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BRIDGE TRISECTIONS

AND CLASSICAL KNOTTED SURFACE THEORY

JASON JOSEPH, JEFFREY MEIER, MAGGIE MILLER AND ALEXANDER ZUPAN

We seek to connect ideas in the theory of bridge trisections with other well-

studied facets of classical knotted surface theory. First, we show how the

normal Euler number can be computed from a tri-plane diagram, and we

use this to give a trisection-theoretic proof of the Whitney±Massey theorem,

which bounds the possible values of this number in terms of the Euler

characteristic. Second, we describe in detail how to compute the fundamental

group and related invariants from a tri-plane diagram, and we use this,

together with an analysis of bridge trisections of ribbon surfaces, to produce

an infinite family of knotted spheres that admit nonisotopic bridge trisections

of minimal complexity.

1. Introduction

We study bridge trisections of surfaces in S4, as originally introduced by the second

and fourth authors in [Meier and Zupan 2017]. A bridge trisection of a surface S

in S4 is a certain decomposition of (S4,S) into three trivial disk systems (B4
1 ,D1),

(B4
2 ,D2), (B4

3 ,D3), a four-dimensional analog of a bridge splitting, which cuts a

link in S3 into two trivial tangles. The purpose of this paper is to connect the theory

of bridge trisections with a number of different ideas and results in classical knotted

surface theory. In particular, we demonstrate how to use a bridge trisection of a

surface S ⊂ S4 to compute various invariants of S and to obtain other topological

information. We give a more precise definition and much relevant background

information in Section 2.

In Section 3, we describe a method of obtaining a broken surface diagram for S

from a tri-plane diagram. Using this method, we can recover the Euler number e(S)

of the normal bundle of S.

Corollary 3.8. Let D = (D1, D2, D3) be a tri-plane diagram of a surface S ⊂ S4.

Let wi be the writhe of the diagram Di ∪ Di+1. Then e(S) = w1 + w2 + w3.

As one application, we obtain the following well-known result.
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Corollary 3.9. If S is oriented, then e(S) = 0.

As another application, we deduce a new proof of the Whitney±Massey theorem

[Massey 1969] on the Euler number of a surface in S4.

Theorem 3.12. If S is connected and nonorientable with Euler characteristic χ ,

then
e(S) ∈ {2χ − 4, 2χ, 2χ + 4, . . . ,−2χ − 4, −2χ, −2χ + 4}.

In Section 4, we describe how to calculate the fundamental group of the comple-

ment of S.

Theorem 4.1. Let D be a (b; c)-tri-plane diagram for a surface knot S ⊂ S4. Then

π1(S4 \ν(S)) admits a presentation of each of the following types:

(1) 2b meridional generators and 3b Wirtinger relations,

(2) b meridional generators and 2b Wirtinger relations, or

(3) ci meridional generators and b Wirtinger relations ( for any i ∈ Z3).

Moreover, these presentations can be obtained explicitly from D.

Additionally, we use these presentations to show how one may recover more

sophisticated information such as the peripheral subgroup of S.

In Section 3D, we show how to construct a bridge trisection from any ribbon

presentation of a ribbon surface. These bridge trisections always have triple point

number zero. In Section 4D, we prove that such a bridge trisection respects the

Nielsen class of the original ribbon presentation, yielding the following corollary.

Corollary 4.10. There exist infinitely many ribbon 2-knots with pairs of bridge

trisections T and T′, both induced by ribbon presentations, which are nonisotopic

as bridge trisections.

We conclude with several questions about ribbon bridge trisections.

2. Preliminaries

We work throughout in the smooth category. We begin by describing the simplest

4-manifold trisection, which is the only one necessary for understanding the bulk

of this paper. We refer the reader to [Gay and Kirby 2016] for more information on

general trisections.

2A. Bridge trisections. We refer the reader to [Meier and Zupan 2017] for complete

details, but give the definition of a bridge trisection here for completeness.

Let S4 = X1 ∪ X2 ∪ X3 be the standard genus zero trisection. We adopt the

orientation conventions that 6 = ∂ Hi for each i and ∂ X i = Hi ∪ H i+1.
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Definition 2.1 [Meier and Zupan 2017]. Let S be a (smooth) closed surface in S4.

We say that S is in (b; c)-bridge position, where b is a positive integer and c =

(c1, c2, c3) is a triple of positive integers, if the following are all true:

(1) For each i , Di = X i ∩ Si is a collection of ci boundary-parallel disks in the

4-ball X i .

(2) For each i , Ti = Hi ∩S is a boundary-parallel tangle in the 3-ball Hi .

(3) 6 ∩S is 2b points called bridge points.

We denote Hi ∩S by α, β, and γ , for i = 1, 2, 3, respectively.

Given S ⊂ S4 in bridge position, we may refer to the decomposition

(S4,S) = (X1,D1) ∪ (X2,D2) ∪ (X3,D3)

as a bridge trisection of S, which we denote by T. We say that two bridge trisections

T and T′ are equivalent if there is a diffeomorphism φ : S4 → S4 with

φ((X i ,Di )) = (X ′
i ,D

′
i )

for all i ∈ Z3. Any (smooth) closed surface in S4 can be isotoped into bridge

position, regardless of connectivity, genus, or orientability [Meier and Zupan 2017].

2B. Diagrams for bridge trisections. Bridge trisections may be viewed as the

analog to bridge position of a link in S3. One purpose of this article is to demonstrate

that bridge trisections are useful for similar reasons. In particular, the theory

produces simple diagrams of surfaces that we will use to perform several different

computations.

Definition 2.2. A tri-plane diagram is a triple of trivial tangle diagrams D =

(D1, D2, D3) such that Di ∪ Di+1 is a planar diagram for an unlink.

If each Di is a b-stranded trivial tangle and each Di ∪ Di+1 is a ci -component

unlink, then up to isotopy, the tri-plane diagram D = (D1, D2, D3) determines a

(b, c)-bridge trisection of a surface S in the following way: The tri-plane diagram D

determines the intersection of S with a regular neighborhood of H1 ∪ H2 ∪ H3. The

remainder of S consists of three systems of boundary parallel disks in the 4-balls X i .

But boundary parallel disks in a 4-ball are determined up to isotopy rel-boundary

by their boundary (see, e.g., [Kawauchi et al. 1982; Livingston 1982]).

Remark 2.3. If two tri-plane diagrams D = (D1, D2, D3) and D
′ = (D′

1, D
′
2, D

′
3)

describe isotopic surfaces in S4, then by [Meier and Zupan 2017] the diagram D

can be transformed into D
′ by a sequence of the following moves, illustrated in

Figures 4 and 27 of [Meier and Zupan 2017].

(1) Mutual braid transposition, in which D1, D2, and D3 are replaced by concate-

nations D1β, D2β, and D3β (respectively) for some braid diagram β.
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(2) Elementary perturbation and deperturbation, as illustrated in generality in

Figure 27 of [Meier and Zupan 2017]. This operation increases one component

of c; the roles of X1, X2, X3 as illustrated may be permuted cyclically.

(3) Interior Reidemeister moves.

See Section 2.5 and Section 6 of [Meier and Zupan 2017] for complete details

regarding these moves.

