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ABSTRACT

Meier and Zupan proved that an orientable surface K in S* admits a tri-plane diagram
with zero crossings if and only if K is unknotted, so that the crossing number of K is zero.
We determine the minimal crossing numbers of nonorientable unknotted surfaces in 5%,
proving that ¢(P™™) = max{1, |n — m|}, where P™™ denotes the connected sum of n
unknotted projective planes with normal Euler number +2 and m unknotted projective
planes with normal Euler number —2. In addition, we convert Yoshikawa’s table of
knotted surface ch-diagrams to tri-plane diagrams, finding the minimal bridge number
for each surface in the table and providing upper bounds for the crossing numbers.

Keywords: Bridge trisection; tri-plane diagram; bridge number; crossing number.

Mathematics Subject Classification 2020: 57K10

1. Introduction

Tri-plane diagrams were introduced by Meier and Zupan in [9] as an adaptation
of the theory of trisections [3] to the setting of knotted surfaces in S*. A tri-plane
diagram D is a triple (D1, D2, D3) such that each D; is a planar diagram for a
trivial tangle and D; U D is an unlink diagram. Meier and Zupan showed that any
tri-plane diagram D can be used to construct a surface K C S*, and conversely,
every surface K C S% can be represented in this way.

Tri-plane diagrams can be viewed as one (of many) natural ways to transfer
ideas from classical knot theory to dimension four; for instance, crossing number
has a natural analogue in this setting: Define the crossing number ¢(D) of a tri-plane
diagram to be

(D) = ¢(D1) + ¢(D2) + ¢(D3)
and then define the crossing number ¢(K) of K C S* to be
¢(K) = min{¢(D) : D is a tri-plane diagram representing K}.

Proposition 4.4 of [9] asserts that for an orientable surface K C S*, we have ¢(K) = 0
if and only if IC is unknotted. In this paper, we determine the crossing numbers for
unknotted nonorientable surfaces. Let P* denote the unknotted projective plane
with normal Euler number e(P*) = 42, and let P™™ denote the connected sum of
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n copies of PT and m copies of P~. We prove

Theorem 1.1. For any unknotted nonorientable surface P™™,
c(P™™) = max{1, |n — m|}.

The proof involves three key steps: First, we show that if XC C S* is nonorientable,
then ¢(K) > 0. Second, we prove that for any surface X C S4, we have ¢(K) > @
Finally, we realize diagrams for P™™ with the claimed minimal crossing numbers.
Taken together, these three steps yield the main theorem.

Another type of diagram for knotted surfaces is called a ch-diagram. In [16],
Yoshikawa published a table of ch-diagrams for the 23 simplest surfaces in 4-space,
organized by a measure of complexity called their ch-inder. We convert each of
Yoshikawa’s diagrams to a tri-plane diagram and record our findings in Table[Il In
addition to finding upper bounds for the crossing numbers of the surfaces in the
table, we prove

Theorem 1.2. Fach of the bridge numbers given in Table[dl is minimal.

1.1. Layout of the paper

In Sec. Bl we provide the relevant background material, which we use to prove
Theorem [Tl in Sec. Bl Section @l describes a method for converting ch-diagrams to
tri-plane diagrams; in Sec. Bl we use this method to produce diagrams and data for
the surfaces in Yoshikawa’s table, proving Theorem [[.2 Finally, Sec. [l includes an
assortment of questions to motivate future research.

2. Preliminaries
2.1. Tri-plane diagrams

We work in the smooth category. A surface K in S* is a smoothly embedded closed
2-manifold, possibly nonorientable and possibly disconnected. As noted above, a tri-
plane diagram D is a triple (D1, Dy, D3) such that each D; is a diagram for trivial
b-stranded tangle, i.e., a diagram representing b arcs such that each arc contains a
single maximum point with respect to a natural height function on D;, and such
that for i # j, the classical link diagram D; U D; represented an unlink. See Fig. ]
for examples.

Every tri-plane gives rise to a surface K C S* in the following way: Begin
with the standard trisection of S*, X; U X5 U X3, where each X; is a 4-ball and
B; = X; N X;_1 (indices taken modulo 3) is a 3-ball. Embed the tangle represented
by D; in B;. Then 0X; = BiUEiH contains an unlink U; represented by the diagram
D; U Ei+1, and we can attach disks D; to U; in X;. The union D; U Dy U Dj is
then an embedded surface in S*. Moreover, the disks D; are unique, and thus this
process determines a unique surface, up to isotopy. See [9] for additional details.
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Fig. 1. Tri-plane diagrams for the simplest unknotted surfaces.

