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We seek to connect ideas in the theory of bridge trisections with other well-
studied facets of classical knotted surface theory. First, we show how the
normal Euler number can be computed from a tri-plane diagram, and we
use this to give a trisection-theoretic proof of the Whitney—Massey theorem,
which bounds the possible values of this number in terms of the Euler
characteristic. Second, we describe in detail how to compute the fundamental
group and related invariants from a tri-plane diagram, and we use this,
together with an analysis of bridge trisections of ribbon surfaces, to produce
an infinite family of knotted spheres that admit nonisotopic bridge trisections
of minimal complexity.

1. Introduction

We study bridge trisections of surfaces in $*, as originally introduced by the second
and fourth authors in [Meier and Zupan 2017]. A bridge trisection of a surface S
in $* is a certain decomposition of (§4, S) into three trivial disk systems (B, Dy),
(B4, D>), (B4, D3), a four-dimensional analog of a bridge splitting, which cuts a
link in S? into two trivial tangles. The purpose of this paper is to connect the theory
of bridge trisections with a number of different ideas and results in classical knotted
surface theory. In particular, we demonstrate how to use a bridge trisection of a
surface S C §* to compute various invariants of S and to obtain other topological
information. We give a more precise definition and much relevant background
information in Section 2.

In Section 3, we describe a method of obtaining a broken surface diagram for S
from a tri-plane diagram. Using this method, we can recover the Euler number e(S)
of the normal bundle of S.

Corollary 3.8. Let D = (D, D>, D3) be a tri-plane diagram of a surface S C S*.
Let w; be the writhe of the diagram D; U @,‘_H. Then e(S) = wy + wy + ws.

As one application, we obtain the following well-known result.
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Corollary 3.9. If S is oriented, then e¢(S) = 0.

As another application, we deduce a new proof of the Whitney—Massey theorem
[Massey 1969] on the Euler number of a surface in S4.

Theorem 3.12. If S is connected and nonorientable with Euler characteristic x,

then
e(S) e {2x —4,2x,2x+4,...,2x —4,2x,—2x +4}.

In Section 4, we describe how to calculate the fundamental group of the comple-
ment of S.

Theorem 4.1. Let D be a (b; ¢)-tri-plane diagram for a surface knot S C S*. Then
T1(S* \v(S)) admits a presentation of each of the following types:

(1) 2b meridional generators and 3b Wirtinger relations,
(2) b meridional generators and 2b Wirtinger relations, or

(3) ¢; meridional generators and b Wirtinger relations (for any i € 73).
Moreover, these presentations can be obtained explicitly from D.

Additionally, we use these presentations to show how one may recover more
sophisticated information such as the peripheral subgroup of S.

In Section 3D, we show how to construct a bridge trisection from any ribbon
presentation of a ribbon surface. These bridge trisections always have triple point
number zero. In Section 4D, we prove that such a bridge trisection respects the
Nielsen class of the original ribbon presentation, yielding the following corollary.

Corollary 4.10. There exist infinitely many ribbon 2-knots with pairs of bridge
trisections T and T, both induced by ribbon presentations, which are nonisotopic
as bridge trisections.

We conclude with several questions about ribbon bridge trisections.

2. Preliminaries

We work throughout in the smooth category. We begin by describing the simplest
4-manifold trisection, which is the only one necessary for understanding the bulk
of this paper. We refer the reader to [Gay and Kirby 2016] for more information on
general trisections.

2A. Bridge trisections. We refer the reader to [Meier and Zupan 2017] for complete
details, but give the definition of a bridge trisection here for completeness.

Let S = X; U X, U X3 be the standard genus zero trisection. We adopt the
orientation conventions that ¥ = d H; for each i and X; = H; U H i+l
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Definition 2.1 [Meier and Zupan 2017]. Let S be a (smooth) closed surface in S*.
We say that S is in (b; ¢)-bridge position, where b is a positive integer and ¢ =
(c1, c2, c3) is a triple of positive integers, if the following are all true:

(1) For each i, D; = X; NS; is a collection of ¢; boundary-parallel disks in the
4-ball X;.

(2) For each i, 7; = H; NS is a boundary-parallel tangle in the 3-ball H;.
(3) X NS is 2b points called bridge points.
We denote H; NS by «, B, and y, fori =1, 2, 3, respectively.

Given S C S* in bridge position, we may refer to the decomposition
(8%, 8) = (X1, D1) U (X2, D2) U (X3, D3)

as a bridge trisection of S, which we denote by T. We say that two bridge trisections
T and T are equivalent if there is a diffeomorphism ¢: S* — §* with

¢ ((Xi, D) = (X;, D)

for all i € Z3. Any (smooth) closed surface in S* can be isotoped into bridge
position, regardless of connectivity, genus, or orientability [Meier and Zupan 2017].

2B. Diagrams for bridge trisections. Bridge trisections may be viewed as the
analog to bridge position of a link in S3. One purpose of this article is to demonstrate
that bridge trisections are useful for similar reasons. In particular, the theory
produces simple diagrams of surfaces that we will use to perform several different
computations.

Definition 2.2. A tri-plane diagram is a triple of trivial tangle diagrams D =
(D, Dy, D3) such that D; U Di+1 is a planar diagram for an unlink.

If each D; is a b-stranded trivial tangle and each D; U @i+1 is a ¢;-component
unlink, then up to isotopy, the tri-plane diagram D = (D, D,, D3) determines a
(b, ¢)-bridge trisection of a surface S in the following way: The tri-plane diagram D
determines the intersection of S with a regular neighborhood of H; U H, U H3. The
remainder of S consists of three systems of boundary parallel disks in the 4-balls X;.
But boundary parallel disks in a 4-ball are determined up to isotopy rel-boundary
by their boundary (see, e.g., [Kawauchi et al. 1982; Livingston 1982]).

Remark 2.3. If two tri-plane diagrams D = (D, D>, D3) and D' = (D], D}, DY)
describe isotopic surfaces in S*, then by [Meier and Zupan 2017] the diagram D

can be transformed into )’ by a sequence of the following moves, illustrated in
Figures 4 and 27 of [Meier and Zupan 2017].

(1) Mutual braid transposition, in which D, D,, and D3 are replaced by concate-
nations D 8, D, B, and D38 (respectively) for some braid diagram g.
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(2) Elementary perturbation and deperturbation, as illustrated in generality in
Figure 27 of [Meier and Zupan 2017]. This operation increases one component
of ¢; the roles of X, X», X3 as illustrated may be permuted cyclically.

(3) Interior Reidemeister moves.

See Section 2.5 and Section 6 of [Meier and Zupan 2017] for complete details
regarding these moves.

