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Abstract. In this report we present a second order, stabilized SAV based, Crank–Nicolson
leap-frog (CNLF) ensemble method, and perform a comprehensive numerical study of it as well as
the Crank-Nicolson ensemble method with a linear extrapolation (CNLE) presented in [35]. Both
methods are extremely efficient as only one linear system with multiple right hands needs to be solved
at each time for a (potentially large) number of realizations of the flow problems. In particular the
coefficient matrix of the fully discretized system is a constant matrix that does not change from
one time step to another. We present extensive testing of these two methods and demonstrate the
advantages of each. We also present long time stability analysis for both methods.
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1. Introduction. Uncertainties are ubiquitous in the computations of fluid flow
equations. A governing partial differential equation (PDE) system for a flow problem
needs to be complemented with input data and parameters that specify physical
characteristics of the simulated system. In many situations these input data, such as
the initial conditions, body forces and model parameters, cannot be exactly specified
due to limited experimental data available or the inherent variability of the system
studied. It is thus important to study the impact of imprecise knowledge in the
input data used to specify the system on the predicted response of the associated flow
problem. This procedure is refereed to as uncertainty quantification (UQ) and has
been extensively studied in the literature [3, 21, 22, 39, 48, 53] and applied for many
practical problems. The main challenge for UQ is the high computational cost. For
popular ensemble-based UQ methods, a potentially very large ensemble of samples
of the uncertain parameter under consideration are usually needed to produce useful
data and accurate predictions. But for complex flow problems, running the simulation
once is already very expensive. Running the simulation a number of times for different
parameter samples can be prohibitively expensive for many applications. To address
this challenge, an efficient ensemble algorithm was developed in [27] to compute all
realizations at one pass and lead to linear systems that can be computed efficiently
using block solvers, e.g., block CG [46], block GMRES [12]. This fast algorithm has
been extensively tested on different flow problems and shown to be fast and effective
in predictive simulations, e.g., the Navier-Stokes equations [14–18,23–25,28,38,50,51],
MHD flows [33,47], Boussinesq equations [9,11,25], heat equations [10,44,45], Stokes-
Darcy equation [19,29–32,36], turbulent flows [7, 26].

One issue that arises in application of this algorithm for nonlinear flow problems
is the fluctuation induced instability which leads to a time step condition that de-
pends on the size of the fluctuation. A couple of fixes to this have been proposed
in the literature such as numerical regularizations [23, 28] and time relaxation [50],
which have relaxed the time step condition but did not fully eliminate the time step
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condition. A very recent paper [35] addressed this issue by incorporating a scalar
auxiliary variable (SAV) approach with the ensemble timestepping idea, and devised
ensemble schemes with provable long time stability without requiring any time step
constraints. The proposed algorithms also have improved efficiency as the nonlinear
term is made fully explicit and thus all discretized systems are sharing one constant
coefficient matrix that does not change over time, as opposed to the original ensemble
algorithms that have the coefficient matrix change from one time step to another. Two
algorithms Stab-SAV-CN and Stab-SAV-BDF2 are proposed in [35], but analysis and
the detailed decoupling strategy were only presented for Stab-SAV-BDF2 due to page
limits. In this report, we provide detailed discussions of numerical implementation
and analysis of the other algorithm Stab-SAV-CN. Moreover, we present a new second
order SAV ensemble algorithm based on the Crank–Nicolson leap-frog timestepping,
and compare the performance of both algorithms.

The paper is organized as follows. Two second order, stabilized SAV ensemble
methods are introduced in Section 2. We prove in Section 3 that both methods are
long time stable under two parameter conditions, without any time step conditions.
The fully decoupled implementation algorithms for both methods are presented in
Section 4. We will also provide detailed discussions on the algebraic systems after
spatial discretization. Finally, the two methods are compared in Section 5 with various
numerical tests. The second order accuracy in time is illustrated numerically with the
Green-Taylor vortex solution. Efficiency tests as well as multiple flow problems are
presented to demonstrate and compare the performance of both methods. Concluding
remarks are reported in Section 6.

2. Second order SAV Ensemble Methods. We consider the incompressible
Navier–Stokes (NS) equations on a bounded domain Ω ⊂ R

d with d = 2 or 3. Assume
J slightly different initial conditions, Dirichlet boundary conditions, body forces and
the kinematic viscosity, u0

j (x), gj(x, t), fj(x, t), νj(x), for j = 1, ..., J , have been
generated with an ensemble-based UQ method and we need to solve the NS equations
J times with different parameter samples to obtain flow data for UQ and predictions:

∂tuj + (uj · ∇)uj −∇ · (νj∇uj) +∇pj = fj , in Ω,(2.1)

∇ · uj = 0, in Ω,

uj = gj , on ∂Ω,

uj(x, 0) = u0
j (x), in Ω.

Here we assume νj(x) ∈ L∞(Ω) and νj(x) ≥ νj,min > 0.
The main difficulty in devising efficient and stable numerical methods for solving

the Navier–Stokes equations lies in the nonlinear term that appears in the momentum
equation. Implicit methods have good stability properties but are usually associated
with high computational costs as iterative methods have to be used at each time step.
Explicit methods are cheap but known for stability issues and to require a restrictive
CFL condition. Semi-implicit methods appear as a compromise between the expensive
fully implicit method and cheaper explicit methods that have stability issues, and
have become increasingly popular in recent years. Nevertheless, the coefficient matrix
resulting from a semi-implicit method is time-dependent and needs to be recomputed
at each time step which prohibits significant improvement on efficiency. The recently
developed SAV approach puts forth a new way to construct unconditionally stable
methods that treat the nonlinear term fully explicitly and thus results in a coefficient
matrix that is time-independent leading to significant savings in computational cost.
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However the SAV approach was found to have low accuracy that compromises its
unconditional stability in many test problems. [35] addressed this issue by introducing
a stabilization term into the scheme. The idea is to add artificial viscosity to better
condition the linear system and then add antidiffusion at previous time steps to avoid
overdiffusion. It is shown in [35] that this stabilization method is able to substantially
improve the accuracy of the SAV based numerical schemes.

We now present a new second order SAV ensemble method based on the Crank–
Nicolson leap-frog (CNLF) timestepping, which is commonly used in atmospheric
simulation codes. Following [35, 41, 43], we introduce the following scalar auxiliary
variables qj(t), j = 1, · · · , J :

qj(t) =
√

E(uj) + δ,(2.2)

where E(uj) =
∫

Ω
1
2 |uj |2 dx is the total kinetic energy of the system and δ is an arbi-

trary positive constant. These new variables and the associated differential equations
will be added to the Navier–Stokes equations and form new governing systems for
flow ensembles. The solutions to the new governing systems are equivalent to the so-
lutions to the original Navier–Stokes equations, and the proposed ensemble methods
are developed to solve the new governing systems. Taking derivative of qj(t) gives the
following ordinary differential equation

dqj
dt

=
1

2qj

∫

Ω

∂uj

∂t
· uj dx+

1

2
√

E(uj) + δ

∫

Ω

(uj · ∇)uj · uj dx(2.3)

− 1

2qj

∫

∂Ω

(~n · uj)
1
2 |uj |2 dσ.