Letting ¢; be the number of components in the unlink U;, we will sometimes call
this decomposition a (b; ¢1, ¢a, ¢3)-bridge trisection.

In [9], it was proved that every surface K C S* can be represented by a tri-plane
diagram, and any two tri-plane diagrams D and D, for I are related by a finite
sequence of moves:

(1) Interior Reidemeister moves: Classical Reidemeister moves performed on the
interior of one of the tangle diagrams D;.

(2) Mutual braid transpositions: A braid transposition o; performed along the
boundary of all three tangle diagrams Dy, D> and Dj.

(3) Stabilization/destabilization moves: A local move that increases or decreases
the number of strands in each tangle diagram.

An example of several mutual braid transpositions and interior Reidemeister moves
being used to convert one diagram to another is shown in Fig. [Al By convention,
we will depict mutual braid transpositions under the tri-plane diagram in gray, and
strands that are omitted are assumed to carry the identity braid.

There are, in fact, an infinite family of stabilization/destabilization moves, but
we will only need two of them for our purposes. These two moves are depicted
in Figs. @ and Bl and they are also valid when performed on any permutation of
the tangles or when reflected over a vertical line (as occurs in the 2-destabilization

A\ A\ fn stab. destab. [ [ [

Fig. 2. The 1-stabilization and 1-destabilization operations.

ol W Al e Sy Sy Al

Fig. 3. The 2-stabilization and 2-destabilization operations.
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shown in Fig. 24). The curious reader is encouraged to reference [9] for additional
details.

We can also make sense of the connected sum operation on surfaces via tri-plane
diagrams. First, given a b-stranded trivial tangle diagram D; and a b’-stranded
trivial tangle diagram D), we define the boundary connected sum of D; and D},
denoted D;iD., to be the tangle diagram constructed by attaching the rightmost
endpoint of D; to the leftmost endpoint of D.. Standard cut-and-paste arguments
can be used to show that D;iD; is a (b + b — 1)-stranded trivial tangle diagram.

Now, given tri-plane diagrams D = (Dy, Do, D3) representing K € S* and
D' = (D}, D}, D}) representing K’ in S*, define the connected sum of D and D',
denoted D#D’, by

D#D'" = (D14D", D2t DS, D3 DY).

Then D#D’ is a tri-plane diagram for the surface K#K' in S*. We note that
as is the case with classical knots, the connected sum operation on surfaces is
commutative, associative, and does not depend on the choice of points in K and
K’ at which the operation takes place. The connected sum D#D’ of diagrams D
and D', however, depends on the choice of endpoints for summation; here we have
chosen the rightmost endpoint of each diagram in D and leftmost endpoint of each
diagram in D', but different choices could yield different diagrams (nevertheless
corresponding to isotopic surfaces). The top frame of Fig. Bl shows an example of
the diagram P1T#P~.

2.2. Invariants via tri-plane diagrams

We can measure the complexity of a tri-plane diagram D in several different ways.
The crossing number ¢(D) is the sum ¢(D1) + ¢(D2) + ¢(D3), while the bridge
number b(D) is the number of strands in each of the tangles D;. To obtain surface
invariants, we minimize over all possible diagrams:

¢(K) = min{e(D) : D is a tri-plane diagram representing K},
b(K) = min{b(D) : D is a tri-plane diagram representing K}.

There are other types of invariants better suited to distinguishing surfaces, and
we can compute these invariants from a single diagram. For example, the Fuler char-
acteristic of a surface K admitting a tri-plane diagram D inducing a (b; ¢1, ¢a, ¢3)-
bridge trisection is given by

X(K) =c1+c2+c3—b,

as shown in [9]. Another such invariant is orientability. An orientation of a tri-
plane diagram D is an assignment of a + or a — to each of the 2b endpoints of
the three tangles (called bridge points) so that the endpoints of Dy, Do and Ds
have consistent labels, and each strand in D; connects a + and — bridge point.
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The tri-plane diagram is orientable if it admits an orientation. It was shown in [§]
that D is orientable if and only if the surface K is orientable.