Remark 2.4. In the original construction of bridge trisections [Meier and Zupan
2017], the authors give an algorithm to obtain a tri-plane diagram of a surface S
given a banded unlink diagram (L, B) of S. A banded unlink diagram, introduced
in [Kawauchi et al. 1982], consists of an unlink L and a set of bands B attached
to L, with the property that surgering L along B yields another unlink Lp. The
diagram (L, B) determines the surface S in S* = §3 x I/ ~ up to smooth ambient
isotopy. Here, S consists of the following pieces.

« A collection of disks bounded by L in S° x }1.

11
« Lx [ 3]
« (LUB) x {1}.
13
* Lex[3.3]
A collection of disks bounded by Lp in $3 x %.

If (L, B) is in bridge position with respect to a sphere F splitting S* into 3-
balls B; and B, (with bands in B;), then (D1, D,, D3) is a bridge trisection of S,
with Dy, D,, D3 diagrams of the tangles (B, B N L), (B2, ByNL), (B, BxNLp),
respectively. We refer the reader to [Meier and Zupan 2017] for more details, but
include Figure 1 to illustrate that one generally expects to find tri-plane diagrams
of high complexity. We give a more detailed caption of Figure 1 now.

(a) In (a), we draw a band diagram of the standard ribbon disk for K#K. This
consists of the link K#K (the boundary of the disk) and horizontal bands
with the property that K#K surgered along these bands is an unlink. We also
draw a torus about the K summand; Litherland describes a homeomorphism
p of §3 supported near this torus consisting of a Dehn twist about a O-framed
longitude of K. The roll-spun knot of K is a knotted sphere obtained by gluing
two copies of this disk via the boundary homeomorphism p. (See [Litherland
1979] for the original construction.)

(b) In (b), we apply p to the diagram of (a).

(c) Combining these diagrams in (c) (where we have dualized the bands in (a) and
isotoped (b) to simplify the diagram) yields a banded unlink diagram for the
roll-spun knot of K.
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~_ AN L

Figure 1. The process of obtaining a tri-plane diagram of a roll-
spun knot. We provide a more detailed caption in Remark 2.4.

(d) In (d) we further isotope this diagram to make the bands appear small. Since
we started with K#K in bridge position in (a), this banded unlink is very nearly
in bridge position.

(e) In (e), we perturb the diagram slightly near the bands to obtain a banded unlink
diagram in bridge position; we include a horizontal line indicating the bridge
sphere. The lower 3-ball is By and the upper 3-ball is Bj.

(f) Finally in (f), we obtain a tri-plane diagram for the roll-spun knot of K.

2C. Unknotted surfaces. We now recall the notion of unknottedness for surfaces
in S*; see [Meier et al. 2020] for a related discussion of bridge trisections of
unknotted surfaces.

Definition 2.5. Let S be a closed, connected, orientable surface in S*. We say that
S is unknotted if S bounds an embedded, 3-dimensional handlebody in S*.

If S = RP?, then we say that S is unknotted if it is isotopic to one of the
two RP%s in Figure 2; we denote these surfaces by P, noting that e(P,) = +2;
see Remark 2.6. Otherwise, if S is closed, connected, and nonorientable, we say
that S is unknotted if S is isotopic to a connected sum of unknotted RP?s.

A disconnected surface S = S U--- U S in S is said to be unknotted if there
exist disjoint 4-balls By, ..., By C §* with S; C B, and each S; is unknotted.

Remark 2.6. There is a subtlety regarding sign conventions for the unknotted
projective planes that is worth noting. Our convention is to denote by P, the
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Figure 2. Left: A motion picture describing the unknotted projec-
tive plane P, the unknotted RP? with Euler number +2. Right:
tri-plane diagrams for P, (top) and P_ (bottom).
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Figure 3. The genus one trisection of CIP?, realized as the 2-fold
branched cover of the 2-bridge trisection of P_.

unknotted projective plane with normal Euler number +2. As a consequence, we
have that the 2-fold cover of S*, branched along P, is CP?; see Figure 3. This is
often confused in the literature; for example, it seems that the orientation of s4
that is adopted in [Kamada 1989] is the opposite of the usual one, leading to the
conclusion that CP? is the 2-fold cover of S* branched along P, which is there
denoted “P,”. While this seems to be technically correct, it does confuse the issue,
slightly. In the same vein, Figure 2 corrects Figure 15 of [Meier and Zupan 2017],
where the motion-picture is mislabeled, though the tri-plane diagrams are correctly
labeled. Figure 3 corrects Figure 2 of [Meier and Zupan 2018]. The careful reader
will note that when taking branched covers of tri-plane diagrams, it is more natural
to revolve a tri-plane diagram 180 degrees, so that the tangles descend from the
bridge surface instead of ascending, as shown in Figure 3. (Alternatively, one might
view the tangles from below their boundary.)

3. Broken surface diagrams versus bridge trisections

In this section, we discuss the relationship between tri-plane diagrams and broken
surface diagrams of a surface S smoothly embedded in S*. As result, we obtain
a new formula for the normal Euler number e(S) that depends on the writhes of
the pairings of tangle diagrams in a tri-plane diagram D for S, and we give a new
proof of the Whitney—Massey theorem. We also explore the relationship between
ribbon surfaces and bridge trisections.
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3A. Broken surface diagrams. We start by reviewing the notion of a broken surface
diagram; see, e.g., [Carter and Saito 1998] for more exposition.

Definition 3.1. Let S be a surface smoothly embedded in S*. Let Ps be the
projection of S to the equatorial S* of S*. Assume that Pg is generic; i.e., Pg is a
smoothly embedded surface away from self-intersections that come in three possible
types: arcs of double points, branch points (which necessarily end arcs of double
points), and triple points (which are intersections of three arcs of double points).
The branch points and triple points are all isolated.

Near each self-intersection of Pg, remove a small neighborhood of the intersection
from the sheet(s) that is lower in the fourth coordinate of $* = R* U 0co. We call
the resulting broken surface S, as it is embedded in S, a broken surface diagram
for S. This is completely analogous to how one defines a classical knot diagram by
indicating over and under information at each crossing.

We will generally refer to Ps as the underlying surface of S, just as an immersed
curve underlies a knot diagram.

Theorem 3.2. Let D = (D, Dy, D3) be a tri-plane diagram of a surface S C S*.
From D, there is a procedure to produce a broken surface diagram S of S.

To prove Theorem 3.2, it will be useful to develop some notation to describe
simple broken surfaces in S°.

Definition 3.3. Let D, be a link diagram in S?. We obtain a broken surface
diagram L in S? x I whose underlying surface is P, = Dy x I, where Dy is the
immersed multicurve underlying Dy . At self-intersections of Py, the sheet of L
containing the corresponding undercrossing of D) x 0 is broken. We call L a product
broken surface, and may write L =Dy x I as shorthand. We illustrate some product
broken surface diagrams (and some nonproduct diagrams) in Figure 4.

In Definition 3.3, we slightly abuse the notation, since P; is a surface with
boundary properly immersed in S x I rather than a closed surface in S, but this
distinction is not important in the setting of this paper.

