial resummation trades-off the numerical sign problem and the error ampli-
fication. Our work points to the research direction of improving the time integrator
to further suppress the error growth, which will be considered in future works.
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APPENDIX A. FORMULAS OF THE ROOTS OF CHARACTERISTIC POLYNOMIAL

Here we provide the formulas for r; appearing in (129). Let € = coh?. Then we

have
(2)"? (2 + 2h + 3¢) ]
— 3
rr=1+e+ R +21/3><32/3R’
(164) ro=1+¢€— (1+ V/3i)e(2 4 2h + 3e) i(i+/3) 7
22/3 x 31/3R 9 % 21/3 % 32/3
i(i+ v3)e(2 + 2h + 3¢) i(i+/3)
r3=1+e€+ ’
where
(165)

1/3
R= (e (9h+186+18h6+1862+\/§\/—4e(2—|—2h+36)3+27(h+2h6—|—26(1+6))2)) .

When h is small, it can be verified that R ~ O(h). One can then see from (164)
that r; ~ O(h) for i = 1,2, 3.

APPENDIX B. PROOFS RELATED TO THE BIAS ESTIMATION OF THE INCHWORM
MONTE CARLO METHOD

In this appendix, we would like to complete the proof of the bias estimation for
the inchworm Monte Carlo method. Specifically, the proofs of (96)), (97) in Lemma
[4] and the proof of (51l in Theorem B will be given below. The final result (53) can
be obtained directly by the triangle inequality.

Proof of (Q6) and ([@T). (i) Estimate of HIE(INQ - Kl)H:
We again use the relation (100) to get

(166) Es(Ki — K1) = Fi(Gn.m) = F1(Gpm)-

Then by Taylor expansion, we get

B (R K = (VA (G0) B~ G)

(167) Lol .
SE @ = ) (V2 €0 ) G = G)]

where §,, . is a convex combination of g,, ,,, and g,, ,,,-
The estimate for the first term on the right-hand side of the equation above is
similar to (104]) which is

(rs) T = -

AP (tn-m)h Y (24 (n—m—i)h) |[E(Ag,,)]
=1

Fn,m (z) )
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1194 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

For the second term on the right-hand side of ([L67]), we use Proposition [l to bound
it by

}E [(im ) (VE ) (G - g*n,m)] ‘

2 7n(rs)
E Z Z 0 Fl (gn,m) AG(PllIl)AG(P2‘I2)
w52 - 6G(P1Q1)8G(P2QQ) k1,61 ka,t2
k1,£1)EQn m; P1,91=1,2; k1,4 ko 4
(2, 00)Em . P2ra2=1.2 b e

S I SR SR VD »

(k1,£1)€09Qn ,m; (k1,£1)€0Qn m; (k1,£1)€ ,m; (k1,£1)€ m;
(k2,£2)€00n,m (k2,02) €, m (k2,£2)€02n,m (ko ,02) €S, m
82F1(r3) (én m) (pq) 2
E E : - max [E ‘AGk /
aG(le)aG(qu) (5,0)€m m; )
P1,91=1,2; k1,61 ka,lo p,q=1,2
p2,92=1,2

2
< altuem) [N (Ag,.0)]
where
1
a(t) = 16Py(t)(10t 4 16t> 4 5t3 + Zt4)'

Here we first need to count the number of the nodes in the set |9Q,, | = 2(n—m)—1
and |, | = 2(n—m—1)(n—m—2). Then the last “<” above is done by combining
the second-order derivatives of different magnitudes given in Proposition [6] with the
corresponding number of such derivatives. For example, the first summation in the
third line above together with the second-order derivatives such that conditions
(a)-(d) are satisfied will contribute Pa(tn—m)h- (442 x 3(n —m)) < Py(tn—m) -
10(ty,—m) to the final estimate in the last line. Similar analysis applies to other
three summations.