Remark 2.4. In the original construction of bridge trisections [Meier and Zupan

2017], the authors give an algorithm to obtain a tri-plane diagram of a surface S

given a banded unlink diagram (L , B) of S. A banded unlink diagram, introduced

in [Kawauchi et al. 1982], consists of an unlink L and a set of bands B attached

to L , with the property that surgering L along B yields another unlink L B . The

diagram (L , B) determines the surface S in S4 = S3 × I/ ∼ up to smooth ambient

isotopy. Here, S consists of the following pieces.

• A collection of disks bounded by L in S3 × 1
4
.

• L ×
[

1
4
, 1

2

]

.

• (L ∪ B) ×
{

1
2

}

.

• L B ×
[

1
2
, 3

4

]

.

• A collection of disks bounded by L B in S3 × 3
4
.

If (L , B) is in bridge position with respect to a sphere F splitting S3 into 3-

balls B1 and B2 (with bands in B2), then (D1,D2,D3) is a bridge trisection of S,

with D1,D2,D3 diagrams of the tangles (B1, B1 ∩ L), (B2, B2 ∩ L), (B2, B2 ∩ L B),

respectively. We refer the reader to [Meier and Zupan 2017] for more details, but

include Figure 1 to illustrate that one generally expects to find tri-plane diagrams

of high complexity. We give a more detailed caption of Figure 1 now.

(a) In (a), we draw a band diagram of the standard ribbon disk for K #K . This

consists of the link K #K (the boundary of the disk) and horizontal bands

with the property that K #K surgered along these bands is an unlink. We also

draw a torus about the K summand; Litherland describes a homeomorphism

ρ of S3 supported near this torus consisting of a Dehn twist about a 0-framed

longitude of K . The roll-spun knot of K is a knotted sphere obtained by gluing

two copies of this disk via the boundary homeomorphism ρ. (See [Litherland

1979] for the original construction.)

(b) In (b), we apply ρ to the diagram of (a).

(c) Combining these diagrams in (c) (where we have dualized the bands in (a) and

isotoped (b) to simplify the diagram) yields a banded unlink diagram for the

roll-spun knot of K .
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(a) (b) (c)

(d) (e)

(f)

Figure 1. The process of obtaining a tri-plane diagram of a roll-

spun knot. We provide a more detailed caption in Remark 2.4.

(d) In (d) we further isotope this diagram to make the bands appear small. Since

we started with K #K in bridge position in (a), this banded unlink is very nearly

in bridge position.

(e) In (e), we perturb the diagram slightly near the bands to obtain a banded unlink

diagram in bridge position; we include a horizontal line indicating the bridge

sphere. The lower 3-ball is B1 and the upper 3-ball is B2.

(f) Finally in (f), we obtain a tri-plane diagram for the roll-spun knot of K .

2C. Unknotted surfaces. We now recall the notion of unknottedness for surfaces

in S4; see [Meier et al. 2020] for a related discussion of bridge trisections of

unknotted surfaces.

Definition 2.5. Let S be a closed, connected, orientable surface in S4. We say that

S is unknotted if S bounds an embedded, 3-dimensional handlebody in S4.

If S ∼= RP
2, then we say that S is unknotted if it is isotopic to one of the

two RP
2s in Figure 2; we denote these surfaces by P±, noting that e(P+) = +2;

see Remark 2.6. Otherwise, if S is closed, connected, and nonorientable, we say

that S is unknotted if S is isotopic to a connected sum of unknotted RP
2s.

A disconnected surface S = S1 ∪ · · · ∪Sk in S4 is said to be unknotted if there

exist disjoint 4-balls B1, . . . , Bk ⊂ S4 with Si ⊂ Bi , and each Si is unknotted.

Remark 2.6. There is a subtlety regarding sign conventions for the unknotted

projective planes that is worth noting. Our convention is to denote by P+ the
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Figure 2. Left: A motion picture describing the unknotted projec-

tive plane P+, the unknotted RP
2 with Euler number +2. Right:

tri-plane diagrams for P+ (top) and P− (bottom).

Figure 3. The genus one trisection of CP
2, realized as the 2-fold

branched cover of the 2-bridge trisection of P−.

unknotted projective plane with normal Euler number +2. As a consequence, we

have that the 2-fold cover of S4, branched along P+ is CP
2; see Figure 3. This is

often confused in the literature; for example, it seems that the orientation of S4

that is adopted in [Kamada 1989] is the opposite of the usual one, leading to the

conclusion that CP
2 is the 2-fold cover of S4 branched along P+, which is there

denoted ªP+º. While this seems to be technically correct, it does confuse the issue,

slightly. In the same vein, Figure 2 corrects Figure 15 of [Meier and Zupan 2017],

where the motion-picture is mislabeled, though the tri-plane diagrams are correctly

labeled. Figure 3 corrects Figure 2 of [Meier and Zupan 2018]. The careful reader

will note that when taking branched covers of tri-plane diagrams, it is more natural

to revolve a tri-plane diagram 180 degrees, so that the tangles descend from the

bridge surface instead of ascending, as shown in Figure 3. (Alternatively, one might

view the tangles from below their boundary.)

3. Broken surface diagrams versus bridge trisections

In this section, we discuss the relationship between tri-plane diagrams and broken

surface diagrams of a surface S smoothly embedded in S4. As result, we obtain

a new formula for the normal Euler number e(S) that depends on the writhes of

the pairings of tangle diagrams in a tri-plane diagram D for S, and we give a new

proof of the Whitney±Massey theorem. We also explore the relationship between

ribbon surfaces and bridge trisections.
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3A. Broken surface diagrams. We start by reviewing the notion of a broken surface

diagram; see, e.g., [Carter and Saito 1998] for more exposition.

Definition 3.1. Let S be a surface smoothly embedded in S4. Let PS be the

projection of S to the equatorial S3 of S4. Assume that PS is generic; i.e., PS is a

smoothly embedded surface away from self-intersections that come in three possible

types: arcs of double points, branch points (which necessarily end arcs of double

points), and triple points (which are intersections of three arcs of double points).

The branch points and triple points are all isolated.

Near each self-intersection of PS , remove a small neighborhood of the intersection

from the sheet(s) that is lower in the fourth coordinate of S4 = R
4 ∪ ∞. We call

the resulting broken surface S, as it is embedded in S3, a broken surface diagram

for S. This is completely analogous to how one defines a classical knot diagram by

indicating over and under information at each crossing.

We will generally refer to PS as the underlying surface of S, just as an immersed

curve underlies a knot diagram.

Theorem 3.2. Let D = (D1, D2, D3) be a tri-plane diagram of a surface S ⊂ S4.

From D, there is a procedure to produce a broken surface diagram S of S.

To prove Theorem 3.2, it will be useful to develop some notation to describe

simple broken surfaces in S3.

Definition 3.3. Let DL be a link diagram in S2. We obtain a broken surface

diagram L in S2 × I whose underlying surface is PL = DL × I , where DL is the

immersed multicurve underlying DL . At self-intersections of PL , the sheet of L

containing the corresponding undercrossing of D×0 is broken. We call L a product

broken surface, and may write L = DL × I as shorthand. We illustrate some product

broken surface diagrams (and some nonproduct diagrams) in Figure 4.

In Definition 3.3, we slightly abuse the notation, since PL is a surface with

boundary properly immersed in S2 × I rather than a closed surface in S3, but this

distinction is not important in the setting of this paper.