Remark 3.4. Note that a product broken surface diagram contains only double arcs
of intersections. That is, a product broken surface diagram does not include any
triple points or branch points.

Definition 3.5. Let D; C S? be a link diagram. Let [, be obtained from D, by
a single Reidemeister move R. We obtain a broken surface diagram T in S x I
whose boundary is (D x 0) U (D;, x 1) which agrees with the product Dy x I
away from the support of R, and, near R, agrees with the corresponding diagram in
Figure 4. We call Ty the trace of R.
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Figure 4. The trace Ty of a Reidemeister move R. Below each
possible Reidemeister move, we draw (on the left) a product broken
surface and (on the right) the trace of the Reidemeister move. Note
that changing the type of a crossing in R corresponds to changing
which sheet of the intersection in S is broken. Top row: R is
Reidemeister I. Note S contains a branch point. Middle row:
Reidemeister II. Bottom row: Reidemeister III. Note S contains a
triple point.

If Dy is obtained from Dy by a sequence R = (Ry, ..., R,) of Reidemeister
moves, then we write Tx to denote the concatenation of Tg,, ..., Tg,. Wecall Tr
the trace of R.

Remark 3.6. If R is a Reidemeister I move, then Tk contains exactly one branch
point and no triple points. The sign of the branch point depends on the sign of R: If
R is positive, i.e., the move R adds a positive crossing or cancels a negative crossing,
then the branch point will be negative (and vice versa). If R is a Reidemeister 11
move, then Ty includes only double arcs of self-intersection. If R is a Reidemeis-
ter III move, then Tz contains no branch points and exactly one triple point.
Similarly, if R = (Ry, ..., R,;) is a sequence of Reidemeister moves including
p positive RI moves, n negative RI moves, k RII moves and m — (p +n + k) RIIL
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moves, then the trace T contains exactly n positive branch points, p negative
branch points, and m — (p + n + k) triple points.

Proof of Theorem 3.2. Recall that D; U D; | is an unlink diagram. Therefore, there
exists a sequence of Reidemeister moves R; = (R, ..., Ry,) taking D; U Di+1
to a crossingless diagram [} of an unlink. Let T; be the trace of R;. Cap off
the [} boundary of D; with trivial disks to obtain a broken surface diagram S; with
boundary D; U D/ 1

Now embed the tri-plane in R3, so the diagrams D, D,, D3 lie in half-planes
Py, P>, P3 at angles O, 27”, 47” about the x-axis. Note that D; is truly a diagram
contained in a plane and not a tangle in space. Now P; U P;;| contains the diagram
D; U Di+l, which is the boundary of the broken surface S; with P; U P; + 1. Thus,
we may glue copies of S1, S;, S3 (correspondingly between Py, P»; P, P3; P3, Pp)
to obtain a broken surface diagram S for S. ]

3B. Euler number and the Whitney—Massey theorem. For computations that can
be done with broken surface diagrams we can make use of Theorem 3.2.

Proposition 3.7 [Banchoff 1981]. Let S be a broken surface diagram of a surface S.
Assume S has p positive branch points and n negative branch points. Then e(S) =

p—n.

We sketch the proof of Proposition 3.7 in at least as much detail as to convince
the familiar reader that e(S) is p — n, rather than n — p.

Sketch. Push S off itself and project the resulting parallel surface S’ to S3. The
intersections between S and S’ manifest in the projection near branch points of S,
as illustrated in Figure 5. (]

Corollary 3.8. Let D = (D, Dy, D3) be a tri-plane diagram of a surface S C S*.
Let w; be the writhe of the diagram D; U ®i+1- Then e(S) = wy + wy + ws.

Proof. Let R; denote a sequence of Reidemeister moves taking D; U ®i+1 to a
zero-crossing diagram. Suppose R; includes p; positive RI moves and 7n; negative
RI moves. Since RII and RIII moves preserve writhe and a zero-crossing diagram
has writhe zero, we must have n; — p; = w;.

Let S be the broken surface diagram obtained from R, R», R3 as in the proof of
Theorem 3.2. By Remark 3.6, within X;, SN X; = §l~ contains n; positive branch
points and p; negative branch points. Moreover, there are no branch points of S in
X;NX; for any i # j. We conclude that

e(S) = (ny +ny+n3) —(p1+ p2+ p3) = (n — p1) + (n2 — p2) + (n3 — p3)
= w; + wy + ws. O
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Figure 5. A surface S and a parallel copy S’ near a portion of S
that projects to a positive branch point in a broken surface dia-
gram. There is one intersection visible intersection point g be-
tween S and S’. We indicate g as well as positive bases for T, (S)
and 7,(S’), locally orienting S and inducing a local orientation
on §'. We find T,(S) has positive basis {z, 7} while T,(S’) has
positive basis {y, f — x}. Since {zZ, 7, y, f — X} is a positive basis for
R* = (X, y, Z, 1), we see that ¢ is a point of positive intersection.
Similarly, near a portion of S projecting to a negative branch point,
we would find a negative intersection between S and S'.

From Corollary 3.8, it is easy to conclude that orientable surfaces in S* have
trivial normal bundle. This gives an alternative argument to the usual one (that
oriented surfaces have zero self-intersection number since H»(S*; Z) = 0). Note
that S is oriented if and only if the bridge points and arcs of any tri-plane diagram D
are coherently oriented; see Lemma 2.1 of [Meier et al. 2020].

Corollary 3.9. Let S be an oriented surface in S*. Then e(S) = 0.

Proof. Let (D1, D,, D3) be an oriented tri-plane diagram for S. Since the D;
are oriented, we have w(D; U @,-Jr]) = w(D;) — w(D;+1), where D; U @,-Jr]. By
Corollary 3.8,

e(S) = w(D; UD,) + w(D, UD3) + w(D3; UDy)
= (w(D1) —w(D2)) + (w(D2) —w(D3)) + (w(D3) —w(Dy)) =0. U
It is clear that a nonorientable surface in S* has even self-intersection number,
since HZ(S4; %) = 0. But with a little more work, using the above argument one
can also compute the Euler number of a nonorientable surface mod 4. This corollary

is sometimes called Whitney congruence. The following corollary was originally
proved in [Massey 1969].

Corollary 3.10. Let S be a surface in S*. Then e(S) =2x(S) (mod 4).
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Proof of Corollary 3.10. The two unknotted RP%s have Euler numbers +2 and —2.
Therefore, if S = #,RP? is an unknotted surface in S, e(S) = 2(a — b) for some
a,bel0,...,k} with a + b = k. Therefore, the corollary is true for unknotted
surfaces.

Consider the effect of a crossing change at crossing ¢ in D; on wy, wp, and ws.
Since w; 4 is the writhe of D;+; U Di_1, w;4+] remains constant. However, each of
w; and w;_ change by 42 or —2, with sign depending on the sign of ¢ in ; UD; 4
and D;_; UD;. If S is not orientable, then ¢ may have the same or opposite signs in
these two link diagrams. Therefore, the crossing change may preserve wi +w,+ws3,
or increase or decrease the total by four. We conclude that (w; + w, +ws3) (mod 4)
is preserved by the crossing change.