Inserting the two estimates above into ([167) gives us the evaluation for

H]E([?l - Kl)H as m
(ii) Estimate of HIE(I~(2 - KQ)H:

Using the same method as the estimation of H]E(f(l - Ky)

, we have

[B&: - K2)|| < 4P1<tnm+1>h{ B — G|

(170) + > @2+ (n—m+1-i)h)|E(Ag;,,)]| r:;,m(z')}

i=1

. 2
+ altnmir) NG (Agh)]

n,m
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which is similar to (96). By the definition of Gj, ,, ,,, and é:ﬂ»l,m given in (@0Q) and
(44) respectively, we can estimate HE(ézH,m - G;H’m)H as

(171)

IE(Gs1.m = Gt )

< ((1 + sgn(tn — DiHh)AGym) || + hIE(K; — K1)|

1 n—m
< (g A (BGon )| +8P - Y 2 1= =D (B,

i=1
2
o+ altan)h [N (g )|
where we have applied (@6]) in the last inequality. Thus it remains only to bound
std * 2 std * 2 o~ *
(172) [Nfg;‘fﬂz (Agn,m)j| = max ([’A/g%:w? (Agn,m)j| 7E(HGn+l,m - Gn+1,m||2)) )

for which we just need to focus on the estimation of]E(||C~¥;:+17m —Gr iy mll?). Again
by the definitions (40) and ({d4]), we have
(173)

E(IG 1 — Giprml®) < 201+ H2RE(| AGr ) + 20%E(| Ry — K ).

By (98), we can estimate IE(Hf(l K |?) as

(174)
(|51 — K ?)
n—m d 2 1
< 128P] (ty ) ” { > @2+ (n—m—i)h) Né;ﬁnj(i)mgn,m)} + 8(tnm) 7
i=1 s
. 2 1
< 128PX (b )2+ b)) 2 NG (g, )|+ 87 (o) - -

Therefore
E(|Gri1m = Grsrml®)

. 2
< 21+ AR E(| G |*)+256 PPt ) 2+t )2, 12 (NG (Ag, )]

h2
+ 16'7(tn7m) : M
] 2
<2[1+ (A% +128P2(ty 1) (2 + tnm)*t2_,,) h] [Ng(ljjz(Agmm)}

_ h?
+ 16'7(tn7m) : M

: 2 >

s

if h < 1/\/%”2 + 128 P2 (ty—m) (2 + tr—m )?t2 Inserting this inequality into

n—m:*
([I72), one obtains
2

S 2 S * 2 _ h
a7) NS (Ag)| <4 NS (Agn )|+ 165 () - 5

S
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1196 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

Finally, the estimate (7)) can be obtained by inserting the estimates (71 and

([I75) into (I7Q) and require h < ——21 . O
V2P1(tn—m+1)

Proof of (51)). By (92)), we estimate the bias by

(176)
[E(AG nt1,m)]l

1 ~ 1 ~
< A (WVE(AGr )| + Sl B (WE(Ry — K1) | + SHIE(Rs — K>
1 ~ 1 ~
< (14 50 IB(AG )]+ HIECR: - K| + GHIE(R: - Ko,

Now we can insert (Q6) and (O7) into the above equation to get the recurrence
relation stated in (G4), where the error NS%Std)(Agfhm) can be bounded by (52),

n,m

resulting in
(177)
IE(AGn+1.m)]|
1 n—m .
§(1+§jf4h4) [E(AGrm)[|+22P1 (tnmin)BZD (24 (n—m~+1—i)h) |[E(Ag], ,,)|
1=1

7 h2 h3
+ (5d(tn—m+l)‘9§'7(tn—m+l) (9291 v Pl(t"_m*l)t”_mﬂ) - 81Vt - F)

F;‘hm(i)

1 n—m .
§(1+§ji"4h4) [E(AGrm)[|+22P1 (tnmin)BZD (24 (n—m+1—i)h) |[E(Ag], ,,)]

=1

L m (D)

2
+ 4d(tn—m+1)9§’7(tn—m+1) (9291 \% Pl(t"‘m*'l)t"‘""“) . h

upon assuming h < %.

We notice that the above inequality is simply the recurrence relation ([162)) with
the last term changed. Therefore, we can repeat the application of (162 and find
the following estimate:

(178)  E(AGn+1,m)ll
h
< 4056 (tymi1 )V (bnomr) (e”lVPl“MH”MH) (1400 V/Pr (i )™ -
which leads to the final estimate for the bias stated in (&1). O

APPENDIX C. ESTIMATION OF THE DERIVATIVES OF Fj(-)

In this appendix, we provide a detailed proof for the bounds of first-order deriva-
tives of Fy(-). The proof for the second-order derivatives will only be sketched.

C.1. Proof of Proposition [5—estimate the first-order derivatives.