Remark 3.4. Note that a product broken surface diagram contains only double arcs

of intersections. That is, a product broken surface diagram does not include any

triple points or branch points.

Definition 3.5. Let DL ⊂ S2 be a link diagram. Let D
′
L be obtained from DL by

a single Reidemeister move R. We obtain a broken surface diagram TR in S2 × I

whose boundary is (D′
L × 0) ⊔ (DL × 1) which agrees with the product DL × I

away from the support of R, and, near R, agrees with the corresponding diagram in

Figure 4. We call TR the trace of R.
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Figure 4. The trace TR of a Reidemeister move R. Below each

possible Reidemeister move, we draw (on the left) a product broken

surface and (on the right) the trace of the Reidemeister move. Note

that changing the type of a crossing in R corresponds to changing

which sheet of the intersection in S is broken. Top row: R is

Reidemeister I. Note S contains a branch point. Middle row:

Reidemeister II. Bottom row: Reidemeister III. Note S contains a

triple point.

If DJ is obtained from DL by a sequence R = (R1, . . . , Rn) of Reidemeister

moves, then we write TR to denote the concatenation of TR1
, . . . , TRn

. We call TR

the trace of R.

Remark 3.6. If R is a Reidemeister I move, then TR contains exactly one branch

point and no triple points. The sign of the branch point depends on the sign of R: If

R is positive, i.e., the move R adds a positive crossing or cancels a negative crossing,

then the branch point will be negative (and vice versa). If R is a Reidemeister II

move, then TR includes only double arcs of self-intersection. If R is a Reidemeis-

ter III move, then TR contains no branch points and exactly one triple point.

Similarly, if R = (R1, . . . , Rm) is a sequence of Reidemeister moves including

p positive RI moves, n negative RI moves, k RII moves and m − (p + n + k) RIII
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moves, then the trace TR contains exactly n positive branch points, p negative

branch points, and m − (p + n + k) triple points.

Proof of Theorem 3.2. Recall that Di ∪ Di+1 is an unlink diagram. Therefore, there

exists a sequence of Reidemeister moves Ri = (R1, . . . , Rmi
) taking Di ∪ Di+1

to a crossingless diagram D
′
i of an unlink. Let Ti be the trace of Ri . Cap off

the D
′
i boundary of Di with trivial disks to obtain a broken surface diagram Si with

boundary Di ∪ D
′
i+1.

Now embed the tri-plane in R
3, so the diagrams D1, D2, D3 lie in half-planes

P1, P2, P3 at angles 0, 2π
3

, 4π
3

about the x-axis. Note that Di is truly a diagram

contained in a plane and not a tangle in space. Now Pi ∪ Pi+1 contains the diagram

Di ∪ Di+1, which is the boundary of the broken surface Si with Pi ∪ Pi + 1. Thus,

we may glue copies of S1, S2, S3 (correspondingly between P1, P2; P2, P3; P3, P1)

to obtain a broken surface diagram S for S. □

3B. Euler number and the Whitney±Massey theorem. For computations that can

be done with broken surface diagrams we can make use of Theorem 3.2.

Proposition 3.7 [Banchoff 1981]. Let S be a broken surface diagram of a surface S.

Assume S has p positive branch points and n negative branch points. Then e(S) =

p − n.

We sketch the proof of Proposition 3.7 in at least as much detail as to convince

the familiar reader that e(S) is p − n, rather than n − p.

Sketch. Push S off itself and project the resulting parallel surface S ′ to S3. The

intersections between S and S ′ manifest in the projection near branch points of S,

as illustrated in Figure 5. □

Corollary 3.8. Let D = (D1, D2, D3) be a tri-plane diagram of a surface S ⊂ S4.

Let wi be the writhe of the diagram Di ∪ Di+1. Then e(S) = w1 + w2 + w3.

Proof. Let Ri denote a sequence of Reidemeister moves taking Di ∪ Di+1 to a

zero-crossing diagram. Suppose Ri includes pi positive RI moves and ni negative

RI moves. Since RII and RIII moves preserve writhe and a zero-crossing diagram

has writhe zero, we must have ni − pi = wi .

Let S be the broken surface diagram obtained from R1,R2,R3 as in the proof of

Theorem 3.2. By Remark 3.6, within X i , S ∩ X i = Ŝi contains ni positive branch

points and pi negative branch points. Moreover, there are no branch points of S in

X i ∩ X j for any i ̸= j . We conclude that

e(S) = (n1 + n2 + n3)− (p1 + p2 + p3) = (n1 − p1)+ (n2 − p2)+ (n3 − p3)

= w1 +w2 +w3. □
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q

z⃗

y⃗

t⃗
t⃗ − x⃗

t

Figure 5. A surface S and a parallel copy S ′ near a portion of S

that projects to a positive branch point in a broken surface dia-

gram. There is one intersection visible intersection point q be-

tween S and S ′. We indicate q as well as positive bases for Tq(S)

and Tq(S ′), locally orienting S and inducing a local orientation

on S ′. We find Tq(S) has positive basis {z⃗, t⃗} while Tq(S ′) has

positive basis {y⃗, t⃗ − x⃗}. Since {z⃗, t⃗, y⃗, t⃗ − x⃗} is a positive basis for

R
4 = ⟨x⃗, y⃗, z⃗, t⃗⟩, we see that q is a point of positive intersection.

Similarly, near a portion of S projecting to a negative branch point,

we would find a negative intersection between S and S ′.

From Corollary 3.8, it is easy to conclude that orientable surfaces in S4 have

trivial normal bundle. This gives an alternative argument to the usual one (that

oriented surfaces have zero self-intersection number since H2(S4; Z) = 0). Note

that S is oriented if and only if the bridge points and arcs of any tri-plane diagram D

are coherently oriented; see Lemma 2.1 of [Meier et al. 2020].

Corollary 3.9. Let S be an oriented surface in S4. Then e(S) = 0.

Proof. Let (D1, D2, D3) be an oriented tri-plane diagram for S. Since the Di

are oriented, we have w(Di ∪ Di+1) = w(Di ) − w(Di+1), where Di ∪ Di+1. By

Corollary 3.8,

e(S) = w(D1 ∪ D2) + w(D2 ∪ D3) + w(D3 ∪ D1)

= (w(D1) − w(D2)) + (w(D2) − w(D3)) + (w(D3) − w(D1)) = 0. □

It is clear that a nonorientable surface in S4 has even self-intersection number,

since H2

(

S4; Z

2Z

)

= 0. But with a little more work, using the above argument one

can also compute the Euler number of a nonorientable surface mod 4. This corollary

is sometimes called Whitney congruence. The following corollary was originally

proved in [Massey 1969].

Corollary 3.10. Let S be a surface in S4. Then e(S) ≡ 2χ(S) (mod 4).



BRIDGE TRISECTIONS AND CLASSICAL KNOTTED SURFACE THEORY 353

Proof of Corollary 3.10. The two unknotted RP
2s have Euler numbers +2 and −2.

Therefore, if S ∼= #kRP
2 is an unknotted surface in S4, e(S) = 2(a − b) for some

a, b ∈ {0, . . . , k} with a + b = k. Therefore, the corollary is true for unknotted

surfaces.

Consider the effect of a crossing change at crossing c in Di on w1, w2, and w3.