Now by [Meier et al. 2020, Corollary 1.2], there exists a sequence of crossing
changes transforming the triple (D, D>, D3) into a tri-plane diagram for an unknot-
ted surface S’. Since &’ is unknotted, e(S’) = 2x(S") (mod 4). By Corollary 3.8,
we conclude that

e(S)=wi+wr+w3=e(S) =2x(S) =2x(S) (mod 4). O

Finally, we refine Corollary 3.10 to the more general Whitney—Massey theorem
[Massey 1969]. One of the main ingredients is the following theorem of Viro [1984].

Theorem 3.11 [Viro 1984]. If S is a surface embedded in S* and X° is the two-fold
cover of S* branched along S, then

—e(S) =20 (X%).

We can now proceed with the proof, which also makes use of work by Gordon
and Litherland [Gordon and Litherland 1978].

Theorem 3.12. Let S be a closed, connected, nonorientable surface in S4. and set
X := x(S). Then the Euler number e(S) of S is in the set

2x —4,2x,2x +4, ..., =2x —4,—2x, —2x +4}.

Proof. Using Corollary 3.10, we need only prove that |e(S)] < 4 — 2x. Let
D = (D, D;, D3) be a tri-plane diagram for S. Let D; = D; U @i+1.

Let X5 denote the 2-fold cover of S* branched along S. The genus zero trisection
of $* lifts to a trisection T = (X3, X2S, X3S) of X5, with Xl.S covering X;. Let
HP = X? N X} . By [Wall 1969],

o(X%) =Xi0(X5)+o((HS UH) UHY)).
Each X ls is a 4-dimensional 1-handlebody, so has vanishing signature. Therefore,

o(X%) =0 (W(H UH; UHY)).
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Figure 6. Checkerboard surfaces Fy, F;, F3 for Iﬁ)l, IﬁJz, Iﬁ)3, re-
spectively. We choose the surfaces so that F; and F;y; agree in
D;4+1. We arbitrarily choose some orientations of each Iﬁ>,- (indi-
cated by arrows) and then use dashed circles to indicate the type 11
crossings (see Figure 7) of F; given these orientations.

Now fix checkerboard surfaces F, F>, and F5 for [Iﬁ)l =D, UD,, [Ij)z =D, UDs,
and Iﬁ>3 =D;UD, (respectively) so that the surfaces F; and F;;; agree in D;;
see Figure 6.

Let S’ be a surface obtained by gluing together Fi, F>, F3 along common bound-
ary, after pushing the interior of F; slightly into X;.

Claim 3.13. The surface S’ is unknotted with e(S") = 0.

Proof. Let F! denote the copy of F; pushed into B* s0S8 = F{UF,UF;. Let H
be the 3-manifold formed as the union of the traces of the three isotopies pushing
the F; into B*. Then, H is a 3-dimensional neighborhood of a union of three
1-dimensional spines of the F; (that are chosen to agree at X). In other words, H is
a handlebody, though it may be nonorientable. In any event, S’ is unknotted with
e(S8’) =0, since it bounds a handlebody in S4. U

Let X IF denote the 2-fold covering of X; branched along Fl.’ . Let G; denote the
Gordon-Litherland form associated to F; [Gordon and Litherland 1978].

Claim 3.14. We have o (X[) = o (G)).

Proof. Gordon and Litherland [1978] showed that the quantity %(O’(X iF ) +e(F)))
is independent of the choice of checkerboard surface F;, up to Reidemeister moves
of the oriented diagram I]fDl-. Since [ﬁ)i is a diagram of an unlink, we conclude
that %(a (XI-F) +e(F/)) = 0. By Gordon and Litherland, we also have %(O’(Gi) +
e(F;)) =0, yielding the desired equality. (]

Claim 3.15. We have e(S) =2(6(G1) 4+ 0 (Gr) +0(G3)).

Proof. We remind the reader of the following theorem of Gordon and Litherland
[1978]: if G is a Goeritz matrix for a diagram of a link L associated to a checkerboard
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type I type II

Figure 7. A crossing c in an oriented link diagram D. The shaded
region indicates a checkerboard surface F for D. We say cis type |
if F' can be locally oriented near ¢ to induce the correct orientation
on d F. Otherwise, c is type II. In this picture, it does not matter
which strand contains the overcrossing; type is independent of sign.

surface F, then o (L) = 0 (G) — n, where 5 is a sum of signs over type II crossings
in F (see Figure 7). Since each D; is a diagram for an unlink (which has signature
zero), we conclude o (G;) = n;, where »; is the corresponding sum of signs over
type II crossings in F;.

Observation. A crossing ¢ in [J; has the same sign in I]j),- as it does in I]fl)i_l if and
only if it is type I in one of F; or F;_; and type II in the other.

If ¢ has different signs in lﬁ)i and lﬁ)i_l, then it does not contribute to e¢(S) =
2;w(D;). If ¢ has the same sign in each of D;, D;_1, then ¢ contributes twice that
sign and is type II in exactly one of F;, F;_; by the above observation. (]

Let XS be the 2-fold cover of §* branched along S'. The splitting $* = X UX,U
X3 lifts to a splitting (not a trisection) X&' = XF UXS UXY. Let HY =X/ nXx[,.
Again by [Wall 1969], we have

o(XS)=%i0(X)+o(w(HS UHY UHY)).
By Claim 3.14, O'(XiF) = 0 (G;). Moreover, note that

v(HS UHS UHS) = v(HS UHS UHS).
We conclude ,
o(X%) =0 (X% + 20 (G)).

By Claim 3.15, X¥;0i(G;) = %(e (S)). Moreover, since S’ is an unknotted surface
with e(S) = 0 (Claim 3.13), X5 = #,CP*#,CP? for some n > 0. Therefore,
o (XS") =0, so this becomes

e(S) = —20(X).

Finally, we have |o(X5)| < b2(X®) = 2 — x. Thus, we obtain our desired

inequality:
d Y le(S)| <4 —2x. O
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3C. The triple point number of a bridge trisection. Recall from Remark 3.6 that
given a tri-plane diagram (D, D,, D3) of a surface S, we may produce a broken
surface diagram of S with #; + £, + #3 triple points, where #; is the number of RIII
moves in some sequence of Reidemeister moves transforming D; U @i+ 1 into a
crossingless diagram. This allows us to define the triple point number of a bridge
trisection as follows.

Definition 3.16. Let D be an unlink diagram. We say a sequence of Reidemeister
moves applied to D is an uncrossing sequence for D if the end result is a crossingless
diagram. We define

t (D) = the minimum number of RIII moves in any uncrossing sequence for D.