Lemma 2.1. If ¢(K) = 0, then K is orientable.

Proof. Suppose D is a zero-crossing tri-plane diagram for K, with bridge points
T1,...,T9 labeled in order from left to right. For each odd i, assign z; a +; for
even ¢, assign x; a —. Suppose that an arc a in D; has two endpoints labeled + or
two endpoints labeled —. Then a encloses an odd number of bridge points, implying
that some other arc ¢’ in D; must cross a, a contradiction. It follows that D, and
thus K, is orientable. O

For the other invariant we will study here, we need a preliminary definition:
Given an oriented link diagram D, the writhe of D is the signed count of the
crossings of D, with standard conventions for positive and negative crossings shown
in Fig. @ Now, let D be a tri-plane diagram. The normal Euler number of D,
denoted by e(D), is given by

€(D) = w(D1 Uﬁg) + w(D2 Uﬁg) + w(D3 U 51)

In [B], the authors proved that for any two diagrams D and D’ for K, we have
e(D) = e(D’), and so e¢(K) = e(D) is a knotted surface invariant; in fact, this
definition agrees with the classical definition of normal Euler number (see [5] for
further details regarding the normal Euler number).

Note that for a knot diagram D, the writhe w(D) does not depend on the choice
of orientation. In general, for a link diagram D, the writhe w(D) does depend
on orientation choices, but only if components have nonzero linking numbers. For
tri-plane diagrams, D; U D, is an unlink diagram (pairwise linking numbers are
zero), and so the computation w(D; U D;1) is independent of any of the chosen
orientations.

Crossing number and normal Euler number can be related by the following
inequality.

Lemma 2.2. For a knotted surface K, we have |e(K)| < 2¢(K).

Proof. Let D = (D, D2, D3) be a tri-plane diagram for K such that ¢(D) = ¢(K).
In addition, suppose D; has n; crossings, so ¢(D) = nq +na +ns. Let @Q; be the set

@+ ()
Fig. 4. Conventions for computing writhe.
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of crossings of D; U D;y1. Then |Q;| = n; + n;y1, and choosing an orientation for
D;UD; 1, we have w(D; UD; ) = quQi sign(q). We compute

le(K)| = le(D)| = | Y sign(q) + Y _ sign(q) + Y _ sign(q)
q€Q; qEQ2 qEQs
< ) Isign(q)| + Y Isign(q)| + > sign(q)]
qEQ1 q€Q2 q€Qs3
= Q1] + |Q2] + |Qs]
= 2¢(D)
= 2¢(K). O

We can also examine how crossing number, bridge number, and normal Euler
number behave under connected sum. By construction, the diagram D# D’ satisfies

o(D#D") = (D) + ¢(D"),
b(D#D') = b(D) +b(D') — 1, and
e(D#D') = e(D) + e(D').
Since e(K) = (D) for any diagram D for K, it follows that
e(K#K') = e(K) + e(K').

However, this does not necessarily imply that similar equalities hold for crossing
number or bridge number; choosing minimal diagrams D and D’ yields the inequal-
ities ¢(K#K') < ¢(K) + ¢(K’) and b(K#K') < b(K) + b(K') — 1, but (as we will
discuss below in Remark B3], there are cases in which K#K' has other diagrams,
not realized by the above construction, that achieve lower values for both crossing
number and bridge number; hence, the inequalities can be strict.

Given a tri-plane diagram D = (Dy, Ds, D3), the union D; U D, determines
a decomposition of an unlink in X7 into two b-stranded trivial tangles. Such a
decomposition is called a b-bridge splitting, and Proposition 2.3 of [9] implies that
every bridge splitting of an m-component unlink is isotopic to the standard n-
bridge splitting or a perturbation of the standard splitting (see also [2, [I1]). Since
this standard splitting and its perturbations admit crossingless diagrams, it follows
that there are mutual braid transpositions and interior Reidemeister moves con-
verting both Dy and Dy to crossingless tangle diagrams D} and DY, at the possible
expense of changing D3 to a more complicated tangle diagram Dj. In short, every
tri-plane diagram D is equivalent to a tri-plane diagram D’ = (D}, D}, D%) such
that every crossing in D’ is contained in a single tangle, say Dj. We call such a
diagram concentrated. For instance, the diagrams for P* in Fig. [l are concentrated
diagrams.