Since wi+1 is the writhe of Di+1 ∪ Di−1, wi+1 remains constant. However, each of

wi and wi−1 change by +2 or −2, with sign depending on the sign of c in Di ∪Di+1

and Di−1 ∪Di . If S is not orientable, then c may have the same or opposite signs in

these two link diagrams. Therefore, the crossing change may preserve w1+w2+w3,

or increase or decrease the total by four. We conclude that (w1 +w2 +w3) (mod 4)

is preserved by the crossing change.

Now by [Meier et al. 2020, Corollary 1.2], there exists a sequence of crossing

changes transforming the triple (D1, D2, D3) into a tri-plane diagram for an unknot-

ted surface S ′. Since S ′ is unknotted, e(S ′) ≡ 2χ(S ′) (mod 4). By Corollary 3.8,

we conclude that

e(S) = w1 + w2 + w3 ≡ e(S ′) ≡ 2χ(S ′) = 2χ(S) (mod 4). □

Finally, we refine Corollary 3.10 to the more general Whitney±Massey theorem

[Massey 1969]. One of the main ingredients is the following theorem of Viro [1984].

Theorem 3.11 [Viro 1984]. If S is a surface embedded in S4 and XS is the two-fold

cover of S4 branched along S, then

−e(S) = 2σ(XS).

We can now proceed with the proof, which also makes use of work by Gordon

and Litherland [Gordon and Litherland 1978].

Theorem 3.12. Let S be a closed, connected, nonorientable surface in S4, and set

χ := χ(S). Then the Euler number e(S) of S is in the set

{2χ − 4, 2χ, 2χ + 4, . . . ,−2χ − 4, −2χ, −2χ + 4}.

Proof. Using Corollary 3.10, we need only prove that |e(S)| ≤ 4 − 2χ . Let

D = (D1, D2, D3) be a tri-plane diagram for S. Let D̂i = Di ∪ Di+1.

Let X S denote the 2-fold cover of S4 branched along S. The genus zero trisection

of S4 lifts to a trisection T = (X S
1 , X S

2 , X S
3 ) of X S , with X S

i covering X i . Let

H S
i = X S

i ∩ X S
i+1. By [Wall 1969],

σ(X S) = 6iσ(X S
i ) + σ(ν(H S

1 ∪ H S
2 ∪ H S

3 )).

Each X S
i is a 4-dimensional 1-handlebody, so has vanishing signature. Therefore,

σ(X S) = σ(ν(H S
1 ∪ H S

2 ∪ H S
3 )).
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F1 F2 F3

η1 = 1 η2 = −1 η3 = 0

Figure 6. Checkerboard surfaces F1, F2, F3 for D̂1, D̂2, D̂3, re-

spectively. We choose the surfaces so that Fi and Fi+1 agree in

Di+1. We arbitrarily choose some orientations of each D̂i (indi-

cated by arrows) and then use dashed circles to indicate the type II

crossings (see Figure 7) of Fi given these orientations.

Now fix checkerboard surfaces F1, F2, and F3 for D̂1 = D1 ∪D2, D̂2 = D2 ∪D3,

and D̂3 = D3 ∪ D1 (respectively) so that the surfaces Fi and Fi+1 agree in Di+1;

see Figure 6.

Let S ′ be a surface obtained by gluing together F1, F2, F3 along common bound-

ary, after pushing the interior of Fi slightly into X i .

Claim 3.13. The surface S ′ is unknotted with e(S ′) = 0.

Proof. Let F ′
i denote the copy of Fi pushed into B4, so S ′ = F ′

1 ∪ F ′
2 ∪ F ′

3. Let H

be the 3-manifold formed as the union of the traces of the three isotopies pushing

the Fi into B4. Then, H is a 3-dimensional neighborhood of a union of three

1-dimensional spines of the Fi (that are chosen to agree at 6). In other words, H is

a handlebody, though it may be nonorientable. In any event, S ′ is unknotted with

e(S ′) = 0, since it bounds a handlebody in S4. □

Let X F
i denote the 2-fold covering of X i branched along F ′

i . Let Gi denote the

Gordon±Litherland form associated to Fi [Gordon and Litherland 1978].

Claim 3.14. We have σ(X F
i ) = σ(Gi ).

Proof. Gordon and Litherland [1978] showed that the quantity 1
2
(σ (X F

i ) + e(F ′
i ))

is independent of the choice of checkerboard surface Fi , up to Reidemeister moves

of the oriented diagram D̂i . Since D̂i is a diagram of an unlink, we conclude

that 1
2
(σ (X F

i )+ e(F ′
i )) = 0. By Gordon and Litherland, we also have 1

2
(σ (Gi )+

e(Fi )) = 0, yielding the desired equality. □

Claim 3.15. We have e(S) = 2(σ (G1) + σ(G2) + σ(G3)).

Proof. We remind the reader of the following theorem of Gordon and Litherland

[1978]: if G is a Goeritz matrix for a diagram of a link L associated to a checkerboard
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type I type II

Figure 7. A crossing c in an oriented link diagram D̂. The shaded

region indicates a checkerboard surface F for D̂. We say c is type I

if F can be locally oriented near c to induce the correct orientation

on ∂ F . Otherwise, c is type II. In this picture, it does not matter

which strand contains the overcrossing; type is independent of sign.

surface F , then σ(L) = σ(G)− η, where η is a sum of signs over type II crossings

in F (see Figure 7). Since each D̂i is a diagram for an unlink (which has signature

zero), we conclude σ(Gi ) = ηi , where ηi is the corresponding sum of signs over

type II crossings in Fi .

Observation. A crossing c in Di has the same sign in D̂i as it does in D̂i−1 if and

only if it is type I in one of Fi or Fi−1 and type II in the other.

If c has different signs in D̂i and D̂i−1, then it does not contribute to e(S) =

6iw(D̂i ). If c has the same sign in each of D̂i , D̂i−1, then c contributes twice that

sign and is type II in exactly one of Fi , Fi−1 by the above observation. □

Let XS ′
be the 2-fold cover of S4 branched along S ′. The splitting S4 = X1∪X2∪

X3 lifts to a splitting (not a trisection) XS ′
= X F

1 ∪ X F
2 ∪ X F

3 . Let HS ′

i = X F
i ∩ X F

i+1.

Again by [Wall 1969], we have

σ(XS ′
) = 6iσ(X F

i ) + σ(ν(HS ′

1 ∪ HS ′

2 ∪ HS ′

3 )).

By Claim 3.14, σ(X F
i ) = σ(Gi ). Moreover, note that

ν(HS ′

1 ∪ HS ′

2 ∪ HS ′

3 ) ∼= ν(H S
1 ∪ H S

2 ∪ H S
3 ).

We conclude
σ(XS ′

) = σ(X S) + 6iσ(Gi ).

By Claim 3.15, 6iσi (Gi ) = 1
2
(e(S)). Moreover, since S ′ is an unknotted surface

with e(S ′) = 0 (Claim 3.13), XS ′ ∼= #nCP
2#nCP

2 for some n ≥ 0. Therefore,

σ(XS ′
) = 0, so this becomes

e(S) = −2σ(X S).