OF1 (&, m)

Proof. We are looking for an upper bound for the derivative Pyt with &, ,,,
k£

being a convex combination of gy, .., g, ., and g, ,,, defined by
(179) ’Sn,m = (Em-i-l,m; Em-i-2,m+17 Em+2,m§ t ;En,n—lv te 7En,m)
satisfying

(180) Ej’k = ClGe(tj,tk) + CQGj’k; + (1 —C1 — CQ)Gj’k;
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1197

for some constants 0 < ¢1,co <1 and ¢; + ¢ <1 given m < k < j <n. According
to the assumption (H1) on the boundedness of G, G and G, we immediately have

(181) |Zjxll <& for any j,k=0,1,--- \N—1,N",N* N +1,---2N — 1,2N.
In (4Q), we write F1(§,, ,,) as

M
Fy (gn,m) = sgn(tn - t) Z iMJrl‘FM(én,m)’
M is odd

where

(182)

Fr (&) = (=) E<BW LB (b, spr)We - - - W E (51, tn ) L(tn, 8) d5.
tn >8>t

w for each odd integer M. The
oG

two cases given in equation (59) will be discussed separately below.

(I) (k,£) € OQy, . This case includes %&%’gm) and %}?’;5’"). Here we only
OFm (&, m) ’ :

)
G

For each Fpr(§,, ), we split the derivative by

8]:M (gn,m) _ i 81—] (gn,m)
T = e

Therefore, we focus on the estimation of

consider the derivative since the analysis for the other is similar.

(183)

where

(184) Z;(€,,) = /

b >80 > >8j 11>ty 1>8) > >81 >tm
(=)W 12 (b, s00)WeInE(sar, sar—1) - - - Wl E(s1, tn ) L(tn, 8) d8,

in which we requirq that ¢,,—1 is between s; and s;41. We write the integrand of

each Z;(&,, ,,,) as G{ X I,E(sj11,5;) X G where

Gl = () EBW, LE(ty, spr)Ws - - Wl E(542, 8541) W,

G) = Wl Z(s5, 85-1)Ws -+ W I,E(s1, tm) L (ty, 5)

for 1 < j < M —1 (the formula for j = 0 and j = M is slightly different but easy
to get). One can easily verify that GJ is completely independent from the factor
Zn,e since the time sequence {si,---,s;} is at least one time step away from ¢,

(185)

and thus the interpolation of any I,Z(s;11, ;) in gg never uses the value of =, 4.
On the other hand, the value of G/ as well as the “interface” In=(sj+1,85) may or
may not rely on =, ;, depending on how / is given, as leads to the two cases we are
going to discuss below.

Case 1 (¢ = n — 1). This is the most complicated case in this proof. Note that
Q{ depends on =, ,—1 due to the fact that we get each IE(s;41,s;) in g{' by the
interpolation IhE(S'H-h Sz) = Ci,lEn,n + C@QE”_Ln_l + Ci,3En,n—1 with some coef-
ficients |¢;| < 1. The “interface” I=(s;41,s;) depends on =, ,—1 only when s; is
restricted between (¢,—2,t,—1) where I;=(s;41,85) = ¢j15n—1,n—1+Cj25n—1n—2+
€j.38n,n—1 + €j4Zn n—2. One may refer to Figure [§] for a better understanding.
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5i

tn—1

tn—2

tm

Si+1
tn—11ln

FIGURE 8. For each Z;, red triangle: the area where (s;41,s;)
pairs in G] locate; blue triangle: the area where (s;41,s;) pairs in
Gj locate; pink square: the area where the value of I,Z(s;41,5;)

is dependent on =,, ,,_1; green rectangle: the area where the value
of InE(sj41,8;) is independent from =, ,_1

.. . . 0L, .
For these reasons, we further divide the derivative % into two parts:
n,n—1
(186)
9Z; (&, )
aG
9] i = S
= e (g1fh:(5y'+17 5]’)) Gyds
tn>sp > >851>tn1 St 1>8>tp 2 Jsi>s5 1> >51>tm, a:n,nfl
0 j — iz
+ —o 91 | InE(ss,55)G3d8.
tp>sp > >ep1>tn g Jtn 9>s;>tm S>>t \ 02, 11y

For the first integral above, we compute the derivative in the square bracket by

d -
A(ra) (g{Ih:‘(Sj+17 Sj))
a‘:"n,nfl
M s B
=> (—)*E B W E (tn, sa) Wi - W, [tha(sm, si):| We- - - WInE(sj41,5;)
i=j ‘:‘n,n—l