2350041-7
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2.3. Unknotted surfaces

Much of this paper concerns surfaces in S$* that are unknotted, which we define
here. To begin, consider the surfaces U, P, P~ and 7 defined by the tri-plane
diagrams U, P, P~ and T shown in Fig. [l We call U the unknotted 2-sphere, P*
the positive/negative unknotted projective plane and T the unknotted torus.

A surface K C S* is called unknotted if K is U, K is 79 (the connected sum of
g copies of T), or K is P™™ (the connected sum of n copies of P* and m copies
of P~). This definition agrees with classical notions of unknottedness; see [ [§] for
further details about unknotted surfaces. The surfaces U and 79 are orientable,
while P™™ is nonorientable. In addition, using the fact that e(P*) = +2 and the
additivity of normal Euler number under connected sum, we have

e(P™™) =2(n—m).

3. The Crossing Numbers of Unknotted Surfaces

As noted in the introduction, we prove the main theorem by establishing lower
and upper bounds for ¢(P™™). Lemmas 1] and establish the necessary lower
bounds. For the upper bounds, we prove several additional lemmas.

Lemma 3.1. For each n > 0, there exists a 1-crossing diagram P™™ for P™".

Proof. First, consider the diagram PT# P~ . By performing mutual braid moves
and interior Reidemeister moves as shown in Fig. Bl we obtain the 1-crossing dia-
gram PY!. Now, let P™" be the 1-crossing diagram shown at bottom Fig.[6l Induct-
ing on n, we will show that P™" is a diagram for the surface P™". The base case has
already been completed. Suppose by way of induction that P*~%"~! is a diagram
for PPt =1 Then P?~ 1=l PTH P~ is a diagram for P™", and by performing
mutual braid moves and interior Reidemeister moves as shown at top in Fig. 6 we
can convert PP~ Ln=l4 pT4 P~ into P™", completing the proof. (In fact, we note
that the diagrams in Fig. [l are precisely the diagrams in Fig. [l in the case n = 1,
where P%? here is the diagram U'.) 0

(a) The diagram PT# P~

A @ (A

(b) The diagram P!

Fig. 5. Obtaining Pb! from PT#P~.
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.

n- n- n-

(a) The diagram PP~ bn—lgptip-

n

(b) The diagram P™™

Fig. 6. Obtaining P™" from P?~Ln—lgptyp—,

We also need another family of diagrams.

Lemma 3.2. For each n>0, there exists a 1-crossing diagram P™t1m for prtin,

Proof. When n = 0, we let P1'° = Pt  which has one crossing. Now, suppose
that n > 0. By Lemma Bl P™" is a diagram for P™", and thus P™"#P+
is a diagram for P"*1". Using mutual braid moves and interior Reidemeister
moves, we can convert P""#P% into the 1-crossing diagram P"*''™ shown in
Fig. [ O

We now proceed to the proof of the first main theorem.

n-

(a) The diagram P™"# P+

(b) The diagram Pmt1n»

Fig. 7. Obtaining P"*t1™ from P™"#P+.

n---nm
n

n+1

2350041-9
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Proof of Theorem [Tl Consider P™™, and note that P™"™ is the mirror image of
P™™ 5o that ¢(P™™) = ¢(P™™). Thus, we may suppose without loss of generality
that n > m. Since P™™ is nonorientable, Lemma [Z] asserts that c¢(P™™) > 1.
Additionally, Lemma implies that

1
c(P™™) > Ee(P"’m) =|n—m|.
Suppose first that n = m. By Lemma Bl ¢(P™") is at most one, and thus
c(P™™) = 1.

On the other hand, suppose n > m, and let j = n—m—1, so that 7 > 0. Then we can
express P™™ as the connected sum of P" 5" and j copies of P*, and a diagram for
P™™ can be obtained by taking the connected sum of the 1-crossing diagram P*+1:n
from Lemma [3.2]and j copies of the diagram P, which has 1+j = n—m crossings
in total. It follows that ¢(P™"™) < n—m. Taken together with the inequality above,
we have

c(P™™) =n—m.