Finally, we have |σ(X S)| ≤ b2(X S) = 2 − χ . Thus, we obtain our desired

inequality:
|e(S)| ≤ 4 − 2χ. □
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3C. The triple point number of a bridge trisection. Recall from Remark 3.6 that

given a tri-plane diagram (D1, D2, D3) of a surface S, we may produce a broken

surface diagram of S with t1 + t2 + t3 triple points, where ti is the number of RIII

moves in some sequence of Reidemeister moves transforming Di ∪ Di+1 into a

crossingless diagram. This allows us to define the triple point number of a bridge

trisection as follows.

Definition 3.16. Let D̂ be an unlink diagram. We say a sequence of Reidemeister

moves applied to D̂ is an uncrossing sequence for D̂ if the end result is a crossingless

diagram. We define

t (D̂) = the minimum number of RIII moves in any uncrossing sequence for D̂.

Definition 3.17. Let D= (D1, D2, D3) be a tri-plane diagram of a bridge trisection T

of a knotted surface S. Define t (D) = t (D̂1)+ t (D̂2)+ t (D̂3), and define t (T) to be

the minimal value of t (D), taken over all tri-plane diagrams D of T. This is called

the triple point number of T.

By construction, this triple point number is an invariant of the bridge trisection.

By Remark 3.6, we have t (T) ≥ t (S), where t (S) is the usual triple point number

of the surface S (i.e., the minimum number of triple points in any broken surface

diagram of S) for any bridge trisection T of a surface S.

Questions 3.18. (1) Given a surface S, is there a bridge trisection T for S with

t (T) = t (S)?

(2) Does there exist a surface S with bridge trisection T so that t (T) > t (S)?

(3) Does there exist a bridge trisection T with S an unknotted 2-sphere so that

t (T) > 0?

By construction, ribbon surfaces (defined below) always have triple point number

zero. In the next subsection, we show that every ribbon surface has a ribbon bridge

trisection, and that ribbon bridge trisections always have triple point number zero,

thus recovering this fact.

3D. Ribbon bridge trisections. In this subsection we define bridge trisections for

ribbon surfaces arising naturally from ribbon presentations. In Section 4D we will

use this analysis to give examples of ribbon 2-knots that admit nonisotopic minimal

bridge trisections.

One of the simplest classes of knotted surfaces is that of ribbon surfaces, which

bound embedded handlebodies in B5 with only index 0 and 1 critical points with

respect to the radial height function. Equivalently, an oriented surface in S4 is

ribbon if it bounds a ribbon-immersed handlebody in S4. Ribbon surfaces can also

be described by ribbon presentations.
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Figure 8. A broken surface diagram indicating a ribbon presenta-

tion for a knotted torus.

Definition 3.19. Let L = L1 ∪ · · · ∪ Ln be an unlink of oriented 2-spheres in S4.

For some m ≥ n−1, let H = {h1, . . . , hm} be disjoint embeddings of 3-dimensional

1-handles I × D2 in S4 such that for each i :

• Each hi (I × D2) meets L exactly in its attaching region hi (∂ I × D2), and is

not tangent to L near this attaching region.

• (L \ H)
⋃m

i=1 hi (I × ∂ D2) is a connected, oriented surface S (of genus m −

n + 1).

The data (L , H) is a ribbon presentation for S.

In short, a ribbon presentation is a description of a surface obtained by fusing

an oriented unlink together along oriented tubes. A ribbon presentation has an

especially nice broken surface diagram, where the only intersections are double

circles between tubes and spheres (see Figure 8).

The tube map encodes a broken surface diagram of a ribbon surface with a

virtual graph. Yajima [1962] defined the tube map as a diagrammatic operation

from classical knots (resp. arcs) to ribbon tori (resp. spheres). Satoh [2000] extended

the tube map to include virtual crossings, and proved that it is surjective onto ribbon

spheres and tori. Finally, Kauffman and Faria Martins [2008] defined the notion of

a virtual graph, allowing for higher genus surfaces.

In Figure 9, we illustrate in the first two frames the procedure for obtaining a

banded unlink diagram of Tube(G) from G. When two edges in G have a virtual

crossing, the apparent ªcrossingº of the tubed surface may be chosen arbitrarily (the

two choices yield isotopic surfaces in S4). The orientations of the overstrands of G

determine the crossings of the banded unlink diagram near any classical crossing

of G (see Figure 8).

Via the tube map, a virtual graph can be thought of as a shorthand for a ribbon

presentation, where overstrands become spheres in the ribbon presentation and
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G Tube(G)

Tube(G)

T1 T2 T3

Figure 9. Top left: a virtual graph G in 3-bridge position corre-

sponding to the ribbon presentation in Figure 8. Top middle: a

banded unlink diagram for Tube(G). Top right: we perturb the

banded unlink diagram to be in 9-bridge position. Bottom: the

resulting (9; 3)-tri-plane diagram of Tube(G).

understrands joining them become tubes. A virtual graph diagram is in n-bridge

position if, considered as an immersed graph in R
2, the height function on the graph

is Morse, and has n minima and n maxima. Now we show how a virtual graph in

bridge position gives rise to a bridge trisection whose parameters are determined

by the bridge index and Euler characteristic of the graph.

Proposition 3.20. Let (L , H) be a ribbon presentation with n spheres and m tubes

for a surface S of genus g = m − n + 1. Then there is a virtual graph G such that:

(1) Tube(G) = S.

(2) G has Euler characteristic χ(G) = 1 − g = n − m.

(3) G can be put into n-bridge position.

Proof. There is an obvious broken surface diagram of S which ªcomes fromº the

ribbon presentation, i.e., the unlink L is projected into R
3 so that it is embedded

and so that the components of L i bound disjoint 3-balls in R
3. The projections

of the 3-dimensional 1-handles hi are embedded in R
3 \ L , and only intersect

the 2-spheres in the attaching region hi (∂ I × D2) and a finite number of disks

hi ({t} × D2). The boundaries of these disks are double point circles, and they

are the only self-intersections of the projection of S. As mentioned above, we

can arrange that a tube never crosses the same sphere L i over or under twice in

a row. As we traverse the I direction of a tube, it goes through double circle
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crossings c11, c12; c21, c22; . . . ; ck1, ck2, where ci1, ci2 are crossings with the same

component L j , and have opposite over/under information; see Figure 8.

Now, we construct the graph G in n-bridge position: first, we draw n vertical

edges in R
2 for the n components of L , with vertices at heights 0 and 1. Let L i

and L j be the components of L that the first tube h1(I × ∂ D2) attaches to. We

draw an edge of G joining the bottom endpoint of L i to the top endpoint of L j ,

traversing monotonically upwards. For each pair of crossings ci1, ci2 of a tube with

a sphere L j , the edge corresponding to the tube crosses under the vertical edge

representing L j . We remember the sign of the crossing by a local orientation of

the overstrand: the conormal (in R
2) to the overstrand points to the ªunderº double

circle crossing, as in Figure 9. We continue in this way, adding an edge for each

tube in H . When an edge needs to get to the other side of another edge without

crossing, a virtual crossing is used. The graph G produced has 2n vertices and

n + m edges, so its Euler characteristic is n − m. The tube of this graph is the same

broken surface diagram we began with, so Tube(G) = S. By construction, G is in

n-bridge position. □

Proposition 3.21. Suppose S is a ribbon surface admitting a ribbon presentation

(L , H) consisting of n spheres and m tubes. Then S admits an (n + 2m; n)-bridge

trisection.