Definition 3.17. Let D= (D, D,, D3) be a tri- plane dlagram of a bridge trisection ¥
of a knotted surface S. Define 7 (D) = t([[])l) +t(|D2) +t(|D3) and define ¢ (%) to be
the minimal value of (D), taken over all tri-plane diagrams D of ¥. This is called
the triple point number of .

By construction, this triple point number is an invariant of the bridge trisection.
By Remark 3.6, we have 7 () > 1(S), where #(S) is the usual triple point number
of the surface S (i.e., the minimum number of triple points in any broken surface
diagram of S) for any bridge trisection T of a surface S.

Questions 3.18. (1) Given a surface S, is there a bridge trisection T for S with
(%) =1(S5)?

(2) Does there exist a surface S with bridge trisection ¥ so that t (%) > t(S)?

(3) Does there exist a bridge trisection T with S an unknotted 2-sphere so that
(%) >0?

By construction, ribbon surfaces (defined below) always have triple point number
zero. In the next subsection, we show that every ribbon surface has a ribbon bridge
trisection, and that ribbon bridge trisections always have triple point number zero,
thus recovering this fact.

3D. Ribbon bridge trisections. In this subsection we define bridge trisections for
ribbon surfaces arising naturally from ribbon presentations. In Section 4D we will
use this analysis to give examples of ribbon 2-knots that admit nonisotopic minimal
bridge trisections.

One of the simplest classes of knotted surfaces is that of ribbon surfaces, which
bound embedded handlebodies in B> with only index 0 and 1 critical points with
respect to the radial height function. Equivalently, an oriented surface in S* is
ribbon if it bounds a ribbon-immersed handlebody in S*. Ribbon surfaces can also
be described by ribbon presentations.
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Figure 8. A broken surface diagram indicating a ribbon presenta-
tion for a knotted torus.

Definition 3.19. Let L =L, U---U L, be an unlink of oriented 2-spheres in S4.
For some m >n—1,let H={hy, ..., h,} be disjoint embeddings of 3-dimensional
1-handles I x D? in S* such that for each i:

e Each h;(I x D?) meets L exactly in its attaching region h; (91 x D?), and is
not tangent to L near this attaching region.

o« (L\H)U/L, hi(I x dD?) is a connected, oriented surface S (of genus m —
n—+1).

The data (L, H) is a ribbon presentation for S.

In short, a ribbon presentation is a description of a surface obtained by fusing
an oriented unlink together along oriented tubes. A ribbon presentation has an
especially nice broken surface diagram, where the only intersections are double
circles between tubes and spheres (see Figure 8).

The tube map encodes a broken surface diagram of a ribbon surface with a
virtual graph. Yajima [1962] defined the tube map as a diagrammatic operation
from classical knots (resp. arcs) to ribbon tori (resp. spheres). Satoh [2000] extended
the tube map to include virtual crossings, and proved that it is surjective onto ribbon
spheres and tori. Finally, Kauffman and Faria Martins [2008] defined the notion of
a virtual graph, allowing for higher genus surfaces.

In Figure 9, we illustrate in the first two frames the procedure for obtaining a
banded unlink diagram of Tube(G) from G. When two edges in G have a virtual
crossing, the apparent “crossing” of the tubed surface may be chosen arbitrarily (the
two choices yield isotopic surfaces in $*). The orientations of the overstrands of G
determine the crossings of the banded unlink diagram near any classical crossing
of G (see Figure 8).

Via the tube map, a virtual graph can be thought of as a shorthand for a ribbon
presentation, where overstrands become spheres in the ribbon presentation and
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Figure 9. Top left: a virtual graph G in 3-bridge position corre-
sponding to the ribbon presentation in Figure 8. Top middle: a
banded unlink diagram for Tube(G). Top right: we perturb the
banded unlink diagram to be in 9-bridge position. Bottom: the
resulting (9; 3)-tri-plane diagram of Tube(G).

understrands joining them become tubes. A virtual graph diagram is in n-bridge
position if, considered as an immersed graph in R?, the height function on the graph
is Morse, and has n minima and » maxima. Now we show how a virtual graph in
bridge position gives rise to a bridge trisection whose parameters are determined
by the bridge index and Euler characteristic of the graph.

Proposition 3.20. Let (L, H) be a ribbon presentation with n spheres and m tubes
for a surface S of genus g = m —n + 1. Then there is a virtual graph G such that:

(1) Tube(G) =S.
(2) G has Euler characteristic x(G) =1—g=n—m.
(3) G can be put into n-bridge position.

Proof. There is an obvious broken surface diagram of S which “comes from” the
ribbon presentation, i.e., the unlink L is projected into R? so that it is embedded
and so that the components of L; bound disjoint 3-balls in R®. The projections
of the 3-dimensional 1-handles /; are embedded in R®\ L, and only intersect
the 2-spheres in the attaching region /;(31 x D?) and a finite number of disks
hi({t} x D?). The boundaries of these disks are double point circles, and they
are the only self-intersections of the projection of S. As mentioned above, we
can arrange that a tube never crosses the same sphere L; over or under twice in
a row. As we traverse the [ direction of a tube, it goes through double circle
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crossings ci1, €12; €21, €22; - . . ; Ck1, Ck2, Where ¢;1, ¢j are crossings with the same
component L ;, and have opposite over/under information; see Figure 8.

Now, we construct the graph G in n-bridge position: first, we draw n vertical
edges in R? for the n components of L, with vertices at heights 0 and 1. Let L,
and L; be the components of L that the first tube 2 (1 x dD?) attaches to. We
draw an edge of G joining the bottom endpoint of L; to the top endpoint of L,
traversing monotonically upwards. For each pair of crossings c;1, ¢;» of a tube with
a sphere L ;, the edge corresponding to the tube crosses under the vertical edge
representing L ;. We remember the sign of the crossing by a local orientation of
the overstrand: the conormal (in R?) to the overstrand points to the “under” double
circle crossing, as in Figure 9. We continue in this way, adding an edge for each
tube in H. When an edge needs to get to the other side of another edge without
crossing, a virtual crossing is used. The graph G produced has 2n vertices and
n +m edges, so its Euler characteristic is n —m. The tube of this graph is the same
broken surface diagram we began with, so Tube(G) = S. By construction, G is in
n-bridge position. ([

Proposition 3.21. Suppose S is a ribbon surface admitting a ribbon presentation
(L, H) consisting of n spheres and m tubes. Then S admits an (n + 2m; n)-bridge
trisection.