M
=Y (D)WL E (b, sa) W -+ Waci s Epg W - - WInE(s541, 55).

i=j

Here E,q is defined as a 2-by-2 matrix with its pg—entry being the only nonzero
entry equal to 1. By the hypotheses (H1), (H3), this integral is therefore bounded
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1199

by
(187)

1o . .
IT7 =(c. X Jde
/ / / Tg1lh~(sy+hsy) Gpds
tn>81u>"'>8j+1>tn71 tn71>3j>tn72 Sj>$j71>"'>81>tm 8._‘

n,n—1
< (M —j+ D)wMHgM ey )

X/ / / 1ds
tn>Sp > >8 41>t tn—1 St 1>8;>th o J5;>85 1> >851>t,

< pMRAGM (AN P x (M —j+1) (tpg —ty ) R

1\4+1

1

X

(M—j)1(G—1)!
We notice that the upper bound above consists of three components:
(1) #MH1gM(MN.2*57): the upper bound of the integrand; (2) M — j + 1:
the number of terms with the form I,E whose values depend on =, ,-1; (3)
m(tn,l —tp ) TIAM I+ the area of the domain of integration. Similarly,
we may directly write down the upper bound for the second integral in (186]):

(188)
9 _ cilre iz
—oa 91| InE(sj, 559, d8
tn>Sp> >8>t 1S tn2>8>Tm v §5>8-1>>81>8m, :;n7n71
1 . )
< WMHGM (ML T x (M - j) x A yiltn-e — tm R
Combining the estimations (I87) and (I88]) yields
(189)
M < QWMHgM(M”gMJI)M__—W(th — b M
oGy (M =) —1)!

As we have mentioned previously, the upper bound we obtained above is for 1 <
j<M—1. For j =0 and j = M, we may return to (I84) and consider these two
individual cases and we easily reach the following results with similar argument:

810(5 ) WM+1%M$M+1 M+1 BM
— 1\ ’
aan‘TJL . (M -1
oT, 1 M
# < YMHIgM = Ay (et — ta) R
8Gnn 1 ( o )
OL; (&1,m)

Now we sum up all the upper bounds for

(1+X)" =250 (%) X* to get:

e~ and use the combination relation
n,n—1

(190)
LM i M My,
8ani 1 Gifi? 1 (M —3)n

Here we remark that the argument above is only valid when the odd number M
is chosen to be greater than 1 due to the number (M — 3)!! in the estimate (190,
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1200 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

which is not defined when M = 1. For M = 1, we simply return to the definition
([I82) and follow similar procedures to reach the result

OF1(&.m)
8G(pq)

n,n—1
Case 2 ({ < n — 1). For this case, one may check that G and G} defined in (I83)
are both independent of Z,, ¢, while the “interface” IhE(st, sj) depends on =, ¢
only when t,_1 < s; < tg41. Therefore, we simply calculate the derivative for each
Ij by
8Ij (£n,m)
oG

< 2% Lh.

(191)

4 9 ,
— J = Jde
—/ / / 91| = = (sin, 85) | Gd8.
tn>SM>"'>Sj+1>tn71 tz+1>8j>t271 Sj>3j71>"'>81>t7n 8:n ¢

Note that we need to choose 1 < 5 < M — 1 and when j = 0 or 5 = M, the corre-
sponding derivative above vanishes. We follow the analysis for Case 1 and can also

obtain upper bounds for all % , summing up which leads to the estimate
n,l
of Mgg;m) . By calculation similar to Case 1, the derivative W can
oGP oG
also be bounded by the same upper bounds given in ([190) for M > 3 and ([191)) for
M =1.
Overall, we arrive at the conclusion that for any (k,¢) € 9y, 1,
OFn(&m) 292G Lh, it M =1,
(192) PR < M4l M oML M 4 \M-—1 :
oGPl 5W G L2 e (tn — tm) h, if M > 3.
To complete our estimation for %, we now sum up the bounds for
kL
ng)) up to M and get a uniform bound
oG P
oF
o )
oGy,
WYL + WYL 3 M (g2 R
§ Mg, )
= i Mz_; (M —3) ( —m

M is odd
which proves the first case in Proposition [l
(I) (k,¢) € Qnm To compute LfM(éng)
oG,

Fum (&, m) that depend on E,i’jg). Since (k,{) € Qmm, only those I, =(s;+1, s;) such
that t,_1 < 85 <tgg and tp_1 < Sj+1 < tgy1 may depend on Ehg.