The last two terms in the above equation are equal to zero since ∇ · uj = 0. The
purpose of adding these two terms in the above equation is to cancel out the nonlinear
term that comes from the momentum equation of the NS equations in the energy
equation, and prove stability without assuming any time step conditions. Adding the

above equation to the original NS equations, and putting the term
qj(t)√
E(uj)+δ

, which

is equal to 1, in front of the nonlinear term in the momentum equation yields a new
governing system that is equivalent to (2.1):

∂tuj +
qj(t)

√

E(uj) + δ
(uj · ∇)uj −∇ · (νj∇uj) +∇pj = fj(x, t), ∇ · uj = 0,(2.4)

dqj
dt

=
1

2qj

∫

Ω

∂uj

∂t
· uj dx+

1

2
√

E(uj) + δ

∫

Ω

(uj · ∇)uj · uj dx

− 1

2qj

∫

∂Ω

(~n · gj) 12 |gj |
2 dσ.

The idea of ensemble timestepping is to split an uncertain parameter into two
parts: mean + fluctuation, and lag the fluctuation term, which depends on the en-
semble index j, to previous time steps so that it does not contribute to the common
coefficient matrix. We thus define the ensemble mean ν̄ of the viscosity parameter
and the ensemble fluctuations ν′j :

ν̄(x) :=
1

J

J
∑

j=1

νj(x), ν′j(x) := νj(x)− ν̄(x).
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Let tn = n∆t, n = 0, 1, 2, · · · , N , where N = T/∆t, denote a uniform partition
of the interval [0, T ]. Denote

˜̃un
j =

un+1
j + un−1

j

2
, ˜̃pnj =

pn+1
j + pn−1

j

2
, ˜̃qnj =

qn+1
j + qn−1

j

2
.

We now propose our second order, stabilized SAV ensemble algorithm based on
the CNLF timestepping as follows.

Algorithm 2.1 (Stab-SAV-CNLF). For j = 1, 2, · · · , J , given u0
j , u

1
j , u

2
j , u

3
j , p

2
j , p

3
j ,

q2j , q
3
j , for n = 3, · · · , N − 1, find un+1

j , pn+1
j , qn+1

j satisfying

un+1
j − un−1

j

2∆t
+

˜̃qnj
√

E(un
j ) + δ

(un
j · ∇)un

j +∇ ˜̃pnj(2.5)

−∇ · (ν̄∇˜̃un
j )−∇ · (ν′j∇(2˜̃un−1

j − ˜̃un−2
j ))− 1

2
αh∆(un+1

j − un−1
j ) = fn

j ,

∇ · un+1
j = 0,(2.6)

qn+1
j − qn−1

j

2∆t
=

1

2˜̃qnj

∫

Ω

un+1
j − un−1

j

2∆t
· ˜̃un

j dx(2.7)

+
1

2
√

E(un
j ) + δ

∫

Ω

(un
j · ∇)un

j · ˜̃un
j dx−

bnj

2˜̃qnj
,

where bnj =
∫

∂Ω
(~n · gnj ) 12 |gnj |2 dσ and α > 0.

This is a four-step method. One needs to know un−3
j , un−2

j , un−1
j , and un

j to

compute un+1
j . We will show in an equivalent fully decoupled implementation scheme

in Section 4 that all realizations are sharing the same coefficient matrix, and thanks
to the SAV idea, the nonlinear term can be treated fully explicitly and thus the shared
coefficient matrix is also constant. The stabilization − 1

2αh∆(un+1
j − un−1

j ) is added
in the algorithm following the argument in [35] to increase the accuracy and stability
of the algorithm. We will prove this algorithm is long time stable without any time
step constraints in Section 3.

In [35] the following Stab-SAV-CNLE ensemble algorithm was presented without
giving any discussions on implementation or the corresponding stability analysis due
to page limits. We will provide a detailed study of this algorithm in this report, and
compare its performance with our proposed Stab-SAV-CNLF method. Denote

u
n+1/2
j =

un+1
j + un

j

2
, ũ

n+1/2
j = 2

un
j + un−1

j

2
−

un−1
j + un−2

j

2
= 2u

n−1/2
j − u

n−3/2
j ,

p
n+1/2
j =

pn+1
j + pnj

2
, q

n+1/2
j =

qn+1
j + qnj

2
.

The second order, stabilized SAV ensemble algorithm based on the Crank–Nicolson
timestepping with a linear extrapolation proposed in [35] is given by

Algorithm 2.2 (Stab-SAV-CNLE). For j = 1, 2, · · · , J , given u0
j , u

1
j , u

2
j , p

2
j , q

2
j , for

n = 2, 3, · · · , N − 1, find un+1
j , pn+1

j , qn+1
j satisfying

un+1
j − un

j

∆t
+

q
n+1/2
j

√

E(ũ
n+1/2
j ) + δ

(ũ
n+1/2
j · ∇)ũ

n+1/2
j +∇p

n+1/2
j(2.8)
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−∇ · (ν̄∇u
n+1/2
j )−∇ · (ν′j∇ũ

n+1/2
j )− αh∆(un+1

j − un
j ) = f

n+1/2
j ,

∇ · un+1
j = 0,(2.9)

qn+1
j − qnj

∆t
=

1

2q
n+1/2
j

∫

Ω

un+1
j − un

j

∆t
· un+1/2

j dx(2.10)

+
1

2
√

E(ũ
n+1/2
j ) + δ

∫

Ω

(ũ
n+1/2
j · ∇)ũ

n+1/2
j · un+1/2

j dx−
b
n+1/2
j

2q
n+1/2
j

,

where b
n+1/2
j =

∫

∂Ω
(~n · gn+1/2

j ) 12 |g
n+1/2
j |2 dσ and α > 0.

This is a three-step method, and second order in time convergent. Similar to Stab-
SAV-CNLF, as will be shown in Section 4, all realizations share a common constant
coefficient matrix, and we will prove in Section 3 this algorithm is also long time stable
without any time step constraints.

3. Long Time Stability of the SAV Ensemble Algorithms. In this section
we prove the long stability of both algorithms presented in Section 2, under the same
parameter condition, without any time step conditions. The parameter condition
limits the size of the fluctuation to be smaller than one third of the size of the uncertain
parameter. This is usually easy to satisfy as in UQ applications the fluctuation is
generally very small. We define the minimum average ν̄min and maximum fluctuation
ν′max of the kinematic viscosity:

ν̄min =
1

J

J
∑

j=1

νj,min, ν′max := max
j

sup
x∈Ω

|ν′j(x)|,

which will be used in the following proofs.
We denote the L2(Ω) norm by ‖ · ‖ and the usual L2 inner product by (·, ·). Let

X denote the velocity space (d = 2, 3):

X : = H1
0 (Ω)

d =
{

v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d and v = 0 on ∂Ω
}

.

The norm on the dual space of X is defined by

‖f‖−1 = sup
0 6=v∈X

(f, v)

‖∇v‖ .

We first present the stability proof for Stab-SAV-CNLF. In the analysis we assume
qnj is real and thus |qnj | is positive. If in the simulation the numerical solution of qnj
becomes complex, then the simulation fails in the sense that the linear solver will fail
and the numerical solution will become inaccurate. Nevertheless, it is demonstrated
both in [35] and Section 5 in this report that the stabilization we add can effectively
prevent qnj from becoming complex and improve both accuracy and stability of the
SAV based methods.