In every case, we conclude that the desired equality holds; that is, for any values
of n and m, we have

c(P™™) = max{1, |n — m|}. O

Remark 3.3. It follows from the main theorem that, for example,
c(PY#P7) < c(PT) +¢(P7)

and so crossing number is not additive under the connected sum operation. Even
more strongly, for every n, there exist surfaces I = P™? and K’ = P%" such that
¢(K) = ¢(K') = n, but ¢(K#K') = 1.

Turning our attention to bridge number, there is an example due to Viro of a
knotted 2-sphere K such that PT#K = P+ [I5]. By [0, 0], we have b(K) > 4,
and thus it is known that bridge number is also not additive under connected
summation. There are no known examples of such degeneration for either invariant
when the operation is restricted to the class of orientable surfaces, but finding such
examples would be an interesting avenue of future research.

Remark 3.4. An alternative proof of Lemmas [B.I] and uses the fact that
PHH#T = PH#Pt4#P~, and so for n > 1, we have P™" = T 14PLl and
prtln — PHLT™ and the corresponding diagrams have a single crossing. The
above proofs are interesting because they produce diagrams P™" and P"*1" that
are potentially inequivalent (without using stabilizations and destabilizations) to
diagrams that decompose with 7" summands. Indeed, Jeffrey Meier has shown that
the diagrams PY#1T and PT#P*# P~ correspond to inequivalent bridge trisec-
tions by examining their underlying cubic graphs [7].

2350041-10
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4. Converting ch-Diagrams to Tri-Plane Diagrams

Another tool to encode knotted surfaces in 4-space is a ch-diagram, which appeared
in work of Yoshikawa [16]. Whereas a classical knot diagram is an immersed curve
in the plane with crossing information at each double point, ch-diagrams contain
both crossings and marked vertices, as shown in Fig. Bl Marked vertices admit a +
and — resolution, as shown.

A marked diagram M is an immersed curve or curves in the plane such that each
double point is either a crossing or a marked vertex. As such, a marked diagram
has a + resolution M, obtained by performing the + resolution on all marked
vertices, and a — resolution M_, obtained by performing the — resolution on all
marked vertices. Note that M, and M_ are classical link diagrams. Finally, a ch-
diagram is defined to be a marked diagram M such that each resolution M. is a
classical diagram for an unlink, a link isotopic to the disjoint union of unknotted
loops. As is the case with tri-plane diagrams, every surface in 4-space admits a
ch-diagram, and any two ch-diagrams for the same surface are related by a finite
collection of moves, called Yoshikawa moves [6l 14} [16]. An example of a ch-diagram
for the surface P+ (denoted 2, " in Yoshikawa’s table) is shown in Fig.

— = X 7 )

Fig. 8. A marked vertex (center) along with its two resolutions.

X = M

Fig. 9. Changing a marked vertex to a band.

101

(a) ch-diagram in bridge position

ST IS

(b) Result of converting ch-diagram to tri-plane diagram

R R .

(c) Braid and Reidemeister moves convert the diagram to P+

Fig. 10. Converting a ch-diagram to a tri-plane diagram.

2350041-11
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To convert a ch-diagram to a tri-plane diagram, we (implicitly) pass through
yet another closely related concept, called a banded unlink diagram. Banded unlink
diagrams are described in [9]; we refer the reader to that paper for further details.
Briefly, every marked vertex can be converted to a band as in Fig. [@ and this
process changes the ch-diagram M to a banded link diagram (M_,v), where the
resolution of the unlink M_ along the bands v yields the unlink M.

We say that a ch-diagram M is in bridge position if there is some height function
on M such that all maxima of M occur above all minima, all markings on marked
vertices are contained in a single (planar) regular level P separating the minima
and the maxima, and the arcs containing the maxima can be isotoped into P to
be disjoint from the marked vertices and such that the image of the isotopy is a
collection of embedded arcs (with no crossings and no closed components). In this
case, the corresponding banded link presentation (M_,v) admits a banded bridge
splitting, which gives rise to a bridge trisection by [9, Lemma 3.2].

A ch-diagram M in bridge position yields a tri-plane diagram via the following
procedure: Let P’ be a regular level just below the marked vertices, cutting M
into two diagrams M’ and M"”, where M’ contains the marked vertices. Letting
D1 = ML, D2 = Mi and D3 = W, it follows from M that D = (Dl,DQ,Dg)
is a tri-plane diagram for the knotted surface I determined by M. An example
of this process using Yoshikawa’s ch-diagram 2;1 for P is carried out in Fig. [0}
including tri-plane moves showing that the converted diagram is equivalent to the
standard diagram PT.