We first consider a special case M = 1, where the derivative is simply given by
(194)

8‘7:1(57 ) 0 tn s — =
(pZ)m ) / (_1)#{ 1<t}WSIh:(tnvSl)WsIh:(Slvtm)E(tna51) dsy.
Gy y =3¢ Jtm

, we need to first find all I,=(s;j41,s;) in
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1201

It is easy to see that neither I,Z(t,, s1) nor IZ(s1,t,,) depends on =y ¢, since both

are interpolated by Z values only on 0€,, ,,,. As the result, % =0.

When M > 3, we need to consider the following two p0551b1htles

Case 1 (k— ¢ > 2). Similar to (I83]), we apply the following splitting of the integral
in the definition of Fj, (182):

OFn (Enm) _ Mi 0T, (§n,m)
el el

)
=1

where

Tl = [ / / /
tp>>8542>8j41 Jtpr1>8j41>tk—1 Jtep1>8;>t01 Js;>85 1> >ty
(—~D)FEBW L, (b, sar) W I E(sr, $a1-1) - - W I Z(51, tn ) L(tn, ) dB.

Here a critical observation is that once we assume t,_1 < 85 < to41, th—1 < $j41 <
tp+1 for any fixed j, InE(sjy1,s;) is then the unique term in the integrand of
Fu (€, ) that depends on Zy, ¢ since (tp—1,te41) N (tp—1,thq1) = 0 when k—£ > 2.
This observation is illustrated in Figure [

S; Sj4+1
¢ ¥ ¢ ¥ t
te-1  te teyr -tk tp tkaa

FIGURE 9. Locations of s; and s;j41 in Case 1

We again write the integrand above as GI x I,Z(s;11,5;) X GJ defined exactly
the same as in (I85]), then G] and GJ are both independent from =y . Therefore,

9T (&n,m)
aG\"Y
i[9 ;o il gz
S gl Wlh:(sjﬂ,sj) g2 dS
tp> >80 J >8>t J e >8>t 1Y 85> >ty 3Ek,€
< qpMAigM g A (tn = tn)M 202,

(M—j-DI(G -1
which leads to
(195)
H 0Fm(§ 0T (& m)

G(pq)

M

M+1cgM
< 4w GgM 5= —(M—S)!!

)

=1

(2tn—m)M 212

| M-

Case 2 (k — ¢ = 1). There is an overlapping region (t¢—1,ter1) N (br—1,tkr1) =
(te,ter1) in this case. Consequently, there can be multiple terms in the integrand

0Fm (€& m)

depending on =i . To estimate the derivative Py
k.2

, we further divide it into
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1202 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

three parts based on the distribution of the time sequence § in the integrand:

M M-—v u v M—-1M-—v 7 M—-1M-v—1 u,v
8G H(pq) :( ) 9= p
v=2 u=0 “k l v=1 u=1 k4 v=1 u=0 —k,l

M—2M—v— 18]C“”
+Z Z ~(pq)’

‘—‘ké

where

Y x Ih:(8u+v> Squ'ufl)Ws o WsIhE(Su+27 Squl) X g;,v dgv

u,'U p—
Ky™ = / / /
>8M> >Sutv+1>tet1 i1 >Suqu > > 8up1 >t St 1>84 > >81 >,

n>SM> >Sutv1>tk41 /t/z+1>su+u>~->su+1>te /te>su>te 1 /u>5u1>"->51>tm
Y X InE(Sutvs Sutv—1)Ws -+ - WeIpE(Sut1, Su) X Gy d8,

U
faln / / / /
tn> SM> > Suprt2> Sutvtl Y s Suton >tk Y Lea> Sut> > Sy >te Jte >8> >81>1m,

X Ih~(3u+v+17 5u+v)Ws W Ih~(3u+27 Su—i-l) X gg v dS

/ tn>8M> > Syt /tk+1> Sutv 1>t /tz+1>9u+q,>~-~>su+1>te /te>€u>te 1 /su>-~~>sl>tm

u Y x Ih~(3u+v+17 5u+v)Ws W Ih~(3u+17 Su) X g

uU,v
K:?)