Theorem 3.1 (Long Time Stability of Stab-SAV-CNLF). Assume qnj is real, for

any n = 0, · · · , N , j = 1, · · · , J , and the following parameter fluctuation condition

holds

ν′max

ν̄min
<

1

3
.(3.1)
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With homogeneous Dirichlet boundary condition, Algorithm 2.1 is nonlinearly, long

time stable, and the following energy inequality holds

|qNj |2 + |qN−1
j |2 + 3ν′max∆t‖∇˜̃uN−1

j ‖2 + ν′max∆t‖∇˜̃uN−2
j ‖2

+
1

2
αh∆t‖∇uN

j ‖2 + 1

2
αh∆t‖∇uN−1

j ‖2(3.2)

≤ |q3j |2 + |q2j |2 + 3ν′max∆t‖∇˜̃u2
j‖2 + ν′max∆t‖∇˜̃u1

j‖2

+
1

2
αh∆t‖∇u3

j‖2 +
1

2
αh∆t‖∇u2

j‖2 +
∆t

ν̄min − 3ν′max

N−1
∑

n=3

‖fn
j ‖2−1.

Proof. Taking the L2 inner product of (2.5) with ˜̃un
j and using (2.6) gives

(

un+1
j − un−1

j

2∆t
, ˜̃un

j

)

+
˜̃qnj

√

E(un
j ) + δ

(

(un
j · ∇)un

j , ˜̃u
n
j

)

+

∫

∂Ω

(~n · ˜̃un
j )˜̃p

n
j dσ

(3.3)

−
∫

∂Ω

(~n · ν̄∇˜̃un
j ) · ˜̃un

j dσ

+ ‖ν̄
1
2∇˜̃un

j ‖2 −
∫

∂Ω

(~n · ν′j∇(2˜̃un−1
j − ˜̃un−2

j ) · ˜̃un
j dσ + (ν′j∇(2˜̃un−1

j − ˜̃un−2
j ),∇˜̃un

j )

− 1

2
αh

∫

∂Ω

(~n · (∇un+1
j −∇un−1

j )) · ˜̃un
j dσ +

1

4
αh
(

‖∇un+1
j ‖2 − ‖∇un−1

j ‖2
)

= (fn
j , ˜̃u

n
j ).

Multiplying (2.7) with 2˜̃qnj gives

1

2∆t

(

|qn+1
j |2 − |qn−1

j |2
)

=

(

un+1
j − un−1

j

2∆t
, ˜̃un

j

)

+
˜̃qnj

√

E(un
j ) + δ

(

(un
j · ∇)un

j , ˜̃u
n
j

)

− bnj .

(3.4)

Adding (3.3) and (3.4) gives

1

2∆t

(

|qn+1
j |2 − |qn−1

j |2
)

+ ‖ν̄
1
2∇˜̃un

j ‖2 +
1

4
αh
(

‖∇un+1
j ‖2 − ‖∇un−1

j ‖2
)

= (fn
j , ˜̃u

n
j )− (ν′j∇(2˜̃un−1

j − ˜̃un−2
j ),∇˜̃un

j )−
∫

∂Ω

(~n · ˜̃un
j )˜̃p

n
j dσ(3.5)

+

∫

∂Ω

(~n · ν̄∇˜̃un
j ) · ˜̃un

j dσ +

∫

∂Ω

(~n · ν′j∇(2˜̃un−1
j − ˜̃un−2

j )) · ˜̃un
j dσ

+
1

2
αh

∫

∂Ω

(~n · (∇un+1
j −∇un−1

j )) · ˜̃un
j dσ − bnj .

In particular, with homogeneous Dirichlet condition the terms of integrals on the
boundary in (3.5) are null. Note that ν̄(x) ≥ ν̄min > 0. Applying Cauchy-Schwarz
and Young’s inequalities to the right hand side and using (2a− b)2 ≤ 6a2 +3b2 gives,
for any β > 0, ε > 0,

1

2∆t

(

|qn+1
j |2 − |qn−1

j |2
)

+ ‖ν̄
1
2∇˜̃un

j ‖2 +
1

4
αh
(

‖∇un+1
j ‖2 − ‖∇un−1

j ‖2
)
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≤ ‖fn
j ‖−1‖∇˜̃un

j ‖+ ν′max‖∇(2˜̃un−1
j − ˜̃un−2

j )‖‖∇˜̃un
j ‖

(3.6)

≤ βν̄min‖∇˜̃un
j ‖2 +

1

4βν̄min
‖fn

j ‖2−1 +
εν′max

2
‖∇˜̃un

j ‖2 +
ν′max

2ε
‖∇(2˜̃un−1

j − ˜̃un−2
j )‖2

≤ βν̄min‖∇˜̃un
j ‖2 +

1

4βν̄min
‖fn

j ‖2−1 +
εν′max

2
‖∇˜̃un

j ‖2

+
3ν′max

ε
‖∇˜̃un−1

j ‖2 + 3ν′max

2ε
‖∇˜̃un−2

j ‖2.

As the last three terms all need to be bounded by ν̄min‖∇˜̃un
j ‖2, we want to minimize

ε
2 + 3

ε +
3
2ε by taking ε = 3. (3.6) then reduces to

1

2∆t

(

|qn+1
j |2 − |qn−1

j |2
)

+
3

2
ν′max

(

‖∇˜̃un
j ‖2 − ‖∇˜̃un−1

j ‖2
)

(3.7)

+
1

2
ν′max

(

‖∇˜̃un−1
j ‖2 − ‖∇˜̃un−2

j ‖2
)

+
1

4
αh
(

‖∇un+1
j ‖2 − ‖∇un−1

j ‖2
)

+ ((1− β)ν̄min − 3ν′max) ‖∇˜̃un
j ‖2 ≤ 1

4βν̄min
‖fn

j ‖2−1.

If the parameter fluctuation condition is satisfied, then ν̄min − 3ν′max > 0. Taking

β = 1
2 − 3

2
ν′

max

ν̄min
> 0, we have

(1− β)ν̄min − 3ν′max = (
1

2
+

3

2

ν′max

ν̄min
)ν̄min − 3ν′max =

1

2
(ν̄min − 3ν′max) > 0.(3.8)

(3.7) can then be reduced to

1

2∆t

(

|qn+1
j |2 − |qn−1

j |2
)

+
3

2
ν′max

(

‖∇˜̃un
j ‖2 − ‖∇˜̃un−1

j ‖2
)

(3.9)

+
1

2
ν′max

(

‖∇˜̃un−1
j ‖2 − ‖∇˜̃un−2

j ‖2
)

+
1

4
αh
(

‖∇un+1
j ‖2 − ‖∇un−1

j ‖2
)

≤ 1

2(ν̄min − 3ν′max)
‖fn

j ‖2−1.

Summing up from n = 3 to n = N − 1 and multiplying through by 2∆t gives

|qNj |2 + |qN−1
j |2 + 3ν′max∆t‖∇˜̃uN−1

j ‖2 + ν′max∆t‖∇˜̃uN−2
j ‖2

+
1

2
αh∆t‖∇uN

j ‖2 + 1

2
αh∆t‖∇uN−1

j ‖2

≤ |q3j |2 + |q2j |2 + 3ν′max∆t‖∇˜̃u2
j‖2 + ν′max∆t‖∇˜̃u1

j‖2

+
1

2
αh∆t‖∇u3

j‖2 +
1

2
αh∆t‖∇u2

j‖2 +
∆t

ν̄min − 3ν′max

N−1
∑

n=3

‖fn
j ‖2−1.

We next present the stability proof for Stab-SAV-CNLE under the same parameter
condition.