5. A Library of Tri-Plane Diagrams

In this section, we carry out the procedure described above to convert the 23 ch-
diagrams given by Yoshikawa in [I6] into tri-plane diagrams. For some diagrams, we
perform tri-plane moves to decrease the crossing numbers. We begin with a class of
knotted 2-spheres introduced by Artin called spun knots [1], since two of the surfaces
(81 and 104 in the Yoshikawa table) fall into this family. Tri-plane diagrams for spun
knots appeared in [9], in which the authors determined the minimal bridge number,
but we reproduce the argument below to prove the next lemma.

Lemma 5.1. Suppose that K is the spin of a 2-bridge knot K. Then b(K) =4 and
c(K) < 2¢(K).

Proof. Every 2-bridge knot K has a minimal crossing diagram obtained by taking
the plat closure of a braid on four strands, and such that the right-most strand
contains no crossings. As such, K has a ch-diagram as shown in Fig.[ITl Converting
this ch-diagram to a tri-plane diagram and performing braid moves and Reidemeis-
ter moves produces the tri-plane diagram at bottom in Fig. [Tl which has 2¢(K)
crossings. Thus, ¢(K) < 2¢(K). Since K is not the unknotted 2-sphere, we have that
b(K) > 4 by [10], and thus b(K) = 4. O

2350041-12
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(a) ch-diagram, where br represents a braid (and reflected br the reflection of the braid)
N N o
Hal Bl
1T/ Tala  1las

(b) Result of converting ch-diagram to tri-plane diagram

(c¢) Crossing number lowered by braid and Reidemeister moves

a

Fig. 11. A tri-plane diagram for a spun knot K.

In the table below, we collect data for each knotted surface in Yoshikawa’s
table, with the associated tri-plane diagrams appearing in the referenced figures.
While each entry for the crossing number is only an upper bound, Theorem
verifies that each bridge number is minimal. In addition, the type of a surface is its
homeomorphism class as a 2-manifold; we use S?, P? and T? to denote the 2-sphere,
projective plane and torus, respectively.

Proof of Theorem We obtain lower bounds for most of the bridge numbers
by considering the bridge numbers of individual components of K separately. For
example, if the type of K is S? LU T?, we know that the S? component on its own
has bridge number of at least one, while the T? component on its own has bridge
number of at least three, and thus the bridge number of K is at least four. Similarly,
each P? component contributes bridge number two to the sum, and each P?#P?
component contributes bridge number three to the sum. Each surface /C in the table
realizes the sum of minimum possible bridge numbers of its components, with the
exception of the surfaces 81, 91, 101, 105, 103 and 10}.

Each of the first five surfaces in this list is a 2-sphere K that is not the unknotted
2-sphere, and since b(K) > 4 by [I0], we have b(K) = 4 for these surfaces. For the
remaining surface 101, we claim that 5(10}) = 6. In Fig. 21l we see a 6-bridge tri-
plane diagram for 101, and so certainly b(101) < 6. If 10] admits some (b; c1, c2, c3)-
bridge trisection with b < 6, then using the fact that 0 = x(101) = ¢; +c2 +c3 — b,
we have that at least one of the ¢;’s is equal to one. By [5l Theorem 4.1], it follows
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that 71(S*\101) admits a presentation with a single generator, and as such it must
be a cyclic group. On the other hand, in [I6], it is noted that 7;(S*\1031) is the
same as the fundamental group of the exterior of the trefoil in 3-space, the group
(x,y | xyx = yay), which is not cyclic (in particular, it surjects onto the symmetric
group S3), yielding a contradiction. We conclude that b(10}) = 6, completing the
proof. O

In Tabledbelow, we record the name (from [16]), the figure depicting a tri-plane
diagram, the topological type, the bridge number, an upper bound for the crossing
number, and the Euler number for each surface. We note that for all surfaces in the
table with more than one component, the individual components are unknotted.
The crossing number entry for 102’72 is marked with an * because the diagram that

Table 1. Tri-plane data for the Yoshikawa table.