Proof. Given (L , H), first construct a virtual graph G in n-bridge position as in

Proposition 3.20. In Figure 9, we illustrate how to obtain a bridge trisection of S

from G. We first obtain a banded unlink diagram of S in which the unlink is in n-

bridge position and there are 2m bands so that surgering the unlink along the bands

yields an n-component unlink. We perturb once near each band to obtain a banded

unlink diagram in (n+2m)-bridge position. We thus obtain a (b; (c1, c2, c3))-bridge

trisection of S with

b = n + 2m,

c1 = n (the number of unlink components),

c3 = n (the number of unlink components after band surgery),

c2 = χ(S) + b − c1 − c3 = 2(n − m) + (n + 2m) − n − n = n.

That is, we obtain an (n + 2m; n)-bridge trisection of S, by [Meier and Zupan

2017, Lemma 3.2]. □

In Section 4D, we will show that by using the construction of Proposition 3.21

on distinct ribbon presentations of the same 2-knot, one can obtain distinct bridge

trisections of the same surface, both with minimal parameters.

Definition 3.22. A ribbon bridge trisection is any bridge trisection obtained from

the construction of Proposition 3.21.
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Recall that t (T) denotes the triple point number of the trisection T; see Section 3C.

Proposition 3.23. If T is a ribbon bridge trisection, then t (T) = 0.

Proof. Let (D1, D2, D3) be a ribbon bridge trisection diagram as obtained in

Proposition 3.21. Each unlink diagram Di ∪ Di+1 is either crossingless or can be

made crossingless via only RII moves. Thus, t (T) = 0. □

4. The fundamental group, the peripheral subgroup, and quandle colorings

In this section we describe a number of ways to calculate a presentation of the

fundamental group of the exterior of a surface-knot from a tri-plane diagram for

the surface. We also discuss diagrammatic approaches to Fox colorings and, more

generally, quandle colorings of surface-knots, and describe a way to present the

peripheral subgroup of a surface-knot. Our approaches give rise to some interesting

group-theoretic questions about tri-plane diagrams.

4A. The fundamental group. Applying Van Kampen’s theorem to the exterior

of the bridge trisection yields the following cube of pushouts. Let p denote the

set of 2b intersections of 6 with S. The three presentation types of Theorem 4.1

correspond to choosing a group G from the first, second or third column of this

cube to express π1(S4 \S) as a quotient of G.

π1(H1 \ T1) π1(X1 \D1)

π1(6 \ p) π1(H2 \ T2) π1(X3 \D3) π1(S4 \S)

π1(H3 \ T3) π1(X2 \D2)

Theorem 4.1. Let D be a (b; c)-tri-plane diagram for a surface knot S ⊂ S4. Then

π1(S4 \ν(S)) admits a presentation of each of the following types:

(1) 2b meridional generators and 3b Wirtinger relations,

(2) b meridional generators and 2b Wirtinger relations, or

(3) ci meridional generators and b Wirtinger relations ( for any i ∈ Z3).

Moreover, these presentations can be obtained explicitly from D.

Proof. These presentations can be calculated from a tri-plane diagram by carrying

out the following corresponding processes. In all cases, begin by orienting each

strand of each tangle. If S is orientable, then it will be possible (but not necessary)

to orient the tangles compatibly in the sense that the three arcs adjacent at each

bridge point will be all oriented away from or all oriented toward the bridge point

(see [Meier et al. 2020, Lemma 2.1]). The basepoint q of all of these presentations
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lies in the bridge sphere (away from S) so that it is above the tri-plane onto which

S is projected to give D. To choose curves from the basepoint about a meridian

of S depicted in a tangle Di of D, we choose an arc η in S from the basepoint to

that meridian whose projection to Di has only over crossings. Note that when η is

projected to Di+1 or Di−1, its projection will also only have over crossings, so this

choice may be made consistently.

(1) Assign labels {xi }
2b
i=1 to the 2b common bridge points of the tangle diagrams Di .

These labels will represent the meridional generators in our presentation. For each

arc adjacent to the bridge point labeled xi , extend the label over the arc as xi if the arc

is oriented away from the bridge point, and extend the label over the arc as x̄i if the

arc is oriented toward the bridge point. Now, percolate the labels throughout each tan-

gle diagram by applying the Wirtinger algorithm at each crossing, moving up through

the height gradient of each tangle diagram. The 3b relations come from the equalities

encountered at the 3b arcs containing maximum points of the tangle diagrams.

(2) Assign labels {xi }
b
i=1 to the b arcs containing maximum points of one of the three

tangle diagrams Di . Percolate the labels throughout the tangle diagram by applying

the Wirtinger algorithm at each crossing, moving down through the height gradient of

the tangle diagram. After finding labels for the 2b bridge points, and equating these

with the meridians to the bridge points in the other two tangle diagrams, percolate

upwards in these diagrams, eventually obtaining 2b relations when these arcs join

together at their maxima. Here, the orientations of the arcs are important: If w and w′

are two words labeling two arcs that meet at a bridge point, the resulting relation

is w′ = w if the orientations of the two arcs agree (are both outward or inward) at

the bridge point, and the resulting relation is w′ = w if the orientations disagree.

(3) First, apply tri-plane moves to remove the crossings from the tangle diagrams Di

and Di+1 for some fixed i ∈Z3. This is possible because D̂i =Di ∪Di+1 is a diagram

for a ci -component unlink, and unlinks admit unique bridge splittings at each level

of complexity (i.e., based on the number of bridges of each component) [Negami

and Okita 1985; Otal 1982]. Assign labels {xi }
ci

i=1 to the ci components of the

unlink diagram Di . (Here, it is best to orient the strands of D̂i coherently.) This

induces labels at the 2b common bridge points. Percolate the labels throughout Di+2

by applying the Wirtinger algorithm at each crossing, moving up through the height

gradient of the tangle diagram. The b relations come from the equalities encountered

at the arcs containing the b maximum points of the tangle diagram.

We now describe why the processes given above work to calculate π1(S4 \ν(S)).

Let X = (H1 ∪ H2 ∪ H3) \ν(T1 ∪ T2 ∪ T3). Let q be a point in 6 \νTi . It should be

clear the Wirtinger algorithms outlined calculate the group π1(X, q). However, we

have that π1(X, q) ∼= π1(S4 \ν(S)), since S4 \ν(S) is built from X × I by attaching

only (4-dimensional) 3-handles and 4-handles. □
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Remarks 4.2. Presentation (3) is strengthened in Proposition 4.5 of [Meier and

Zupan 2017] to a presentation with ci generators and b − c j relations, for any

distinct i, j ∈ Z3. This is optimal from the perspective of group deficiency, and

shows that the deficiency of π1(S4 \ν(S)) is at least ci + c j − b.

4B. The peripheral subgroup. Once the Wirtinger algorithm has been completed,

it is simple to write down the generators of a peripheral subgroup of S in terms of

these Wirtinger generators for π1(S4 \S). The inclusion ∂νS ↪→ S4 \νS induces

a homomorphism π1(∂νS) → π1(S4 \νS), unique up to a choice of meridian.

The image of this homomorphism is the peripheral subgroup of S, whenever S

is connected. See [Kanenobu and Kazama 1994] for some background on the

peripheral subgroups of knotted tori. If S has more than one component, we

can still consider the image of the induced map from the boundary of a tubular

neighborhood of one component of S into the exterior of S.