Proof. Given (L, H), first construct a virtual graph G in n-bridge position as in
Proposition 3.20. In Figure 9, we illustrate how to obtain a bridge trisection of S
from G. We first obtain a banded unlink diagram of S in which the unlink is in n-
bridge position and there are 2m bands so that surgering the unlink along the bands
yields an n-component unlink. We perturb once near each band to obtain a banded
unlink diagram in (n+2m)-bridge position. We thus obtain a (b; (c1, ¢3, ¢3))-bridge
trisection of S with

b=n+2m,
c1 =n (the number of unlink components),
c3 =n (the number of unlink components after band surgery),
co=xS)+b—ci—c3=2m—m)+ n+2m)—n—n=n.
That is, we obtain an (n + 2m; n)-bridge trisection of S, by [Meier and Zupan
2017, Lemma 3.2]. ]

In Section 4D, we will show that by using the construction of Proposition 3.21
on distinct ribbon presentations of the same 2-knot, one can obtain distinct bridge
trisections of the same surface, both with minimal parameters.

Definition 3.22. A ribbon bridge trisection is any bridge trisection obtained from
the construction of Proposition 3.21.
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Recall that ¢ () denotes the triple point number of the trisection ‘T; see Section 3C.
Proposition 3.23. If ¥ is a ribbon bridge trisection, then t (%) = 0.

Proof. Let (D, Dy, D3) be a ribbon bridge trisection diagram as obtained in
Proposition 3.21. Each unlink diagram D; U D, is either crossingless or can be
made crossingless via only RII moves. Thus, #(¥) = 0. ([

4. The fundamental group, the peripheral subgroup, and quandle colorings

In this section we describe a number of ways to calculate a presentation of the
fundamental group of the exterior of a surface-knot from a tri-plane diagram for
the surface. We also discuss diagrammatic approaches to Fox colorings and, more
generally, quandle colorings of surface-knots, and describe a way to present the
peripheral subgroup of a surface-knot. Our approaches give rise to some interesting
group-theoretic questions about tri-plane diagrams.

4A. The fundamental group. Applying Van Kampen’s theorem to the exterior
of the bridge trisection yields the following cube of pushouts. Let p denote the
set of 2b intersections of ¥ with S. The three presentation types of Theorem 4.1
correspond to choosing a group G from the first, second or third column of this
cube to express 71 (S*\ S) as a quotient of G.

m(H\\T1) — m(X1\Dy)
~—
T (2\ p) — mi(H2\T2) ;1(X3\D3) — 1 (S*\S)

T (H3\T3) — mi(X2\Dy)
Theorem 4.1. Let D be a (b; ¢)-tri-plane diagram for a surface knot S C S*. Then
T1(S*\v(S)) admits a presentation of each of the following types:
(1) 2b meridional generators and 3b Wirtinger relations,
(2) b meridional generators and 2b Wirtinger relations, or
(3) c¢; meridional generators and b Wirtinger relations (for any i € Z3).
Moreover, these presentations can be obtained explicitly from D.

Proof. These presentations can be calculated from a tri-plane diagram by carrying
out the following corresponding processes. In all cases, begin by orienting each
strand of each tangle. If S is orientable, then it will be possible (but not necessary)
to orient the tangles compatibly in the sense that the three arcs adjacent at each
bridge point will be all oriented away from or all oriented toward the bridge point
(see [Meier et al. 2020, Lemma 2.1]). The basepoint g of all of these presentations
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lies in the bridge sphere (away from S) so that it is above the tri-plane onto which
S is projected to give D). To choose curves from the basepoint about a meridian
of S depicted in a tangle D; of D, we choose an arc n in S from the basepoint to
that meridian whose projection to [); has only over crossings. Note that when 7 is
projected to ;4 or D;_1, its projection will also only have over crossings, so this
choice may be made consistently.

(1) Assign labels {x; }2b | to the 25 common bridge points of the tangle diagrams D; .
These labels will represent the meridional generators in our presentation. For each
arc adjacent to the bridge point labeled x;, extend the label over the arc as x; if the arc
is oriented away from the bridge point, and extend the label over the arc as x; if the
arc is oriented toward the bridge point. Now, percolate the labels throughout each tan-
gle diagram by applying the Wirtinger algorithm at each crossing, moving up through
the height gradient of each tangle diagram. The 3b relations come from the equalities
encountered at the 3b arcs containing maximum points of the tangle diagrams.

(2) Assign labels {x; }h | to the b arcs containing maximum points of one of the three
tangle diagrams D;. Percolate the labels throughout the tangle diagram by applying
the Wirtinger algorithm at each crossing, moving down through the height gradient of
the tangle diagram. After finding labels for the 25 bridge points, and equating these
with the meridians to the bridge points in the other two tangle diagrams, percolate
upwards in these diagrams, eventually obtaining 2b relations when these arcs join
together at their maxima. Here, the orientations of the arcs are important: If w and w’
are two words labeling two arcs that meet at a bridge point, the resulting relation
is w’ = w if the orientations of the two arcs agree (are both outward or inward) at
the bridge point, and the resulting relation is w’ = w if the orientations disagree.

(3) First, apply tri-plane moves to remove the crossings from the tangle diagrams D;
and D; 4 for some fixed i € Z3. This is possible because D; =D; UDj 1 is a diagram
for a ¢;-component unlink, and unlinks admit unique bridge splittings at each level
of complexity (i.e., based on the number of bridges of each component) [Negami
and Okita 1985; Otal 1982]. Assign labels {xi}f": | to the ¢; components of the
unlink diagram D;. (Here, it is best to orient the strands of Iﬁ>l~ coherently.) This
induces labels at the 2b common bridge points. Percolate the labels throughout D; ;>
by applying the Wirtinger algorithm at each crossing, moving up through the height
gradient of the tangle diagram. The b relations come from the equalities encountered
at the arcs containing the » maximum points of the tangle diagram.

We now describe why the processes given above work to calculate 771 (S* \v(S)).
Let X = (H{ U HyU H3) \v(T1 UT, UT3). Let g be a point in X \v7;. It should be
clear the Wirtinger algorithms outlined calculate the group ;(X, ¢). However, we
have that 771 (X, ¢) = m1(S*\v(S)), since $*\v(S) is built from X x I by attaching
only (4-dimensional) 3-handles and 4-handles. O
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Remarks 4.2. Presentation (3) is strengthened in Proposition 4.5 of [Meier and
Zupan 2017] to a presentation with ¢; generators and b — ¢; relations, for any
distinct i, j € Z3. This is optimal from the perspective of group deficiency, and
shows that the deficiency of | (S*\v(S)) is at least ¢; + cj—b.

4B. The peripheral subgroup. Once the Wirtinger algorithm has been completed,
it is simple to write down the generators of a peripheral subgroup of § in terms of
these Wirtinger generators for 71 (S*\ S). The inclusion 9vS < §*\vS induces
a homomorphism m;(dvS) — T (S*\vS), unique up to a choice of meridian.
The image of this homomorphism is the peripheral subgroup of S, whenever S
is connected. See [Kanenobu and Kazama 1994] for some background on the
peripheral subgroups of knotted tori. If S has more than one component, we
can still consider the image of the induced map from the boundary of a tubular
neighborhood of one component of S into the exterior of S.
The procedure is as follows, for connected S.