Label Figure Type Bridge #  Crossing # < Euler #
01 o s? 1 0° 0
21 m T2 3 0° 0
27! m p? 2 1¢ 2
6! S2uT? 4 4¢ 0
792 S2 U (P24P2) 4 5¢ 0
81 | s? 4 6¢ 0
8yt @  T2uT? 6 6 0
gy bt P2 | P2 4 8 0
9 s? 4 7° 0
99! 0  S*uT? 4 8e 0
9772 08 T2 U (P2#P2?) 6 7 0
104 o S? 4 8¢ 0
102 s? 4 11 0
103 S? 4 11 0
10} | T? 6 11 0
109 S2 U T? 4 8e 0
109 S2 U T? 4 8e 0
10! T2 U T? 6 6 0
1090 S2US?UT? 5 8 0
10972 20 S? U (P2#P2?) 4 8¢ 0
10572 S2 U (P24P2) 4 gre 0
10,471 28 P2uPp? 4 8¢ 0
10,272 ) (P2#4P2) L (P2 #P?) 6 8 0
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(a) ch-diagram

fa ) [E

(b) Result of converting ch-diagram to tri-plane diagram

nf\ AN (\/\

¢) Crossing number lowered by braid and Reidemeister moves

. 0,1
Fig. 12. 6)'".

(a) ch-diagram

fan K2 [S2

(b) Result of converting ch-diagram to tri-plane diagram

(c¢) Crossing number lowered by braid and Reidemeister moves

. 0,-2
Fig. 13. 7

2350041-15



J. Knot Theory Ramifications Downloaded from www.worldscientific.com

by UNIVERSITY OF NEBRASKA-LINCOLN on 07/03/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

W. Allred et al.

Aﬂ@wf&

) Braid and Reidemeister moves set up a destabilization

NAENAS

(e) Result of destabilization

NN AW (gg\)

(f) Result of braid and Reidemeister moves to concentrate diagram

Fig. 13. (Continued)

(a) ch-diagram

LAY ma

(b) Result of converting ch-diagram to tri-plane diagram

Fig. 14. 8"

(a) ch-diagram

Fig. 15. 8 b7
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g LA LX)

(b) Result of converting ch-diagram to tri-plane diagram

AL L) LA

¢) Crossing number lowered by braid and Reidemeister moves

Fig. 15. (Continued)

4

(a) ch-diagram

fan B B

(b) Result of converting ch-diagram to tri-plane diagram

N

(

N/~ SN/ R | R

(c¢) Crossing number lowered by braid and Reidemeister moves

Fig. 16. 9.
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gy N

) Braid and Reidemeister moves set up a destabilization

N

(

(e) Result of destabilization

N

(

I\m I\mf\ élﬁ

(f) Result of braid and Reidemeister moves to concentrate diagram

Fig. 16. (Continued)

minimizes crossing number experimentally has bridge number equal to five, instead
of the minimal bridge number for this surface, which is four. In addition, recall that
a tri-plane diagram is concentrated if all crossings are contained in a single tangle.
When a diagram which minimizes crossing number is concentrated, we mark the
corresponding crossing number with a c.

5

(a) ch-diagram

AL ) LA

(b) Result of converting ch-diagram to tri-plane diagram

. 0,1
Fig. 17. 93
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AR A ARSI

(c¢) Crossing number lowered by braid and Reidemeister moves

'—~Szi } '—.Szii C 2

(d) Braid and Reidemeister moves set up a destabilization

Na MNa (/\ﬂ

(e) Result of destabilization

Q
AW mm%

(f) Result of braid and Reidemeister moves to concentrate diagram

Fig. 17. (Continued)

(a) ch-diagram

Q@@ﬁ”\

) Result of converting ch-diagram to tri-plane diagram

Fig. 18. 97 2.
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S
N

(a) ch-diagram

FINAARN

(b) Result of converting ch-diagram to tri-plane diagram

LAl LR L

¢) Diagram is more symmetric after braid and Reidemeister moves

Fig. 19. 10s.