The procedure is as follows, for connected S.

Step 1. Choose a basepoint y for π1(S) to be one of the bridge points, where a

tangle arc meets the bridge sphere, call the meridian to this arc µ. There is an arc η

from the basepoint q of π1(S4 \S) to y lying on the bridge sphere.

Step 2. Choose a generating set γ1, . . . , γn for π1(S, y) so that each γi is a union of

tangle arcs. Write each of the generators as a word in the Wirtinger labels (traverse

the curve once, starting at y).

Step 3. Push each γi off S (using the arc η from y to q), then add a multiple of µ

to arrange for each push-off to be nullhomologous in the complement of S. Push η

off with the curve, so that the curve is a based loop γ ′
i in S4.

Lemma 4.3. The subgroup ⟨µ, γ ′
1, . . . , γ

′
n⟩ of π1(S4\νS) is the peripheral subgroup

of S.

Proof. This follows essentially from the definition of peripheral subgroup; note that

if x is pushed along η to lie in ∂(ν(S)), then π1(∂(ν(S)), x) = ⟨µ, γ ′
1, . . . , γ

′
n⟩. □

Once the generating set is established, one could use Schreier’s lemma to get a

presentation for the peripheral subgroup.

Example 4.4. In Figure 10, we draw a tri-plane diagram of a link L = P1 ⊔ P2 of

two unknotted projective planes; here b = 4 and ci = 2 for all i ∈ Z3. Taken in

isolation, the surfaces P1 and P2 are the unknotted projective planes P+ and P−,

respectively. Since the union of the first two tangle diagrams has no crossings,

we find a presentation of π1(S4 \L) as in Theorem 4.1(3). We implicitly add the

relations corresponding to the trivial tangles in D1 and D2 to see that the leftmost

meridians in D3 correspond to the same generator (up to orientation), as do the

rightmost. Then we apply the Wirtinger algorithm to D3 to obtain a relation for each
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of the four maxima. One relation corresponding to each of P1 and P2 is redundant,

so we are left with the final presentation

π1(S4 \ L) = ⟨a, b | b̄aba = ābab = 1⟩

= ⟨a, b | a2b̄2 = ābab = 1⟩ ∼= Q8 (a 7→ i, b 7→ j).

We indicate the generator of π1(P1) in bold/purple in Figure 10. Since the bold

strand has a single undercrossing in the diagram, we add a canceling undercrossing

to indicate a parallel copy of this curve (taking the basepoint to lie in ∂(ν(P1))

that is nullhomologous in S4 \ P1). This parallel copy represents b in π1(S4 \L).

We conclude that the peripheral subgroup of P1 in S4 \ν(L) is generated by the

meridian a and this parallel curve b; hence is isomorphic to Q8. (By symmetry, so

is the peripheral subgroup of P2.)

As a consequence, since the peripheral subgroup of each Pi is not Z2, the link L

cannot factor as P±#L′ for any link L′ of a 2-sphere and an RP
2. This implies that

the analog of the Kinoshita conjecture (that every projective plane in S4 factors as

the connected sum of P± and a knotted 2-sphere) is false for multiple component

links. This example was first noted in [Yoshikawa 1994].

In Figure 11, we generalize L to an infinite family {Ln = Pn
1 ⊔ Pn

2 }n>0 of 2-

component links of projective planes. Repeating the same procedure, we find:

π1(S4 \Ln) = ⟨a, b | b̄(āb̄)n−1a(ba)n = ā(b̄ā)n−1b(ab)n = 1⟩

= ⟨a, b | (āb̄)n−1a(ba)n = a2b2 = 1⟩

= ⟨a, c | c = ac̄ā, cn = ācn ā⟩ (c = ab)

= ⟨a, c | c = ac̄ā, ā2 = c2n⟩ ∼= Q8n,

where Q8n is the generalized quaternion group of order 8n.

The peripheral subgroup of Pn
1 inside S4 \ν(Ln) is generated by a and

b(ab)n−1 = a−1cn,

so the peripheral subgroup of Pn
1 is generated by a and cn and hence is isomorphic

to Q8 for all n. (Similarly, the peripheral subgroup of Pn
2 in π1(S4\Ln) is isomorphic

to Q8.)

4C. Fox colorings and quandle colorings. As in the classical Wirtinger algo-

rithm, connected arcs of a diagram correspond to the same meridian of the knot

group. Therefore, coloring the strands of a bridge trisection diagram with ªcolorsº

0, 1, . . . , p−1 in such a way that at any crossing with overstrand y and understrands

x and z satisfies c(x) + c(z) ∼= 2c(y) (mod p), and so that the colors assigned to

the points on the bridge sphere are the same in all three tangles encodes a Fox

p-coloring of K . This has been observed in [Cahn and Kjuchukova 2017], and the

connection with 3-fold covers is studied in [Blair et al. 2019].
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a aā ā b bb̄ b̄

b̄ab = ā

b̄ābab = b̄

āb̄āba = a

āb̄a = b

b

Figure 10. A tri-plane diagram of L = P1 ⊔ P2 as in Example 4.4.

We illustrate the process of obtaining a presentation of π1(S4 \ L).

Near each bridge point, we draw arrows indicating an oriented

meridian (which are labeled in the leftmost tangle diagram). In

purple/bold, we indicate a generator of π1(P1). Taking the base-

point to lie in ∂(ν(P1)), we follow the purple curve, passing under

strands in the three twice via oriented meridians a, b (in order).

We push the curve off P1, choosing framing so that the resulting

curve does not link P1. In this diagram, this yields the twist of the

purple curve suggested in the rightmost piece of the tri-plane; this

yields a curve representing āab = b in π1(S4 \ L).

a aā ā b bb̄ b̄

−n

n

(b̄ā)n b̄(ab)n−1 = ā

(b̄ā)nb(ab)n = b̄

(āb̄)n ā(ba)n = a

(āb̄)na(ba)n−1 = b

ā
n
−

1
b
(a

b
)n

−
1

Figure 11. A tri-plane diagram of Ln = Pn
1 ⊔ Pn

2 as in Example 4.4.

We illustrate the process of obtaining a presentation of π1(S4 \ Ln).

In purple/bold, we indicate a generator of π1(Pn
1 ). Near each bridge

point, we draw arrows indicating an oriented meridian (labeled

in the leftmost tangle diagram). Taking the basepoint to lie in

∂(ν(Pn
1 )), a parallel copy of this curve represents ān−1b(ab)n−1.

The fundamental quandle Q(S) of a knotted surface S in S4 can be defined as

the meridians of its knot group, under the new operation of conjugation. In other

words, we define x ∗ y := y−1xy. A presentation for the fundamental quandle is then

obtained from the Wirtinger algorithm via this translation, and quandle colorings

can be drawn diagrammatically on a tri-plane diagram as well. This has been

studied in [Sato and Tanaka 2020], where the closely related kei colorings are used

to give examples of knotted nonorientable surfaces with arbitrary bridge number.
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4D. The Nielsen invariant of a bridge trisection. In this subsection we use Nielsen

equivalence to distinguish certain ribbon bridge trisections of isotopic surfaces.

Yasuda [1992] used Nielsen equivalence to distinguish ribbon presentations of the

same 2-knot. Here we show that bridge trisecting those same ribbon presentations

yields nonisotopic bridge trisections. Nielsen equivalence was also used by Islam-

bouli [2021] to find inequivalent trisections of a closed 4-manifold of the same

parameters.