Theorem 3.2 (Long Time Stability of Stab-SAV-CNLE). Assume qnj is real, for

any n = 0, · · · , N , j = 1, · · · , J , and the following parameter fluctuation condition

holds

ν′max

ν̄min
<

1

3
.(3.10)
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With homogeneous Dirichlet boundary condition, Algorithm 2.2 is nonlinearly, long

time stable, and the following energy inequality holds

|qNj |2 + 3

2
ν′max∆t‖∇u

N−1/2
j ‖2 + 1

2
ν′max∆t‖∇u

N−3/2
j ‖2 + α

2
h∆t‖∇uN

j ‖2(3.11)

≤ |q2j |2 +
3

2
ν′max∆t‖∇u

3/2
j ‖2 + 1

2
ν′max∆t‖∇u

1/2
j ‖2 + α

2
h∆t‖∇u2

j‖2

+
∆t

2(ν̄min − 3ν′max)

N−1
∑

n=2

‖fn+1/2
j ‖2−1.

Proof. Taking the L2 inner product of (2.8) with u
n+1/2
j , multiplying (2.10) with

2q
n+1/2
j , and adding the two equations gives

1

∆t

(

|qn+1
j |2 − |qnj |2

)

+ ‖ν̄
1
2∇u

n+1/2
j ‖2 + α

2
h
(

‖∇un+1
j ‖2 − ‖∇un

j ‖2
)

= (f
n+1/2
j , u

n+1/2
j )− (ν′j∇ũ

n+1/2
j ,∇u

n+1/2
j )−

∫

∂Ω

(~n · un+1/2
j )p

n+1/2
j dσ(3.12)

+

∫

∂Ω

(~n · ν̄∇u
n+1/2
j ) · un+1/2

j dσ +

∫

∂Ω

(~n · ν′j∇ũ
n+1/2
j ) · un+1/2

j dσ

+ αh

∫

∂Ω

(~n · (∇un+1
j −∇un

j )) · u
n+1/2
j dσ − b

n+1/2
j .

Assuming homogeneous Dirichlet condition, following the proof of Theorem 3.1, we
have for any β > 0,

1

∆t

(

|qn+1
j |2 − |qnj |2

)

+
3

2
ν′max

(

‖∇u
n+1/2
j ‖2 − ‖∇u

n−1/2
j ‖2

)

(3.13)

+
1

2
ν′max

(

‖∇u
n−1/2
j ‖2 − ‖∇u

n−3/2
j ‖2

)

+
α

2
h
(

‖∇un+1
j ‖2 − ‖∇un

j ‖2
)

+ ((1− β)ν̄min − 3ν′max) ‖∇u
n+1/2
j ‖2 ≤ 1

4βν̄min
‖fn+1/2

j ‖2−1.

If the parameter fluctuation condition is satisfied, (3.13) can be reduced to

1

∆t

(

|qn+1
j |2 − |qnj |2

)

+
3

2
ν′max

(

‖∇u
n+1/2
j ‖2 − ‖∇u

n−1/2
j ‖2

)

(3.14)

+
1

2
ν′max

(

‖∇u
n−1/2
j ‖2 − ‖∇u

n−3/2
j ‖2

)

+
α

2
h
(

‖∇un+1
j ‖2 − ‖∇un

j ‖2
)

≤ 1

2(ν̄min − 3ν′max)
‖fn+1/2

j ‖2−1.

Summing up from n = 2 to n = N − 1 and multiplying through by ∆t yields (3.11).

4. Numerical Implementation. In this section we discuss the details of nu-
merical implementation of the proposed two ensemble methods.

4.1. Fully Decoupled Implementation Algorithms. The two algorithms
Stab-SAV-CNLF and Stab-SAV-CNLE given by (2.5)-(2.7) and (2.8)-(2.10) are cou-
pled systems of u, p, q, which needs further decoupling for fast computation. Following
the decoupling strategy in [35] we will derive fully decoupled implementation algo-
rithms for both algorithms.
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We first drive the implementation algorithm for the Stab-SAV-CNLF method.
Define a new scalar Sn+1

j by

Sn+1
j =

˜̃qnj
√

E(un
j ) + δ

.(4.1)

Then we can decompose the numerical solution (un+1
j , pn+1

j ) into two parts:

un+1
j = ûn+1

j + Sn+1
j ŭn+1

j , pn+1
j = p̂n+1

j + Sn+1
j p̆n+1

j . Substituting (4.1) into (2.5)-

(2.7) and grouping the terms with Sn+1
j and those without Sn+1

j , we can derive two

separate PDE systems for (ûn+1
j , p̂n+1

j ), (ŭn+1
j , p̆n+1

j ), which are equivalent to (2.5)-
(2.6).

(Stab-SAV-CNLF sub-problem 1)


















































1

2∆t
ûn+1
j − 1

2
∇ · (ν̄∇ûn+1

j )− 1

2
αh∆ûn+1

j +
1

2
∇p̂n+1

j

= fn
j +

1

2∆t
un−1
j +

1

2
∇ · (ν̄∇un−1

j )− 1

2
αh∆un−1

j

+∇ · (ν′j∇(2˜̃un−1
j − ˜̃un−2

j ))− 1

2
∇pn−1

j , in Ω

∇ · ûn+1
j = 0, in Ω

ûn+1
j = gn+1

j , on ∂Ω.

(Stab-SAV-CNLF sub-problem 2)


















1

2∆t
ŭn+1
j − 1

2
∇ · (ν̄∇ŭn+1

j )− 1

2
αh∆ŭn+1

j +
1

2
∇p̆n+1

j = −(un
j · ∇)un

j , in Ω

∇ · ŭn+1
j = 0, in Ω

ŭn+1
j = 0, on ∂Ω.

We also need to derive an equation for Sn+1
j .

Sn+1
j =

qn+1
j + qn−1

j

2
√

E(un
j ) + δ

=⇒ qn+1
j = 2

√

E(un
j ) + δ Sn+1

j − qn−1
j .(4.2)

Plugging this expression of qn+1
j into (3.4) gives

1

2∆t
(qn+1

j )2 − 1

2∆t
(qn−1

j )2 −
(

un+1
j − un−1

j

2∆t
, ˜̃un

j

)

− Sn+1
j

∫

Ω

(un
j · ∇)un

j · ˜̃un
j dx+ bnj = 0

=⇒ 1

2∆t

(

2
√

E(un
j ) + δ Sn+1

j − qn−1
j

)2

− 1

2∆t
(qn−1

j )2

−
(

ûn+1
j + Sn+1

j ŭn+1
j − un−1

j

2∆t
,
ûn+1
j + un−1

j

2
+ Sn+1

j

ŭn+1
j

2

)

− Sn+1
j

∫

Ω

(un
j · ∇)un

j · (
ûn+1
j + un−1

j

2
+ Sn+1

j

ŭn+1
j

2
) dx+ bnj = 0.

We then obtain the equation for Sn+1
j as

An+1
j (Sn+1

j )2 +Bn+1
j Sn+1

j + Cn+1
j = 0,(Stab-SAV-CNLF sub-problem 3)
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where

An+1
j =

2

∆t
(E(un

j ) + δ)−
(

ŭn+1
j

2∆t
,
ŭn+1
j

2

)

−
∫

Ω

(un
j · ∇)un

j ·
ŭn+1
j

2
dx,

Bn+1
j = − 2

∆t

√

E(un
j ) + δqn−1

j −
(

ŭn+1
j

2∆t
,
ûn+1
j + un−1

j

2

)

−
(

ûn+1
j − un−1

j

2∆t
,
ŭn+1
j

2

)

−
∫

Ω

(un
j · ∇)un

j · (
ûn+1
j + un−1

j

2
) dx,

Cn+1
j = −

(

ûn+1
j − un−1

j

2∆t
,
ûn+1
j + un−1

j

2

)

+ bnj .