Step 1. Choose a basepoint y for 71(S) to be one of the bridge points, where a
tangle arc meets the bridge sphere, call the meridian to this arc x. There is an arc 5
from the basepoint ¢ of 71 (S*\ S) to y lying on the bridge sphere.

Step 2. Choose a generating set yy, .. ., ¥, for (S, y) so that each y; is a union of
tangle arcs. Write each of the generators as a word in the Wirtinger labels (traverse
the curve once, starting at y).

Step 3. Push each y; off S (using the arc 1 from y to ¢), then add a multiple of u
to arrange for each push-off to be nullhomologous in the complement of S. Push 7
off with the curve, so that the curve is a based loop y/ in S4.

Lemma4.3. The subgroup (i, y,, ..., y,) of mi (SM\vS) is the peripheral subgroup
of S.

Proof. This follows essentially from the definition of peripheral subgroup; note that
if x is pushed along 7 to lie in 8(v(S)), then ;1 (d(V(S)), x) = (i, ¥{, ..., ¥y). O

Once the generating set is established, one could use Schreier’s lemma to get a
presentation for the peripheral subgroup.

Example 4.4. In Figure 10, we draw a tri-plane diagram of a link £ = P U P, of
two unknotted projective planes; here b =4 and ¢; = 2 for all i € Z3. Taken in
isolation, the surfaces P; and P, are the unknotted projective planes P, and P_,
respectively. Since the union of the first two tangle diagrams has no crossings,
we find a presentation of 7} (s* \ £) as in Theorem 4.1(3). We implicitly add the
relations corresponding to the trivial tangles in [D; and D, to see that the leftmost
meridians in D3 correspond to the same generator (up to orientation), as do the
rightmost. Then we apply the Wirtinger algorithm to D3 to obtain a relation for each
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of the four maxima. One relation corresponding to each of P; and P, is redundant,
so we are left with the final presentation

T (S*\ L) = (a, b | baba = abab = 1)
=(a,b|a*b* =abab=1)= Qs (a+r>i,br> j).

We indicate the generator of 771 (P;) in bold/purple in Figure 10. Since the bold
strand has a single undercrossing in the diagram, we add a canceling undercrossing
to indicate a parallel copy of this curve (taking the basepoint to lie in d(v(Py))
that is nullhomologous in $*\ P;). This parallel copy represents b in 71 (S*\ £).
We conclude that the peripheral subgroup of Py in §*\v(L) is generated by the
meridian a and this parallel curve b; hence is isomorphic to Qg. (By symmetry, so
is the peripheral subgroup of P,.)

As a consequence, since the peripheral subgroup of each P; is not Z», the link £
cannot factor as P.#£’ for any link £’ of a 2-sphere and an RP2. This implies that
the analog of the Kinoshita conjecture (that every projective plane in S* factors as
the connected sum of Py and a knotted 2-sphere) is false for multiple component
links. This example was first noted in [Yoshikawa 1994].

In Figure 11, we generalize £ to an infinite family {£, = P{' U P}'},-¢ of 2-
component links of projective planes. Repeating the same procedure, we find:

T (S*\ L) = (a, b | b@ab)" 'aba)" = a(ba)"'b(ab)" =1)
= (a,b | @b)" 'a(ba)* = a’*b*=1)
={a,c|c=aca,c" =ac"a) (c=ab)
=(a,c|c=aca,a’*=c") = Qs,,

where Qg, is the generalized quaternion group of order 8n.
The peripheral subgroup of P{' inside S*\v(L,) is generated by a and

bab)" ' =a"lc",

so the peripheral subgroup of P[' is generated by a and ¢" and hence is isomorphic
to Qg for all n. (Similarly, the peripheral subgroup of P;' in 77| (S*\L,) is isomorphic
to Qs.)

4C. Fox colorings and quandle colorings. As in the classical Wirtinger algo-
rithm, connected arcs of a diagram correspond to the same meridian of the knot
group. Therefore, coloring the strands of a bridge trisection diagram with “colors’
0,1, ..., p—1insuch a way that at any crossing with overstrand y and understrands
x and z satisfies c(x) + ¢(z) = 2¢(y) (mod p), and so that the colors assigned to
the points on the bridge sphere are the same in all three tangles encodes a Fox
p-coloring of K. This has been observed in [Cahn and Kjuchukova 2017], and the
connection with 3-fold covers is studied in [Blair et al. 2019].

s
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ababa—a
aba—b

Figure 10. A tri-plane diagram of L = P; U P, as in Example 4.4.
We illustrate the process of obtaining a presentation of 71 (S*\ L).
Near each bridge point, we draw arrows indicating an oriented
meridian (which are labeled in the leftmost tangle diagram). In
purple/bold, we indicate a generator of 1 (P;). Taking the base-
point to lie in d(v(Py)), we follow the purple curve, passing under
strands in the three twice via oriented meridians a, b (in order).
We push the curve off P;, choosing framing so that the resulting
curve does not link P;. In this diagram, this yields the twist of the
purple curve suggested in the rightmost piece of the tri-plane; this
yields a curve representing aab = b in 1 (S*\ L).

(ba)"b(ab)" = ’—w

(ba)"b(ab)y" ' = a

aWalaal mmw

@aaadabb @b)"a(ba) =a
(@b)"a(ba)*' =b

Figure 11. A tri-plane diagram of L, = P;'L P, as in Example 4.4.
We illustrate the process of obtaining a presentation of 71 (S*\ L,,).
In purple/bold, we indicate a generator of 77 (P;"). Near each bridge
point, we draw arrows indicating an oriented meridian (labeled
in the leftmost tangle diagram). Taking the basepoint to lie in
d(v(P}")), a parallel copy of this curve represents a" 'bab)r .

The fundamental quandle Q(S) of a knotted surface S in S* can be defined as
the meridians of its knot group, under the new operation of conjugation. In other
words, we define x sy := y~!xy. A presentation for the fundamental quandle is then
obtained from the Wirtinger algorithm via this translation, and quandle colorings
can be drawn diagrammatically on a tri-plane diagram as well. This has been
studied in [Sato and Tanaka 2020], where the closely related kei colorings are used
to give examples of knotted nonorientable surfaces with arbitrary bridge number.
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4D. The Nielsen invariant of a bridge trisection. In this subsection we use Nielsen
equivalence to distinguish certain ribbon bridge trisections of isotopic surfaces.
Yasuda [1992] used Nielsen equivalence to distinguish ribbon presentations of the
same 2-knot. Here we show that bridge trisecting those same ribbon presentations
yields nonisotopic bridge trisections. Nielsen equivalence was also used by Islam-
bouli [2021] to find inequivalent trisections of a closed 4-manifold of the same
parameters.