Let G = (g1, . . . , gn) and H = (h1, . . . , hn) be two ordered lists of elements of a

group G such that each of the sets {g1, . . . , gn} and {h1, . . . , hn} generate G. If H

can be obtained from G by a sequence of permutations, inverting elements, and

replacing a generator hi with hi ·h j , i ̸= j , then G and H are said to be Nielsen equiv-

alent. Equivalently, if one thinks of G and H as constructed from Fn , the free group

of rank n, as a quotient by normal subgroups NG and NH, then G and H are Nielsen

equivalent if and only if there is an automorphism φ of Fn such that φ(Gi ) = Hi

for each i , where Gi , Hi ∈ Fn such that Gi mod NG = gi and Hi mod NH = hi .

Let T be a bridge trisection and let X i = B4 \νDi be the exterior of one of

the trivial disk systems. Note that B4 \νDi
∼= ♮ci S1 × B3 is a 4-dimensional 1-

handlebody. Choose any spine of X i and corresponding generators (x1, . . . , xci
).

The Nielsen class of X i is defined to be the Nielsen class of such a spine (x1, . . . , xci
),

denoted N (X i ). This is well defined because any two spines are related by Nielsen

transformations [Islambouli 2021]. Note that one can arrange that these generators xi

are meridian elements for the trivial disk system, one for each component. Let

φi : π1(B4 \νDi ) → π1(S4 \νS) be the (surjective) homomorphism induced by

inclusion.

Definition 4.5. Given a bridge trisection T with disk system exteriors X i = B4\νDi ,

let φi (N (X i )) be the Nielsen class of π1(S4 \νS) induced by φi . Then to the

bridge trisection T we associate the ordered triple of Nielsen classes N (T) =

(φ1(N (X1)), φ2(N (X2)), φ3(N (X3))), which we call the Nielsen invariant of T.

To compute the Nielsen invariant of a bridge trisection T, first compute a presen-

tation for π1(B4 \νDi ). Then perform Reidemeister moves to obtain a crossingless

unlink diagram, with generators expressed in terms of π1(B4 \νDi ). Let g1, . . . , gc

denote one meridian for each component of this diagram. These are meridians to

the minima of the disks, and hence form a spine of X i . Then take (g1, . . . , gc) as

the Nielsen class of this disk system, and φi (N (X i ) = (φi (g1) . . . , φi (gc)).

Proposition 4.6. Let T and T′ be bridge trisections. If T is isotopic to T′, then

N (T) = N (T′).

Proof. If T is isotopic to T′, then there is an isotopy of S4 taking each 4-ball-disk

system (B4,Di ) of T to the corresponding pieces (B4,D′
i ) of T′. Therefore, for

each i , a spine of X i = B4 \νDi is isotopic to a spine of X i = B4 \νD′
i . As proven
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in [Islambouli 2021], this implies the two spines are related by edge slides and

orientation reversals, and hence their induced Nielsen classes are equivalent. □

A ribbon presentation R induces a Wirtinger presentation for the knot group

of the ribbon surface, with generating set a meridian for each component of the

unlink L = L1 ∪ · · · ∪ Ln and one Wirtinger relation describing the linking of each

tube with the unlink components. The induced Nielsen class N (R) = (µ1, . . . , µn)

consists of these meridional generators.

Proposition 4.7. Let R be a ribbon presentation of an orientable ribbon surface S,

with induced Nielsen class N (R). Let T be a bridge trisection of S induced by R.

Then N (T) = (N (R),N (R),N (R)).

Proof. Let T be a bridge trisection of S induced by R, via a virtual graph G as in

Section 3D (in particular, refer to Figure 9). Let g1, . . . , gn denote meridians to the

maxima of the unlink diagram D1 ∪ D2, one for each vertical edge. Note that these

form a spine for X1, since we can isotope the diagram using the height function (pull

the descending fingers back up to the top) to obtain a crossingless unlink diagram

generated by g1 . . . , gn: N (X1) = (g1, . . . , gn). Similarly, for the unlink diagram

D3 ∪ D1, we take meridians ki to the minima, one for each vertical edge, and these

form a spine by the same argument upside-down, thus N (X3)= (k1, . . . , kn). Lastly,

notice that the unlink diagram D2 ∪ D3 is crossingless, and has one component for

each of the vertical edges. Taking meridians h1, . . . , hn to these components yields

N (X2) = (h1, . . . , hn).

The proof is complete once we recognize that φ1(gi ) = φ2(hi ) = φ3(ki ) = µi ,

then φi (N (X i )) = N (R). This is the case because the vertical edges in the virtual

graph correspond to the unlink components L i , so the above-specified meridians

are indeed meridians to the 2-spheres L i . □

Corollary 4.8. Let R and R′ be two ribbon presentations of an orientable ribbon

surface S, with induced Nielsen classes N (R) and N (R′), and induced bridge

trisections T and T′. If T is isotopic to T′, then N (R) = N (R′).

Remark 4.9. Recall the Schubert notation for a 2-bridge knot: let α, β be coprime

integers with α > 0, β odd, and −α < β < α. Schubert [1956] proved that the

2-bridge knot S(α, β) is equivalent to S(α∗, β∗) if and only if α = α∗ and β = β∗ or

ββ∗ ≡1 mod 2α. The Schubert notation indicates a particular bridge splitting of the

knot S(α, β) with two minima. Taking meridians to the minima as generators, this

induces a specific Nielsen class for the knot group π1(S3 \ S(α, β)). Funcke [1975]

proved that if ββ∗ ≡ 1 mod 2α and β ̸= ±β∗, then the induced Nielsen classes are

inequivalent. Yasuda [1992] observed that spinning the knot S(α, β) by puncturing

the knot at one of the maxima induces a ribbon presentation for Spin(S(α, β)) with

spheres corresponding to the minima and a tube corresponding to the remaining
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maximum. Thus the Nielsen class induced by this ribbon presentation is the same

as the one induced by the embedding of the original 2-bridge knot, yielding distinct

ribbon presentations of the same spun 2-knots. The above corollary says that the

bridge trisections induced by these ribbon presentations are also distinct.

Corollary 4.10. There exist infinitely many ribbon 2-knots with pairs of bridge

trisections T and T′, both induced by ribbon presentations, which are nonisotopic

as bridge trisections.

Example 4.11. As pointed out in [Yasuda 1992], S(7, −3) and S(7, −5) both

present the knot 52; thus the ribbon presentations induced by spinning these bridge

splittings, as well as the induced bridge trisections are distinct.

Stabilizing a surface by a trivial 1-handle stabilization does not change the group

of its complement. If it is represented by a ribbon presentation, then it also does not

change the induced Nielsen class. Thus by taking the connected sum of the above

examples and any number of copies of the 3-bridge trisection of the unknotted

torus, we obtain infinitely many pairs of orientable surface knots of any genus with

inequivalent bridge trisections.

Question 4.12. If two ribbon presentations of a surface-knot are equivalent, must

the bridge trisections induced by these ribbon presentations be isotopic?

Question 4.13. The three Nielsen classes induced by a ribbon bridge trisection are

all equal. Does there exist a bridge trisection T whose Nielsen invariant contains

distinct Nielsen classes?
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