For both sub-problem 1 and sub-problem 2, all realizations have the same constant
coefficient matrix. The sub-problem 3 is a scalar equation for each realization, which
can be solved quickly without incurring much increase in the computational cost.
After obtaining ûn+1

j , ŭn+1
j , and Sn+1

j , we recover our numerical solution (un+1
j , pn+1

j )

by the formula un+1
j = ûn+1

j + Sn+1
j ŭn+1

j , pn+1
j = p̂n+1

j + Sn+1
j p̆n+1

j .
Due to page limits, the implementation algorithm of Stab-SAV-CNLE was not

presented in [35]. We will present it here.
Similar to the derivation of the fully decoupled implement algorithm for Stab-

SAV-CNLF, we define a new scalar Sn+1
j by

Sn+1
j =

q
n+1/2
j

√

E(ũ
n+1/2
j ) + δ

,(4.3)

and decompose the numerical solution (un+1
j , pn+1

j ) into two parts: un+1
j = ûn+1

j +

Sn+1
j ŭn+1

j , pn+1
j = p̂n+1

j +Sn+1
j p̆n+1

j . Substituting (4.3) into (2.8)-(2.10) and grouping

the terms with Sn+1
j and those without Sn+1

j , we can derive two separate PDE systems

for (ûn+1
j , p̂n+1

j ), (ŭn+1
j , p̆n+1

j ). The two subproblems that are equivalent to (2.8)-(2.9)
are given by

(Stab-SAV-CNLE sub-problem 1)


































1

∆t
ûn+1
j − 1

2
∇ · (ν̄∇ûn+1

j )− αh∆ûn+1
j +

1

2
∇p̂n+1

j

= f
n+1/2
j +

1

∆t
un
j +

1

2
∇ · (ν̄∇un

j )− αh∆un
j +∇ · (ν′j∇ũ

n+1/2
j )− 1

2
∇pnj , in Ω

∇ · ûn+1
j = 0, in Ω

ûn+1
j = gn+1

j , on ∂Ω.

(Stab-SAV-CNLE sub-problem 2)


















1

∆t
ŭn+1
j − 1

2
∇ · (ν̄∇ŭn+1

j )− αh∆ŭn+1
j +

1

2
∇p̆n+1

j = −(ũ
n+1/2
j · ∇)ũ

n+1/2
j , in Ω

∇ · ŭn+1
j = 0, in Ω

ŭn+1
j = 0, on ∂Ω.
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Plugging

Sn+1
j =

qn+1
j + qnj

2
√

E(ũ
n+1/2
j ) + δ

=⇒ qn+1
j = 2

√

E(ũ
n+1/2
j ) + δ Sn+1

j − qnj ,(4.4)

into (2.10)·2qn+1/2
j gives

1

∆t
(qn+1

j )2 − 1

∆t
(qnj )

2 −
(

un+1
j − un

j

∆t
, u

n+1/2
j

)

− Sn+1
j

∫

Ω

(ũ
n+1/2
j · ∇)ũ

n+1/2
j · un+1/2

j dx+ b
n+1/2
j = 0

=⇒ 1

∆t

(

2

√

E(ũ
n+1/2
j ) + δ Sn+1

j − qnj

)2

− 1

∆t
(qnj )

2

−
(

ûn+1
j + Sn+1

j ŭn+1
j − un

j

∆t
,
ûn+1
j + un

j

2
+ Sn+1

j

ŭn+1
j

2

)

− Sn+1
j

∫

Ω

(ũ
n+1/2
j · ∇)ũ

n+1/2
j · (

ûn+1
j + un

j

2
+ Sn+1

j

ŭn+1
j

2
) dx+ b

n+1/2
j = 0.

We then obtain the equation for Sn+1
j as

An+1
j (Sn+1

j )2 +Bn+1
j Sn+1

j + Cn+1
j = 0,(Stab-SAV-CNLE sub-problem 3)

where

An+1
j =

4

∆t
(E(ũ

n+1/2
j ) + δ)−

(

ŭn+1
j

∆t
,
ŭn+1
j

2

)

−
∫

Ω

(ũ
n+1/2
j · ∇)ũ

n+1/2
j ·

ŭn+1
j

2
dx,

Bn+1
j = − 4

∆t

√

E(ũ
n+1/2
j ) + δqnj −

(

ŭn+1
j

∆t
,
ûn+1
j + un

j

2

)

−
(

ûn+1
j − un

j

∆t
,
ŭn+1
j

2

)

−
∫

Ω

(ũ
n+1/2
j · ∇)ũ

n+1/2
j · (

ûn+1
j + un

j

2
) dx,

Cn+1
j = −

(

ûn+1
j − un

j

∆t
,
ûn+1
j + un

j

2

)

+ b
n+1/2
j .

4.2. Algebraic Systems after spatial discretization. Let S2
h(Ω)

2 and S1
h(Ω)

denote the spaces of Taylor-Hood elements (P2-P1) on Ω for velocity u and pressure

p, their basis functions are {χu
j }Nu

j=1, {χ
p
j}

Np

j=1 respectively. Bold vectors will be used
to denote the discrete finite element solutions. Superscript n and subscript j are
applied to represent time step and sample index. Denote the velocity mass matrix
and velocity stiffness matrix of the Poisson operator by Muu and Suu respectively.
We also define matrices Duup, S(ν) and N(u) whose entries are given as follows.

[Duup]kl =

∫

Ω

χp
l (∇ · χu

k), [S(ν)]kl =

∫

Ω

ν∇χu
l · ∇χu

k , [N(u)]kl =

∫

Ω

(u · ∇)χu
l · χu

k .

The proposed schemes in this study will be compared with some non-ensemble schemes:
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Algorithm 4.1 (CNLF-nonensemble).











un+1
j − un−1

j

2∆t
+ (un

j · ∇)˜̃un
j +∇ ˜̃pnj −∇ · (νj∇˜̃un

j ) = fn
j ,

∇ · un+1
j = 0.

Algorithm 4.2 (CNLE-nonensemble).











un+1
j − un

j

∆t
+ (ũ

n+1/2
j · ∇)u

n+1/2
j +∇p

n+1/2
j −∇ · (νj∇u

n+1/2
j ) = f

n+1/2
j ,

∇ · un+1
j = 0.

We then state the algebraic systems of different numerical algorithms, for sample
j = 1, · · · , J , which will be considered in the ensemble efficiency testing.

1. Stab-SAV-CNLF ensemble:

Asavcnlf

(

ûn+1
j

p̂n+1
j

)

=

(

bn+1
j

0

)

, Asavcnlf

(

ŭn+1
j

p̆n+1
j

)

=

(

cn+1
j

0

)

,

with

Asavcnlf =

(

1
2∆tMuu + S( 12 ν̄ + 1

2αh) − 1
2Duup

− 1
2D

T
uup 0

)

,

bn+1
j = fnj + 1

2∆tMuuu
n−1
j − S( 12 ν̄ − 1

2αh)u
n−1
j − S(ν′j)(2˜̃u

n−1
j − ˜̃un−2

j ) + 1
2Duupp

n−1
j ,

cn+1
j = −N(un

j )u
n
j .

2. Stab-SAV-CNLE ensemble:

Asavcnle

(

ûn+1
j

p̂n+1
j

)

=

(

bn+1
j

0

)

, Asavcnle

(

ŭn+1
j

p̆n+1
j

)

=

(

cn+1
j

0

)

,

with

Asavcnle =

(

1
∆tMuu + S( 12 ν̄ + αh) − 1

2Duup

− 1
2D

T
uup 0

)

,

bn+1
j = f

n+1/2
j + 1

∆tMuuu
n
j − S( 12 ν̄ − αh)un

j − S(ν′j)ũ
n+1/2
j + 1

2Duupp
n
j ,

cn+1
j = −N(ũ

n+1/2
j )ũ

n+1/2
j .