\

A

(a) ch-diagram

L& AL [

) Result of converting ch-diagram to tri-plane diagram

/Q AR

¢) Crossing number lowered by Reidemeister moves

Fig. 20. 10s.
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4

(a) ch-diagram

(AL LA) o

) Result of converting ch-diagram to tri-plane diagram

Fig. 21. 10%.
(a) ch-diagram

N

)

e
INO
NS
D

D
2%

(b) Result of converting ch-diagram to tri-plane diagram

L) Lam)

¢) Crossing number lowered by braid and Reidemeister moves

(d) Result of destabilization

PO >
L

)

OO
L

. 0,1
Fig. 22. 103
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(a) ch-diagram

- ’ s Q L=
-
AES ’ X \ ’,
M ' '

(b) Result of converting ch-diagram to tri-plane diagram

(AN Aon nf/@)

(c) Destabilization and crossing number lowered by braid and Reidemeister moves

: 0,1
Fig. 23. 105"

(a) ch-diagram

Q@A@Af\m

) Result of converting ch-diagram to tri-plane diagram

Fig. 24. 107"

6. Questions

Following Remark B3] there are examples of surfaces for which both crossing num-
ber and bridge number degenerate under the connected sum operation, but we know
no such examples among orientable surfaces.

Question 6.1. For orientable surfaces I and K’, does it hold that
c(K#K') = c(K) + (k")  and  b(K#K') = b(K) + b(K') — 17
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5N

(a) ch-diagram

F X AN =

(b) Result of converting ch-diagram to tri-plane diagram

L [l A

¢) Crossing number lowered by braid and Reidemeister moves

. 0,0,1
Fig. 25. 10777

A

O

(a) ch-diagram

. £ 25D

(b) Result of converting ch-diagram to tri-plane diagram

‘ Galt)

¢) Crossing number lowered by braid and Reidemeister moves

: 0,—2
Fig. 26. 103
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@Y Lan I8

(d) Result of destabilization

A@lﬂg@l@

) Braid and Reidemeister moves set up another destabilization

(f) Result of destabilization

(g) Result of braid and Reidemeister moves to decrease crossing number

Fig. 26. (Continued)

(a) ch-diagram

. 0,—2
Fig. 27. 105>
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Al ¢l)

(b) Result of converting ch-diagram to tri-plane diagram

AV AAYA ﬂ@

(¢) Minimum realized crossing number

(d) Braid and Reidemeister moves set up a destabilization

(e) Result of destabilization

AL @

) Result of braid and Reidemeister moves to decrease crossing number

Fig. 27. (Continued)
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S

(a) ch-diagram

N (Aa x:%“ﬁ:\

(b) Result of converting ch-diagram to tri-plane diagram

Fig. 28. 107 57!

(a) ch-diagram

/Y\ LX) &maa

) Result of converting ch-diagram to tri-plane diagram

Fig. 20. 10,72

For classical knots, the analogous equality for bridge number is known to be
true [12 [13], while the question for crossing number is a notoriously difficult open
problem in general.

In Table[Il we observe that we have minimized crossing number via concentrated
diagrams for only about half of the surfaces K. We can define the concentrated
crossing number of K, denoted ¢°(K), to be the minimum crossing number among
concentrated diagrams, leading naturally to the next question.

Question 6.2. Does there exist a surface K such that ¢(K) < ¢¢(K)? If so, what
is the largest possible difference ¢(KC) — ¢(K)?

As noted above, the surface 1092
both an 8-crossing 5-bridge diagram and a 13-crossing 4-bridge diagram, where we
were not able to reduce the crossing number below 13 among the family of 4-bridge
diagrams for 100>,

provides an interesting example in that it has
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Question 6.3. Does there exist a surface K C S? such that 5(K) and ¢(K) cannot
be realized by a single diagram?

Using the data in Table[I] it appears that crossing number is bounded below by
bridge number, although this is not the case for unknotted surfaces, since b(P™™) =
n+m+ 1.

Question 6.4. Aside from constructions obtained by taking the connected sum
with unknotted surfaces, does there exist a knotted surface K C S* such that

b(K) > c(K)?

Finally, we note that every surface K in our table satisfies e(K) = 0. By taking
a connected sum of P* with any K from the table, we can obtain a surface with
e(PE#K) = +£2 and ¢(PT#K) < ¢(K) + 1. But the following remains unknown for
surfaces that are not connected sums.

Question 6.5. What is the smallest crossing number of a surface I such that
K # K'#P* for some other surface K’ and such that e(K) # 0?
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