With a slight abuse of notation, here G;"* and G5 denote the products with the
form “Wylp=---WI,Z” that complete the integrand. Each %" here represents
a part of the integral Fps(§,, ,,) where there are v time points in § locating in
(te,ter1). These cases are illustrated in Figure [LGF

e In K", no time point other than these v points syi1,: - , Syt is in the
interval (tg—1,tk41)-
e In K5’} (or K3'), there exists at least one point other than sy 1, , Sutv

locating in (t¢—1,t¢) (or (tg,tx+1) ) while no time point appears in (¢x, tx+1)
(01" (tg_l, tg)).

e In k3", there exists at least one point other than s,41, -, Sy4y in both
(th, trs1) and (te—1,t0).

By splitting Fpz (&, ,,,) in this way, one may easily check that G;"” and Gy*" in
each K*" are all independent of Ek £ while all I,= in between depend on Zj .
as the product of the derivative of these

Therefore, we can now compute (pq)
8_

I,Z. Mimicking the previous analysm in (I87) and (I88]), we may bound the first
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Sut1; Sut2; .-+ Sutw
Su Su4v+1
U, ( TN )
K t ¢ } ¥ t
te—1 ty (78] (7]
(t-1) (tk)
Su+1ySu+2y -y Sutv
Su Su+v+1
u,v K—H
KL ¢ ¢ } ¥ t
to_1 te Loyt tk+1
(te-1) (tk)
Su+1ySu+2y .-y Sutv
Su Su+v+1
u,v . K—/H
Ko'g: ¢ ¢ } ¥ t
te—1 ty Lot L+t
(te-1) (tr)
Su+1ySu+2y .-+ Sutv
Su Su4v+1
U, ( et )
Ky t ¢ } 1 t
te—1 te tog1 tri1
(te-1) (tk)

FIGURE 10. Distribution of the time sequence & in K", K377,

i K3

summation
(196)

JXW:M—U 8 11;71)

v=2 u=0 85;52)

M M-—v

tn - thrl)M—u—'u h? (tg,1 - tm)u

<3N wMHGMIL ) x (v - 1) x ( R

= = (M —u—v)! v! u!

M s v — 1 M—v 1
<Y #MTGMNL T ) —— ()M TR Y

= = (M — v —u)lu!
_ = WMJrlg sz v—1 vahv
- ; (Mg )m(%n_m_l)

M—2 v
M —2)! h
= WMAG ML) (2t 1) 202 ( ( >
o (M —2—v)lo! \ 2tp—m—1
1
(M —=2)!(v+2)

1., m M+1 1 _
< = +1 I - o M—2;2
< 27/ G(MNL > )(M—Z)!(%n m—1+h) h

1., u M1 M _
< +1 of  \M-2p2
SVTIL T gy eem)
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Similarly, we may estimate the other summations as

M—1M-—v alcg,z M—-1M-v—1 alcg,;%
Z Z =P Z Z o=(ra)
v=1 u=1 =k, = u=0 =k,
M _
m(2tn_m)]\/f 2h2
and
M- —v— w,v
vy (M —1)M
Z Z ORs™ || <y gt ML= DM gy
= = 3_;’2 (M —3)!!
Therefore, we get the estimate
OF 1 —
(197) 07 (Enm) < gyMrigh i (M - DM (2tn_m )M 2h2.
Rleld (M = 3)!!

Note that the upper bound above is strictly greater than Case 1 bound given in
(195). Therefore, we may use the upper bound in (I97) as the uniform bound for

both cases. )
As a summary, we have obtained the following result: for (k,¢) € Qyp m,
8]—"M(£m7n) 0, itM=1
8G§€pg) 37/M+1gM$M+1 ((1\1\44 13))1:/'1 (2t )M_2h2, if M > 3.

Summing up these estimates, we see that for odd M > 1,

(198) H aFl (én,m) ‘ < f: H 6]:1\/[ (ﬁn,m)
oGy || T = oGPy
is odd
M M
< | 3wz et Z (2%{431/215“ M2 | R2,

By now, all the cases have been discussed, and the final conclusion (B9) is a
simple combination of (193] and (I98)), as completes the proof. O

C.2. Proof of Proposition [6H—estimate the second-order derivatives. The
proof of Proposition [l is quite tedious and does not shed much light. Moreover
the error contributed by the second-order derivatives plays a less important role in
our final result. Thus we will only provide the outline of the proof stating the idea
without technical details.