3. CNLF nonensemble:

A
(n,j)
cnlf

(

un+1
j

pn+1
j

)

=

(

bn+1
j

0

)

,

with

A
(n,j)
cnlf =

(

1
2∆tMuu + 1

2N(un
j ) +

1
2S(νj) − 1

2Duup

− 1
2D

T
uup 0

)

,
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bn+1
j = fnj + 1

2∆tMuuu
n−1
j − 1

2S(νj)u
n−1
j + 1

2Duupp
n−1
j − 1

2N(un
j )u

n−1
j .

4. CNLE nonensemble:

A
(n,j)
cnle

(

un+1
j

pn+1
j

)

=

(

bn+1
j

0

)

,

with

A
(n,j)
cnle =

(

1
∆tMuu + 1

2N(ũ
n+1/2
j ) + 1

2S(νj) − 1
2Duup

− 1
2D

T
uup 0

)

,

bn+1
j = f

n+1/2
j + 1

∆tMuuu
n
j − 1

2S(νj)u
n
j + 1

2Duupp
n
j − 1

2N(ũ
n+1/2
j )un

j .

It is apparent that the matrices Asavcnlf and Asavcnle in ensemble methods are
common among different samples, thus one can simultaneously compute all realiza-
tions by solving a single linear system with multiple right hand sides (RHSs) cor-

responding to different samples; but A
(n,j)
cnlf and A

(n,j)
cnle in the classical nonensemble

methods change over time index n and sample index j, so we need to achieve J
realizations one by one.

In large-scale applications, the GMRES linear solver can be applied to handle the
nonensemble schemes. As for the ensemble schemes, a block iterative solver should
be considered to remove redundant information due to linear dependence of multiple
residuals. In particular, we resort to the block GMRES algorithm with deflation [5,
BFGMRESD(m)]. The least-square commutator precontioning [8] is a competitive
choice to speeding up the convergence of GMRES. This has also been mentioned
in [35]. In addition, for ensemble schemes, this preconditioner can be solved by the
block CG or block GMRES algorithm with an ILU or multigrid preconditioner.

5. Numerical Experiments. In this section, we perform numerical experi-
ments to validate the stability, accuracy, and efficiency of the Stab-SAV-CNLE and
Stab-SAV-CNLF ensemble algorithms.

5.1. Tests for convergence rate. To validate the convergence rate of Stab-
SAV-CNLF and Stab-SAV-CNLE, we consider a simple problem [13] with Green-
Taylor vortex solution on a square domain Ω = (0, 1)2. The analytical solution of the
Navier–Stokes equations (NSE) is given by

utrue = (− cosx sin y, sinx cos y)Tm(t), ptrue = − 1
4 [cos(2x) + cos(2y)]m(t)2,

f(x, y, t) = [m′(t) + 2νm(t)](− cosx sin y, sinx cos y)T ,

with m(t) = eν cos(2t). The initial condition and Dirichlet boundary condition are
then set to be consistent with the analytical solution. We will compute J = 3 real-
izations simutaneously by the ensemble schemes, in which the flows correspond to

νj = νmin(1 + εj), εj = 0.1(j − 1), j = 1, · · · , J.

In this setup, we have three groups of different initial conditions, boundary conditions,
and body forces.

Since stabilized SAV approaches are designed with the hope of good performance
for relatively large Reynolds numbers, we consider νmin = 0.0005 in our first test
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Table 1: Errors at T = 5 and convergence rates of the Stab-SAV-CNLE ensemble
algorithm (J = 3) with ∆t = h, α = 0.5, νmin = 0.0005.

∆t |uh − u|E,1

H1
Rate |ph − p|E,1

L2
Rate |uh − u|E,3

H1
Rate |ph − p|E,3

L2
Rate

1/8 1.98× 10−1 —– 1.34× 10−2 —– 1.87× 10−1 1.33× 10−2 —–
1/16 5.16× 10−2 1.94 3.25× 10−3 2.04 4.68× 10−2 2.00 3.17× 10−3 2.07
1/32 1.49× 10−2 1.79 6.45× 10−4 2.33 1.38× 10−2 1.76 6.30× 10−4 2.33
1/64 4.10× 10−3 1.86 1.41× 10−4 2.19 3.68× 10−3 1.91 1.41× 10−4 2.16
1/128 9.34× 10−4 2.14 3.31× 10−5 2.09 8.42× 10−4 2.13 3.32× 10−5 2.09

Table 2: Errors at T = 5 and convergence rates of the Stab-SAV-CNLF ensemble
algorithm (J = 3) with ∆t = h, α = 0.1, νmin = 0.0005.

∆t |uh − u|E,1

H1
Rate |ph − p|E,1

L2
Rate |uh − u|E,3

H1
Rate |ph − p|E,3

L2
Rate

1/8 1.55× 10−1 —– 7.39× 10−3 —– 1.40× 10−1 7.56× 10−3 —–
1/16 3.77× 10−2 2.03 6.87× 10−4 3.43 3.31× 10−2 2.09 6.96× 10−4 3.44
1/32 7.02× 10−3 2.43 1.90× 10−4 1.85 6.21× 10−3 2.41 1.89× 10−4 1.88
1/64 1.48× 10−3 2.25 5.85× 10−5 1.70 1.32× 10−3 2.23 5.74× 10−5 1.72
1/128 3.56× 10−4 2.05 1.53× 10−5 1.93 3.25× 10−4 2.03 1.49× 10−5 1.94

case. α is taken to be positive so that the numerical schemes converge, which is not
guaranteed by pure SAV algorthms studied in the literature [41–43]. Taking T = 5,
h = ∆t, we compute numerical solutions by the Stab-SAV-CNLE and Stab-SAV-
CNLF schemes with four successive timestep reductions. Table 1 lists the numerical
errors at the final time computed by the Stab-SAV-CNLE scheme for the first and
third samples. The stabilization parameter is taken as α = 0.5 in particular. As
a comparison, Table 2 lists the numerical errors computed by the Stab-SAV-CNLF
scheme taking α = 0.1.

As shown in the tables, both schemes have second order convergence as predicted.
In the numerical experiments, slightly larger α values also work fine with acceptable
accuracy. The optimal choice of the stabilization parameter, however, is generally
application dependent. In comparing Stab-SAV-CNLF with Stab-SAV-CNLE, we
observe that Stab-SAV-CNLF requires smaller value of α than Stab-SAV-CNLE for
the case of large Reynolds number. Specifically, the small value α = 0.1 works fine for
Stab-SAV-CNLF, but does not ensure convergence of Stab-SAV-CNLE, which requires
α to be at least around 0.5. Consequently, more additional errors are brought into
the pure SAV-CNLE scheme by stabilization than into the pure SAV-CNLF scheme.

We also run a second test case by taking νmin = 0.01, so that the Reynolds number
is relatively small and stabilization is possiblely not required. If we set α = 0, Stab-
SAV-CNLE (equivalent to SAV-CNLE) achieves second-order convergence, but Stab-
SAV-CNLF (equivalent to SAV-CNLF) does not converge. This is possibly because
SAV-CNLF has a stricter timestep condition for convergence than SAV-CNLE. If a
more appropriate value of α is taken, namely the timestep restriction for convergence
is relaxed by stabilization, Stab-SAV-CNLF has comparable performance to Stab-
SAV-CNLE.