LetG=(g1,...,8n) and H = (hy, ..., h,) be two ordered lists of elements of a
group G such that each of the sets {gy, ..., g»} and {hy, ..., h,} generate G. If H
can be obtained from G by a sequence of permutations, inverting elements, and
replacing a generator h; with h;-hj, i # j, then G and H are said to be Nielsen equiv-
alent. Equivalently, if one thinks of G and H as constructed from F},, the free group
of rank 7, as a quotient by normal subgroups Ng and Ny, then G and H are Nielsen
equivalent if and only if there is an automorphism ¢ of F, such that ¢ (G;) = H;
for each i, where G;, H; € F,, such that G; mod Ng = g; and H; mod Ny = h;.

Let T be a bridge trisection and let X; = B* \ vD; be the exterior of one of
the trivial disk systems. Note that B* \vD; =148 I'x B3 is a 4-dimensional 1-
handlebody. Choose any spine of X; and corresponding generators (xi, ..., X¢;).
The Nielsen class of X, is defined to be the Nielsen class of such a spine (x1, .. ., x,),
denoted N'(X;). This is well defined because any two spines are related by Nielsen
transformations [Islambouli 2021]. Note that one can arrange that these generators x;
are meridian elements for the trivial disk system, one for each component. Let
¢; : w1 (B \vD;) — (S \ vS) be the (surjective) homomorphism induced by
inclusion.

Definition 4.5. Given a bridge trisection T with disk system exteriors X; = B*\vD;,
let ¢; (N (X;)) be the Nielsen class of 7;(S* \ vS) induced by ¢;. Then to the
bridge trisection ¥ we associate the ordered triple of Nielsen classes N (%) =
(D1 NV (X1)), 2N (X3)), p3(N(X3))), which we call the Nielsen invariant of .

To compute the Nielsen invariant of a bridge trisection T, first compute a presen-
tation for 7r; (B* \vD;). Then perform Reidemeister moves to obtain a crossingless

unlink diagram, with generators expressed in terms of 771 (B*\vD;). Let g1, ..., g
denote one meridian for each component of this diagram. These are meridians to
the minima of the disks, and hence form a spine of X;. Then take (g1, ..., g.) as

the Nielsen class of this disk system, and ¢; (V' (X;) = (¢i(g1) - . ., ¢i(gc))-
Proposition 4.6. Let T and T’ be bridge trisections. If ¥ is isotopic to ', then
N(T) =N (F).

Proof. If T is isotopic to T, then there is an isotopy of S* taking each 4-ball-disk
system (B*, D;) of T to the corresponding pieces (B4, Dl’.) of ¥'. Therefore, for
each i, a spine of X; = B*\vD; is isotopic to a spine of X; = B* \vD;. As proven
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in [Islambouli 2021], this implies the two spines are related by edge slides and
orientation reversals, and hence their induced Nielsen classes are equivalent. [

A ribbon presentation R induces a Wirtinger presentation for the knot group
of the ribbon surface, with generating set a meridian for each component of the
unlink L = L U---U L, and one Wirtinger relation describing the linking of each
tube with the unlink components. The induced Nielsen class N'(R) = (i1, .. ., tn)
consists of these meridional generators.

Proposition 4.7. Let R be a ribbon presentation of an orientable ribbon surface S,
with induced Nielsen class N (R). Let S be a bridge trisection of S induced by *R.
Then N (%) = (N(R), N(R), N (R)).

Proof. Let T be a bridge trisection of S induced by *R, via a virtual graph G as in
Section 3D (in particular, refer to Figure 9). Let g1, ..., g, denote meridians to the
maxima of the unlink diagram D; U D5, one for each vertical edge. Note that these
form a spine for X, since we can isotope the diagram using the height function (pull
the descending fingers back up to the top) to obtain a crossingless unlink diagram
generated by g1 ..., g.: N(X1) = (g1, ..., &) Similarly, for the unlink diagram
D; UD,, we take meridians k; to the minima, one for each vertical edge, and these
form a spine by the same argument upside-down, thus N'(X3) = (ky, ..., k,). Lastly,
notice that the unlink diagram D, U Ds is crossingless, and has one component for
each of the vertical edges. Taking meridians 41, ..., &, to these components yields
N(Xp) = (hy, ..., hy).

The proof is complete once we recognize that ¢,(g;) = ¢»(h;) = d3(ki) = Wi,
then ¢; (V' (X;)) = M (2R). This is the case because the vertical edges in the virtual
graph correspond to the unlink components L;, so the above-specified meridians
are indeed meridians to the 2-spheres L;. (]

Corollary 4.8. Let R and R’ be two ribbon presentations of an orientable ribbon
surface S, with induced Nielsen classes N'(R) and N (R'), and induced bridge
trisections T and T'. If ¥ is isotopic to T, then N (R) = N (R).

Remark 4.9. Recall the Schubert notation for a 2-bridge knot: let «, § be coprime
integers with ¢ > 0, 8 odd, and —a < B < «. Schubert [1956] proved that the
2-bridge knot S(w, B) is equivalent to S(a*, ) if and only if « =«* and 8 = * or
BB*=1 mod 2«. The Schubert notation indicates a particular bridge splitting of the
knot S(w, B) with two minima. Taking meridians to the minima as generators, this
induces a specific Nielsen class for the knot group (3 \ S(«, B)). Funcke [1975]
proved that if 88* =1 mod 2« and B8 # £ 8%, then the induced Nielsen classes are
inequivalent. Yasuda [1992] observed that spinning the knot S(«, 8) by puncturing
the knot at one of the maxima induces a ribbon presentation for Spin(S(«, 8)) with
spheres corresponding to the minima and a tube corresponding to the remaining
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maximum. Thus the Nielsen class induced by this ribbon presentation is the same
as the one induced by the embedding of the original 2-bridge knot, yielding distinct
ribbon presentations of the same spun 2-knots. The above corollary says that the
bridge trisections induced by these ribbon presentations are also distinct.

Corollary 4.10. There exist infinitely many ribbon 2-knots with pairs of bridge
trisections T and T, both induced by ribbon presentations, which are nonisotopic
as bridge trisections.

Example 4.11. As pointed out in [Yasuda 1992], S(7, —3) and S(7, —5) both
present the knot 5,; thus the ribbon presentations induced by spinning these bridge
splittings, as well as the induced bridge trisections are distinct.

Stabilizing a surface by a trivial 1-handle stabilization does not change the group
of its complement. If it is represented by a ribbon presentation, then it also does not
change the induced Nielsen class. Thus by taking the connected sum of the above
examples and any number of copies of the 3-bridge trisection of the unknotted
torus, we obtain infinitely many pairs of orientable surface knots of any genus with
inequivalent bridge trisections.

Question 4.12. If two ribbon presentations of a surface-knot are equivalent, must
the bridge trisections induced by these ribbon presentations be isotopic’!

Question 4.13. The three Nielsen classes induced by a ribbon bridge trisection are
all equal. Does there exist a bridge trisection T whose Nielsen invariant contains
distinct Nielsen classes?
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