By the definition of F}(-), we decompose the second-order derivative as

62F M (92]:
(199) % = Sgn(t" - t) Z it (plqj\l/[)(gn’(z;)%) ’
9Gy 1y 0G0, A Gk 0,

where the definition of the function F(§,, ,,) is given in (I82)). Since each I;Z is
obtained via linear interpolation, one can easily check the following result:
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SIGN PROBLEM OF INCHWORM MONTE CARLO METHOD 1205

2
Lemma 6. If 5 9 T (En.m) 18 nonzero, there exist at least two factors

(p141) (P24q2)
Grry 0Giye,

In=2(sj,,85,—1) and InE(84,, 85,—1) in the integrand of (182) with 1 < j; # jo <
M + 1 such that

(200) tki,1 <sj4, < th+1 and tgi,1 < Sj5,-1 < tei+1, fO?"i =1,2,
where we define sp11 =t and Sg = tp,.

The entire argument in the rest of this section will be based on this result.
Similar to the proof of the bounds for the first-order derivatives, we need to take
into account four possibilities for the locations of (k1,¢1) and (ka,¢2).

(I) (k1,41) x (k2,£l2) € Oy m X Oy . Since 00, ,, includes two sides (see Figure
[B), we are going to study the two cases where the two nodes (k1,¢1) and (ko, fs)
are on the same/different sides.

Case 1 (k; = ko = n or {1 = €5 = m). This is the case where (k1,¢1) and (k2,{3)
are on the same side of 9, ,,,. Here we only focus on the case k1 = k2 = n and
the analysis for the other case ¢; = ¢5 = m is similar. We may check that

e If /1,05 < n —2, by Lemma [6 in order that the second-order derivative
O®Funi (&)

YT is nonzero, there exist distinct j; and j» such that

k1.1 kg, o
(201) tno1 <85 <itp, te—1 <8j-1 <tp 41 <tp_1,
(202) tho1 < Sjo < tn, t52_1 < Sj,—1 < t[2+1 <tn_1.

However, the conditions (201)) and (202) contradict each other because the
point ¢,_1 can only locate between one pair of adjacent points in the se-
’F1(€, )
elffy=n—1landm+1<¥l<n-—2(samefor lo =n—1land m+1<

¢, < n —2), the corresponding conditions are

quence 8. Thus is always zero.

tho1 < 84y <y, th_o < Sj1—1 < tn,
th—1 < 85, <tn, to,—1 < Sjp—1 < tgp1 <tp_1.

Such j; and j, can be found only if there is at least one point in § between
tn—1 and t,. Therefore when M > 1

PFun(&m)
IGPL 1) 9G T 21)
M—-1
(203) - ; /tn>5M>'“>5M—r+1>tn—1 /te2+1>SM—r>t221 /SM_T>--<>sl>tm
. 9 _ _
(_1)#{s<t} =(p1q1) (WelnE(tn, sar)Ws - - InE(Snr—rt2, SM—r41)) X
‘:‘n,n—l

6 = = — -

3~(p2q2) (Ws[h:(sM—r-‘rla SM—’I‘)WS o 'Ih:(31, tm))ﬁ(tn, S) ds.

':'n,lg

When M = 1, the derivative is zero. The magnitude of the above sum can
be observed from the sizes of the integral domains. The leading-order term
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1206 ZHENNING CAI, JIANFENG LU, AND SIYAO YANG

is provided by r = 2, which gives

PR, )

(204) T oo "

O(h2).

e If {1 =n—1and ¢; = m (same for /5 =n — 1 and ¢; = m), the analysis
for M > 1 is the same as (203). When M = 1, we have

(205)
P Fur (€nm)
oG oG )
tn 0 - 0 —
:/ (—1)#{51<t} m (WSIh‘:(t’rH 81)) m (WSIh:(Sl, tm))ﬁ(tn, Sl)dSl
tn—1 8‘:71771—1 8‘:‘71,@2
~ O(h).

Therefore the derivative (199) also has magnitude O(h).
e If /{ =4y =n — 1, we need to find distinct j; and jo such that

tho1 < S, <tn, tn_o < Sj1—1 < tn,
th—1 < Sy < tn, th—o < Sjp—1 < tn.

These conditions can be satisfied only if at least two points in § are in
(tn—2,tn), as also results in (204]).