Detailed experimental results for the case νmin = 0.01 are reported in Figure 1.
Errors of velocity (resp. pressure) are plotted in pictures on the left (resp. right). The
pictures on the top correspond to the first sample (i.e. j = 1), and the bottom pictures
correspond to j = J . Figure 1 illustrates second-order convergence for the Stab-SAV-
CNLE scheme with α = 0 and α = 0.1 and the Stab-SAV-CNLF scheme with α = 0.1.
When α = 0.1 both schemes are stable with large time steps. The Stab-SAV-CNLF
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Fig. 1: Errors of velocity (on the left) and pressure (on the right) at T = 5 by the
Stab-SAV-CNLE and Stab-SAV-CNLF ensemble algorithms (J = 3) with ∆t = h,
νmin = 0.01. Top: for the first sample; bottom: for the third sample.

method returns a slightly larger error on velocity, but a smaller error on pressure.

5.2. Flow past a cylinder. Our next test problem is the two-dimensional flow
past a cylinder, a classical benchmark problem introduced in Schäfer and Turek [49].
This problem has been widely used, in [34, 40] for instance, to study the stability
or effectiveness of certain time stepping methods. In our work, the aim is to show
that Stab-SAV-CNLE and Stab-SAV-CNLF both produce reasonable simulations if
appropriate stabilization parameters and relatively large time steps are chosen.

Consider the flow in a 2.2× 0.41 rectangular channel around a cylinder of radius
0.05 centered at (0.2, 0.2). No-slip boundary condition is imposed on the cylinder,
also the top and bottom of the channel, while the inflow/outflow boundary conditions
are prescribed as

u1(0, y) = u1(2.2, y) =
6

0.412
sin(πt/8)y(0.41− y),

u2(0, y) = u2(2.2, y) = 0.

The initial velocity and external force are set to zero. The viscosity is ν = 10−3.
Based on the inflow profile and the cylinder diameter L = 0.1, the Reynolds number
is Re = 100. For this value of Re, the problem features a laminar flow, with a von
Kármán vortex street developing behind the cylinder. In particular, the eddies become
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Fig. 2: Flow past cylinder: time histories of Sn
j computed by the Stab-SAV-CNLE

and Stab-SAV-CNLF schemes with ν = 10−3, h = 0.028, J = 1 = j.

unstable from t = 2, and then are shed on alternate sides of the cylinder between t
= 4 and t = 6.

The numerical solutions are computed with Taylor-Hood elements holding 31140
number of degrees of freedom for velocity and 3980 for pressure. The spatial reso-
lution is 0.028. Simulations are performed with ∆t = 0.01, 0.005, 0.002, and various
stabilization parameters α. The corresponding time histories of Sn

j are plotted in Fig-
ure 2. In both schemes, the importance of adding stabilization into the SAV approach
is obvious, since the convergence of Sn

j to one associates directly with the accuracy of
numerical solution. According to the results, both methods work fine with ∆t = 0.01
if an appropriate stabilization parameter α is provided. In addition, by comparing
Stab-SAV-CNLF with Stab-SAV-CNLE we observe that the Stab-SAV-CNLF scheme
is more flexible in choosing α. Specifically, while a large ∆t = 0.01 with α = 1 in
Stab-SAV-CNLF is good enough for stable simulation, the Stab-SAV-CNLE method
needs α = 3.
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Fig. 3: Flow past cylinder: velocity fields at t = 2, 5, 7, 8. Computed by Stab-SAV-
CNLE with ∆t = 0.01, α = 3.

The velocity fields of the flow at t = 2, 5, 7, 8 computed by the Stab-SAV-CNLE
method with ∆t = 0.01 and α = 3 are plotted in Figure 3. Figure 4 is for the case
of ∆t = 0.001. As for the Stab-SAV-CNLF method, α = 1 is used. Results with
∆t = 0.01 and ∆t = 0.002 are plotted in Figure 5 and 6, respectively. Overall, the
simulation results of both schemes are satisfactory: the simulations are stable and the
flow patterns produced match with those in [34, 37].

5.3. Flow between two offset cylinders. We also consider a two-dimensional
flow between two offset cylinders to test the stability and efficiency of the two Stab-
SAV algorithms. Consider a disk with a smaller off center obstacle inside. That is,
the flow is in the domain

Ω = {(x, y) : x2 + y2 ≤ 1 and (x− 0.5)2 + y2 ≥ 0.12}.
No-slip boundary condition is enforced on both circles. Driven by a counterclockwise
rotational body force

f(x, y) =
(

−4y(1− x2 − y2), 4x(1− x2 − y2)
)T

,

the flow interacts with the inner circle generating complex flow structures. Specifically,
a von Kármán vortex street is developed and then reinteracts with the inner circle.
Extensive experiments on this flow have been performed in [23,27,35] for the study of
certain first or second order ensemble methods. It is worth mentioning that the flow
considered here is much more complicated than previous examples.

To generate perturbations of the initial conditions, we solve the steady Stokes
problem with J perturbed body forces given by

fj(x, y) = f(x, y) + εj (sin(3πx) sin(3πy), cos(3πx) cos(3πy))
T
, j = 1, · · · , J,
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Fig. 4: Flow past cylinder: velocity fields at t = 2, 5, 7, 8. Computed by Stab-SAV-
CNLE with ∆t = 0.002, α = 3.

Fig. 5: Flow past cylinder: velocity fields at t = 2, 5, 7, 8. Computed by Stab-SAV-
CNLF with ∆t = 0.01, α = 1.
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Fig. 6: Flow past cylinder: velocity fields at t = 2, 5, 7, 8. Computed by Stab-SAV-
CNLF with ∆t = 0.002, α = 1.

where εj is uniformly distributed in [10−3, 10−2]. This results in J = 10 discretely
divergence free initial conditions. The viscosities νj are uniformly distributed between
0.01 and 0.015 while satisfying the parameter fluctuation condition ν′max < 1

3 ν̄min.
Numerical solutions are computed with Taylor-Hood elements holding 65292 num-

ber of degrees of freedom for velocity and 8244 for pressure. The spatial resolution
is 0.038. Simulations are performed with ∆t = 0.01, 0.005, 0.001, and various stabi-
lization parameter α. The corresponding time histories of Sn

j are plotted in Figure 7.
The plot corresponds to ν10 = 0.0104651 in particular. As before, we observe that the
Stab-SAV-CNLF method requires smaller stabilization values than Stab-SAV-CNLE
to ensure stable simulations. For instance, when a large time step ∆t = 0.01 is taken,
Stab-SAV-CNLF needs α = 5 whereas Stab-SAV-CNLE requires α being as large as
15.

The stability and accuracy of the two ensemble schemes are also illustrated in
Figure 8. Specifically, Figure 8 plots the velocity fields of the flow at T = 10 computed
by different schemes with ∆t = 0.01 or ∆t = 0.001. Consider (a) as a reference; (b)
shows the flow computed by the Stab-SAV-CNLE ensemble scheme with α = 15; (c)
shows simulations obtained by the Stab-SAV-CNLE ensemble scheme with α = 5.

We also report in Table 3 the CPU time for simulations with different schemes.
As we expect, while using the same time step size, the Stab-SAV-CNLE and Stab-
SAV-CNLF schemes take much less computational time than the CNLE nonensemble
scheme.

5.4. Three-dimensional efficiency tests. In this subsection, ensemble ef-
ficiency of the two schemes will be reported by simulating the Arnold-Beltrami-
Childress flow that was originally introduced by Arnold [2] and Childress [6] and
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Fig. 7: Flow between two offset cylinders: time histories of Sn
j computed by the

Stab-SAV-CNLE and Stab-SAV-CNLF schemes with J = 10. The plot corresponds
to ν10 = 0.0104651.

studied in several papers such as [52].
The analytical solution of the NSE is given by

u1 = (sin z + cos y)e−νt,

u2 = (sinx+ cos z)e−νt,

u3 = (sin y + cosx)e−νt,

p = −(cosx sin y + sinx cos z + sin z cos y)e−2νt.

In particular, the number J of realizations will vary from 1 to 100. The values of νj
are set by taking

νj = νmin(1 + εj), νmin = 0.001, j = 1, · · · , J,
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(a) CNLE nonensemble. ∆t = 0.001.

(b) Stab-SAV-CNLE Ensemble (α = 15). Left: ∆t = 0.01; right: ∆t = 0.001.

(c) Stab-SAV-CNLF Ensemble (α = 5). Left: ∆t = 0.01; right: ∆t = 0.001.

Fig. 8: Velocity fields of the ensemble flow between two offset cylinders at T = 10,
computed by different schemes with J = 10. Consider (a) as a reference, (b) shows
the flow computed by the Stab-SAV-CNLE ensemble scheme with α = 15, (c) shows
simulations obtained by the Stab-SAV-CNLE ensemble scheme with α = 5.

Table 3: CPU time for simulating the flow between two offset cylinder with J = 10,
T = 10.

Scheme ∆t = 0.01 ∆t = 0.005 ∆t = 0.001

CNLE nonensemble 26588 s 55485 s 263416 s
Stab-SAV-CNLE ensemble 8127 s 16655 s 79466 s
Stab-SAV-CNLF ensemble 8439 s 17596 s 84209 s
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Table 4: Three dimensional Arnold-Beltrami-Childress flow: execution time and errors
of mean for different values of J at final time T = 0.5 with h = 1/16,∆t = 0.02.

Stab-SAV-CNLE ensemble CNLE nonensemble

J |E[uh − u]|H1 |E[ph − p]|L2 Exe time |E[uh − u]|H1 |E[ph − p]|L2 Exe time

1 1.00× 10−2 7.57× 10−3 1035 s 1.14× 10−2 2.74× 10−3 1781 s
10 9.57× 10−3 3.20× 10−3 3116 s 1.01× 10−2 1.79× 10−3 17403 s
100 9.52× 10−3 3.48× 10−3 21324 s 1.07× 10−2 1.78× 10−3 147091 s

Table 5: Three-dimensional Arnold-Beltrami-Childress flow: execution time and er-
rors of mean for different values of J at final time T = 0.5 with h = 1/16,∆t = 0.02.

Stab-SAV-CNLF ensemble CNLF nonensemble

J |E[uh − u]|H1 |E[ph − p]|L2 Exe time |E[uh − u]|H1 |E[ph − p]|L2 Exe time

1 1.03× 10−2 2.32× 10−3 1653 s 1.14× 10−2 3.51× 10−3 1982 s
10 9.91× 10−3 1.57× 10−3 4329 s 1.08× 10−2 2.32× 10−3 19946 s
100 9.87× 10−3 1.57× 10−3 24697 s 1.07× 10−2 2.27× 10−3 164411 s

where εj is a random variable uniformly distributed in [0, 0.2]. The stabilization
parameter is α = 0.5. The space and time resolutions are fixed as h = 1/16,∆t = 0.02
and the final time is taken at T = 0.5. In this efficiency test, we use the block
GMRES solver with the least-square commutator preconditioner to handle algebraic
linear systems. Inside the block GMRES solver, this preconditioner is solved by a
multigrid V cycle.

In Table 4 we report the numerical errors and execution time computed by the
Stab-SAV-CNLE ensemble algorithm and CNLE nonensemble algorithm with differ-
ent numbers of ensemble members. The performance of Stab-SAV-CNLF ensemble
scheme is compared to CNLF nonensemble scheme in Table 5. One can observe that,
in each comparison, the ensemble algorithm outperforms the nonensemble method
since it takes much less CPU time while retaining similar accuracy. The advantage
of the two Stab-SAV ensemble algorithms is more apparent as the ensemble size in-
creases. This validates that both Stab-SAV-CNLE and Stab-SAV-CNLF ensemble al-
gorithms have good scaling performance on ensemble computing. If Stab-SAV-CNLF
is compared to Stab-SAV-CNLE directly, we still notice that the Stab-SAV-CNLF
scheme returns slightly a larger error on velocity but a smaller error on pressure. The
computational efficiency of these two schemes are comparable.

5.5. Three-dimensional lid driven cavity flow. In this last test case we
simulate the three-dimensional lid driven cavity flow, which has been widely studied
in literatures such as [1,52], to investigate the performance of the Stab-SAV-CNLF and
Stab-SAV-CNLE schemes. To be specific, the flow in a cubic cavity Ω = (−0.5, 0.5)3 is
driven by (u1, u2, u3) = (0, 1, 0) on the plane x = −0.5. No-slip boundary conditions
are imposed on the other parts of the boundary. The initial velocity and external body
force are set to be zero. Taking Reynolds number Re = 1

ν = 400 and Re = 1000, we
run simulations until T = 40 to study the stability of the proposed schemes.

Our numerical experiments are performed with h = 1/20 fixed, ∆t various be-
tween 0.05 and 0.02. The time histories of Sn

j computed with α = 0 and α = 0.5 in
the Stab-SAV-CNLE and Stab-SAV-CNLF schemes are plotted in Figure 9. In both
schemes, the importance of adding stabilization into the SAV approach is apparent,
since Sn

j does not converge to one when the simulation is performed using relatively
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Fig. 9: 3D lid driven cavity flow: time histories of Sn
j computed by the Stab-SAV-

CNLE and Stab-SAV-CNLF schemes with Re = 1000, h = 1/20, J = 1 = j.

large time steps and without stabilization. In other words, the two Stab-SAV schemes
have relaxed time step constraints for convergence. For instance, a large ∆t = 0.05
with α = 0.5 is good enough for stable simulations. As before, we observe that the
Stab-SAV-CNLF scheme is more flexible in choosing the stabilization parameter α.

In the top of Figure 10 and 11 we plot the streamlines and magnitude of velocity
in 3D coordinates, for the lid driven cavity flow with Re = 400 and 1000 respectively.
These flows are simulated by the Stab-SAV-CNLF scheme, and almost idential results
can be provided by the Stab-SAV-CNLE scheme. In the bottom of these figures,
streamlines are generated by velocities projected on the x-y plane, x-z plane, and y-z
plane respectively.

6. Conclusions. In this report we proposed a new second order, stabilized SAV
ensemble method based on the CNLF timestepping: Stab-SAV-CNLF, for fast com-
putation of nonlinear flow ensembles. We presented details of numerical implemen-
tation for Stab-SAV-CNLF as well as a similar method that was proposed in [35]:
Stab-SAV-CNLE. Both methods are proved to be long time stable under a parameter
condition that limits the size of the fluctuation around the uncertain parameter. We
performed extensive numerical experiments to test the accuracy, stability, efficiency
of the two methods. Both methods are demonstrated to be extremely efficient and
competitively accurate. In addition, through several experiments we observe that the
Stab-SAV-CNLF scheme is more flexible in choosing the stabilization parameter α.
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Fig. 10: 3D lid driven cavity flow with Re = 400 simulated by the Stab-SAV-CNLF
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streamlines generated by velocities projected on the x-y plane, x-z plane, and y-z
plane respectively.
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