Case 2 (k1 = n,lo = m or {1 = m,ks = n). This is the case where (k1,¢;) and
(ka,¢2) are on the different sides of 99, ,,, in Figure [8l Again we focus only one
case k1 = n, s = m, and the other case is similar.

o If |{; — ko| > 1 (same for |3 — k1| > 1 when ¢; = m, ky = n), we similarly
propose the conditions

tho1 < S5, < tn, tg1,1 < Sji—1 < t[lJrl,

tk2_1 < Sy < tk2+1, tm < Sjy—1 < tm—i—l-

When M = 1, the derivative is zero. When M > 1, the leading-order term

P Fm(€nm) - . =
ST gt 1S the part of integral where we let I=(s;,,85,-1) =
n,lq kg,m

In=(tn, sm) and InE(sj,, $j,—1) = In=(s1,tm) respectively in (200). As a
result, we have the restriction ¢y, _1 < sy < toy41,thg—1 < 51 < lkyt1,
which leads to

aZFl (én m)

) ~ 2
(206) aG(PltIl)aG(me) O(h )

n,El kQ,m

o If |¢1 — ko] <1 (same for |ls — ki| < 1 when ¢, = m, ko = n), we propose
exactly the same conditions for |¢; — ka| > 1. When M > 1, the deriva-
tive again has magnitude O(h?) by the same analysis. When M = 1, we
may obtain the result that the derivative again has magnitude O(h) fol-
lowing a similar reasoning as (205) upon setting max(t¢, —1,tk,—1) < 51 <
min(tlﬂrlv tk2+1)'
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(IT) If (K1, l1) x (K2, l2) € OQp m X Qnm In this case, we have k1 = n or {1 = m.
One can easily check that the derivative vanishes when M = 1. For M > 1, we may

2
first assume k1 = n. To find out the leading order term in each 5 O i (En.m)

— oo Tmaaoy s WE
(p1a1) ¢ G(PQQQ)’
Gn,}ll 0 ko,lo

consider the following two cases:

o If |ko — ¢1| < 1, we require max(tp, —1, thy—1) < Sy < min(te, 41, tk,+1) and
te,—1 < Sm—1 < tg,41 so that we can set Ip=(s;,, j,—1) = InE(tn, samr) and
In=(84y,85,—1) = InE(sam,snm—1) in (20Q). Since in this case we need to
PFi(€nm) 2

8G£,p},q1)86;,(f2§2) ~ O(h‘ )

. L A1 2-%2

o If |01 — ko| > 1, we require tp,—1 < sy < tg41 and tg,—1 < sj41 <
thot1, te,—1 < 85 < tp,41 for some 1< j <M —1 so that we set In=(s;,,85,-1)
= I=(tn, sm) and I4=(sj,, Sj,—1) = InE(s;41,s;) in ([200). Since in this
32F1(§n,m) ~

PG 0G

restrict at least sp; and sp;_1, we have

case we need to restrict at least sy, 5,41 and s;, we have

O(h3).
Similar results can be obtained for the case when ¢; = m. So we now have the
conclusion (61]).
(II1) If (k1,£1) x (K2, 02) € Q. X OQp.m. The reasoning is similar to (II).
(IV) If (k1,£1) X (ko,l2) € Sglnﬁm X Qnm Again, we can check that the derivative is
nonzero only when M > 1 and we may assume k; > ko. We also have the following
two cases:

o If |k2 — fl| < 1, we require -1 < Sjt2 < tey 41, HlaX(tgl_l,tkz_l) <
Sj+1 < min(te, 41, tky+1) and te,—1 < 85 < tg,41 for some 1 < j < M —2so
that we can set IpZ(sj,,s5,-1) = I,E(sj42,5j41) and [,E(s),,85,-1) =
In=(sj41,55) in (200). Sincezin this case we need to restrict at least

O F1 (€, ) 3
Sit+2,58;4+1 and s;, we have ———=-2— ~ O(h”).
iy and 55, We N Gapisgl ~ O0)

o If |ky — £1] > 1, we require ty,—1 < Sj,41 < tk,+1 and ty,—1 < 85, < tg41
withi=1,2for 1 <j, <M —1and j; — jo > 1 and set I,E(sj,,$j,-1) =
InE(sj,41,85,) and InE(sj,,85,—1) = InE(sj,41,54,) in ([200). Since in
this case we need to restrict at least sj 41,55 ,55,+1 and s;,, we have

O*F1(€n,m)
n,m ~ O(h4).
PG G
Similar analysis and result can be given for k1 < ko. Therefore, we arrive at

(©63).
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